]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/checkpoint.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
32         sbi->sb->s_flags |= MS_RDONLY;
33         if (!end_io)
34                 f2fs_flush_merged_bios(sbi);
35 }
36
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42         struct address_space *mapping = META_MAPPING(sbi);
43         struct page *page = NULL;
44 repeat:
45         page = f2fs_grab_cache_page(mapping, index, false);
46         if (!page) {
47                 cond_resched();
48                 goto repeat;
49         }
50         f2fs_wait_on_page_writeback(page, META, true);
51         SetPageUptodate(page);
52         return page;
53 }
54
55 /*
56  * We guarantee no failure on the returned page.
57  */
58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59                                                         bool is_meta)
60 {
61         struct address_space *mapping = META_MAPPING(sbi);
62         struct page *page;
63         struct f2fs_io_info fio = {
64                 .sbi = sbi,
65                 .type = META,
66                 .op = REQ_OP_READ,
67                 .op_flags = READ_SYNC | REQ_META | REQ_PRIO,
68                 .old_blkaddr = index,
69                 .new_blkaddr = index,
70                 .encrypted_page = NULL,
71         };
72
73         if (unlikely(!is_meta))
74                 fio.op_flags &= ~REQ_META;
75 repeat:
76         page = f2fs_grab_cache_page(mapping, index, false);
77         if (!page) {
78                 cond_resched();
79                 goto repeat;
80         }
81         if (PageUptodate(page))
82                 goto out;
83
84         fio.page = page;
85
86         if (f2fs_submit_page_bio(&fio)) {
87                 f2fs_put_page(page, 1);
88                 goto repeat;
89         }
90
91         lock_page(page);
92         if (unlikely(page->mapping != mapping)) {
93                 f2fs_put_page(page, 1);
94                 goto repeat;
95         }
96
97         /*
98          * if there is any IO error when accessing device, make our filesystem
99          * readonly and make sure do not write checkpoint with non-uptodate
100          * meta page.
101          */
102         if (unlikely(!PageUptodate(page)))
103                 f2fs_stop_checkpoint(sbi, false);
104 out:
105         return page;
106 }
107
108 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
109 {
110         return __get_meta_page(sbi, index, true);
111 }
112
113 /* for POR only */
114 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
115 {
116         return __get_meta_page(sbi, index, false);
117 }
118
119 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
120 {
121         switch (type) {
122         case META_NAT:
123                 break;
124         case META_SIT:
125                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
126                         return false;
127                 break;
128         case META_SSA:
129                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
130                         blkaddr < SM_I(sbi)->ssa_blkaddr))
131                         return false;
132                 break;
133         case META_CP:
134                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
135                         blkaddr < __start_cp_addr(sbi)))
136                         return false;
137                 break;
138         case META_POR:
139                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
140                         blkaddr < MAIN_BLKADDR(sbi)))
141                         return false;
142                 break;
143         default:
144                 BUG();
145         }
146
147         return true;
148 }
149
150 /*
151  * Readahead CP/NAT/SIT/SSA pages
152  */
153 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
154                                                         int type, bool sync)
155 {
156         struct page *page;
157         block_t blkno = start;
158         struct f2fs_io_info fio = {
159                 .sbi = sbi,
160                 .type = META,
161                 .op = REQ_OP_READ,
162                 .op_flags = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
163                 .encrypted_page = NULL,
164         };
165         struct blk_plug plug;
166
167         if (unlikely(type == META_POR))
168                 fio.op_flags &= ~REQ_META;
169
170         blk_start_plug(&plug);
171         for (; nrpages-- > 0; blkno++) {
172
173                 if (!is_valid_blkaddr(sbi, blkno, type))
174                         goto out;
175
176                 switch (type) {
177                 case META_NAT:
178                         if (unlikely(blkno >=
179                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
180                                 blkno = 0;
181                         /* get nat block addr */
182                         fio.new_blkaddr = current_nat_addr(sbi,
183                                         blkno * NAT_ENTRY_PER_BLOCK);
184                         break;
185                 case META_SIT:
186                         /* get sit block addr */
187                         fio.new_blkaddr = current_sit_addr(sbi,
188                                         blkno * SIT_ENTRY_PER_BLOCK);
189                         break;
190                 case META_SSA:
191                 case META_CP:
192                 case META_POR:
193                         fio.new_blkaddr = blkno;
194                         break;
195                 default:
196                         BUG();
197                 }
198
199                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
200                                                 fio.new_blkaddr, false);
201                 if (!page)
202                         continue;
203                 if (PageUptodate(page)) {
204                         f2fs_put_page(page, 1);
205                         continue;
206                 }
207
208                 fio.page = page;
209                 fio.old_blkaddr = fio.new_blkaddr;
210                 f2fs_submit_page_mbio(&fio);
211                 f2fs_put_page(page, 0);
212         }
213 out:
214         f2fs_submit_merged_bio(sbi, META, READ);
215         blk_finish_plug(&plug);
216         return blkno - start;
217 }
218
219 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
220 {
221         struct page *page;
222         bool readahead = false;
223
224         page = find_get_page(META_MAPPING(sbi), index);
225         if (!page || !PageUptodate(page))
226                 readahead = true;
227         f2fs_put_page(page, 0);
228
229         if (readahead)
230                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
231 }
232
233 static int f2fs_write_meta_page(struct page *page,
234                                 struct writeback_control *wbc)
235 {
236         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
237
238         trace_f2fs_writepage(page, META);
239
240         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
241                 goto redirty_out;
242         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
243                 goto redirty_out;
244         if (unlikely(f2fs_cp_error(sbi)))
245                 goto redirty_out;
246
247         write_meta_page(sbi, page);
248         dec_page_count(sbi, F2FS_DIRTY_META);
249
250         if (wbc->for_reclaim)
251                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
252
253         unlock_page(page);
254
255         if (unlikely(f2fs_cp_error(sbi)))
256                 f2fs_submit_merged_bio(sbi, META, WRITE);
257
258         return 0;
259
260 redirty_out:
261         redirty_page_for_writepage(wbc, page);
262         return AOP_WRITEPAGE_ACTIVATE;
263 }
264
265 static int f2fs_write_meta_pages(struct address_space *mapping,
266                                 struct writeback_control *wbc)
267 {
268         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
269         long diff, written;
270
271         /* collect a number of dirty meta pages and write together */
272         if (wbc->for_kupdate ||
273                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
274                 goto skip_write;
275
276         trace_f2fs_writepages(mapping->host, wbc, META);
277
278         /* if mounting is failed, skip writing node pages */
279         mutex_lock(&sbi->cp_mutex);
280         diff = nr_pages_to_write(sbi, META, wbc);
281         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
282         mutex_unlock(&sbi->cp_mutex);
283         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
284         return 0;
285
286 skip_write:
287         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
288         trace_f2fs_writepages(mapping->host, wbc, META);
289         return 0;
290 }
291
292 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
293                                                 long nr_to_write)
294 {
295         struct address_space *mapping = META_MAPPING(sbi);
296         pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
297         struct pagevec pvec;
298         long nwritten = 0;
299         struct writeback_control wbc = {
300                 .for_reclaim = 0,
301         };
302         struct blk_plug plug;
303
304         pagevec_init(&pvec, 0);
305
306         blk_start_plug(&plug);
307
308         while (index <= end) {
309                 int i, nr_pages;
310                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
311                                 PAGECACHE_TAG_DIRTY,
312                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
313                 if (unlikely(nr_pages == 0))
314                         break;
315
316                 for (i = 0; i < nr_pages; i++) {
317                         struct page *page = pvec.pages[i];
318
319                         if (prev == ULONG_MAX)
320                                 prev = page->index - 1;
321                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
322                                 pagevec_release(&pvec);
323                                 goto stop;
324                         }
325
326                         lock_page(page);
327
328                         if (unlikely(page->mapping != mapping)) {
329 continue_unlock:
330                                 unlock_page(page);
331                                 continue;
332                         }
333                         if (!PageDirty(page)) {
334                                 /* someone wrote it for us */
335                                 goto continue_unlock;
336                         }
337
338                         f2fs_wait_on_page_writeback(page, META, true);
339
340                         BUG_ON(PageWriteback(page));
341                         if (!clear_page_dirty_for_io(page))
342                                 goto continue_unlock;
343
344                         if (mapping->a_ops->writepage(page, &wbc)) {
345                                 unlock_page(page);
346                                 break;
347                         }
348                         nwritten++;
349                         prev = page->index;
350                         if (unlikely(nwritten >= nr_to_write))
351                                 break;
352                 }
353                 pagevec_release(&pvec);
354                 cond_resched();
355         }
356 stop:
357         if (nwritten)
358                 f2fs_submit_merged_bio(sbi, type, WRITE);
359
360         blk_finish_plug(&plug);
361
362         return nwritten;
363 }
364
365 static int f2fs_set_meta_page_dirty(struct page *page)
366 {
367         trace_f2fs_set_page_dirty(page, META);
368
369         SetPageUptodate(page);
370         if (!PageDirty(page)) {
371                 __set_page_dirty_nobuffers(page);
372                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
373                 SetPagePrivate(page);
374                 f2fs_trace_pid(page);
375                 return 1;
376         }
377         return 0;
378 }
379
380 const struct address_space_operations f2fs_meta_aops = {
381         .writepage      = f2fs_write_meta_page,
382         .writepages     = f2fs_write_meta_pages,
383         .set_page_dirty = f2fs_set_meta_page_dirty,
384         .invalidatepage = f2fs_invalidate_page,
385         .releasepage    = f2fs_release_page,
386 };
387
388 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
389 {
390         struct inode_management *im = &sbi->im[type];
391         struct ino_entry *e, *tmp;
392
393         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
394 retry:
395         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
396
397         spin_lock(&im->ino_lock);
398         e = radix_tree_lookup(&im->ino_root, ino);
399         if (!e) {
400                 e = tmp;
401                 if (radix_tree_insert(&im->ino_root, ino, e)) {
402                         spin_unlock(&im->ino_lock);
403                         radix_tree_preload_end();
404                         goto retry;
405                 }
406                 memset(e, 0, sizeof(struct ino_entry));
407                 e->ino = ino;
408
409                 list_add_tail(&e->list, &im->ino_list);
410                 if (type != ORPHAN_INO)
411                         im->ino_num++;
412         }
413         spin_unlock(&im->ino_lock);
414         radix_tree_preload_end();
415
416         if (e != tmp)
417                 kmem_cache_free(ino_entry_slab, tmp);
418 }
419
420 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
421 {
422         struct inode_management *im = &sbi->im[type];
423         struct ino_entry *e;
424
425         spin_lock(&im->ino_lock);
426         e = radix_tree_lookup(&im->ino_root, ino);
427         if (e) {
428                 list_del(&e->list);
429                 radix_tree_delete(&im->ino_root, ino);
430                 im->ino_num--;
431                 spin_unlock(&im->ino_lock);
432                 kmem_cache_free(ino_entry_slab, e);
433                 return;
434         }
435         spin_unlock(&im->ino_lock);
436 }
437
438 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
439 {
440         /* add new dirty ino entry into list */
441         __add_ino_entry(sbi, ino, type);
442 }
443
444 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
445 {
446         /* remove dirty ino entry from list */
447         __remove_ino_entry(sbi, ino, type);
448 }
449
450 /* mode should be APPEND_INO or UPDATE_INO */
451 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
452 {
453         struct inode_management *im = &sbi->im[mode];
454         struct ino_entry *e;
455
456         spin_lock(&im->ino_lock);
457         e = radix_tree_lookup(&im->ino_root, ino);
458         spin_unlock(&im->ino_lock);
459         return e ? true : false;
460 }
461
462 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
463 {
464         struct ino_entry *e, *tmp;
465         int i;
466
467         for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
468                 struct inode_management *im = &sbi->im[i];
469
470                 spin_lock(&im->ino_lock);
471                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
472                         list_del(&e->list);
473                         radix_tree_delete(&im->ino_root, e->ino);
474                         kmem_cache_free(ino_entry_slab, e);
475                         im->ino_num--;
476                 }
477                 spin_unlock(&im->ino_lock);
478         }
479 }
480
481 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
482 {
483         struct inode_management *im = &sbi->im[ORPHAN_INO];
484         int err = 0;
485
486         spin_lock(&im->ino_lock);
487
488 #ifdef CONFIG_F2FS_FAULT_INJECTION
489         if (time_to_inject(FAULT_ORPHAN)) {
490                 spin_unlock(&im->ino_lock);
491                 return -ENOSPC;
492         }
493 #endif
494         if (unlikely(im->ino_num >= sbi->max_orphans))
495                 err = -ENOSPC;
496         else
497                 im->ino_num++;
498         spin_unlock(&im->ino_lock);
499
500         return err;
501 }
502
503 void release_orphan_inode(struct f2fs_sb_info *sbi)
504 {
505         struct inode_management *im = &sbi->im[ORPHAN_INO];
506
507         spin_lock(&im->ino_lock);
508         f2fs_bug_on(sbi, im->ino_num == 0);
509         im->ino_num--;
510         spin_unlock(&im->ino_lock);
511 }
512
513 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
514 {
515         /* add new orphan ino entry into list */
516         __add_ino_entry(sbi, ino, ORPHAN_INO);
517 }
518
519 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
520 {
521         /* remove orphan entry from orphan list */
522         __remove_ino_entry(sbi, ino, ORPHAN_INO);
523 }
524
525 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
526 {
527         struct inode *inode;
528
529         inode = f2fs_iget(sbi->sb, ino);
530         if (IS_ERR(inode)) {
531                 /*
532                  * there should be a bug that we can't find the entry
533                  * to orphan inode.
534                  */
535                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
536                 return PTR_ERR(inode);
537         }
538
539         clear_nlink(inode);
540
541         /* truncate all the data during iput */
542         iput(inode);
543         return 0;
544 }
545
546 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
547 {
548         block_t start_blk, orphan_blocks, i, j;
549         int err;
550
551         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
552                 return 0;
553
554         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
555         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
556
557         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
558
559         for (i = 0; i < orphan_blocks; i++) {
560                 struct page *page = get_meta_page(sbi, start_blk + i);
561                 struct f2fs_orphan_block *orphan_blk;
562
563                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
564                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
565                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
566                         err = recover_orphan_inode(sbi, ino);
567                         if (err) {
568                                 f2fs_put_page(page, 1);
569                                 return err;
570                         }
571                 }
572                 f2fs_put_page(page, 1);
573         }
574         /* clear Orphan Flag */
575         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
576         return 0;
577 }
578
579 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
580 {
581         struct list_head *head;
582         struct f2fs_orphan_block *orphan_blk = NULL;
583         unsigned int nentries = 0;
584         unsigned short index = 1;
585         unsigned short orphan_blocks;
586         struct page *page = NULL;
587         struct ino_entry *orphan = NULL;
588         struct inode_management *im = &sbi->im[ORPHAN_INO];
589
590         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
591
592         /*
593          * we don't need to do spin_lock(&im->ino_lock) here, since all the
594          * orphan inode operations are covered under f2fs_lock_op().
595          * And, spin_lock should be avoided due to page operations below.
596          */
597         head = &im->ino_list;
598
599         /* loop for each orphan inode entry and write them in Jornal block */
600         list_for_each_entry(orphan, head, list) {
601                 if (!page) {
602                         page = grab_meta_page(sbi, start_blk++);
603                         orphan_blk =
604                                 (struct f2fs_orphan_block *)page_address(page);
605                         memset(orphan_blk, 0, sizeof(*orphan_blk));
606                 }
607
608                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
609
610                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
611                         /*
612                          * an orphan block is full of 1020 entries,
613                          * then we need to flush current orphan blocks
614                          * and bring another one in memory
615                          */
616                         orphan_blk->blk_addr = cpu_to_le16(index);
617                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
618                         orphan_blk->entry_count = cpu_to_le32(nentries);
619                         set_page_dirty(page);
620                         f2fs_put_page(page, 1);
621                         index++;
622                         nentries = 0;
623                         page = NULL;
624                 }
625         }
626
627         if (page) {
628                 orphan_blk->blk_addr = cpu_to_le16(index);
629                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
630                 orphan_blk->entry_count = cpu_to_le32(nentries);
631                 set_page_dirty(page);
632                 f2fs_put_page(page, 1);
633         }
634 }
635
636 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
637                                 block_t cp_addr, unsigned long long *version)
638 {
639         struct page *cp_page_1, *cp_page_2 = NULL;
640         unsigned long blk_size = sbi->blocksize;
641         struct f2fs_checkpoint *cp_block;
642         unsigned long long cur_version = 0, pre_version = 0;
643         size_t crc_offset;
644         __u32 crc = 0;
645
646         /* Read the 1st cp block in this CP pack */
647         cp_page_1 = get_meta_page(sbi, cp_addr);
648
649         /* get the version number */
650         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
651         crc_offset = le32_to_cpu(cp_block->checksum_offset);
652         if (crc_offset >= blk_size)
653                 goto invalid_cp1;
654
655         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
656         if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
657                 goto invalid_cp1;
658
659         pre_version = cur_cp_version(cp_block);
660
661         /* Read the 2nd cp block in this CP pack */
662         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
663         cp_page_2 = get_meta_page(sbi, cp_addr);
664
665         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
666         crc_offset = le32_to_cpu(cp_block->checksum_offset);
667         if (crc_offset >= blk_size)
668                 goto invalid_cp2;
669
670         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
671         if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
672                 goto invalid_cp2;
673
674         cur_version = cur_cp_version(cp_block);
675
676         if (cur_version == pre_version) {
677                 *version = cur_version;
678                 f2fs_put_page(cp_page_2, 1);
679                 return cp_page_1;
680         }
681 invalid_cp2:
682         f2fs_put_page(cp_page_2, 1);
683 invalid_cp1:
684         f2fs_put_page(cp_page_1, 1);
685         return NULL;
686 }
687
688 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
689 {
690         struct f2fs_checkpoint *cp_block;
691         struct f2fs_super_block *fsb = sbi->raw_super;
692         struct page *cp1, *cp2, *cur_page;
693         unsigned long blk_size = sbi->blocksize;
694         unsigned long long cp1_version = 0, cp2_version = 0;
695         unsigned long long cp_start_blk_no;
696         unsigned int cp_blks = 1 + __cp_payload(sbi);
697         block_t cp_blk_no;
698         int i;
699
700         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
701         if (!sbi->ckpt)
702                 return -ENOMEM;
703         /*
704          * Finding out valid cp block involves read both
705          * sets( cp pack1 and cp pack 2)
706          */
707         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
708         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
709
710         /* The second checkpoint pack should start at the next segment */
711         cp_start_blk_no += ((unsigned long long)1) <<
712                                 le32_to_cpu(fsb->log_blocks_per_seg);
713         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
714
715         if (cp1 && cp2) {
716                 if (ver_after(cp2_version, cp1_version))
717                         cur_page = cp2;
718                 else
719                         cur_page = cp1;
720         } else if (cp1) {
721                 cur_page = cp1;
722         } else if (cp2) {
723                 cur_page = cp2;
724         } else {
725                 goto fail_no_cp;
726         }
727
728         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
729         memcpy(sbi->ckpt, cp_block, blk_size);
730
731         /* Sanity checking of checkpoint */
732         if (sanity_check_ckpt(sbi))
733                 goto fail_no_cp;
734
735         if (cp_blks <= 1)
736                 goto done;
737
738         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
739         if (cur_page == cp2)
740                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
741
742         for (i = 1; i < cp_blks; i++) {
743                 void *sit_bitmap_ptr;
744                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
745
746                 cur_page = get_meta_page(sbi, cp_blk_no + i);
747                 sit_bitmap_ptr = page_address(cur_page);
748                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
749                 f2fs_put_page(cur_page, 1);
750         }
751 done:
752         f2fs_put_page(cp1, 1);
753         f2fs_put_page(cp2, 1);
754         return 0;
755
756 fail_no_cp:
757         kfree(sbi->ckpt);
758         return -EINVAL;
759 }
760
761 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
762 {
763         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
764         struct f2fs_inode_info *fi = F2FS_I(inode);
765         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
766
767         if (is_inode_flag_set(fi, flag))
768                 return;
769
770         set_inode_flag(fi, flag);
771         list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
772         stat_inc_dirty_inode(sbi, type);
773 }
774
775 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
776 {
777         struct f2fs_inode_info *fi = F2FS_I(inode);
778         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
779
780         if (get_dirty_pages(inode) ||
781                         !is_inode_flag_set(F2FS_I(inode), flag))
782                 return;
783
784         list_del_init(&fi->dirty_list);
785         clear_inode_flag(fi, flag);
786         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
787 }
788
789 void update_dirty_page(struct inode *inode, struct page *page)
790 {
791         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
792         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
793
794         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
795                         !S_ISLNK(inode->i_mode))
796                 return;
797
798         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) {
799                 spin_lock(&sbi->inode_lock[type]);
800                 __add_dirty_inode(inode, type);
801                 spin_unlock(&sbi->inode_lock[type]);
802         }
803
804         inode_inc_dirty_pages(inode);
805         SetPagePrivate(page);
806         f2fs_trace_pid(page);
807 }
808
809 void remove_dirty_inode(struct inode *inode)
810 {
811         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
812         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
813
814         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
815                         !S_ISLNK(inode->i_mode))
816                 return;
817
818         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
819                 return;
820
821         spin_lock(&sbi->inode_lock[type]);
822         __remove_dirty_inode(inode, type);
823         spin_unlock(&sbi->inode_lock[type]);
824 }
825
826 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
827 {
828         struct list_head *head;
829         struct inode *inode;
830         struct f2fs_inode_info *fi;
831         bool is_dir = (type == DIR_INODE);
832
833         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
834                                 get_pages(sbi, is_dir ?
835                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
836 retry:
837         if (unlikely(f2fs_cp_error(sbi)))
838                 return -EIO;
839
840         spin_lock(&sbi->inode_lock[type]);
841
842         head = &sbi->inode_list[type];
843         if (list_empty(head)) {
844                 spin_unlock(&sbi->inode_lock[type]);
845                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
846                                 get_pages(sbi, is_dir ?
847                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
848                 return 0;
849         }
850         fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
851         inode = igrab(&fi->vfs_inode);
852         spin_unlock(&sbi->inode_lock[type]);
853         if (inode) {
854                 filemap_fdatawrite(inode->i_mapping);
855                 iput(inode);
856         } else {
857                 /*
858                  * We should submit bio, since it exists several
859                  * wribacking dentry pages in the freeing inode.
860                  */
861                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
862                 cond_resched();
863         }
864         goto retry;
865 }
866
867 /*
868  * Freeze all the FS-operations for checkpoint.
869  */
870 static int block_operations(struct f2fs_sb_info *sbi)
871 {
872         struct writeback_control wbc = {
873                 .sync_mode = WB_SYNC_ALL,
874                 .nr_to_write = LONG_MAX,
875                 .for_reclaim = 0,
876         };
877         struct blk_plug plug;
878         int err = 0;
879
880         blk_start_plug(&plug);
881
882 retry_flush_dents:
883         f2fs_lock_all(sbi);
884         /* write all the dirty dentry pages */
885         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
886                 f2fs_unlock_all(sbi);
887                 err = sync_dirty_inodes(sbi, DIR_INODE);
888                 if (err)
889                         goto out;
890                 goto retry_flush_dents;
891         }
892
893         /*
894          * POR: we should ensure that there are no dirty node pages
895          * until finishing nat/sit flush.
896          */
897 retry_flush_nodes:
898         down_write(&sbi->node_write);
899
900         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
901                 up_write(&sbi->node_write);
902                 err = sync_node_pages(sbi, &wbc);
903                 if (err) {
904                         f2fs_unlock_all(sbi);
905                         goto out;
906                 }
907                 goto retry_flush_nodes;
908         }
909 out:
910         blk_finish_plug(&plug);
911         return err;
912 }
913
914 static void unblock_operations(struct f2fs_sb_info *sbi)
915 {
916         up_write(&sbi->node_write);
917         f2fs_unlock_all(sbi);
918 }
919
920 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
921 {
922         DEFINE_WAIT(wait);
923
924         for (;;) {
925                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
926
927                 if (!atomic_read(&sbi->nr_wb_bios))
928                         break;
929
930                 io_schedule_timeout(5*HZ);
931         }
932         finish_wait(&sbi->cp_wait, &wait);
933 }
934
935 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
936 {
937         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
938         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
939         struct f2fs_nm_info *nm_i = NM_I(sbi);
940         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
941         nid_t last_nid = nm_i->next_scan_nid;
942         block_t start_blk;
943         unsigned int data_sum_blocks, orphan_blocks;
944         __u32 crc32 = 0;
945         int i;
946         int cp_payload_blks = __cp_payload(sbi);
947         block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
948         bool invalidate = false;
949         struct super_block *sb = sbi->sb;
950         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
951         u64 kbytes_written;
952
953         /*
954          * This avoids to conduct wrong roll-forward operations and uses
955          * metapages, so should be called prior to sync_meta_pages below.
956          */
957         if (discard_next_dnode(sbi, discard_blk))
958                 invalidate = true;
959
960         /* Flush all the NAT/SIT pages */
961         while (get_pages(sbi, F2FS_DIRTY_META)) {
962                 sync_meta_pages(sbi, META, LONG_MAX);
963                 if (unlikely(f2fs_cp_error(sbi)))
964                         return -EIO;
965         }
966
967         next_free_nid(sbi, &last_nid);
968
969         /*
970          * modify checkpoint
971          * version number is already updated
972          */
973         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
974         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
975         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
976         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
977                 ckpt->cur_node_segno[i] =
978                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
979                 ckpt->cur_node_blkoff[i] =
980                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
981                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
982                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
983         }
984         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
985                 ckpt->cur_data_segno[i] =
986                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
987                 ckpt->cur_data_blkoff[i] =
988                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
989                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
990                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
991         }
992
993         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
994         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
995         ckpt->next_free_nid = cpu_to_le32(last_nid);
996
997         /* 2 cp  + n data seg summary + orphan inode blocks */
998         data_sum_blocks = npages_for_summary_flush(sbi, false);
999         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1000                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1001         else
1002                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1003
1004         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1005         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1006                         orphan_blocks);
1007
1008         if (__remain_node_summaries(cpc->reason))
1009                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1010                                 cp_payload_blks + data_sum_blocks +
1011                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1012         else
1013                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1014                                 cp_payload_blks + data_sum_blocks +
1015                                 orphan_blocks);
1016
1017         if (cpc->reason == CP_UMOUNT)
1018                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1019         else
1020                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1021
1022         if (cpc->reason == CP_FASTBOOT)
1023                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1024         else
1025                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1026
1027         if (orphan_num)
1028                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1029         else
1030                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1031
1032         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1033                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1034
1035         /* update SIT/NAT bitmap */
1036         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1037         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1038
1039         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1040         *((__le32 *)((unsigned char *)ckpt +
1041                                 le32_to_cpu(ckpt->checksum_offset)))
1042                                 = cpu_to_le32(crc32);
1043
1044         start_blk = __start_cp_addr(sbi);
1045
1046         /* need to wait for end_io results */
1047         wait_on_all_pages_writeback(sbi);
1048         if (unlikely(f2fs_cp_error(sbi)))
1049                 return -EIO;
1050
1051         /* write out checkpoint buffer at block 0 */
1052         update_meta_page(sbi, ckpt, start_blk++);
1053
1054         for (i = 1; i < 1 + cp_payload_blks; i++)
1055                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1056                                                         start_blk++);
1057
1058         if (orphan_num) {
1059                 write_orphan_inodes(sbi, start_blk);
1060                 start_blk += orphan_blocks;
1061         }
1062
1063         write_data_summaries(sbi, start_blk);
1064         start_blk += data_sum_blocks;
1065
1066         /* Record write statistics in the hot node summary */
1067         kbytes_written = sbi->kbytes_written;
1068         if (sb->s_bdev->bd_part)
1069                 kbytes_written += BD_PART_WRITTEN(sbi);
1070
1071         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1072
1073         if (__remain_node_summaries(cpc->reason)) {
1074                 write_node_summaries(sbi, start_blk);
1075                 start_blk += NR_CURSEG_NODE_TYPE;
1076         }
1077
1078         /* writeout checkpoint block */
1079         update_meta_page(sbi, ckpt, start_blk);
1080
1081         /* wait for previous submitted node/meta pages writeback */
1082         wait_on_all_pages_writeback(sbi);
1083
1084         if (unlikely(f2fs_cp_error(sbi)))
1085                 return -EIO;
1086
1087         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1088         filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1089
1090         /* update user_block_counts */
1091         sbi->last_valid_block_count = sbi->total_valid_block_count;
1092         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1093
1094         /* Here, we only have one bio having CP pack */
1095         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1096
1097         /* wait for previous submitted meta pages writeback */
1098         wait_on_all_pages_writeback(sbi);
1099
1100         /*
1101          * invalidate meta page which is used temporarily for zeroing out
1102          * block at the end of warm node chain.
1103          */
1104         if (invalidate)
1105                 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1106                                                                 discard_blk);
1107
1108         release_ino_entry(sbi, false);
1109
1110         if (unlikely(f2fs_cp_error(sbi)))
1111                 return -EIO;
1112
1113         clear_prefree_segments(sbi, cpc);
1114         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1115
1116         return 0;
1117 }
1118
1119 /*
1120  * We guarantee that this checkpoint procedure will not fail.
1121  */
1122 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1123 {
1124         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1125         unsigned long long ckpt_ver;
1126         int err = 0;
1127
1128         mutex_lock(&sbi->cp_mutex);
1129
1130         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1131                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1132                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1133                 goto out;
1134         if (unlikely(f2fs_cp_error(sbi))) {
1135                 err = -EIO;
1136                 goto out;
1137         }
1138         if (f2fs_readonly(sbi->sb)) {
1139                 err = -EROFS;
1140                 goto out;
1141         }
1142
1143         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1144
1145         err = block_operations(sbi);
1146         if (err)
1147                 goto out;
1148
1149         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1150
1151         f2fs_flush_merged_bios(sbi);
1152
1153         /*
1154          * update checkpoint pack index
1155          * Increase the version number so that
1156          * SIT entries and seg summaries are written at correct place
1157          */
1158         ckpt_ver = cur_cp_version(ckpt);
1159         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1160
1161         /* write cached NAT/SIT entries to NAT/SIT area */
1162         flush_nat_entries(sbi);
1163         flush_sit_entries(sbi, cpc);
1164
1165         /* unlock all the fs_lock[] in do_checkpoint() */
1166         err = do_checkpoint(sbi, cpc);
1167
1168         unblock_operations(sbi);
1169         stat_inc_cp_count(sbi->stat_info);
1170
1171         if (cpc->reason == CP_RECOVERY)
1172                 f2fs_msg(sbi->sb, KERN_NOTICE,
1173                         "checkpoint: version = %llx", ckpt_ver);
1174
1175         /* do checkpoint periodically */
1176         f2fs_update_time(sbi, CP_TIME);
1177         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1178 out:
1179         mutex_unlock(&sbi->cp_mutex);
1180         return err;
1181 }
1182
1183 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1184 {
1185         int i;
1186
1187         for (i = 0; i < MAX_INO_ENTRY; i++) {
1188                 struct inode_management *im = &sbi->im[i];
1189
1190                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1191                 spin_lock_init(&im->ino_lock);
1192                 INIT_LIST_HEAD(&im->ino_list);
1193                 im->ino_num = 0;
1194         }
1195
1196         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1197                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1198                                 F2FS_ORPHANS_PER_BLOCK;
1199 }
1200
1201 int __init create_checkpoint_caches(void)
1202 {
1203         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1204                         sizeof(struct ino_entry));
1205         if (!ino_entry_slab)
1206                 return -ENOMEM;
1207         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1208                         sizeof(struct inode_entry));
1209         if (!inode_entry_slab) {
1210                 kmem_cache_destroy(ino_entry_slab);
1211                 return -ENOMEM;
1212         }
1213         return 0;
1214 }
1215
1216 void destroy_checkpoint_caches(void)
1217 {
1218         kmem_cache_destroy(ino_entry_slab);
1219         kmem_cache_destroy(inode_entry_slab);
1220 }