]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/checkpoint.c
Merge tag 'for-linus-20170812' of git://git.infradead.org/linux-mtd
[karo-tx-linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         set_ckpt_flags(sbi, CP_ERROR_FLAG);
32         sbi->sb->s_flags |= MS_RDONLY;
33         if (!end_io)
34                 f2fs_flush_merged_writes(sbi);
35 }
36
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42         struct address_space *mapping = META_MAPPING(sbi);
43         struct page *page = NULL;
44 repeat:
45         page = f2fs_grab_cache_page(mapping, index, false);
46         if (!page) {
47                 cond_resched();
48                 goto repeat;
49         }
50         f2fs_wait_on_page_writeback(page, META, true);
51         if (!PageUptodate(page))
52                 SetPageUptodate(page);
53         return page;
54 }
55
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60                                                         bool is_meta)
61 {
62         struct address_space *mapping = META_MAPPING(sbi);
63         struct page *page;
64         struct f2fs_io_info fio = {
65                 .sbi = sbi,
66                 .type = META,
67                 .op = REQ_OP_READ,
68                 .op_flags = REQ_META | REQ_PRIO,
69                 .old_blkaddr = index,
70                 .new_blkaddr = index,
71                 .encrypted_page = NULL,
72         };
73
74         if (unlikely(!is_meta))
75                 fio.op_flags &= ~REQ_META;
76 repeat:
77         page = f2fs_grab_cache_page(mapping, index, false);
78         if (!page) {
79                 cond_resched();
80                 goto repeat;
81         }
82         if (PageUptodate(page))
83                 goto out;
84
85         fio.page = page;
86
87         if (f2fs_submit_page_bio(&fio)) {
88                 f2fs_put_page(page, 1);
89                 goto repeat;
90         }
91
92         lock_page(page);
93         if (unlikely(page->mapping != mapping)) {
94                 f2fs_put_page(page, 1);
95                 goto repeat;
96         }
97
98         /*
99          * if there is any IO error when accessing device, make our filesystem
100          * readonly and make sure do not write checkpoint with non-uptodate
101          * meta page.
102          */
103         if (unlikely(!PageUptodate(page)))
104                 f2fs_stop_checkpoint(sbi, false);
105 out:
106         return page;
107 }
108
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111         return __get_meta_page(sbi, index, true);
112 }
113
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117         return __get_meta_page(sbi, index, false);
118 }
119
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122         switch (type) {
123         case META_NAT:
124                 break;
125         case META_SIT:
126                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127                         return false;
128                 break;
129         case META_SSA:
130                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131                         blkaddr < SM_I(sbi)->ssa_blkaddr))
132                         return false;
133                 break;
134         case META_CP:
135                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136                         blkaddr < __start_cp_addr(sbi)))
137                         return false;
138                 break;
139         case META_POR:
140                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141                         blkaddr < MAIN_BLKADDR(sbi)))
142                         return false;
143                 break;
144         default:
145                 BUG();
146         }
147
148         return true;
149 }
150
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155                                                         int type, bool sync)
156 {
157         struct page *page;
158         block_t blkno = start;
159         struct f2fs_io_info fio = {
160                 .sbi = sbi,
161                 .type = META,
162                 .op = REQ_OP_READ,
163                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164                 .encrypted_page = NULL,
165                 .in_list = false,
166         };
167         struct blk_plug plug;
168
169         if (unlikely(type == META_POR))
170                 fio.op_flags &= ~REQ_META;
171
172         blk_start_plug(&plug);
173         for (; nrpages-- > 0; blkno++) {
174
175                 if (!is_valid_blkaddr(sbi, blkno, type))
176                         goto out;
177
178                 switch (type) {
179                 case META_NAT:
180                         if (unlikely(blkno >=
181                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
182                                 blkno = 0;
183                         /* get nat block addr */
184                         fio.new_blkaddr = current_nat_addr(sbi,
185                                         blkno * NAT_ENTRY_PER_BLOCK);
186                         break;
187                 case META_SIT:
188                         /* get sit block addr */
189                         fio.new_blkaddr = current_sit_addr(sbi,
190                                         blkno * SIT_ENTRY_PER_BLOCK);
191                         break;
192                 case META_SSA:
193                 case META_CP:
194                 case META_POR:
195                         fio.new_blkaddr = blkno;
196                         break;
197                 default:
198                         BUG();
199                 }
200
201                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
202                                                 fio.new_blkaddr, false);
203                 if (!page)
204                         continue;
205                 if (PageUptodate(page)) {
206                         f2fs_put_page(page, 1);
207                         continue;
208                 }
209
210                 fio.page = page;
211                 f2fs_submit_page_bio(&fio);
212                 f2fs_put_page(page, 0);
213         }
214 out:
215         blk_finish_plug(&plug);
216         return blkno - start;
217 }
218
219 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
220 {
221         struct page *page;
222         bool readahead = false;
223
224         page = find_get_page(META_MAPPING(sbi), index);
225         if (!page || !PageUptodate(page))
226                 readahead = true;
227         f2fs_put_page(page, 0);
228
229         if (readahead)
230                 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
231 }
232
233 static int f2fs_write_meta_page(struct page *page,
234                                 struct writeback_control *wbc)
235 {
236         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
237
238         trace_f2fs_writepage(page, META);
239
240         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
241                 goto redirty_out;
242         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
243                 goto redirty_out;
244         if (unlikely(f2fs_cp_error(sbi)))
245                 goto redirty_out;
246
247         write_meta_page(sbi, page);
248         dec_page_count(sbi, F2FS_DIRTY_META);
249
250         if (wbc->for_reclaim)
251                 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
252                                                 0, page->index, META);
253
254         unlock_page(page);
255
256         if (unlikely(f2fs_cp_error(sbi)))
257                 f2fs_submit_merged_write(sbi, META);
258
259         return 0;
260
261 redirty_out:
262         redirty_page_for_writepage(wbc, page);
263         return AOP_WRITEPAGE_ACTIVATE;
264 }
265
266 static int f2fs_write_meta_pages(struct address_space *mapping,
267                                 struct writeback_control *wbc)
268 {
269         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
270         long diff, written;
271
272         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
273                 goto skip_write;
274
275         /* collect a number of dirty meta pages and write together */
276         if (wbc->for_kupdate ||
277                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
278                 goto skip_write;
279
280         /* if locked failed, cp will flush dirty pages instead */
281         if (!mutex_trylock(&sbi->cp_mutex))
282                 goto skip_write;
283
284         trace_f2fs_writepages(mapping->host, wbc, META);
285         diff = nr_pages_to_write(sbi, META, wbc);
286         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
287         mutex_unlock(&sbi->cp_mutex);
288         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
289         return 0;
290
291 skip_write:
292         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
293         trace_f2fs_writepages(mapping->host, wbc, META);
294         return 0;
295 }
296
297 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
298                                                 long nr_to_write)
299 {
300         struct address_space *mapping = META_MAPPING(sbi);
301         pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
302         struct pagevec pvec;
303         long nwritten = 0;
304         struct writeback_control wbc = {
305                 .for_reclaim = 0,
306         };
307         struct blk_plug plug;
308
309         pagevec_init(&pvec, 0);
310
311         blk_start_plug(&plug);
312
313         while (index <= end) {
314                 int i, nr_pages;
315                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
316                                 PAGECACHE_TAG_DIRTY,
317                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
318                 if (unlikely(nr_pages == 0))
319                         break;
320
321                 for (i = 0; i < nr_pages; i++) {
322                         struct page *page = pvec.pages[i];
323
324                         if (prev == ULONG_MAX)
325                                 prev = page->index - 1;
326                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
327                                 pagevec_release(&pvec);
328                                 goto stop;
329                         }
330
331                         lock_page(page);
332
333                         if (unlikely(page->mapping != mapping)) {
334 continue_unlock:
335                                 unlock_page(page);
336                                 continue;
337                         }
338                         if (!PageDirty(page)) {
339                                 /* someone wrote it for us */
340                                 goto continue_unlock;
341                         }
342
343                         f2fs_wait_on_page_writeback(page, META, true);
344
345                         BUG_ON(PageWriteback(page));
346                         if (!clear_page_dirty_for_io(page))
347                                 goto continue_unlock;
348
349                         if (mapping->a_ops->writepage(page, &wbc)) {
350                                 unlock_page(page);
351                                 break;
352                         }
353                         nwritten++;
354                         prev = page->index;
355                         if (unlikely(nwritten >= nr_to_write))
356                                 break;
357                 }
358                 pagevec_release(&pvec);
359                 cond_resched();
360         }
361 stop:
362         if (nwritten)
363                 f2fs_submit_merged_write(sbi, type);
364
365         blk_finish_plug(&plug);
366
367         return nwritten;
368 }
369
370 static int f2fs_set_meta_page_dirty(struct page *page)
371 {
372         trace_f2fs_set_page_dirty(page, META);
373
374         if (!PageUptodate(page))
375                 SetPageUptodate(page);
376         if (!PageDirty(page)) {
377                 f2fs_set_page_dirty_nobuffers(page);
378                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
379                 SetPagePrivate(page);
380                 f2fs_trace_pid(page);
381                 return 1;
382         }
383         return 0;
384 }
385
386 const struct address_space_operations f2fs_meta_aops = {
387         .writepage      = f2fs_write_meta_page,
388         .writepages     = f2fs_write_meta_pages,
389         .set_page_dirty = f2fs_set_meta_page_dirty,
390         .invalidatepage = f2fs_invalidate_page,
391         .releasepage    = f2fs_release_page,
392 #ifdef CONFIG_MIGRATION
393         .migratepage    = f2fs_migrate_page,
394 #endif
395 };
396
397 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
398 {
399         struct inode_management *im = &sbi->im[type];
400         struct ino_entry *e, *tmp;
401
402         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
403 retry:
404         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
405
406         spin_lock(&im->ino_lock);
407         e = radix_tree_lookup(&im->ino_root, ino);
408         if (!e) {
409                 e = tmp;
410                 if (radix_tree_insert(&im->ino_root, ino, e)) {
411                         spin_unlock(&im->ino_lock);
412                         radix_tree_preload_end();
413                         goto retry;
414                 }
415                 memset(e, 0, sizeof(struct ino_entry));
416                 e->ino = ino;
417
418                 list_add_tail(&e->list, &im->ino_list);
419                 if (type != ORPHAN_INO)
420                         im->ino_num++;
421         }
422         spin_unlock(&im->ino_lock);
423         radix_tree_preload_end();
424
425         if (e != tmp)
426                 kmem_cache_free(ino_entry_slab, tmp);
427 }
428
429 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
430 {
431         struct inode_management *im = &sbi->im[type];
432         struct ino_entry *e;
433
434         spin_lock(&im->ino_lock);
435         e = radix_tree_lookup(&im->ino_root, ino);
436         if (e) {
437                 list_del(&e->list);
438                 radix_tree_delete(&im->ino_root, ino);
439                 im->ino_num--;
440                 spin_unlock(&im->ino_lock);
441                 kmem_cache_free(ino_entry_slab, e);
442                 return;
443         }
444         spin_unlock(&im->ino_lock);
445 }
446
447 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
448 {
449         /* add new dirty ino entry into list */
450         __add_ino_entry(sbi, ino, type);
451 }
452
453 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
454 {
455         /* remove dirty ino entry from list */
456         __remove_ino_entry(sbi, ino, type);
457 }
458
459 /* mode should be APPEND_INO or UPDATE_INO */
460 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
461 {
462         struct inode_management *im = &sbi->im[mode];
463         struct ino_entry *e;
464
465         spin_lock(&im->ino_lock);
466         e = radix_tree_lookup(&im->ino_root, ino);
467         spin_unlock(&im->ino_lock);
468         return e ? true : false;
469 }
470
471 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
472 {
473         struct ino_entry *e, *tmp;
474         int i;
475
476         for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
477                 struct inode_management *im = &sbi->im[i];
478
479                 spin_lock(&im->ino_lock);
480                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
481                         list_del(&e->list);
482                         radix_tree_delete(&im->ino_root, e->ino);
483                         kmem_cache_free(ino_entry_slab, e);
484                         im->ino_num--;
485                 }
486                 spin_unlock(&im->ino_lock);
487         }
488 }
489
490 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
491 {
492         struct inode_management *im = &sbi->im[ORPHAN_INO];
493         int err = 0;
494
495         spin_lock(&im->ino_lock);
496
497 #ifdef CONFIG_F2FS_FAULT_INJECTION
498         if (time_to_inject(sbi, FAULT_ORPHAN)) {
499                 spin_unlock(&im->ino_lock);
500                 f2fs_show_injection_info(FAULT_ORPHAN);
501                 return -ENOSPC;
502         }
503 #endif
504         if (unlikely(im->ino_num >= sbi->max_orphans))
505                 err = -ENOSPC;
506         else
507                 im->ino_num++;
508         spin_unlock(&im->ino_lock);
509
510         return err;
511 }
512
513 void release_orphan_inode(struct f2fs_sb_info *sbi)
514 {
515         struct inode_management *im = &sbi->im[ORPHAN_INO];
516
517         spin_lock(&im->ino_lock);
518         f2fs_bug_on(sbi, im->ino_num == 0);
519         im->ino_num--;
520         spin_unlock(&im->ino_lock);
521 }
522
523 void add_orphan_inode(struct inode *inode)
524 {
525         /* add new orphan ino entry into list */
526         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
527         update_inode_page(inode);
528 }
529
530 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
531 {
532         /* remove orphan entry from orphan list */
533         __remove_ino_entry(sbi, ino, ORPHAN_INO);
534 }
535
536 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
537 {
538         struct inode *inode;
539         struct node_info ni;
540         int err = acquire_orphan_inode(sbi);
541
542         if (err) {
543                 set_sbi_flag(sbi, SBI_NEED_FSCK);
544                 f2fs_msg(sbi->sb, KERN_WARNING,
545                                 "%s: orphan failed (ino=%x), run fsck to fix.",
546                                 __func__, ino);
547                 return err;
548         }
549
550         __add_ino_entry(sbi, ino, ORPHAN_INO);
551
552         inode = f2fs_iget_retry(sbi->sb, ino);
553         if (IS_ERR(inode)) {
554                 /*
555                  * there should be a bug that we can't find the entry
556                  * to orphan inode.
557                  */
558                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
559                 return PTR_ERR(inode);
560         }
561
562         clear_nlink(inode);
563
564         /* truncate all the data during iput */
565         iput(inode);
566
567         get_node_info(sbi, ino, &ni);
568
569         /* ENOMEM was fully retried in f2fs_evict_inode. */
570         if (ni.blk_addr != NULL_ADDR) {
571                 set_sbi_flag(sbi, SBI_NEED_FSCK);
572                 f2fs_msg(sbi->sb, KERN_WARNING,
573                         "%s: orphan failed (ino=%x) by kernel, retry mount.",
574                                 __func__, ino);
575                 return -EIO;
576         }
577         __remove_ino_entry(sbi, ino, ORPHAN_INO);
578         return 0;
579 }
580
581 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
582 {
583         block_t start_blk, orphan_blocks, i, j;
584         int err;
585
586         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
587                 return 0;
588
589         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
590         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
591
592         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
593
594         for (i = 0; i < orphan_blocks; i++) {
595                 struct page *page = get_meta_page(sbi, start_blk + i);
596                 struct f2fs_orphan_block *orphan_blk;
597
598                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
599                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
600                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
601                         err = recover_orphan_inode(sbi, ino);
602                         if (err) {
603                                 f2fs_put_page(page, 1);
604                                 return err;
605                         }
606                 }
607                 f2fs_put_page(page, 1);
608         }
609         /* clear Orphan Flag */
610         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
611         return 0;
612 }
613
614 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
615 {
616         struct list_head *head;
617         struct f2fs_orphan_block *orphan_blk = NULL;
618         unsigned int nentries = 0;
619         unsigned short index = 1;
620         unsigned short orphan_blocks;
621         struct page *page = NULL;
622         struct ino_entry *orphan = NULL;
623         struct inode_management *im = &sbi->im[ORPHAN_INO];
624
625         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
626
627         /*
628          * we don't need to do spin_lock(&im->ino_lock) here, since all the
629          * orphan inode operations are covered under f2fs_lock_op().
630          * And, spin_lock should be avoided due to page operations below.
631          */
632         head = &im->ino_list;
633
634         /* loop for each orphan inode entry and write them in Jornal block */
635         list_for_each_entry(orphan, head, list) {
636                 if (!page) {
637                         page = grab_meta_page(sbi, start_blk++);
638                         orphan_blk =
639                                 (struct f2fs_orphan_block *)page_address(page);
640                         memset(orphan_blk, 0, sizeof(*orphan_blk));
641                 }
642
643                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
644
645                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
646                         /*
647                          * an orphan block is full of 1020 entries,
648                          * then we need to flush current orphan blocks
649                          * and bring another one in memory
650                          */
651                         orphan_blk->blk_addr = cpu_to_le16(index);
652                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
653                         orphan_blk->entry_count = cpu_to_le32(nentries);
654                         set_page_dirty(page);
655                         f2fs_put_page(page, 1);
656                         index++;
657                         nentries = 0;
658                         page = NULL;
659                 }
660         }
661
662         if (page) {
663                 orphan_blk->blk_addr = cpu_to_le16(index);
664                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
665                 orphan_blk->entry_count = cpu_to_le32(nentries);
666                 set_page_dirty(page);
667                 f2fs_put_page(page, 1);
668         }
669 }
670
671 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
672                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
673                 unsigned long long *version)
674 {
675         unsigned long blk_size = sbi->blocksize;
676         size_t crc_offset = 0;
677         __u32 crc = 0;
678
679         *cp_page = get_meta_page(sbi, cp_addr);
680         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
681
682         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
683         if (crc_offset > (blk_size - sizeof(__le32))) {
684                 f2fs_msg(sbi->sb, KERN_WARNING,
685                         "invalid crc_offset: %zu", crc_offset);
686                 return -EINVAL;
687         }
688
689         crc = cur_cp_crc(*cp_block);
690         if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
691                 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
692                 return -EINVAL;
693         }
694
695         *version = cur_cp_version(*cp_block);
696         return 0;
697 }
698
699 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
700                                 block_t cp_addr, unsigned long long *version)
701 {
702         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
703         struct f2fs_checkpoint *cp_block = NULL;
704         unsigned long long cur_version = 0, pre_version = 0;
705         int err;
706
707         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
708                                         &cp_page_1, version);
709         if (err)
710                 goto invalid_cp1;
711         pre_version = *version;
712
713         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
714         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
715                                         &cp_page_2, version);
716         if (err)
717                 goto invalid_cp2;
718         cur_version = *version;
719
720         if (cur_version == pre_version) {
721                 *version = cur_version;
722                 f2fs_put_page(cp_page_2, 1);
723                 return cp_page_1;
724         }
725 invalid_cp2:
726         f2fs_put_page(cp_page_2, 1);
727 invalid_cp1:
728         f2fs_put_page(cp_page_1, 1);
729         return NULL;
730 }
731
732 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
733 {
734         struct f2fs_checkpoint *cp_block;
735         struct f2fs_super_block *fsb = sbi->raw_super;
736         struct page *cp1, *cp2, *cur_page;
737         unsigned long blk_size = sbi->blocksize;
738         unsigned long long cp1_version = 0, cp2_version = 0;
739         unsigned long long cp_start_blk_no;
740         unsigned int cp_blks = 1 + __cp_payload(sbi);
741         block_t cp_blk_no;
742         int i;
743
744         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
745         if (!sbi->ckpt)
746                 return -ENOMEM;
747         /*
748          * Finding out valid cp block involves read both
749          * sets( cp pack1 and cp pack 2)
750          */
751         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
752         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
753
754         /* The second checkpoint pack should start at the next segment */
755         cp_start_blk_no += ((unsigned long long)1) <<
756                                 le32_to_cpu(fsb->log_blocks_per_seg);
757         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
758
759         if (cp1 && cp2) {
760                 if (ver_after(cp2_version, cp1_version))
761                         cur_page = cp2;
762                 else
763                         cur_page = cp1;
764         } else if (cp1) {
765                 cur_page = cp1;
766         } else if (cp2) {
767                 cur_page = cp2;
768         } else {
769                 goto fail_no_cp;
770         }
771
772         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
773         memcpy(sbi->ckpt, cp_block, blk_size);
774
775         /* Sanity checking of checkpoint */
776         if (sanity_check_ckpt(sbi))
777                 goto free_fail_no_cp;
778
779         if (cur_page == cp1)
780                 sbi->cur_cp_pack = 1;
781         else
782                 sbi->cur_cp_pack = 2;
783
784         if (cp_blks <= 1)
785                 goto done;
786
787         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
788         if (cur_page == cp2)
789                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
790
791         for (i = 1; i < cp_blks; i++) {
792                 void *sit_bitmap_ptr;
793                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
794
795                 cur_page = get_meta_page(sbi, cp_blk_no + i);
796                 sit_bitmap_ptr = page_address(cur_page);
797                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
798                 f2fs_put_page(cur_page, 1);
799         }
800 done:
801         f2fs_put_page(cp1, 1);
802         f2fs_put_page(cp2, 1);
803         return 0;
804
805 free_fail_no_cp:
806         f2fs_put_page(cp1, 1);
807         f2fs_put_page(cp2, 1);
808 fail_no_cp:
809         kfree(sbi->ckpt);
810         return -EINVAL;
811 }
812
813 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
814 {
815         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
816         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
817
818         if (is_inode_flag_set(inode, flag))
819                 return;
820
821         set_inode_flag(inode, flag);
822         if (!f2fs_is_volatile_file(inode))
823                 list_add_tail(&F2FS_I(inode)->dirty_list,
824                                                 &sbi->inode_list[type]);
825         stat_inc_dirty_inode(sbi, type);
826 }
827
828 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
829 {
830         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
831
832         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
833                 return;
834
835         list_del_init(&F2FS_I(inode)->dirty_list);
836         clear_inode_flag(inode, flag);
837         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
838 }
839
840 void update_dirty_page(struct inode *inode, struct page *page)
841 {
842         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
843         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
844
845         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
846                         !S_ISLNK(inode->i_mode))
847                 return;
848
849         spin_lock(&sbi->inode_lock[type]);
850         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
851                 __add_dirty_inode(inode, type);
852         inode_inc_dirty_pages(inode);
853         spin_unlock(&sbi->inode_lock[type]);
854
855         SetPagePrivate(page);
856         f2fs_trace_pid(page);
857 }
858
859 void remove_dirty_inode(struct inode *inode)
860 {
861         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
862         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
863
864         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
865                         !S_ISLNK(inode->i_mode))
866                 return;
867
868         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
869                 return;
870
871         spin_lock(&sbi->inode_lock[type]);
872         __remove_dirty_inode(inode, type);
873         spin_unlock(&sbi->inode_lock[type]);
874 }
875
876 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
877 {
878         struct list_head *head;
879         struct inode *inode;
880         struct f2fs_inode_info *fi;
881         bool is_dir = (type == DIR_INODE);
882         unsigned long ino = 0;
883
884         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
885                                 get_pages(sbi, is_dir ?
886                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
887 retry:
888         if (unlikely(f2fs_cp_error(sbi)))
889                 return -EIO;
890
891         spin_lock(&sbi->inode_lock[type]);
892
893         head = &sbi->inode_list[type];
894         if (list_empty(head)) {
895                 spin_unlock(&sbi->inode_lock[type]);
896                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
897                                 get_pages(sbi, is_dir ?
898                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
899                 return 0;
900         }
901         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
902         inode = igrab(&fi->vfs_inode);
903         spin_unlock(&sbi->inode_lock[type]);
904         if (inode) {
905                 unsigned long cur_ino = inode->i_ino;
906
907                 filemap_fdatawrite(inode->i_mapping);
908                 iput(inode);
909                 /* We need to give cpu to another writers. */
910                 if (ino == cur_ino) {
911                         congestion_wait(BLK_RW_ASYNC, HZ/50);
912                         cond_resched();
913                 } else {
914                         ino = cur_ino;
915                 }
916         } else {
917                 /*
918                  * We should submit bio, since it exists several
919                  * wribacking dentry pages in the freeing inode.
920                  */
921                 f2fs_submit_merged_write(sbi, DATA);
922                 cond_resched();
923         }
924         goto retry;
925 }
926
927 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
928 {
929         struct list_head *head = &sbi->inode_list[DIRTY_META];
930         struct inode *inode;
931         struct f2fs_inode_info *fi;
932         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
933
934         while (total--) {
935                 if (unlikely(f2fs_cp_error(sbi)))
936                         return -EIO;
937
938                 spin_lock(&sbi->inode_lock[DIRTY_META]);
939                 if (list_empty(head)) {
940                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
941                         return 0;
942                 }
943                 fi = list_first_entry(head, struct f2fs_inode_info,
944                                                         gdirty_list);
945                 inode = igrab(&fi->vfs_inode);
946                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
947                 if (inode) {
948                         sync_inode_metadata(inode, 0);
949
950                         /* it's on eviction */
951                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
952                                 update_inode_page(inode);
953                         iput(inode);
954                 }
955         };
956         return 0;
957 }
958
959 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
960 {
961         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
962         struct f2fs_nm_info *nm_i = NM_I(sbi);
963         nid_t last_nid = nm_i->next_scan_nid;
964
965         next_free_nid(sbi, &last_nid);
966         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
967         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
968         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
969         ckpt->next_free_nid = cpu_to_le32(last_nid);
970 }
971
972 /*
973  * Freeze all the FS-operations for checkpoint.
974  */
975 static int block_operations(struct f2fs_sb_info *sbi)
976 {
977         struct writeback_control wbc = {
978                 .sync_mode = WB_SYNC_ALL,
979                 .nr_to_write = LONG_MAX,
980                 .for_reclaim = 0,
981         };
982         struct blk_plug plug;
983         int err = 0;
984
985         blk_start_plug(&plug);
986
987 retry_flush_dents:
988         f2fs_lock_all(sbi);
989         /* write all the dirty dentry pages */
990         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
991                 f2fs_unlock_all(sbi);
992                 err = sync_dirty_inodes(sbi, DIR_INODE);
993                 if (err)
994                         goto out;
995                 cond_resched();
996                 goto retry_flush_dents;
997         }
998
999         /*
1000          * POR: we should ensure that there are no dirty node pages
1001          * until finishing nat/sit flush. inode->i_blocks can be updated.
1002          */
1003         down_write(&sbi->node_change);
1004
1005         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1006                 up_write(&sbi->node_change);
1007                 f2fs_unlock_all(sbi);
1008                 err = f2fs_sync_inode_meta(sbi);
1009                 if (err)
1010                         goto out;
1011                 cond_resched();
1012                 goto retry_flush_dents;
1013         }
1014
1015 retry_flush_nodes:
1016         down_write(&sbi->node_write);
1017
1018         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1019                 up_write(&sbi->node_write);
1020                 err = sync_node_pages(sbi, &wbc);
1021                 if (err) {
1022                         up_write(&sbi->node_change);
1023                         f2fs_unlock_all(sbi);
1024                         goto out;
1025                 }
1026                 cond_resched();
1027                 goto retry_flush_nodes;
1028         }
1029
1030         /*
1031          * sbi->node_change is used only for AIO write_begin path which produces
1032          * dirty node blocks and some checkpoint values by block allocation.
1033          */
1034         __prepare_cp_block(sbi);
1035         up_write(&sbi->node_change);
1036 out:
1037         blk_finish_plug(&plug);
1038         return err;
1039 }
1040
1041 static void unblock_operations(struct f2fs_sb_info *sbi)
1042 {
1043         up_write(&sbi->node_write);
1044         f2fs_unlock_all(sbi);
1045 }
1046
1047 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1048 {
1049         DEFINE_WAIT(wait);
1050
1051         for (;;) {
1052                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1053
1054                 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1055                         break;
1056
1057                 io_schedule_timeout(5*HZ);
1058         }
1059         finish_wait(&sbi->cp_wait, &wait);
1060 }
1061
1062 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1063 {
1064         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1065         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1066         unsigned long flags;
1067
1068         spin_lock_irqsave(&sbi->cp_lock, flags);
1069
1070         if ((cpc->reason & CP_UMOUNT) &&
1071                         le32_to_cpu(ckpt->cp_pack_total_block_count) >
1072                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1073                 disable_nat_bits(sbi, false);
1074
1075         if (cpc->reason & CP_TRIMMED)
1076                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1077
1078         if (cpc->reason & CP_UMOUNT)
1079                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1080         else
1081                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1082
1083         if (cpc->reason & CP_FASTBOOT)
1084                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1085         else
1086                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1087
1088         if (orphan_num)
1089                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1090         else
1091                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1092
1093         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1094                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1095
1096         /* set this flag to activate crc|cp_ver for recovery */
1097         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1098
1099         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1100 }
1101
1102 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1103 {
1104         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1105         struct f2fs_nm_info *nm_i = NM_I(sbi);
1106         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1107         block_t start_blk;
1108         unsigned int data_sum_blocks, orphan_blocks;
1109         __u32 crc32 = 0;
1110         int i;
1111         int cp_payload_blks = __cp_payload(sbi);
1112         struct super_block *sb = sbi->sb;
1113         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1114         u64 kbytes_written;
1115
1116         /* Flush all the NAT/SIT pages */
1117         while (get_pages(sbi, F2FS_DIRTY_META)) {
1118                 sync_meta_pages(sbi, META, LONG_MAX);
1119                 if (unlikely(f2fs_cp_error(sbi)))
1120                         return -EIO;
1121         }
1122
1123         /*
1124          * modify checkpoint
1125          * version number is already updated
1126          */
1127         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1128         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1129         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1130                 ckpt->cur_node_segno[i] =
1131                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1132                 ckpt->cur_node_blkoff[i] =
1133                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1134                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1135                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1136         }
1137         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1138                 ckpt->cur_data_segno[i] =
1139                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1140                 ckpt->cur_data_blkoff[i] =
1141                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1142                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1143                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1144         }
1145
1146         /* 2 cp  + n data seg summary + orphan inode blocks */
1147         data_sum_blocks = npages_for_summary_flush(sbi, false);
1148         spin_lock_irqsave(&sbi->cp_lock, flags);
1149         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1150                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1151         else
1152                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1153         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1154
1155         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1156         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1157                         orphan_blocks);
1158
1159         if (__remain_node_summaries(cpc->reason))
1160                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1161                                 cp_payload_blks + data_sum_blocks +
1162                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1163         else
1164                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1165                                 cp_payload_blks + data_sum_blocks +
1166                                 orphan_blocks);
1167
1168         /* update ckpt flag for checkpoint */
1169         update_ckpt_flags(sbi, cpc);
1170
1171         /* update SIT/NAT bitmap */
1172         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1173         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1174
1175         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1176         *((__le32 *)((unsigned char *)ckpt +
1177                                 le32_to_cpu(ckpt->checksum_offset)))
1178                                 = cpu_to_le32(crc32);
1179
1180         start_blk = __start_cp_next_addr(sbi);
1181
1182         /* write nat bits */
1183         if (enabled_nat_bits(sbi, cpc)) {
1184                 __u64 cp_ver = cur_cp_version(ckpt);
1185                 block_t blk;
1186
1187                 cp_ver |= ((__u64)crc32 << 32);
1188                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1189
1190                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1191                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1192                         update_meta_page(sbi, nm_i->nat_bits +
1193                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1194
1195                 /* Flush all the NAT BITS pages */
1196                 while (get_pages(sbi, F2FS_DIRTY_META)) {
1197                         sync_meta_pages(sbi, META, LONG_MAX);
1198                         if (unlikely(f2fs_cp_error(sbi)))
1199                                 return -EIO;
1200                 }
1201         }
1202
1203         /* need to wait for end_io results */
1204         wait_on_all_pages_writeback(sbi);
1205         if (unlikely(f2fs_cp_error(sbi)))
1206                 return -EIO;
1207
1208         /* write out checkpoint buffer at block 0 */
1209         update_meta_page(sbi, ckpt, start_blk++);
1210
1211         for (i = 1; i < 1 + cp_payload_blks; i++)
1212                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1213                                                         start_blk++);
1214
1215         if (orphan_num) {
1216                 write_orphan_inodes(sbi, start_blk);
1217                 start_blk += orphan_blocks;
1218         }
1219
1220         write_data_summaries(sbi, start_blk);
1221         start_blk += data_sum_blocks;
1222
1223         /* Record write statistics in the hot node summary */
1224         kbytes_written = sbi->kbytes_written;
1225         if (sb->s_bdev->bd_part)
1226                 kbytes_written += BD_PART_WRITTEN(sbi);
1227
1228         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1229
1230         if (__remain_node_summaries(cpc->reason)) {
1231                 write_node_summaries(sbi, start_blk);
1232                 start_blk += NR_CURSEG_NODE_TYPE;
1233         }
1234
1235         /* writeout checkpoint block */
1236         update_meta_page(sbi, ckpt, start_blk);
1237
1238         /* wait for previous submitted node/meta pages writeback */
1239         wait_on_all_pages_writeback(sbi);
1240
1241         if (unlikely(f2fs_cp_error(sbi)))
1242                 return -EIO;
1243
1244         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1245         filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1246
1247         /* update user_block_counts */
1248         sbi->last_valid_block_count = sbi->total_valid_block_count;
1249         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1250
1251         /* Here, we only have one bio having CP pack */
1252         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1253
1254         /* wait for previous submitted meta pages writeback */
1255         wait_on_all_pages_writeback(sbi);
1256
1257         release_ino_entry(sbi, false);
1258
1259         if (unlikely(f2fs_cp_error(sbi)))
1260                 return -EIO;
1261
1262         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1263         clear_sbi_flag(sbi, SBI_NEED_CP);
1264         __set_cp_next_pack(sbi);
1265
1266         /*
1267          * redirty superblock if metadata like node page or inode cache is
1268          * updated during writing checkpoint.
1269          */
1270         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1271                         get_pages(sbi, F2FS_DIRTY_IMETA))
1272                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1273
1274         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1275
1276         return 0;
1277 }
1278
1279 /*
1280  * We guarantee that this checkpoint procedure will not fail.
1281  */
1282 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1283 {
1284         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1285         unsigned long long ckpt_ver;
1286         int err = 0;
1287
1288         mutex_lock(&sbi->cp_mutex);
1289
1290         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1291                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1292                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1293                 goto out;
1294         if (unlikely(f2fs_cp_error(sbi))) {
1295                 err = -EIO;
1296                 goto out;
1297         }
1298         if (f2fs_readonly(sbi->sb)) {
1299                 err = -EROFS;
1300                 goto out;
1301         }
1302
1303         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1304
1305         err = block_operations(sbi);
1306         if (err)
1307                 goto out;
1308
1309         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1310
1311         f2fs_flush_merged_writes(sbi);
1312
1313         /* this is the case of multiple fstrims without any changes */
1314         if (cpc->reason & CP_DISCARD) {
1315                 if (!exist_trim_candidates(sbi, cpc)) {
1316                         unblock_operations(sbi);
1317                         goto out;
1318                 }
1319
1320                 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1321                                 SIT_I(sbi)->dirty_sentries == 0 &&
1322                                 prefree_segments(sbi) == 0) {
1323                         flush_sit_entries(sbi, cpc);
1324                         clear_prefree_segments(sbi, cpc);
1325                         unblock_operations(sbi);
1326                         goto out;
1327                 }
1328         }
1329
1330         /*
1331          * update checkpoint pack index
1332          * Increase the version number so that
1333          * SIT entries and seg summaries are written at correct place
1334          */
1335         ckpt_ver = cur_cp_version(ckpt);
1336         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1337
1338         /* write cached NAT/SIT entries to NAT/SIT area */
1339         flush_nat_entries(sbi, cpc);
1340         flush_sit_entries(sbi, cpc);
1341
1342         /* unlock all the fs_lock[] in do_checkpoint() */
1343         err = do_checkpoint(sbi, cpc);
1344         if (err)
1345                 release_discard_addrs(sbi);
1346         else
1347                 clear_prefree_segments(sbi, cpc);
1348
1349         unblock_operations(sbi);
1350         stat_inc_cp_count(sbi->stat_info);
1351
1352         if (cpc->reason & CP_RECOVERY)
1353                 f2fs_msg(sbi->sb, KERN_NOTICE,
1354                         "checkpoint: version = %llx", ckpt_ver);
1355
1356         /* do checkpoint periodically */
1357         f2fs_update_time(sbi, CP_TIME);
1358         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1359 out:
1360         mutex_unlock(&sbi->cp_mutex);
1361         return err;
1362 }
1363
1364 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1365 {
1366         int i;
1367
1368         for (i = 0; i < MAX_INO_ENTRY; i++) {
1369                 struct inode_management *im = &sbi->im[i];
1370
1371                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1372                 spin_lock_init(&im->ino_lock);
1373                 INIT_LIST_HEAD(&im->ino_list);
1374                 im->ino_num = 0;
1375         }
1376
1377         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1378                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1379                                 F2FS_ORPHANS_PER_BLOCK;
1380 }
1381
1382 int __init create_checkpoint_caches(void)
1383 {
1384         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1385                         sizeof(struct ino_entry));
1386         if (!ino_entry_slab)
1387                 return -ENOMEM;
1388         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1389                         sizeof(struct inode_entry));
1390         if (!inode_entry_slab) {
1391                 kmem_cache_destroy(ino_entry_slab);
1392                 return -ENOMEM;
1393         }
1394         return 0;
1395 }
1396
1397 void destroy_checkpoint_caches(void)
1398 {
1399         kmem_cache_destroy(ino_entry_slab);
1400         kmem_cache_destroy(inode_entry_slab);
1401 }