]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/fs-writeback.c
pwm: imx: indentation cleanup
[karo-tx-linux.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include "internal.h"
30
31 /*
32  * 4MB minimal write chunk size
33  */
34 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
35
36 /*
37  * Passed into wb_writeback(), essentially a subset of writeback_control
38  */
39 struct wb_writeback_work {
40         long nr_pages;
41         struct super_block *sb;
42         unsigned long *older_than_this;
43         enum writeback_sync_modes sync_mode;
44         unsigned int tagged_writepages:1;
45         unsigned int for_kupdate:1;
46         unsigned int range_cyclic:1;
47         unsigned int for_background:1;
48         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
49         enum wb_reason reason;          /* why was writeback initiated? */
50
51         struct list_head list;          /* pending work list */
52         struct completion *done;        /* set if the caller waits */
53 };
54
55 /**
56  * writeback_in_progress - determine whether there is writeback in progress
57  * @bdi: the device's backing_dev_info structure.
58  *
59  * Determine whether there is writeback waiting to be handled against a
60  * backing device.
61  */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64         return test_bit(BDI_writeback_running, &bdi->state);
65 }
66 EXPORT_SYMBOL(writeback_in_progress);
67
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
69 {
70         struct super_block *sb = inode->i_sb;
71
72         if (sb_is_blkdev_sb(sb))
73                 return inode->i_mapping->backing_dev_info;
74
75         return sb->s_bdi;
76 }
77
78 static inline struct inode *wb_inode(struct list_head *head)
79 {
80         return list_entry(head, struct inode, i_wb_list);
81 }
82
83 /*
84  * Include the creation of the trace points after defining the
85  * wb_writeback_work structure and inline functions so that the definition
86  * remains local to this file.
87  */
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
90
91 static void bdi_queue_work(struct backing_dev_info *bdi,
92                            struct wb_writeback_work *work)
93 {
94         trace_writeback_queue(bdi, work);
95
96         spin_lock_bh(&bdi->wb_lock);
97         list_add_tail(&work->list, &bdi->work_list);
98         spin_unlock_bh(&bdi->wb_lock);
99
100         mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
101 }
102
103 static void
104 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
105                       bool range_cyclic, enum wb_reason reason)
106 {
107         struct wb_writeback_work *work;
108
109         /*
110          * This is WB_SYNC_NONE writeback, so if allocation fails just
111          * wakeup the thread for old dirty data writeback
112          */
113         work = kzalloc(sizeof(*work), GFP_ATOMIC);
114         if (!work) {
115                 trace_writeback_nowork(bdi);
116                 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
117                 return;
118         }
119
120         work->sync_mode = WB_SYNC_NONE;
121         work->nr_pages  = nr_pages;
122         work->range_cyclic = range_cyclic;
123         work->reason    = reason;
124
125         bdi_queue_work(bdi, work);
126 }
127
128 /**
129  * bdi_start_writeback - start writeback
130  * @bdi: the backing device to write from
131  * @nr_pages: the number of pages to write
132  * @reason: reason why some writeback work was initiated
133  *
134  * Description:
135  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
136  *   started when this function returns, we make no guarantees on
137  *   completion. Caller need not hold sb s_umount semaphore.
138  *
139  */
140 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
141                         enum wb_reason reason)
142 {
143         __bdi_start_writeback(bdi, nr_pages, true, reason);
144 }
145
146 /**
147  * bdi_start_background_writeback - start background writeback
148  * @bdi: the backing device to write from
149  *
150  * Description:
151  *   This makes sure WB_SYNC_NONE background writeback happens. When
152  *   this function returns, it is only guaranteed that for given BDI
153  *   some IO is happening if we are over background dirty threshold.
154  *   Caller need not hold sb s_umount semaphore.
155  */
156 void bdi_start_background_writeback(struct backing_dev_info *bdi)
157 {
158         /*
159          * We just wake up the flusher thread. It will perform background
160          * writeback as soon as there is no other work to do.
161          */
162         trace_writeback_wake_background(bdi);
163         mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
164 }
165
166 /*
167  * Remove the inode from the writeback list it is on.
168  */
169 void inode_wb_list_del(struct inode *inode)
170 {
171         struct backing_dev_info *bdi = inode_to_bdi(inode);
172
173         spin_lock(&bdi->wb.list_lock);
174         list_del_init(&inode->i_wb_list);
175         spin_unlock(&bdi->wb.list_lock);
176 }
177
178 /*
179  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
180  * furthest end of its superblock's dirty-inode list.
181  *
182  * Before stamping the inode's ->dirtied_when, we check to see whether it is
183  * already the most-recently-dirtied inode on the b_dirty list.  If that is
184  * the case then the inode must have been redirtied while it was being written
185  * out and we don't reset its dirtied_when.
186  */
187 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
188 {
189         assert_spin_locked(&wb->list_lock);
190         if (!list_empty(&wb->b_dirty)) {
191                 struct inode *tail;
192
193                 tail = wb_inode(wb->b_dirty.next);
194                 if (time_before(inode->dirtied_when, tail->dirtied_when))
195                         inode->dirtied_when = jiffies;
196         }
197         list_move(&inode->i_wb_list, &wb->b_dirty);
198 }
199
200 /*
201  * requeue inode for re-scanning after bdi->b_io list is exhausted.
202  */
203 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
204 {
205         assert_spin_locked(&wb->list_lock);
206         list_move(&inode->i_wb_list, &wb->b_more_io);
207 }
208
209 static void inode_sync_complete(struct inode *inode)
210 {
211         inode->i_state &= ~I_SYNC;
212         /* If inode is clean an unused, put it into LRU now... */
213         inode_add_lru(inode);
214         /* Waiters must see I_SYNC cleared before being woken up */
215         smp_mb();
216         wake_up_bit(&inode->i_state, __I_SYNC);
217 }
218
219 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
220 {
221         bool ret = time_after(inode->dirtied_when, t);
222 #ifndef CONFIG_64BIT
223         /*
224          * For inodes being constantly redirtied, dirtied_when can get stuck.
225          * It _appears_ to be in the future, but is actually in distant past.
226          * This test is necessary to prevent such wrapped-around relative times
227          * from permanently stopping the whole bdi writeback.
228          */
229         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
230 #endif
231         return ret;
232 }
233
234 /*
235  * Move expired (dirtied before work->older_than_this) dirty inodes from
236  * @delaying_queue to @dispatch_queue.
237  */
238 static int move_expired_inodes(struct list_head *delaying_queue,
239                                struct list_head *dispatch_queue,
240                                struct wb_writeback_work *work)
241 {
242         LIST_HEAD(tmp);
243         struct list_head *pos, *node;
244         struct super_block *sb = NULL;
245         struct inode *inode;
246         int do_sb_sort = 0;
247         int moved = 0;
248
249         while (!list_empty(delaying_queue)) {
250                 inode = wb_inode(delaying_queue->prev);
251                 if (work->older_than_this &&
252                     inode_dirtied_after(inode, *work->older_than_this))
253                         break;
254                 list_move(&inode->i_wb_list, &tmp);
255                 moved++;
256                 if (sb_is_blkdev_sb(inode->i_sb))
257                         continue;
258                 if (sb && sb != inode->i_sb)
259                         do_sb_sort = 1;
260                 sb = inode->i_sb;
261         }
262
263         /* just one sb in list, splice to dispatch_queue and we're done */
264         if (!do_sb_sort) {
265                 list_splice(&tmp, dispatch_queue);
266                 goto out;
267         }
268
269         /* Move inodes from one superblock together */
270         while (!list_empty(&tmp)) {
271                 sb = wb_inode(tmp.prev)->i_sb;
272                 list_for_each_prev_safe(pos, node, &tmp) {
273                         inode = wb_inode(pos);
274                         if (inode->i_sb == sb)
275                                 list_move(&inode->i_wb_list, dispatch_queue);
276                 }
277         }
278 out:
279         return moved;
280 }
281
282 /*
283  * Queue all expired dirty inodes for io, eldest first.
284  * Before
285  *         newly dirtied     b_dirty    b_io    b_more_io
286  *         =============>    gf         edc     BA
287  * After
288  *         newly dirtied     b_dirty    b_io    b_more_io
289  *         =============>    g          fBAedc
290  *                                           |
291  *                                           +--> dequeue for IO
292  */
293 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
294 {
295         int moved;
296         assert_spin_locked(&wb->list_lock);
297         list_splice_init(&wb->b_more_io, &wb->b_io);
298         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
299         trace_writeback_queue_io(wb, work, moved);
300 }
301
302 static int write_inode(struct inode *inode, struct writeback_control *wbc)
303 {
304         int ret;
305
306         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
307                 trace_writeback_write_inode_start(inode, wbc);
308                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
309                 trace_writeback_write_inode(inode, wbc);
310                 return ret;
311         }
312         return 0;
313 }
314
315 /*
316  * Wait for writeback on an inode to complete. Called with i_lock held.
317  * Caller must make sure inode cannot go away when we drop i_lock.
318  */
319 static void __inode_wait_for_writeback(struct inode *inode)
320         __releases(inode->i_lock)
321         __acquires(inode->i_lock)
322 {
323         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
324         wait_queue_head_t *wqh;
325
326         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
327         while (inode->i_state & I_SYNC) {
328                 spin_unlock(&inode->i_lock);
329                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
330                 spin_lock(&inode->i_lock);
331         }
332 }
333
334 /*
335  * Wait for writeback on an inode to complete. Caller must have inode pinned.
336  */
337 void inode_wait_for_writeback(struct inode *inode)
338 {
339         spin_lock(&inode->i_lock);
340         __inode_wait_for_writeback(inode);
341         spin_unlock(&inode->i_lock);
342 }
343
344 /*
345  * Sleep until I_SYNC is cleared. This function must be called with i_lock
346  * held and drops it. It is aimed for callers not holding any inode reference
347  * so once i_lock is dropped, inode can go away.
348  */
349 static void inode_sleep_on_writeback(struct inode *inode)
350         __releases(inode->i_lock)
351 {
352         DEFINE_WAIT(wait);
353         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
354         int sleep;
355
356         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
357         sleep = inode->i_state & I_SYNC;
358         spin_unlock(&inode->i_lock);
359         if (sleep)
360                 schedule();
361         finish_wait(wqh, &wait);
362 }
363
364 /*
365  * Find proper writeback list for the inode depending on its current state and
366  * possibly also change of its state while we were doing writeback.  Here we
367  * handle things such as livelock prevention or fairness of writeback among
368  * inodes. This function can be called only by flusher thread - noone else
369  * processes all inodes in writeback lists and requeueing inodes behind flusher
370  * thread's back can have unexpected consequences.
371  */
372 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
373                           struct writeback_control *wbc)
374 {
375         if (inode->i_state & I_FREEING)
376                 return;
377
378         /*
379          * Sync livelock prevention. Each inode is tagged and synced in one
380          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
381          * the dirty time to prevent enqueue and sync it again.
382          */
383         if ((inode->i_state & I_DIRTY) &&
384             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
385                 inode->dirtied_when = jiffies;
386
387         if (wbc->pages_skipped) {
388                 /*
389                  * writeback is not making progress due to locked
390                  * buffers. Skip this inode for now.
391                  */
392                 redirty_tail(inode, wb);
393                 return;
394         }
395
396         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
397                 /*
398                  * We didn't write back all the pages.  nfs_writepages()
399                  * sometimes bales out without doing anything.
400                  */
401                 if (wbc->nr_to_write <= 0) {
402                         /* Slice used up. Queue for next turn. */
403                         requeue_io(inode, wb);
404                 } else {
405                         /*
406                          * Writeback blocked by something other than
407                          * congestion. Delay the inode for some time to
408                          * avoid spinning on the CPU (100% iowait)
409                          * retrying writeback of the dirty page/inode
410                          * that cannot be performed immediately.
411                          */
412                         redirty_tail(inode, wb);
413                 }
414         } else if (inode->i_state & I_DIRTY) {
415                 /*
416                  * Filesystems can dirty the inode during writeback operations,
417                  * such as delayed allocation during submission or metadata
418                  * updates after data IO completion.
419                  */
420                 redirty_tail(inode, wb);
421         } else {
422                 /* The inode is clean. Remove from writeback lists. */
423                 list_del_init(&inode->i_wb_list);
424         }
425 }
426
427 /*
428  * Write out an inode and its dirty pages. Do not update the writeback list
429  * linkage. That is left to the caller. The caller is also responsible for
430  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
431  */
432 static int
433 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
434 {
435         struct address_space *mapping = inode->i_mapping;
436         long nr_to_write = wbc->nr_to_write;
437         unsigned dirty;
438         int ret;
439
440         WARN_ON(!(inode->i_state & I_SYNC));
441
442         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
443
444         ret = do_writepages(mapping, wbc);
445
446         /*
447          * Make sure to wait on the data before writing out the metadata.
448          * This is important for filesystems that modify metadata on data
449          * I/O completion. We don't do it for sync(2) writeback because it has a
450          * separate, external IO completion path and ->sync_fs for guaranteeing
451          * inode metadata is written back correctly.
452          */
453         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
454                 int err = filemap_fdatawait(mapping);
455                 if (ret == 0)
456                         ret = err;
457         }
458
459         /*
460          * Some filesystems may redirty the inode during the writeback
461          * due to delalloc, clear dirty metadata flags right before
462          * write_inode()
463          */
464         spin_lock(&inode->i_lock);
465         /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
466         if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
467                 inode->i_state &= ~I_DIRTY_PAGES;
468         dirty = inode->i_state & I_DIRTY;
469         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
470         spin_unlock(&inode->i_lock);
471         /* Don't write the inode if only I_DIRTY_PAGES was set */
472         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
473                 int err = write_inode(inode, wbc);
474                 if (ret == 0)
475                         ret = err;
476         }
477         trace_writeback_single_inode(inode, wbc, nr_to_write);
478         return ret;
479 }
480
481 /*
482  * Write out an inode's dirty pages. Either the caller has an active reference
483  * on the inode or the inode has I_WILL_FREE set.
484  *
485  * This function is designed to be called for writing back one inode which
486  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
487  * and does more profound writeback list handling in writeback_sb_inodes().
488  */
489 static int
490 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
491                        struct writeback_control *wbc)
492 {
493         int ret = 0;
494
495         spin_lock(&inode->i_lock);
496         if (!atomic_read(&inode->i_count))
497                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
498         else
499                 WARN_ON(inode->i_state & I_WILL_FREE);
500
501         if (inode->i_state & I_SYNC) {
502                 if (wbc->sync_mode != WB_SYNC_ALL)
503                         goto out;
504                 /*
505                  * It's a data-integrity sync. We must wait. Since callers hold
506                  * inode reference or inode has I_WILL_FREE set, it cannot go
507                  * away under us.
508                  */
509                 __inode_wait_for_writeback(inode);
510         }
511         WARN_ON(inode->i_state & I_SYNC);
512         /*
513          * Skip inode if it is clean. We don't want to mess with writeback
514          * lists in this function since flusher thread may be doing for example
515          * sync in parallel and if we move the inode, it could get skipped. So
516          * here we make sure inode is on some writeback list and leave it there
517          * unless we have completely cleaned the inode.
518          */
519         if (!(inode->i_state & I_DIRTY))
520                 goto out;
521         inode->i_state |= I_SYNC;
522         spin_unlock(&inode->i_lock);
523
524         ret = __writeback_single_inode(inode, wbc);
525
526         spin_lock(&wb->list_lock);
527         spin_lock(&inode->i_lock);
528         /*
529          * If inode is clean, remove it from writeback lists. Otherwise don't
530          * touch it. See comment above for explanation.
531          */
532         if (!(inode->i_state & I_DIRTY))
533                 list_del_init(&inode->i_wb_list);
534         spin_unlock(&wb->list_lock);
535         inode_sync_complete(inode);
536 out:
537         spin_unlock(&inode->i_lock);
538         return ret;
539 }
540
541 static long writeback_chunk_size(struct backing_dev_info *bdi,
542                                  struct wb_writeback_work *work)
543 {
544         long pages;
545
546         /*
547          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
548          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
549          * here avoids calling into writeback_inodes_wb() more than once.
550          *
551          * The intended call sequence for WB_SYNC_ALL writeback is:
552          *
553          *      wb_writeback()
554          *          writeback_sb_inodes()       <== called only once
555          *              write_cache_pages()     <== called once for each inode
556          *                   (quickly) tag currently dirty pages
557          *                   (maybe slowly) sync all tagged pages
558          */
559         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
560                 pages = LONG_MAX;
561         else {
562                 pages = min(bdi->avg_write_bandwidth / 2,
563                             global_dirty_limit / DIRTY_SCOPE);
564                 pages = min(pages, work->nr_pages);
565                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
566                                    MIN_WRITEBACK_PAGES);
567         }
568
569         return pages;
570 }
571
572 /*
573  * Write a portion of b_io inodes which belong to @sb.
574  *
575  * Return the number of pages and/or inodes written.
576  */
577 static long writeback_sb_inodes(struct super_block *sb,
578                                 struct bdi_writeback *wb,
579                                 struct wb_writeback_work *work)
580 {
581         struct writeback_control wbc = {
582                 .sync_mode              = work->sync_mode,
583                 .tagged_writepages      = work->tagged_writepages,
584                 .for_kupdate            = work->for_kupdate,
585                 .for_background         = work->for_background,
586                 .for_sync               = work->for_sync,
587                 .range_cyclic           = work->range_cyclic,
588                 .range_start            = 0,
589                 .range_end              = LLONG_MAX,
590         };
591         unsigned long start_time = jiffies;
592         long write_chunk;
593         long wrote = 0;  /* count both pages and inodes */
594
595         while (!list_empty(&wb->b_io)) {
596                 struct inode *inode = wb_inode(wb->b_io.prev);
597
598                 if (inode->i_sb != sb) {
599                         if (work->sb) {
600                                 /*
601                                  * We only want to write back data for this
602                                  * superblock, move all inodes not belonging
603                                  * to it back onto the dirty list.
604                                  */
605                                 redirty_tail(inode, wb);
606                                 continue;
607                         }
608
609                         /*
610                          * The inode belongs to a different superblock.
611                          * Bounce back to the caller to unpin this and
612                          * pin the next superblock.
613                          */
614                         break;
615                 }
616
617                 /*
618                  * Don't bother with new inodes or inodes being freed, first
619                  * kind does not need periodic writeout yet, and for the latter
620                  * kind writeout is handled by the freer.
621                  */
622                 spin_lock(&inode->i_lock);
623                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
624                         spin_unlock(&inode->i_lock);
625                         redirty_tail(inode, wb);
626                         continue;
627                 }
628                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
629                         /*
630                          * If this inode is locked for writeback and we are not
631                          * doing writeback-for-data-integrity, move it to
632                          * b_more_io so that writeback can proceed with the
633                          * other inodes on s_io.
634                          *
635                          * We'll have another go at writing back this inode
636                          * when we completed a full scan of b_io.
637                          */
638                         spin_unlock(&inode->i_lock);
639                         requeue_io(inode, wb);
640                         trace_writeback_sb_inodes_requeue(inode);
641                         continue;
642                 }
643                 spin_unlock(&wb->list_lock);
644
645                 /*
646                  * We already requeued the inode if it had I_SYNC set and we
647                  * are doing WB_SYNC_NONE writeback. So this catches only the
648                  * WB_SYNC_ALL case.
649                  */
650                 if (inode->i_state & I_SYNC) {
651                         /* Wait for I_SYNC. This function drops i_lock... */
652                         inode_sleep_on_writeback(inode);
653                         /* Inode may be gone, start again */
654                         spin_lock(&wb->list_lock);
655                         continue;
656                 }
657                 inode->i_state |= I_SYNC;
658                 spin_unlock(&inode->i_lock);
659
660                 write_chunk = writeback_chunk_size(wb->bdi, work);
661                 wbc.nr_to_write = write_chunk;
662                 wbc.pages_skipped = 0;
663
664                 /*
665                  * We use I_SYNC to pin the inode in memory. While it is set
666                  * evict_inode() will wait so the inode cannot be freed.
667                  */
668                 __writeback_single_inode(inode, &wbc);
669
670                 work->nr_pages -= write_chunk - wbc.nr_to_write;
671                 wrote += write_chunk - wbc.nr_to_write;
672                 spin_lock(&wb->list_lock);
673                 spin_lock(&inode->i_lock);
674                 if (!(inode->i_state & I_DIRTY))
675                         wrote++;
676                 requeue_inode(inode, wb, &wbc);
677                 inode_sync_complete(inode);
678                 spin_unlock(&inode->i_lock);
679                 cond_resched_lock(&wb->list_lock);
680                 /*
681                  * bail out to wb_writeback() often enough to check
682                  * background threshold and other termination conditions.
683                  */
684                 if (wrote) {
685                         if (time_is_before_jiffies(start_time + HZ / 10UL))
686                                 break;
687                         if (work->nr_pages <= 0)
688                                 break;
689                 }
690         }
691         return wrote;
692 }
693
694 static long __writeback_inodes_wb(struct bdi_writeback *wb,
695                                   struct wb_writeback_work *work)
696 {
697         unsigned long start_time = jiffies;
698         long wrote = 0;
699
700         while (!list_empty(&wb->b_io)) {
701                 struct inode *inode = wb_inode(wb->b_io.prev);
702                 struct super_block *sb = inode->i_sb;
703
704                 if (!grab_super_passive(sb)) {
705                         /*
706                          * grab_super_passive() may fail consistently due to
707                          * s_umount being grabbed by someone else. Don't use
708                          * requeue_io() to avoid busy retrying the inode/sb.
709                          */
710                         redirty_tail(inode, wb);
711                         continue;
712                 }
713                 wrote += writeback_sb_inodes(sb, wb, work);
714                 drop_super(sb);
715
716                 /* refer to the same tests at the end of writeback_sb_inodes */
717                 if (wrote) {
718                         if (time_is_before_jiffies(start_time + HZ / 10UL))
719                                 break;
720                         if (work->nr_pages <= 0)
721                                 break;
722                 }
723         }
724         /* Leave any unwritten inodes on b_io */
725         return wrote;
726 }
727
728 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
729                                 enum wb_reason reason)
730 {
731         struct wb_writeback_work work = {
732                 .nr_pages       = nr_pages,
733                 .sync_mode      = WB_SYNC_NONE,
734                 .range_cyclic   = 1,
735                 .reason         = reason,
736         };
737
738         spin_lock(&wb->list_lock);
739         if (list_empty(&wb->b_io))
740                 queue_io(wb, &work);
741         __writeback_inodes_wb(wb, &work);
742         spin_unlock(&wb->list_lock);
743
744         return nr_pages - work.nr_pages;
745 }
746
747 static bool over_bground_thresh(struct backing_dev_info *bdi)
748 {
749         unsigned long background_thresh, dirty_thresh;
750
751         global_dirty_limits(&background_thresh, &dirty_thresh);
752
753         if (global_page_state(NR_FILE_DIRTY) +
754             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
755                 return true;
756
757         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
758                                 bdi_dirty_limit(bdi, background_thresh))
759                 return true;
760
761         return false;
762 }
763
764 /*
765  * Called under wb->list_lock. If there are multiple wb per bdi,
766  * only the flusher working on the first wb should do it.
767  */
768 static void wb_update_bandwidth(struct bdi_writeback *wb,
769                                 unsigned long start_time)
770 {
771         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
772 }
773
774 /*
775  * Explicit flushing or periodic writeback of "old" data.
776  *
777  * Define "old": the first time one of an inode's pages is dirtied, we mark the
778  * dirtying-time in the inode's address_space.  So this periodic writeback code
779  * just walks the superblock inode list, writing back any inodes which are
780  * older than a specific point in time.
781  *
782  * Try to run once per dirty_writeback_interval.  But if a writeback event
783  * takes longer than a dirty_writeback_interval interval, then leave a
784  * one-second gap.
785  *
786  * older_than_this takes precedence over nr_to_write.  So we'll only write back
787  * all dirty pages if they are all attached to "old" mappings.
788  */
789 static long wb_writeback(struct bdi_writeback *wb,
790                          struct wb_writeback_work *work)
791 {
792         unsigned long wb_start = jiffies;
793         long nr_pages = work->nr_pages;
794         unsigned long oldest_jif;
795         struct inode *inode;
796         long progress;
797
798         oldest_jif = jiffies;
799         work->older_than_this = &oldest_jif;
800
801         spin_lock(&wb->list_lock);
802         for (;;) {
803                 /*
804                  * Stop writeback when nr_pages has been consumed
805                  */
806                 if (work->nr_pages <= 0)
807                         break;
808
809                 /*
810                  * Background writeout and kupdate-style writeback may
811                  * run forever. Stop them if there is other work to do
812                  * so that e.g. sync can proceed. They'll be restarted
813                  * after the other works are all done.
814                  */
815                 if ((work->for_background || work->for_kupdate) &&
816                     !list_empty(&wb->bdi->work_list))
817                         break;
818
819                 /*
820                  * For background writeout, stop when we are below the
821                  * background dirty threshold
822                  */
823                 if (work->for_background && !over_bground_thresh(wb->bdi))
824                         break;
825
826                 /*
827                  * Kupdate and background works are special and we want to
828                  * include all inodes that need writing. Livelock avoidance is
829                  * handled by these works yielding to any other work so we are
830                  * safe.
831                  */
832                 if (work->for_kupdate) {
833                         oldest_jif = jiffies -
834                                 msecs_to_jiffies(dirty_expire_interval * 10);
835                 } else if (work->for_background)
836                         oldest_jif = jiffies;
837
838                 trace_writeback_start(wb->bdi, work);
839                 if (list_empty(&wb->b_io))
840                         queue_io(wb, work);
841                 if (work->sb)
842                         progress = writeback_sb_inodes(work->sb, wb, work);
843                 else
844                         progress = __writeback_inodes_wb(wb, work);
845                 trace_writeback_written(wb->bdi, work);
846
847                 wb_update_bandwidth(wb, wb_start);
848
849                 /*
850                  * Did we write something? Try for more
851                  *
852                  * Dirty inodes are moved to b_io for writeback in batches.
853                  * The completion of the current batch does not necessarily
854                  * mean the overall work is done. So we keep looping as long
855                  * as made some progress on cleaning pages or inodes.
856                  */
857                 if (progress)
858                         continue;
859                 /*
860                  * No more inodes for IO, bail
861                  */
862                 if (list_empty(&wb->b_more_io))
863                         break;
864                 /*
865                  * Nothing written. Wait for some inode to
866                  * become available for writeback. Otherwise
867                  * we'll just busyloop.
868                  */
869                 if (!list_empty(&wb->b_more_io))  {
870                         trace_writeback_wait(wb->bdi, work);
871                         inode = wb_inode(wb->b_more_io.prev);
872                         spin_lock(&inode->i_lock);
873                         spin_unlock(&wb->list_lock);
874                         /* This function drops i_lock... */
875                         inode_sleep_on_writeback(inode);
876                         spin_lock(&wb->list_lock);
877                 }
878         }
879         spin_unlock(&wb->list_lock);
880
881         return nr_pages - work->nr_pages;
882 }
883
884 /*
885  * Return the next wb_writeback_work struct that hasn't been processed yet.
886  */
887 static struct wb_writeback_work *
888 get_next_work_item(struct backing_dev_info *bdi)
889 {
890         struct wb_writeback_work *work = NULL;
891
892         spin_lock_bh(&bdi->wb_lock);
893         if (!list_empty(&bdi->work_list)) {
894                 work = list_entry(bdi->work_list.next,
895                                   struct wb_writeback_work, list);
896                 list_del_init(&work->list);
897         }
898         spin_unlock_bh(&bdi->wb_lock);
899         return work;
900 }
901
902 /*
903  * Add in the number of potentially dirty inodes, because each inode
904  * write can dirty pagecache in the underlying blockdev.
905  */
906 static unsigned long get_nr_dirty_pages(void)
907 {
908         return global_page_state(NR_FILE_DIRTY) +
909                 global_page_state(NR_UNSTABLE_NFS) +
910                 get_nr_dirty_inodes();
911 }
912
913 static long wb_check_background_flush(struct bdi_writeback *wb)
914 {
915         if (over_bground_thresh(wb->bdi)) {
916
917                 struct wb_writeback_work work = {
918                         .nr_pages       = LONG_MAX,
919                         .sync_mode      = WB_SYNC_NONE,
920                         .for_background = 1,
921                         .range_cyclic   = 1,
922                         .reason         = WB_REASON_BACKGROUND,
923                 };
924
925                 return wb_writeback(wb, &work);
926         }
927
928         return 0;
929 }
930
931 static long wb_check_old_data_flush(struct bdi_writeback *wb)
932 {
933         unsigned long expired;
934         long nr_pages;
935
936         /*
937          * When set to zero, disable periodic writeback
938          */
939         if (!dirty_writeback_interval)
940                 return 0;
941
942         expired = wb->last_old_flush +
943                         msecs_to_jiffies(dirty_writeback_interval * 10);
944         if (time_before(jiffies, expired))
945                 return 0;
946
947         wb->last_old_flush = jiffies;
948         nr_pages = get_nr_dirty_pages();
949
950         if (nr_pages) {
951                 struct wb_writeback_work work = {
952                         .nr_pages       = nr_pages,
953                         .sync_mode      = WB_SYNC_NONE,
954                         .for_kupdate    = 1,
955                         .range_cyclic   = 1,
956                         .reason         = WB_REASON_PERIODIC,
957                 };
958
959                 return wb_writeback(wb, &work);
960         }
961
962         return 0;
963 }
964
965 /*
966  * Retrieve work items and do the writeback they describe
967  */
968 static long wb_do_writeback(struct bdi_writeback *wb)
969 {
970         struct backing_dev_info *bdi = wb->bdi;
971         struct wb_writeback_work *work;
972         long wrote = 0;
973
974         set_bit(BDI_writeback_running, &wb->bdi->state);
975         while ((work = get_next_work_item(bdi)) != NULL) {
976
977                 trace_writeback_exec(bdi, work);
978
979                 wrote += wb_writeback(wb, work);
980
981                 /*
982                  * Notify the caller of completion if this is a synchronous
983                  * work item, otherwise just free it.
984                  */
985                 if (work->done)
986                         complete(work->done);
987                 else
988                         kfree(work);
989         }
990
991         /*
992          * Check for periodic writeback, kupdated() style
993          */
994         wrote += wb_check_old_data_flush(wb);
995         wrote += wb_check_background_flush(wb);
996         clear_bit(BDI_writeback_running, &wb->bdi->state);
997
998         return wrote;
999 }
1000
1001 /*
1002  * Handle writeback of dirty data for the device backed by this bdi. Also
1003  * reschedules periodically and does kupdated style flushing.
1004  */
1005 void bdi_writeback_workfn(struct work_struct *work)
1006 {
1007         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1008                                                 struct bdi_writeback, dwork);
1009         struct backing_dev_info *bdi = wb->bdi;
1010         long pages_written;
1011
1012         set_worker_desc("flush-%s", dev_name(bdi->dev));
1013         current->flags |= PF_SWAPWRITE;
1014
1015         if (likely(!current_is_workqueue_rescuer() ||
1016                    list_empty(&bdi->bdi_list))) {
1017                 /*
1018                  * The normal path.  Keep writing back @bdi until its
1019                  * work_list is empty.  Note that this path is also taken
1020                  * if @bdi is shutting down even when we're running off the
1021                  * rescuer as work_list needs to be drained.
1022                  */
1023                 do {
1024                         pages_written = wb_do_writeback(wb);
1025                         trace_writeback_pages_written(pages_written);
1026                 } while (!list_empty(&bdi->work_list));
1027         } else {
1028                 /*
1029                  * bdi_wq can't get enough workers and we're running off
1030                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1031                  * enough for efficient IO.
1032                  */
1033                 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1034                                                     WB_REASON_FORKER_THREAD);
1035                 trace_writeback_pages_written(pages_written);
1036         }
1037
1038         if (!list_empty(&bdi->work_list) ||
1039             (wb_has_dirty_io(wb) && dirty_writeback_interval))
1040                 queue_delayed_work(bdi_wq, &wb->dwork,
1041                         msecs_to_jiffies(dirty_writeback_interval * 10));
1042
1043         current->flags &= ~PF_SWAPWRITE;
1044 }
1045
1046 /*
1047  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1048  * the whole world.
1049  */
1050 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1051 {
1052         struct backing_dev_info *bdi;
1053
1054         if (!nr_pages)
1055                 nr_pages = get_nr_dirty_pages();
1056
1057         rcu_read_lock();
1058         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1059                 if (!bdi_has_dirty_io(bdi))
1060                         continue;
1061                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1062         }
1063         rcu_read_unlock();
1064 }
1065
1066 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1067 {
1068         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1069                 struct dentry *dentry;
1070                 const char *name = "?";
1071
1072                 dentry = d_find_alias(inode);
1073                 if (dentry) {
1074                         spin_lock(&dentry->d_lock);
1075                         name = (const char *) dentry->d_name.name;
1076                 }
1077                 printk(KERN_DEBUG
1078                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1079                        current->comm, task_pid_nr(current), inode->i_ino,
1080                        name, inode->i_sb->s_id);
1081                 if (dentry) {
1082                         spin_unlock(&dentry->d_lock);
1083                         dput(dentry);
1084                 }
1085         }
1086 }
1087
1088 /**
1089  *      __mark_inode_dirty -    internal function
1090  *      @inode: inode to mark
1091  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1092  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1093  *      mark_inode_dirty_sync.
1094  *
1095  * Put the inode on the super block's dirty list.
1096  *
1097  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1098  * dirty list only if it is hashed or if it refers to a blockdev.
1099  * If it was not hashed, it will never be added to the dirty list
1100  * even if it is later hashed, as it will have been marked dirty already.
1101  *
1102  * In short, make sure you hash any inodes _before_ you start marking
1103  * them dirty.
1104  *
1105  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1106  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1107  * the kernel-internal blockdev inode represents the dirtying time of the
1108  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1109  * page->mapping->host, so the page-dirtying time is recorded in the internal
1110  * blockdev inode.
1111  */
1112 void __mark_inode_dirty(struct inode *inode, int flags)
1113 {
1114         struct super_block *sb = inode->i_sb;
1115         struct backing_dev_info *bdi = NULL;
1116
1117         /*
1118          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1119          * dirty the inode itself
1120          */
1121         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1122                 trace_writeback_dirty_inode_start(inode, flags);
1123
1124                 if (sb->s_op->dirty_inode)
1125                         sb->s_op->dirty_inode(inode, flags);
1126
1127                 trace_writeback_dirty_inode(inode, flags);
1128         }
1129
1130         /*
1131          * make sure that changes are seen by all cpus before we test i_state
1132          * -- mikulas
1133          */
1134         smp_mb();
1135
1136         /* avoid the locking if we can */
1137         if ((inode->i_state & flags) == flags)
1138                 return;
1139
1140         if (unlikely(block_dump))
1141                 block_dump___mark_inode_dirty(inode);
1142
1143         spin_lock(&inode->i_lock);
1144         if ((inode->i_state & flags) != flags) {
1145                 const int was_dirty = inode->i_state & I_DIRTY;
1146
1147                 inode->i_state |= flags;
1148
1149                 /*
1150                  * If the inode is being synced, just update its dirty state.
1151                  * The unlocker will place the inode on the appropriate
1152                  * superblock list, based upon its state.
1153                  */
1154                 if (inode->i_state & I_SYNC)
1155                         goto out_unlock_inode;
1156
1157                 /*
1158                  * Only add valid (hashed) inodes to the superblock's
1159                  * dirty list.  Add blockdev inodes as well.
1160                  */
1161                 if (!S_ISBLK(inode->i_mode)) {
1162                         if (inode_unhashed(inode))
1163                                 goto out_unlock_inode;
1164                 }
1165                 if (inode->i_state & I_FREEING)
1166                         goto out_unlock_inode;
1167
1168                 /*
1169                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1170                  * reposition it (that would break b_dirty time-ordering).
1171                  */
1172                 if (!was_dirty) {
1173                         bool wakeup_bdi = false;
1174                         bdi = inode_to_bdi(inode);
1175
1176                         spin_unlock(&inode->i_lock);
1177                         spin_lock(&bdi->wb.list_lock);
1178                         if (bdi_cap_writeback_dirty(bdi)) {
1179                                 WARN(!test_bit(BDI_registered, &bdi->state),
1180                                      "bdi-%s not registered\n", bdi->name);
1181
1182                                 /*
1183                                  * If this is the first dirty inode for this
1184                                  * bdi, we have to wake-up the corresponding
1185                                  * bdi thread to make sure background
1186                                  * write-back happens later.
1187                                  */
1188                                 if (!wb_has_dirty_io(&bdi->wb))
1189                                         wakeup_bdi = true;
1190                         }
1191
1192                         inode->dirtied_when = jiffies;
1193                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1194                         spin_unlock(&bdi->wb.list_lock);
1195
1196                         if (wakeup_bdi)
1197                                 bdi_wakeup_thread_delayed(bdi);
1198                         return;
1199                 }
1200         }
1201 out_unlock_inode:
1202         spin_unlock(&inode->i_lock);
1203
1204 }
1205 EXPORT_SYMBOL(__mark_inode_dirty);
1206
1207 static void wait_sb_inodes(struct super_block *sb)
1208 {
1209         struct inode *inode, *old_inode = NULL;
1210
1211         /*
1212          * We need to be protected against the filesystem going from
1213          * r/o to r/w or vice versa.
1214          */
1215         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1216
1217         spin_lock(&inode_sb_list_lock);
1218
1219         /*
1220          * Data integrity sync. Must wait for all pages under writeback,
1221          * because there may have been pages dirtied before our sync
1222          * call, but which had writeout started before we write it out.
1223          * In which case, the inode may not be on the dirty list, but
1224          * we still have to wait for that writeout.
1225          */
1226         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1227                 struct address_space *mapping = inode->i_mapping;
1228
1229                 spin_lock(&inode->i_lock);
1230                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1231                     (mapping->nrpages == 0)) {
1232                         spin_unlock(&inode->i_lock);
1233                         continue;
1234                 }
1235                 __iget(inode);
1236                 spin_unlock(&inode->i_lock);
1237                 spin_unlock(&inode_sb_list_lock);
1238
1239                 /*
1240                  * We hold a reference to 'inode' so it couldn't have been
1241                  * removed from s_inodes list while we dropped the
1242                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1243                  * be holding the last reference and we cannot iput it under
1244                  * inode_sb_list_lock. So we keep the reference and iput it
1245                  * later.
1246                  */
1247                 iput(old_inode);
1248                 old_inode = inode;
1249
1250                 filemap_fdatawait(mapping);
1251
1252                 cond_resched();
1253
1254                 spin_lock(&inode_sb_list_lock);
1255         }
1256         spin_unlock(&inode_sb_list_lock);
1257         iput(old_inode);
1258 }
1259
1260 /**
1261  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1262  * @sb: the superblock
1263  * @nr: the number of pages to write
1264  * @reason: reason why some writeback work initiated
1265  *
1266  * Start writeback on some inodes on this super_block. No guarantees are made
1267  * on how many (if any) will be written, and this function does not wait
1268  * for IO completion of submitted IO.
1269  */
1270 void writeback_inodes_sb_nr(struct super_block *sb,
1271                             unsigned long nr,
1272                             enum wb_reason reason)
1273 {
1274         DECLARE_COMPLETION_ONSTACK(done);
1275         struct wb_writeback_work work = {
1276                 .sb                     = sb,
1277                 .sync_mode              = WB_SYNC_NONE,
1278                 .tagged_writepages      = 1,
1279                 .done                   = &done,
1280                 .nr_pages               = nr,
1281                 .reason                 = reason,
1282         };
1283
1284         if (sb->s_bdi == &noop_backing_dev_info)
1285                 return;
1286         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1287         bdi_queue_work(sb->s_bdi, &work);
1288         wait_for_completion(&done);
1289 }
1290 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1291
1292 /**
1293  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1294  * @sb: the superblock
1295  * @reason: reason why some writeback work was initiated
1296  *
1297  * Start writeback on some inodes on this super_block. No guarantees are made
1298  * on how many (if any) will be written, and this function does not wait
1299  * for IO completion of submitted IO.
1300  */
1301 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1302 {
1303         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1304 }
1305 EXPORT_SYMBOL(writeback_inodes_sb);
1306
1307 /**
1308  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1309  * @sb: the superblock
1310  * @nr: the number of pages to write
1311  * @reason: the reason of writeback
1312  *
1313  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1314  * Returns 1 if writeback was started, 0 if not.
1315  */
1316 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1317                                   unsigned long nr,
1318                                   enum wb_reason reason)
1319 {
1320         if (writeback_in_progress(sb->s_bdi))
1321                 return 1;
1322
1323         if (!down_read_trylock(&sb->s_umount))
1324                 return 0;
1325
1326         writeback_inodes_sb_nr(sb, nr, reason);
1327         up_read(&sb->s_umount);
1328         return 1;
1329 }
1330 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1331
1332 /**
1333  * try_to_writeback_inodes_sb - try to start writeback if none underway
1334  * @sb: the superblock
1335  * @reason: reason why some writeback work was initiated
1336  *
1337  * Implement by try_to_writeback_inodes_sb_nr()
1338  * Returns 1 if writeback was started, 0 if not.
1339  */
1340 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1341 {
1342         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1343 }
1344 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1345
1346 /**
1347  * sync_inodes_sb       -       sync sb inode pages
1348  * @sb: the superblock
1349  *
1350  * This function writes and waits on any dirty inode belonging to this
1351  * super_block.
1352  */
1353 void sync_inodes_sb(struct super_block *sb)
1354 {
1355         DECLARE_COMPLETION_ONSTACK(done);
1356         struct wb_writeback_work work = {
1357                 .sb             = sb,
1358                 .sync_mode      = WB_SYNC_ALL,
1359                 .nr_pages       = LONG_MAX,
1360                 .range_cyclic   = 0,
1361                 .done           = &done,
1362                 .reason         = WB_REASON_SYNC,
1363                 .for_sync       = 1,
1364         };
1365
1366         /* Nothing to do? */
1367         if (sb->s_bdi == &noop_backing_dev_info)
1368                 return;
1369         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1370
1371         bdi_queue_work(sb->s_bdi, &work);
1372         wait_for_completion(&done);
1373
1374         wait_sb_inodes(sb);
1375 }
1376 EXPORT_SYMBOL(sync_inodes_sb);
1377
1378 /**
1379  * write_inode_now      -       write an inode to disk
1380  * @inode: inode to write to disk
1381  * @sync: whether the write should be synchronous or not
1382  *
1383  * This function commits an inode to disk immediately if it is dirty. This is
1384  * primarily needed by knfsd.
1385  *
1386  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1387  */
1388 int write_inode_now(struct inode *inode, int sync)
1389 {
1390         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1391         struct writeback_control wbc = {
1392                 .nr_to_write = LONG_MAX,
1393                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1394                 .range_start = 0,
1395                 .range_end = LLONG_MAX,
1396         };
1397
1398         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1399                 wbc.nr_to_write = 0;
1400
1401         might_sleep();
1402         return writeback_single_inode(inode, wb, &wbc);
1403 }
1404 EXPORT_SYMBOL(write_inode_now);
1405
1406 /**
1407  * sync_inode - write an inode and its pages to disk.
1408  * @inode: the inode to sync
1409  * @wbc: controls the writeback mode
1410  *
1411  * sync_inode() will write an inode and its pages to disk.  It will also
1412  * correctly update the inode on its superblock's dirty inode lists and will
1413  * update inode->i_state.
1414  *
1415  * The caller must have a ref on the inode.
1416  */
1417 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1418 {
1419         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1420 }
1421 EXPORT_SYMBOL(sync_inode);
1422
1423 /**
1424  * sync_inode_metadata - write an inode to disk
1425  * @inode: the inode to sync
1426  * @wait: wait for I/O to complete.
1427  *
1428  * Write an inode to disk and adjust its dirty state after completion.
1429  *
1430  * Note: only writes the actual inode, no associated data or other metadata.
1431  */
1432 int sync_inode_metadata(struct inode *inode, int wait)
1433 {
1434         struct writeback_control wbc = {
1435                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1436                 .nr_to_write = 0, /* metadata-only */
1437         };
1438
1439         return sync_inode(inode, &wbc);
1440 }
1441 EXPORT_SYMBOL(sync_inode_metadata);