]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/jbd2/journal.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
102 EXPORT_SYMBOL(jbd2_inode_cache);
103
104 static void __journal_abort_soft (journal_t *journal, int errno);
105 static int jbd2_journal_create_slab(size_t slab_size);
106
107 #ifdef CONFIG_JBD2_DEBUG
108 void __jbd2_debug(int level, const char *file, const char *func,
109                   unsigned int line, const char *fmt, ...)
110 {
111         struct va_format vaf;
112         va_list args;
113
114         if (level > jbd2_journal_enable_debug)
115                 return;
116         va_start(args, fmt);
117         vaf.fmt = fmt;
118         vaf.va = &args;
119         printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
120         va_end(args);
121 }
122 EXPORT_SYMBOL(__jbd2_debug);
123 #endif
124
125 /* Checksumming functions */
126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 {
128         if (!jbd2_journal_has_csum_v2or3_feature(j))
129                 return 1;
130
131         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
132 }
133
134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 {
136         __u32 csum;
137         __be32 old_csum;
138
139         old_csum = sb->s_checksum;
140         sb->s_checksum = 0;
141         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
142         sb->s_checksum = old_csum;
143
144         return cpu_to_be32(csum);
145 }
146
147 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
148 {
149         if (!jbd2_journal_has_csum_v2or3(j))
150                 return 1;
151
152         return sb->s_checksum == jbd2_superblock_csum(j, sb);
153 }
154
155 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
156 {
157         if (!jbd2_journal_has_csum_v2or3(j))
158                 return;
159
160         sb->s_checksum = jbd2_superblock_csum(j, sb);
161 }
162
163 /*
164  * Helper function used to manage commit timeouts
165  */
166
167 static void commit_timeout(unsigned long __data)
168 {
169         struct task_struct * p = (struct task_struct *) __data;
170
171         wake_up_process(p);
172 }
173
174 /*
175  * kjournald2: The main thread function used to manage a logging device
176  * journal.
177  *
178  * This kernel thread is responsible for two things:
179  *
180  * 1) COMMIT:  Every so often we need to commit the current state of the
181  *    filesystem to disk.  The journal thread is responsible for writing
182  *    all of the metadata buffers to disk.
183  *
184  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185  *    of the data in that part of the log has been rewritten elsewhere on
186  *    the disk.  Flushing these old buffers to reclaim space in the log is
187  *    known as checkpointing, and this thread is responsible for that job.
188  */
189
190 static int kjournald2(void *arg)
191 {
192         journal_t *journal = arg;
193         transaction_t *transaction;
194
195         /*
196          * Set up an interval timer which can be used to trigger a commit wakeup
197          * after the commit interval expires
198          */
199         setup_timer(&journal->j_commit_timer, commit_timeout,
200                         (unsigned long)current);
201
202         set_freezable();
203
204         /* Record that the journal thread is running */
205         journal->j_task = current;
206         wake_up(&journal->j_wait_done_commit);
207
208         /*
209          * And now, wait forever for commit wakeup events.
210          */
211         write_lock(&journal->j_state_lock);
212
213 loop:
214         if (journal->j_flags & JBD2_UNMOUNT)
215                 goto end_loop;
216
217         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
218                 journal->j_commit_sequence, journal->j_commit_request);
219
220         if (journal->j_commit_sequence != journal->j_commit_request) {
221                 jbd_debug(1, "OK, requests differ\n");
222                 write_unlock(&journal->j_state_lock);
223                 del_timer_sync(&journal->j_commit_timer);
224                 jbd2_journal_commit_transaction(journal);
225                 write_lock(&journal->j_state_lock);
226                 goto loop;
227         }
228
229         wake_up(&journal->j_wait_done_commit);
230         if (freezing(current)) {
231                 /*
232                  * The simpler the better. Flushing journal isn't a
233                  * good idea, because that depends on threads that may
234                  * be already stopped.
235                  */
236                 jbd_debug(1, "Now suspending kjournald2\n");
237                 write_unlock(&journal->j_state_lock);
238                 try_to_freeze();
239                 write_lock(&journal->j_state_lock);
240         } else {
241                 /*
242                  * We assume on resume that commits are already there,
243                  * so we don't sleep
244                  */
245                 DEFINE_WAIT(wait);
246                 int should_sleep = 1;
247
248                 prepare_to_wait(&journal->j_wait_commit, &wait,
249                                 TASK_INTERRUPTIBLE);
250                 if (journal->j_commit_sequence != journal->j_commit_request)
251                         should_sleep = 0;
252                 transaction = journal->j_running_transaction;
253                 if (transaction && time_after_eq(jiffies,
254                                                 transaction->t_expires))
255                         should_sleep = 0;
256                 if (journal->j_flags & JBD2_UNMOUNT)
257                         should_sleep = 0;
258                 if (should_sleep) {
259                         write_unlock(&journal->j_state_lock);
260                         schedule();
261                         write_lock(&journal->j_state_lock);
262                 }
263                 finish_wait(&journal->j_wait_commit, &wait);
264         }
265
266         jbd_debug(1, "kjournald2 wakes\n");
267
268         /*
269          * Were we woken up by a commit wakeup event?
270          */
271         transaction = journal->j_running_transaction;
272         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
273                 journal->j_commit_request = transaction->t_tid;
274                 jbd_debug(1, "woke because of timeout\n");
275         }
276         goto loop;
277
278 end_loop:
279         write_unlock(&journal->j_state_lock);
280         del_timer_sync(&journal->j_commit_timer);
281         journal->j_task = NULL;
282         wake_up(&journal->j_wait_done_commit);
283         jbd_debug(1, "Journal thread exiting.\n");
284         return 0;
285 }
286
287 static int jbd2_journal_start_thread(journal_t *journal)
288 {
289         struct task_struct *t;
290
291         t = kthread_run(kjournald2, journal, "jbd2/%s",
292                         journal->j_devname);
293         if (IS_ERR(t))
294                 return PTR_ERR(t);
295
296         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
297         return 0;
298 }
299
300 static void journal_kill_thread(journal_t *journal)
301 {
302         write_lock(&journal->j_state_lock);
303         journal->j_flags |= JBD2_UNMOUNT;
304
305         while (journal->j_task) {
306                 write_unlock(&journal->j_state_lock);
307                 wake_up(&journal->j_wait_commit);
308                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
309                 write_lock(&journal->j_state_lock);
310         }
311         write_unlock(&journal->j_state_lock);
312 }
313
314 /*
315  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
316  *
317  * Writes a metadata buffer to a given disk block.  The actual IO is not
318  * performed but a new buffer_head is constructed which labels the data
319  * to be written with the correct destination disk block.
320  *
321  * Any magic-number escaping which needs to be done will cause a
322  * copy-out here.  If the buffer happens to start with the
323  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
324  * magic number is only written to the log for descripter blocks.  In
325  * this case, we copy the data and replace the first word with 0, and we
326  * return a result code which indicates that this buffer needs to be
327  * marked as an escaped buffer in the corresponding log descriptor
328  * block.  The missing word can then be restored when the block is read
329  * during recovery.
330  *
331  * If the source buffer has already been modified by a new transaction
332  * since we took the last commit snapshot, we use the frozen copy of
333  * that data for IO. If we end up using the existing buffer_head's data
334  * for the write, then we have to make sure nobody modifies it while the
335  * IO is in progress. do_get_write_access() handles this.
336  *
337  * The function returns a pointer to the buffer_head to be used for IO.
338  * 
339  *
340  * Return value:
341  *  <0: Error
342  * >=0: Finished OK
343  *
344  * On success:
345  * Bit 0 set == escape performed on the data
346  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
347  */
348
349 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
350                                   struct journal_head  *jh_in,
351                                   struct buffer_head **bh_out,
352                                   sector_t blocknr)
353 {
354         int need_copy_out = 0;
355         int done_copy_out = 0;
356         int do_escape = 0;
357         char *mapped_data;
358         struct buffer_head *new_bh;
359         struct page *new_page;
360         unsigned int new_offset;
361         struct buffer_head *bh_in = jh2bh(jh_in);
362         journal_t *journal = transaction->t_journal;
363
364         /*
365          * The buffer really shouldn't be locked: only the current committing
366          * transaction is allowed to write it, so nobody else is allowed
367          * to do any IO.
368          *
369          * akpm: except if we're journalling data, and write() output is
370          * also part of a shared mapping, and another thread has
371          * decided to launch a writepage() against this buffer.
372          */
373         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
374
375         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
376
377         /* keep subsequent assertions sane */
378         atomic_set(&new_bh->b_count, 1);
379
380         jbd_lock_bh_state(bh_in);
381 repeat:
382         /*
383          * If a new transaction has already done a buffer copy-out, then
384          * we use that version of the data for the commit.
385          */
386         if (jh_in->b_frozen_data) {
387                 done_copy_out = 1;
388                 new_page = virt_to_page(jh_in->b_frozen_data);
389                 new_offset = offset_in_page(jh_in->b_frozen_data);
390         } else {
391                 new_page = jh2bh(jh_in)->b_page;
392                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
393         }
394
395         mapped_data = kmap_atomic(new_page);
396         /*
397          * Fire data frozen trigger if data already wasn't frozen.  Do this
398          * before checking for escaping, as the trigger may modify the magic
399          * offset.  If a copy-out happens afterwards, it will have the correct
400          * data in the buffer.
401          */
402         if (!done_copy_out)
403                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
404                                            jh_in->b_triggers);
405
406         /*
407          * Check for escaping
408          */
409         if (*((__be32 *)(mapped_data + new_offset)) ==
410                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
411                 need_copy_out = 1;
412                 do_escape = 1;
413         }
414         kunmap_atomic(mapped_data);
415
416         /*
417          * Do we need to do a data copy?
418          */
419         if (need_copy_out && !done_copy_out) {
420                 char *tmp;
421
422                 jbd_unlock_bh_state(bh_in);
423                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
424                 if (!tmp) {
425                         brelse(new_bh);
426                         return -ENOMEM;
427                 }
428                 jbd_lock_bh_state(bh_in);
429                 if (jh_in->b_frozen_data) {
430                         jbd2_free(tmp, bh_in->b_size);
431                         goto repeat;
432                 }
433
434                 jh_in->b_frozen_data = tmp;
435                 mapped_data = kmap_atomic(new_page);
436                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
437                 kunmap_atomic(mapped_data);
438
439                 new_page = virt_to_page(tmp);
440                 new_offset = offset_in_page(tmp);
441                 done_copy_out = 1;
442
443                 /*
444                  * This isn't strictly necessary, as we're using frozen
445                  * data for the escaping, but it keeps consistency with
446                  * b_frozen_data usage.
447                  */
448                 jh_in->b_frozen_triggers = jh_in->b_triggers;
449         }
450
451         /*
452          * Did we need to do an escaping?  Now we've done all the
453          * copying, we can finally do so.
454          */
455         if (do_escape) {
456                 mapped_data = kmap_atomic(new_page);
457                 *((unsigned int *)(mapped_data + new_offset)) = 0;
458                 kunmap_atomic(mapped_data);
459         }
460
461         set_bh_page(new_bh, new_page, new_offset);
462         new_bh->b_size = bh_in->b_size;
463         new_bh->b_bdev = journal->j_dev;
464         new_bh->b_blocknr = blocknr;
465         new_bh->b_private = bh_in;
466         set_buffer_mapped(new_bh);
467         set_buffer_dirty(new_bh);
468
469         *bh_out = new_bh;
470
471         /*
472          * The to-be-written buffer needs to get moved to the io queue,
473          * and the original buffer whose contents we are shadowing or
474          * copying is moved to the transaction's shadow queue.
475          */
476         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
477         spin_lock(&journal->j_list_lock);
478         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
479         spin_unlock(&journal->j_list_lock);
480         set_buffer_shadow(bh_in);
481         jbd_unlock_bh_state(bh_in);
482
483         return do_escape | (done_copy_out << 1);
484 }
485
486 /*
487  * Allocation code for the journal file.  Manage the space left in the
488  * journal, so that we can begin checkpointing when appropriate.
489  */
490
491 /*
492  * Called with j_state_lock locked for writing.
493  * Returns true if a transaction commit was started.
494  */
495 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
496 {
497         /* Return if the txn has already requested to be committed */
498         if (journal->j_commit_request == target)
499                 return 0;
500
501         /*
502          * The only transaction we can possibly wait upon is the
503          * currently running transaction (if it exists).  Otherwise,
504          * the target tid must be an old one.
505          */
506         if (journal->j_running_transaction &&
507             journal->j_running_transaction->t_tid == target) {
508                 /*
509                  * We want a new commit: OK, mark the request and wakeup the
510                  * commit thread.  We do _not_ do the commit ourselves.
511                  */
512
513                 journal->j_commit_request = target;
514                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
515                           journal->j_commit_request,
516                           journal->j_commit_sequence);
517                 journal->j_running_transaction->t_requested = jiffies;
518                 wake_up(&journal->j_wait_commit);
519                 return 1;
520         } else if (!tid_geq(journal->j_commit_request, target))
521                 /* This should never happen, but if it does, preserve
522                    the evidence before kjournald goes into a loop and
523                    increments j_commit_sequence beyond all recognition. */
524                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
525                           journal->j_commit_request,
526                           journal->j_commit_sequence,
527                           target, journal->j_running_transaction ? 
528                           journal->j_running_transaction->t_tid : 0);
529         return 0;
530 }
531
532 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
533 {
534         int ret;
535
536         write_lock(&journal->j_state_lock);
537         ret = __jbd2_log_start_commit(journal, tid);
538         write_unlock(&journal->j_state_lock);
539         return ret;
540 }
541
542 /*
543  * Force and wait any uncommitted transactions.  We can only force the running
544  * transaction if we don't have an active handle, otherwise, we will deadlock.
545  * Returns: <0 in case of error,
546  *           0 if nothing to commit,
547  *           1 if transaction was successfully committed.
548  */
549 static int __jbd2_journal_force_commit(journal_t *journal)
550 {
551         transaction_t *transaction = NULL;
552         tid_t tid;
553         int need_to_start = 0, ret = 0;
554
555         read_lock(&journal->j_state_lock);
556         if (journal->j_running_transaction && !current->journal_info) {
557                 transaction = journal->j_running_transaction;
558                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
559                         need_to_start = 1;
560         } else if (journal->j_committing_transaction)
561                 transaction = journal->j_committing_transaction;
562
563         if (!transaction) {
564                 /* Nothing to commit */
565                 read_unlock(&journal->j_state_lock);
566                 return 0;
567         }
568         tid = transaction->t_tid;
569         read_unlock(&journal->j_state_lock);
570         if (need_to_start)
571                 jbd2_log_start_commit(journal, tid);
572         ret = jbd2_log_wait_commit(journal, tid);
573         if (!ret)
574                 ret = 1;
575
576         return ret;
577 }
578
579 /**
580  * Force and wait upon a commit if the calling process is not within
581  * transaction.  This is used for forcing out undo-protected data which contains
582  * bitmaps, when the fs is running out of space.
583  *
584  * @journal: journal to force
585  * Returns true if progress was made.
586  */
587 int jbd2_journal_force_commit_nested(journal_t *journal)
588 {
589         int ret;
590
591         ret = __jbd2_journal_force_commit(journal);
592         return ret > 0;
593 }
594
595 /**
596  * int journal_force_commit() - force any uncommitted transactions
597  * @journal: journal to force
598  *
599  * Caller want unconditional commit. We can only force the running transaction
600  * if we don't have an active handle, otherwise, we will deadlock.
601  */
602 int jbd2_journal_force_commit(journal_t *journal)
603 {
604         int ret;
605
606         J_ASSERT(!current->journal_info);
607         ret = __jbd2_journal_force_commit(journal);
608         if (ret > 0)
609                 ret = 0;
610         return ret;
611 }
612
613 /*
614  * Start a commit of the current running transaction (if any).  Returns true
615  * if a transaction is going to be committed (or is currently already
616  * committing), and fills its tid in at *ptid
617  */
618 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
619 {
620         int ret = 0;
621
622         write_lock(&journal->j_state_lock);
623         if (journal->j_running_transaction) {
624                 tid_t tid = journal->j_running_transaction->t_tid;
625
626                 __jbd2_log_start_commit(journal, tid);
627                 /* There's a running transaction and we've just made sure
628                  * it's commit has been scheduled. */
629                 if (ptid)
630                         *ptid = tid;
631                 ret = 1;
632         } else if (journal->j_committing_transaction) {
633                 /*
634                  * If commit has been started, then we have to wait for
635                  * completion of that transaction.
636                  */
637                 if (ptid)
638                         *ptid = journal->j_committing_transaction->t_tid;
639                 ret = 1;
640         }
641         write_unlock(&journal->j_state_lock);
642         return ret;
643 }
644
645 /*
646  * Return 1 if a given transaction has not yet sent barrier request
647  * connected with a transaction commit. If 0 is returned, transaction
648  * may or may not have sent the barrier. Used to avoid sending barrier
649  * twice in common cases.
650  */
651 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
652 {
653         int ret = 0;
654         transaction_t *commit_trans;
655
656         if (!(journal->j_flags & JBD2_BARRIER))
657                 return 0;
658         read_lock(&journal->j_state_lock);
659         /* Transaction already committed? */
660         if (tid_geq(journal->j_commit_sequence, tid))
661                 goto out;
662         commit_trans = journal->j_committing_transaction;
663         if (!commit_trans || commit_trans->t_tid != tid) {
664                 ret = 1;
665                 goto out;
666         }
667         /*
668          * Transaction is being committed and we already proceeded to
669          * submitting a flush to fs partition?
670          */
671         if (journal->j_fs_dev != journal->j_dev) {
672                 if (!commit_trans->t_need_data_flush ||
673                     commit_trans->t_state >= T_COMMIT_DFLUSH)
674                         goto out;
675         } else {
676                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
677                         goto out;
678         }
679         ret = 1;
680 out:
681         read_unlock(&journal->j_state_lock);
682         return ret;
683 }
684 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
685
686 /*
687  * Wait for a specified commit to complete.
688  * The caller may not hold the journal lock.
689  */
690 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
691 {
692         int err = 0;
693
694         read_lock(&journal->j_state_lock);
695 #ifdef CONFIG_JBD2_DEBUG
696         if (!tid_geq(journal->j_commit_request, tid)) {
697                 printk(KERN_ERR
698                        "%s: error: j_commit_request=%d, tid=%d\n",
699                        __func__, journal->j_commit_request, tid);
700         }
701 #endif
702         while (tid_gt(tid, journal->j_commit_sequence)) {
703                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
704                                   tid, journal->j_commit_sequence);
705                 read_unlock(&journal->j_state_lock);
706                 wake_up(&journal->j_wait_commit);
707                 wait_event(journal->j_wait_done_commit,
708                                 !tid_gt(tid, journal->j_commit_sequence));
709                 read_lock(&journal->j_state_lock);
710         }
711         read_unlock(&journal->j_state_lock);
712
713         if (unlikely(is_journal_aborted(journal)))
714                 err = -EIO;
715         return err;
716 }
717
718 /*
719  * When this function returns the transaction corresponding to tid
720  * will be completed.  If the transaction has currently running, start
721  * committing that transaction before waiting for it to complete.  If
722  * the transaction id is stale, it is by definition already completed,
723  * so just return SUCCESS.
724  */
725 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
726 {
727         int     need_to_wait = 1;
728
729         read_lock(&journal->j_state_lock);
730         if (journal->j_running_transaction &&
731             journal->j_running_transaction->t_tid == tid) {
732                 if (journal->j_commit_request != tid) {
733                         /* transaction not yet started, so request it */
734                         read_unlock(&journal->j_state_lock);
735                         jbd2_log_start_commit(journal, tid);
736                         goto wait_commit;
737                 }
738         } else if (!(journal->j_committing_transaction &&
739                      journal->j_committing_transaction->t_tid == tid))
740                 need_to_wait = 0;
741         read_unlock(&journal->j_state_lock);
742         if (!need_to_wait)
743                 return 0;
744 wait_commit:
745         return jbd2_log_wait_commit(journal, tid);
746 }
747 EXPORT_SYMBOL(jbd2_complete_transaction);
748
749 /*
750  * Log buffer allocation routines:
751  */
752
753 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
754 {
755         unsigned long blocknr;
756
757         write_lock(&journal->j_state_lock);
758         J_ASSERT(journal->j_free > 1);
759
760         blocknr = journal->j_head;
761         journal->j_head++;
762         journal->j_free--;
763         if (journal->j_head == journal->j_last)
764                 journal->j_head = journal->j_first;
765         write_unlock(&journal->j_state_lock);
766         return jbd2_journal_bmap(journal, blocknr, retp);
767 }
768
769 /*
770  * Conversion of logical to physical block numbers for the journal
771  *
772  * On external journals the journal blocks are identity-mapped, so
773  * this is a no-op.  If needed, we can use j_blk_offset - everything is
774  * ready.
775  */
776 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
777                  unsigned long long *retp)
778 {
779         int err = 0;
780         unsigned long long ret;
781
782         if (journal->j_inode) {
783                 ret = bmap(journal->j_inode, blocknr);
784                 if (ret)
785                         *retp = ret;
786                 else {
787                         printk(KERN_ALERT "%s: journal block not found "
788                                         "at offset %lu on %s\n",
789                                __func__, blocknr, journal->j_devname);
790                         err = -EIO;
791                         __journal_abort_soft(journal, err);
792                 }
793         } else {
794                 *retp = blocknr; /* +journal->j_blk_offset */
795         }
796         return err;
797 }
798
799 /*
800  * We play buffer_head aliasing tricks to write data/metadata blocks to
801  * the journal without copying their contents, but for journal
802  * descriptor blocks we do need to generate bona fide buffers.
803  *
804  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
805  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
806  * But we don't bother doing that, so there will be coherency problems with
807  * mmaps of blockdevs which hold live JBD-controlled filesystems.
808  */
809 struct buffer_head *
810 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
811 {
812         journal_t *journal = transaction->t_journal;
813         struct buffer_head *bh;
814         unsigned long long blocknr;
815         journal_header_t *header;
816         int err;
817
818         err = jbd2_journal_next_log_block(journal, &blocknr);
819
820         if (err)
821                 return NULL;
822
823         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
824         if (!bh)
825                 return NULL;
826         lock_buffer(bh);
827         memset(bh->b_data, 0, journal->j_blocksize);
828         header = (journal_header_t *)bh->b_data;
829         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
830         header->h_blocktype = cpu_to_be32(type);
831         header->h_sequence = cpu_to_be32(transaction->t_tid);
832         set_buffer_uptodate(bh);
833         unlock_buffer(bh);
834         BUFFER_TRACE(bh, "return this buffer");
835         return bh;
836 }
837
838 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
839 {
840         struct jbd2_journal_block_tail *tail;
841         __u32 csum;
842
843         if (!jbd2_journal_has_csum_v2or3(j))
844                 return;
845
846         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
847                         sizeof(struct jbd2_journal_block_tail));
848         tail->t_checksum = 0;
849         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
850         tail->t_checksum = cpu_to_be32(csum);
851 }
852
853 /*
854  * Return tid of the oldest transaction in the journal and block in the journal
855  * where the transaction starts.
856  *
857  * If the journal is now empty, return which will be the next transaction ID
858  * we will write and where will that transaction start.
859  *
860  * The return value is 0 if journal tail cannot be pushed any further, 1 if
861  * it can.
862  */
863 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
864                               unsigned long *block)
865 {
866         transaction_t *transaction;
867         int ret;
868
869         read_lock(&journal->j_state_lock);
870         spin_lock(&journal->j_list_lock);
871         transaction = journal->j_checkpoint_transactions;
872         if (transaction) {
873                 *tid = transaction->t_tid;
874                 *block = transaction->t_log_start;
875         } else if ((transaction = journal->j_committing_transaction) != NULL) {
876                 *tid = transaction->t_tid;
877                 *block = transaction->t_log_start;
878         } else if ((transaction = journal->j_running_transaction) != NULL) {
879                 *tid = transaction->t_tid;
880                 *block = journal->j_head;
881         } else {
882                 *tid = journal->j_transaction_sequence;
883                 *block = journal->j_head;
884         }
885         ret = tid_gt(*tid, journal->j_tail_sequence);
886         spin_unlock(&journal->j_list_lock);
887         read_unlock(&journal->j_state_lock);
888
889         return ret;
890 }
891
892 /*
893  * Update information in journal structure and in on disk journal superblock
894  * about log tail. This function does not check whether information passed in
895  * really pushes log tail further. It's responsibility of the caller to make
896  * sure provided log tail information is valid (e.g. by holding
897  * j_checkpoint_mutex all the time between computing log tail and calling this
898  * function as is the case with jbd2_cleanup_journal_tail()).
899  *
900  * Requires j_checkpoint_mutex
901  */
902 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
903 {
904         unsigned long freed;
905         int ret;
906
907         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
908
909         /*
910          * We cannot afford for write to remain in drive's caches since as
911          * soon as we update j_tail, next transaction can start reusing journal
912          * space and if we lose sb update during power failure we'd replay
913          * old transaction with possibly newly overwritten data.
914          */
915         ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
916         if (ret)
917                 goto out;
918
919         write_lock(&journal->j_state_lock);
920         freed = block - journal->j_tail;
921         if (block < journal->j_tail)
922                 freed += journal->j_last - journal->j_first;
923
924         trace_jbd2_update_log_tail(journal, tid, block, freed);
925         jbd_debug(1,
926                   "Cleaning journal tail from %d to %d (offset %lu), "
927                   "freeing %lu\n",
928                   journal->j_tail_sequence, tid, block, freed);
929
930         journal->j_free += freed;
931         journal->j_tail_sequence = tid;
932         journal->j_tail = block;
933         write_unlock(&journal->j_state_lock);
934
935 out:
936         return ret;
937 }
938
939 /*
940  * This is a variaon of __jbd2_update_log_tail which checks for validity of
941  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
942  * with other threads updating log tail.
943  */
944 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
945 {
946         mutex_lock(&journal->j_checkpoint_mutex);
947         if (tid_gt(tid, journal->j_tail_sequence))
948                 __jbd2_update_log_tail(journal, tid, block);
949         mutex_unlock(&journal->j_checkpoint_mutex);
950 }
951
952 struct jbd2_stats_proc_session {
953         journal_t *journal;
954         struct transaction_stats_s *stats;
955         int start;
956         int max;
957 };
958
959 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
960 {
961         return *pos ? NULL : SEQ_START_TOKEN;
962 }
963
964 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
965 {
966         return NULL;
967 }
968
969 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
970 {
971         struct jbd2_stats_proc_session *s = seq->private;
972
973         if (v != SEQ_START_TOKEN)
974                 return 0;
975         seq_printf(seq, "%lu transactions (%lu requested), "
976                    "each up to %u blocks\n",
977                    s->stats->ts_tid, s->stats->ts_requested,
978                    s->journal->j_max_transaction_buffers);
979         if (s->stats->ts_tid == 0)
980                 return 0;
981         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
982             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
983         seq_printf(seq, "  %ums request delay\n",
984             (s->stats->ts_requested == 0) ? 0 :
985             jiffies_to_msecs(s->stats->run.rs_request_delay /
986                              s->stats->ts_requested));
987         seq_printf(seq, "  %ums running transaction\n",
988             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
989         seq_printf(seq, "  %ums transaction was being locked\n",
990             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
991         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
992             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
993         seq_printf(seq, "  %ums logging transaction\n",
994             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
995         seq_printf(seq, "  %lluus average transaction commit time\n",
996                    div_u64(s->journal->j_average_commit_time, 1000));
997         seq_printf(seq, "  %lu handles per transaction\n",
998             s->stats->run.rs_handle_count / s->stats->ts_tid);
999         seq_printf(seq, "  %lu blocks per transaction\n",
1000             s->stats->run.rs_blocks / s->stats->ts_tid);
1001         seq_printf(seq, "  %lu logged blocks per transaction\n",
1002             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1003         return 0;
1004 }
1005
1006 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1007 {
1008 }
1009
1010 static const struct seq_operations jbd2_seq_info_ops = {
1011         .start  = jbd2_seq_info_start,
1012         .next   = jbd2_seq_info_next,
1013         .stop   = jbd2_seq_info_stop,
1014         .show   = jbd2_seq_info_show,
1015 };
1016
1017 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1018 {
1019         journal_t *journal = PDE_DATA(inode);
1020         struct jbd2_stats_proc_session *s;
1021         int rc, size;
1022
1023         s = kmalloc(sizeof(*s), GFP_KERNEL);
1024         if (s == NULL)
1025                 return -ENOMEM;
1026         size = sizeof(struct transaction_stats_s);
1027         s->stats = kmalloc(size, GFP_KERNEL);
1028         if (s->stats == NULL) {
1029                 kfree(s);
1030                 return -ENOMEM;
1031         }
1032         spin_lock(&journal->j_history_lock);
1033         memcpy(s->stats, &journal->j_stats, size);
1034         s->journal = journal;
1035         spin_unlock(&journal->j_history_lock);
1036
1037         rc = seq_open(file, &jbd2_seq_info_ops);
1038         if (rc == 0) {
1039                 struct seq_file *m = file->private_data;
1040                 m->private = s;
1041         } else {
1042                 kfree(s->stats);
1043                 kfree(s);
1044         }
1045         return rc;
1046
1047 }
1048
1049 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1050 {
1051         struct seq_file *seq = file->private_data;
1052         struct jbd2_stats_proc_session *s = seq->private;
1053         kfree(s->stats);
1054         kfree(s);
1055         return seq_release(inode, file);
1056 }
1057
1058 static const struct file_operations jbd2_seq_info_fops = {
1059         .owner          = THIS_MODULE,
1060         .open           = jbd2_seq_info_open,
1061         .read           = seq_read,
1062         .llseek         = seq_lseek,
1063         .release        = jbd2_seq_info_release,
1064 };
1065
1066 static struct proc_dir_entry *proc_jbd2_stats;
1067
1068 static void jbd2_stats_proc_init(journal_t *journal)
1069 {
1070         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1071         if (journal->j_proc_entry) {
1072                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1073                                  &jbd2_seq_info_fops, journal);
1074         }
1075 }
1076
1077 static void jbd2_stats_proc_exit(journal_t *journal)
1078 {
1079         remove_proc_entry("info", journal->j_proc_entry);
1080         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1081 }
1082
1083 /*
1084  * Management for journal control blocks: functions to create and
1085  * destroy journal_t structures, and to initialise and read existing
1086  * journal blocks from disk.  */
1087
1088 /* First: create and setup a journal_t object in memory.  We initialise
1089  * very few fields yet: that has to wait until we have created the
1090  * journal structures from from scratch, or loaded them from disk. */
1091
1092 static journal_t * journal_init_common (void)
1093 {
1094         journal_t *journal;
1095         int err;
1096
1097         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1098         if (!journal)
1099                 return NULL;
1100
1101         init_waitqueue_head(&journal->j_wait_transaction_locked);
1102         init_waitqueue_head(&journal->j_wait_done_commit);
1103         init_waitqueue_head(&journal->j_wait_commit);
1104         init_waitqueue_head(&journal->j_wait_updates);
1105         init_waitqueue_head(&journal->j_wait_reserved);
1106         mutex_init(&journal->j_barrier);
1107         mutex_init(&journal->j_checkpoint_mutex);
1108         spin_lock_init(&journal->j_revoke_lock);
1109         spin_lock_init(&journal->j_list_lock);
1110         rwlock_init(&journal->j_state_lock);
1111
1112         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1113         journal->j_min_batch_time = 0;
1114         journal->j_max_batch_time = 15000; /* 15ms */
1115         atomic_set(&journal->j_reserved_credits, 0);
1116
1117         /* The journal is marked for error until we succeed with recovery! */
1118         journal->j_flags = JBD2_ABORT;
1119
1120         /* Set up a default-sized revoke table for the new mount. */
1121         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1122         if (err) {
1123                 kfree(journal);
1124                 return NULL;
1125         }
1126
1127         spin_lock_init(&journal->j_history_lock);
1128
1129         return journal;
1130 }
1131
1132 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1133  *
1134  * Create a journal structure assigned some fixed set of disk blocks to
1135  * the journal.  We don't actually touch those disk blocks yet, but we
1136  * need to set up all of the mapping information to tell the journaling
1137  * system where the journal blocks are.
1138  *
1139  */
1140
1141 /**
1142  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1143  *  @bdev: Block device on which to create the journal
1144  *  @fs_dev: Device which hold journalled filesystem for this journal.
1145  *  @start: Block nr Start of journal.
1146  *  @len:  Length of the journal in blocks.
1147  *  @blocksize: blocksize of journalling device
1148  *
1149  *  Returns: a newly created journal_t *
1150  *
1151  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1152  *  range of blocks on an arbitrary block device.
1153  *
1154  */
1155 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1156                         struct block_device *fs_dev,
1157                         unsigned long long start, int len, int blocksize)
1158 {
1159         journal_t *journal = journal_init_common();
1160         struct buffer_head *bh;
1161         int n;
1162
1163         if (!journal)
1164                 return NULL;
1165
1166         /* journal descriptor can store up to n blocks -bzzz */
1167         journal->j_blocksize = blocksize;
1168         journal->j_dev = bdev;
1169         journal->j_fs_dev = fs_dev;
1170         journal->j_blk_offset = start;
1171         journal->j_maxlen = len;
1172         bdevname(journal->j_dev, journal->j_devname);
1173         strreplace(journal->j_devname, '/', '!');
1174         jbd2_stats_proc_init(journal);
1175         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1176         journal->j_wbufsize = n;
1177         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1178         if (!journal->j_wbuf) {
1179                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1180                         __func__);
1181                 goto out_err;
1182         }
1183
1184         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1185         if (!bh) {
1186                 printk(KERN_ERR
1187                        "%s: Cannot get buffer for journal superblock\n",
1188                        __func__);
1189                 goto out_err;
1190         }
1191         journal->j_sb_buffer = bh;
1192         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1193
1194         return journal;
1195 out_err:
1196         kfree(journal->j_wbuf);
1197         jbd2_stats_proc_exit(journal);
1198         kfree(journal);
1199         return NULL;
1200 }
1201
1202 /**
1203  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1204  *  @inode: An inode to create the journal in
1205  *
1206  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1207  * the journal.  The inode must exist already, must support bmap() and
1208  * must have all data blocks preallocated.
1209  */
1210 journal_t * jbd2_journal_init_inode (struct inode *inode)
1211 {
1212         struct buffer_head *bh;
1213         journal_t *journal = journal_init_common();
1214         char *p;
1215         int err;
1216         int n;
1217         unsigned long long blocknr;
1218
1219         if (!journal)
1220                 return NULL;
1221
1222         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1223         journal->j_inode = inode;
1224         bdevname(journal->j_dev, journal->j_devname);
1225         p = strreplace(journal->j_devname, '/', '!');
1226         sprintf(p, "-%lu", journal->j_inode->i_ino);
1227         jbd_debug(1,
1228                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1229                   journal, inode->i_sb->s_id, inode->i_ino,
1230                   (long long) inode->i_size,
1231                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1232
1233         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1234         journal->j_blocksize = inode->i_sb->s_blocksize;
1235         jbd2_stats_proc_init(journal);
1236
1237         /* journal descriptor can store up to n blocks -bzzz */
1238         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1239         journal->j_wbufsize = n;
1240         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1241         if (!journal->j_wbuf) {
1242                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1243                         __func__);
1244                 goto out_err;
1245         }
1246
1247         err = jbd2_journal_bmap(journal, 0, &blocknr);
1248         /* If that failed, give up */
1249         if (err) {
1250                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1251                        __func__);
1252                 goto out_err;
1253         }
1254
1255         bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1256         if (!bh) {
1257                 printk(KERN_ERR
1258                        "%s: Cannot get buffer for journal superblock\n",
1259                        __func__);
1260                 goto out_err;
1261         }
1262         journal->j_sb_buffer = bh;
1263         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1264
1265         return journal;
1266 out_err:
1267         kfree(journal->j_wbuf);
1268         jbd2_stats_proc_exit(journal);
1269         kfree(journal);
1270         return NULL;
1271 }
1272
1273 /*
1274  * If the journal init or create aborts, we need to mark the journal
1275  * superblock as being NULL to prevent the journal destroy from writing
1276  * back a bogus superblock.
1277  */
1278 static void journal_fail_superblock (journal_t *journal)
1279 {
1280         struct buffer_head *bh = journal->j_sb_buffer;
1281         brelse(bh);
1282         journal->j_sb_buffer = NULL;
1283 }
1284
1285 /*
1286  * Given a journal_t structure, initialise the various fields for
1287  * startup of a new journaling session.  We use this both when creating
1288  * a journal, and after recovering an old journal to reset it for
1289  * subsequent use.
1290  */
1291
1292 static int journal_reset(journal_t *journal)
1293 {
1294         journal_superblock_t *sb = journal->j_superblock;
1295         unsigned long long first, last;
1296
1297         first = be32_to_cpu(sb->s_first);
1298         last = be32_to_cpu(sb->s_maxlen);
1299         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1300                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1301                        first, last);
1302                 journal_fail_superblock(journal);
1303                 return -EINVAL;
1304         }
1305
1306         journal->j_first = first;
1307         journal->j_last = last;
1308
1309         journal->j_head = first;
1310         journal->j_tail = first;
1311         journal->j_free = last - first;
1312
1313         journal->j_tail_sequence = journal->j_transaction_sequence;
1314         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1315         journal->j_commit_request = journal->j_commit_sequence;
1316
1317         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1318
1319         /*
1320          * As a special case, if the on-disk copy is already marked as needing
1321          * no recovery (s_start == 0), then we can safely defer the superblock
1322          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1323          * attempting a write to a potential-readonly device.
1324          */
1325         if (sb->s_start == 0) {
1326                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1327                         "(start %ld, seq %d, errno %d)\n",
1328                         journal->j_tail, journal->j_tail_sequence,
1329                         journal->j_errno);
1330                 journal->j_flags |= JBD2_FLUSHED;
1331         } else {
1332                 /* Lock here to make assertions happy... */
1333                 mutex_lock(&journal->j_checkpoint_mutex);
1334                 /*
1335                  * Update log tail information. We use WRITE_FUA since new
1336                  * transaction will start reusing journal space and so we
1337                  * must make sure information about current log tail is on
1338                  * disk before that.
1339                  */
1340                 jbd2_journal_update_sb_log_tail(journal,
1341                                                 journal->j_tail_sequence,
1342                                                 journal->j_tail,
1343                                                 WRITE_FUA);
1344                 mutex_unlock(&journal->j_checkpoint_mutex);
1345         }
1346         return jbd2_journal_start_thread(journal);
1347 }
1348
1349 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1350 {
1351         struct buffer_head *bh = journal->j_sb_buffer;
1352         journal_superblock_t *sb = journal->j_superblock;
1353         int ret;
1354
1355         trace_jbd2_write_superblock(journal, write_flags);
1356         if (!(journal->j_flags & JBD2_BARRIER))
1357                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1358         lock_buffer(bh);
1359         if (buffer_write_io_error(bh)) {
1360                 /*
1361                  * Oh, dear.  A previous attempt to write the journal
1362                  * superblock failed.  This could happen because the
1363                  * USB device was yanked out.  Or it could happen to
1364                  * be a transient write error and maybe the block will
1365                  * be remapped.  Nothing we can do but to retry the
1366                  * write and hope for the best.
1367                  */
1368                 printk(KERN_ERR "JBD2: previous I/O error detected "
1369                        "for journal superblock update for %s.\n",
1370                        journal->j_devname);
1371                 clear_buffer_write_io_error(bh);
1372                 set_buffer_uptodate(bh);
1373         }
1374         jbd2_superblock_csum_set(journal, sb);
1375         get_bh(bh);
1376         bh->b_end_io = end_buffer_write_sync;
1377         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1378         wait_on_buffer(bh);
1379         if (buffer_write_io_error(bh)) {
1380                 clear_buffer_write_io_error(bh);
1381                 set_buffer_uptodate(bh);
1382                 ret = -EIO;
1383         }
1384         if (ret) {
1385                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1386                        "journal superblock for %s.\n", ret,
1387                        journal->j_devname);
1388                 jbd2_journal_abort(journal, ret);
1389         }
1390
1391         return ret;
1392 }
1393
1394 /**
1395  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1396  * @journal: The journal to update.
1397  * @tail_tid: TID of the new transaction at the tail of the log
1398  * @tail_block: The first block of the transaction at the tail of the log
1399  * @write_op: With which operation should we write the journal sb
1400  *
1401  * Update a journal's superblock information about log tail and write it to
1402  * disk, waiting for the IO to complete.
1403  */
1404 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1405                                      unsigned long tail_block, int write_op)
1406 {
1407         journal_superblock_t *sb = journal->j_superblock;
1408         int ret;
1409
1410         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1411         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1412                   tail_block, tail_tid);
1413
1414         sb->s_sequence = cpu_to_be32(tail_tid);
1415         sb->s_start    = cpu_to_be32(tail_block);
1416
1417         ret = jbd2_write_superblock(journal, write_op);
1418         if (ret)
1419                 goto out;
1420
1421         /* Log is no longer empty */
1422         write_lock(&journal->j_state_lock);
1423         WARN_ON(!sb->s_sequence);
1424         journal->j_flags &= ~JBD2_FLUSHED;
1425         write_unlock(&journal->j_state_lock);
1426
1427 out:
1428         return ret;
1429 }
1430
1431 /**
1432  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1433  * @journal: The journal to update.
1434  * @write_op: With which operation should we write the journal sb
1435  *
1436  * Update a journal's dynamic superblock fields to show that journal is empty.
1437  * Write updated superblock to disk waiting for IO to complete.
1438  */
1439 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1440 {
1441         journal_superblock_t *sb = journal->j_superblock;
1442
1443         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1444         read_lock(&journal->j_state_lock);
1445         /* Is it already empty? */
1446         if (sb->s_start == 0) {
1447                 read_unlock(&journal->j_state_lock);
1448                 return;
1449         }
1450         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1451                   journal->j_tail_sequence);
1452
1453         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1454         sb->s_start    = cpu_to_be32(0);
1455         read_unlock(&journal->j_state_lock);
1456
1457         jbd2_write_superblock(journal, write_op);
1458
1459         /* Log is no longer empty */
1460         write_lock(&journal->j_state_lock);
1461         journal->j_flags |= JBD2_FLUSHED;
1462         write_unlock(&journal->j_state_lock);
1463 }
1464
1465
1466 /**
1467  * jbd2_journal_update_sb_errno() - Update error in the journal.
1468  * @journal: The journal to update.
1469  *
1470  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1471  * to complete.
1472  */
1473 void jbd2_journal_update_sb_errno(journal_t *journal)
1474 {
1475         journal_superblock_t *sb = journal->j_superblock;
1476
1477         read_lock(&journal->j_state_lock);
1478         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1479                   journal->j_errno);
1480         sb->s_errno    = cpu_to_be32(journal->j_errno);
1481         read_unlock(&journal->j_state_lock);
1482
1483         jbd2_write_superblock(journal, WRITE_FUA);
1484 }
1485 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1486
1487 /*
1488  * Read the superblock for a given journal, performing initial
1489  * validation of the format.
1490  */
1491 static int journal_get_superblock(journal_t *journal)
1492 {
1493         struct buffer_head *bh;
1494         journal_superblock_t *sb;
1495         int err = -EIO;
1496
1497         bh = journal->j_sb_buffer;
1498
1499         J_ASSERT(bh != NULL);
1500         if (!buffer_uptodate(bh)) {
1501                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1502                 wait_on_buffer(bh);
1503                 if (!buffer_uptodate(bh)) {
1504                         printk(KERN_ERR
1505                                 "JBD2: IO error reading journal superblock\n");
1506                         goto out;
1507                 }
1508         }
1509
1510         if (buffer_verified(bh))
1511                 return 0;
1512
1513         sb = journal->j_superblock;
1514
1515         err = -EINVAL;
1516
1517         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1518             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1519                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1520                 goto out;
1521         }
1522
1523         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1524         case JBD2_SUPERBLOCK_V1:
1525                 journal->j_format_version = 1;
1526                 break;
1527         case JBD2_SUPERBLOCK_V2:
1528                 journal->j_format_version = 2;
1529                 break;
1530         default:
1531                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1532                 goto out;
1533         }
1534
1535         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1536                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1537         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1538                 printk(KERN_WARNING "JBD2: journal file too short\n");
1539                 goto out;
1540         }
1541
1542         if (be32_to_cpu(sb->s_first) == 0 ||
1543             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1544                 printk(KERN_WARNING
1545                         "JBD2: Invalid start block of journal: %u\n",
1546                         be32_to_cpu(sb->s_first));
1547                 goto out;
1548         }
1549
1550         if (jbd2_has_feature_csum2(journal) &&
1551             jbd2_has_feature_csum3(journal)) {
1552                 /* Can't have checksum v2 and v3 at the same time! */
1553                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1554                        "at the same time!\n");
1555                 goto out;
1556         }
1557
1558         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1559             jbd2_has_feature_checksum(journal)) {
1560                 /* Can't have checksum v1 and v2 on at the same time! */
1561                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1562                        "at the same time!\n");
1563                 goto out;
1564         }
1565
1566         if (!jbd2_verify_csum_type(journal, sb)) {
1567                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1568                 goto out;
1569         }
1570
1571         /* Load the checksum driver */
1572         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1573                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1574                 if (IS_ERR(journal->j_chksum_driver)) {
1575                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1576                         err = PTR_ERR(journal->j_chksum_driver);
1577                         journal->j_chksum_driver = NULL;
1578                         goto out;
1579                 }
1580         }
1581
1582         /* Check superblock checksum */
1583         if (!jbd2_superblock_csum_verify(journal, sb)) {
1584                 printk(KERN_ERR "JBD2: journal checksum error\n");
1585                 err = -EFSBADCRC;
1586                 goto out;
1587         }
1588
1589         /* Precompute checksum seed for all metadata */
1590         if (jbd2_journal_has_csum_v2or3(journal))
1591                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1592                                                    sizeof(sb->s_uuid));
1593
1594         set_buffer_verified(bh);
1595
1596         return 0;
1597
1598 out:
1599         journal_fail_superblock(journal);
1600         return err;
1601 }
1602
1603 /*
1604  * Load the on-disk journal superblock and read the key fields into the
1605  * journal_t.
1606  */
1607
1608 static int load_superblock(journal_t *journal)
1609 {
1610         int err;
1611         journal_superblock_t *sb;
1612
1613         err = journal_get_superblock(journal);
1614         if (err)
1615                 return err;
1616
1617         sb = journal->j_superblock;
1618
1619         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1620         journal->j_tail = be32_to_cpu(sb->s_start);
1621         journal->j_first = be32_to_cpu(sb->s_first);
1622         journal->j_last = be32_to_cpu(sb->s_maxlen);
1623         journal->j_errno = be32_to_cpu(sb->s_errno);
1624
1625         return 0;
1626 }
1627
1628
1629 /**
1630  * int jbd2_journal_load() - Read journal from disk.
1631  * @journal: Journal to act on.
1632  *
1633  * Given a journal_t structure which tells us which disk blocks contain
1634  * a journal, read the journal from disk to initialise the in-memory
1635  * structures.
1636  */
1637 int jbd2_journal_load(journal_t *journal)
1638 {
1639         int err;
1640         journal_superblock_t *sb;
1641
1642         err = load_superblock(journal);
1643         if (err)
1644                 return err;
1645
1646         sb = journal->j_superblock;
1647         /* If this is a V2 superblock, then we have to check the
1648          * features flags on it. */
1649
1650         if (journal->j_format_version >= 2) {
1651                 if ((sb->s_feature_ro_compat &
1652                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1653                     (sb->s_feature_incompat &
1654                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1655                         printk(KERN_WARNING
1656                                 "JBD2: Unrecognised features on journal\n");
1657                         return -EINVAL;
1658                 }
1659         }
1660
1661         /*
1662          * Create a slab for this blocksize
1663          */
1664         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1665         if (err)
1666                 return err;
1667
1668         /* Let the recovery code check whether it needs to recover any
1669          * data from the journal. */
1670         if (jbd2_journal_recover(journal))
1671                 goto recovery_error;
1672
1673         if (journal->j_failed_commit) {
1674                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1675                        "is corrupt.\n", journal->j_failed_commit,
1676                        journal->j_devname);
1677                 return -EFSCORRUPTED;
1678         }
1679
1680         /* OK, we've finished with the dynamic journal bits:
1681          * reinitialise the dynamic contents of the superblock in memory
1682          * and reset them on disk. */
1683         if (journal_reset(journal))
1684                 goto recovery_error;
1685
1686         journal->j_flags &= ~JBD2_ABORT;
1687         journal->j_flags |= JBD2_LOADED;
1688         return 0;
1689
1690 recovery_error:
1691         printk(KERN_WARNING "JBD2: recovery failed\n");
1692         return -EIO;
1693 }
1694
1695 /**
1696  * void jbd2_journal_destroy() - Release a journal_t structure.
1697  * @journal: Journal to act on.
1698  *
1699  * Release a journal_t structure once it is no longer in use by the
1700  * journaled object.
1701  * Return <0 if we couldn't clean up the journal.
1702  */
1703 int jbd2_journal_destroy(journal_t *journal)
1704 {
1705         int err = 0;
1706
1707         /* Wait for the commit thread to wake up and die. */
1708         journal_kill_thread(journal);
1709
1710         /* Force a final log commit */
1711         if (journal->j_running_transaction)
1712                 jbd2_journal_commit_transaction(journal);
1713
1714         /* Force any old transactions to disk */
1715
1716         /* Totally anal locking here... */
1717         spin_lock(&journal->j_list_lock);
1718         while (journal->j_checkpoint_transactions != NULL) {
1719                 spin_unlock(&journal->j_list_lock);
1720                 mutex_lock(&journal->j_checkpoint_mutex);
1721                 err = jbd2_log_do_checkpoint(journal);
1722                 mutex_unlock(&journal->j_checkpoint_mutex);
1723                 /*
1724                  * If checkpointing failed, just free the buffers to avoid
1725                  * looping forever
1726                  */
1727                 if (err) {
1728                         jbd2_journal_destroy_checkpoint(journal);
1729                         spin_lock(&journal->j_list_lock);
1730                         break;
1731                 }
1732                 spin_lock(&journal->j_list_lock);
1733         }
1734
1735         J_ASSERT(journal->j_running_transaction == NULL);
1736         J_ASSERT(journal->j_committing_transaction == NULL);
1737         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1738         spin_unlock(&journal->j_list_lock);
1739
1740         if (journal->j_sb_buffer) {
1741                 if (!is_journal_aborted(journal)) {
1742                         mutex_lock(&journal->j_checkpoint_mutex);
1743
1744                         write_lock(&journal->j_state_lock);
1745                         journal->j_tail_sequence =
1746                                 ++journal->j_transaction_sequence;
1747                         write_unlock(&journal->j_state_lock);
1748
1749                         jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1750                         mutex_unlock(&journal->j_checkpoint_mutex);
1751                 } else
1752                         err = -EIO;
1753                 brelse(journal->j_sb_buffer);
1754         }
1755
1756         if (journal->j_proc_entry)
1757                 jbd2_stats_proc_exit(journal);
1758         iput(journal->j_inode);
1759         if (journal->j_revoke)
1760                 jbd2_journal_destroy_revoke(journal);
1761         if (journal->j_chksum_driver)
1762                 crypto_free_shash(journal->j_chksum_driver);
1763         kfree(journal->j_wbuf);
1764         kfree(journal);
1765
1766         return err;
1767 }
1768
1769
1770 /**
1771  *int jbd2_journal_check_used_features () - Check if features specified are used.
1772  * @journal: Journal to check.
1773  * @compat: bitmask of compatible features
1774  * @ro: bitmask of features that force read-only mount
1775  * @incompat: bitmask of incompatible features
1776  *
1777  * Check whether the journal uses all of a given set of
1778  * features.  Return true (non-zero) if it does.
1779  **/
1780
1781 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1782                                  unsigned long ro, unsigned long incompat)
1783 {
1784         journal_superblock_t *sb;
1785
1786         if (!compat && !ro && !incompat)
1787                 return 1;
1788         /* Load journal superblock if it is not loaded yet. */
1789         if (journal->j_format_version == 0 &&
1790             journal_get_superblock(journal) != 0)
1791                 return 0;
1792         if (journal->j_format_version == 1)
1793                 return 0;
1794
1795         sb = journal->j_superblock;
1796
1797         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1798             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1799             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1800                 return 1;
1801
1802         return 0;
1803 }
1804
1805 /**
1806  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1807  * @journal: Journal to check.
1808  * @compat: bitmask of compatible features
1809  * @ro: bitmask of features that force read-only mount
1810  * @incompat: bitmask of incompatible features
1811  *
1812  * Check whether the journaling code supports the use of
1813  * all of a given set of features on this journal.  Return true
1814  * (non-zero) if it can. */
1815
1816 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1817                                       unsigned long ro, unsigned long incompat)
1818 {
1819         if (!compat && !ro && !incompat)
1820                 return 1;
1821
1822         /* We can support any known requested features iff the
1823          * superblock is in version 2.  Otherwise we fail to support any
1824          * extended sb features. */
1825
1826         if (journal->j_format_version != 2)
1827                 return 0;
1828
1829         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1830             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1831             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1832                 return 1;
1833
1834         return 0;
1835 }
1836
1837 /**
1838  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1839  * @journal: Journal to act on.
1840  * @compat: bitmask of compatible features
1841  * @ro: bitmask of features that force read-only mount
1842  * @incompat: bitmask of incompatible features
1843  *
1844  * Mark a given journal feature as present on the
1845  * superblock.  Returns true if the requested features could be set.
1846  *
1847  */
1848
1849 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1850                           unsigned long ro, unsigned long incompat)
1851 {
1852 #define INCOMPAT_FEATURE_ON(f) \
1853                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1854 #define COMPAT_FEATURE_ON(f) \
1855                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1856         journal_superblock_t *sb;
1857
1858         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1859                 return 1;
1860
1861         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1862                 return 0;
1863
1864         /* If enabling v2 checksums, turn on v3 instead */
1865         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1866                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1867                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1868         }
1869
1870         /* Asking for checksumming v3 and v1?  Only give them v3. */
1871         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1872             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1873                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1874
1875         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1876                   compat, ro, incompat);
1877
1878         sb = journal->j_superblock;
1879
1880         /* If enabling v3 checksums, update superblock */
1881         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1882                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1883                 sb->s_feature_compat &=
1884                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1885
1886                 /* Load the checksum driver */
1887                 if (journal->j_chksum_driver == NULL) {
1888                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1889                                                                       0, 0);
1890                         if (IS_ERR(journal->j_chksum_driver)) {
1891                                 printk(KERN_ERR "JBD2: Cannot load crc32c "
1892                                        "driver.\n");
1893                                 journal->j_chksum_driver = NULL;
1894                                 return 0;
1895                         }
1896
1897                         /* Precompute checksum seed for all metadata */
1898                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1899                                                            sb->s_uuid,
1900                                                            sizeof(sb->s_uuid));
1901                 }
1902         }
1903
1904         /* If enabling v1 checksums, downgrade superblock */
1905         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1906                 sb->s_feature_incompat &=
1907                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1908                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1909
1910         sb->s_feature_compat    |= cpu_to_be32(compat);
1911         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1912         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1913
1914         return 1;
1915 #undef COMPAT_FEATURE_ON
1916 #undef INCOMPAT_FEATURE_ON
1917 }
1918
1919 /*
1920  * jbd2_journal_clear_features () - Clear a given journal feature in the
1921  *                                  superblock
1922  * @journal: Journal to act on.
1923  * @compat: bitmask of compatible features
1924  * @ro: bitmask of features that force read-only mount
1925  * @incompat: bitmask of incompatible features
1926  *
1927  * Clear a given journal feature as present on the
1928  * superblock.
1929  */
1930 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1931                                 unsigned long ro, unsigned long incompat)
1932 {
1933         journal_superblock_t *sb;
1934
1935         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1936                   compat, ro, incompat);
1937
1938         sb = journal->j_superblock;
1939
1940         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1941         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1942         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1943 }
1944 EXPORT_SYMBOL(jbd2_journal_clear_features);
1945
1946 /**
1947  * int jbd2_journal_flush () - Flush journal
1948  * @journal: Journal to act on.
1949  *
1950  * Flush all data for a given journal to disk and empty the journal.
1951  * Filesystems can use this when remounting readonly to ensure that
1952  * recovery does not need to happen on remount.
1953  */
1954
1955 int jbd2_journal_flush(journal_t *journal)
1956 {
1957         int err = 0;
1958         transaction_t *transaction = NULL;
1959
1960         write_lock(&journal->j_state_lock);
1961
1962         /* Force everything buffered to the log... */
1963         if (journal->j_running_transaction) {
1964                 transaction = journal->j_running_transaction;
1965                 __jbd2_log_start_commit(journal, transaction->t_tid);
1966         } else if (journal->j_committing_transaction)
1967                 transaction = journal->j_committing_transaction;
1968
1969         /* Wait for the log commit to complete... */
1970         if (transaction) {
1971                 tid_t tid = transaction->t_tid;
1972
1973                 write_unlock(&journal->j_state_lock);
1974                 jbd2_log_wait_commit(journal, tid);
1975         } else {
1976                 write_unlock(&journal->j_state_lock);
1977         }
1978
1979         /* ...and flush everything in the log out to disk. */
1980         spin_lock(&journal->j_list_lock);
1981         while (!err && journal->j_checkpoint_transactions != NULL) {
1982                 spin_unlock(&journal->j_list_lock);
1983                 mutex_lock(&journal->j_checkpoint_mutex);
1984                 err = jbd2_log_do_checkpoint(journal);
1985                 mutex_unlock(&journal->j_checkpoint_mutex);
1986                 spin_lock(&journal->j_list_lock);
1987         }
1988         spin_unlock(&journal->j_list_lock);
1989
1990         if (is_journal_aborted(journal))
1991                 return -EIO;
1992
1993         mutex_lock(&journal->j_checkpoint_mutex);
1994         if (!err) {
1995                 err = jbd2_cleanup_journal_tail(journal);
1996                 if (err < 0) {
1997                         mutex_unlock(&journal->j_checkpoint_mutex);
1998                         goto out;
1999                 }
2000                 err = 0;
2001         }
2002
2003         /* Finally, mark the journal as really needing no recovery.
2004          * This sets s_start==0 in the underlying superblock, which is
2005          * the magic code for a fully-recovered superblock.  Any future
2006          * commits of data to the journal will restore the current
2007          * s_start value. */
2008         jbd2_mark_journal_empty(journal, WRITE_FUA);
2009         mutex_unlock(&journal->j_checkpoint_mutex);
2010         write_lock(&journal->j_state_lock);
2011         J_ASSERT(!journal->j_running_transaction);
2012         J_ASSERT(!journal->j_committing_transaction);
2013         J_ASSERT(!journal->j_checkpoint_transactions);
2014         J_ASSERT(journal->j_head == journal->j_tail);
2015         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2016         write_unlock(&journal->j_state_lock);
2017 out:
2018         return err;
2019 }
2020
2021 /**
2022  * int jbd2_journal_wipe() - Wipe journal contents
2023  * @journal: Journal to act on.
2024  * @write: flag (see below)
2025  *
2026  * Wipe out all of the contents of a journal, safely.  This will produce
2027  * a warning if the journal contains any valid recovery information.
2028  * Must be called between journal_init_*() and jbd2_journal_load().
2029  *
2030  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2031  * we merely suppress recovery.
2032  */
2033
2034 int jbd2_journal_wipe(journal_t *journal, int write)
2035 {
2036         int err = 0;
2037
2038         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2039
2040         err = load_superblock(journal);
2041         if (err)
2042                 return err;
2043
2044         if (!journal->j_tail)
2045                 goto no_recovery;
2046
2047         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2048                 write ? "Clearing" : "Ignoring");
2049
2050         err = jbd2_journal_skip_recovery(journal);
2051         if (write) {
2052                 /* Lock to make assertions happy... */
2053                 mutex_lock(&journal->j_checkpoint_mutex);
2054                 jbd2_mark_journal_empty(journal, WRITE_FUA);
2055                 mutex_unlock(&journal->j_checkpoint_mutex);
2056         }
2057
2058  no_recovery:
2059         return err;
2060 }
2061
2062 /*
2063  * Journal abort has very specific semantics, which we describe
2064  * for journal abort.
2065  *
2066  * Two internal functions, which provide abort to the jbd layer
2067  * itself are here.
2068  */
2069
2070 /*
2071  * Quick version for internal journal use (doesn't lock the journal).
2072  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2073  * and don't attempt to make any other journal updates.
2074  */
2075 void __jbd2_journal_abort_hard(journal_t *journal)
2076 {
2077         transaction_t *transaction;
2078
2079         if (journal->j_flags & JBD2_ABORT)
2080                 return;
2081
2082         printk(KERN_ERR "Aborting journal on device %s.\n",
2083                journal->j_devname);
2084
2085         write_lock(&journal->j_state_lock);
2086         journal->j_flags |= JBD2_ABORT;
2087         transaction = journal->j_running_transaction;
2088         if (transaction)
2089                 __jbd2_log_start_commit(journal, transaction->t_tid);
2090         write_unlock(&journal->j_state_lock);
2091 }
2092
2093 /* Soft abort: record the abort error status in the journal superblock,
2094  * but don't do any other IO. */
2095 static void __journal_abort_soft (journal_t *journal, int errno)
2096 {
2097         if (journal->j_flags & JBD2_ABORT)
2098                 return;
2099
2100         if (!journal->j_errno)
2101                 journal->j_errno = errno;
2102
2103         __jbd2_journal_abort_hard(journal);
2104
2105         if (errno) {
2106                 jbd2_journal_update_sb_errno(journal);
2107                 write_lock(&journal->j_state_lock);
2108                 journal->j_flags |= JBD2_REC_ERR;
2109                 write_unlock(&journal->j_state_lock);
2110         }
2111 }
2112
2113 /**
2114  * void jbd2_journal_abort () - Shutdown the journal immediately.
2115  * @journal: the journal to shutdown.
2116  * @errno:   an error number to record in the journal indicating
2117  *           the reason for the shutdown.
2118  *
2119  * Perform a complete, immediate shutdown of the ENTIRE
2120  * journal (not of a single transaction).  This operation cannot be
2121  * undone without closing and reopening the journal.
2122  *
2123  * The jbd2_journal_abort function is intended to support higher level error
2124  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2125  * mode.
2126  *
2127  * Journal abort has very specific semantics.  Any existing dirty,
2128  * unjournaled buffers in the main filesystem will still be written to
2129  * disk by bdflush, but the journaling mechanism will be suspended
2130  * immediately and no further transaction commits will be honoured.
2131  *
2132  * Any dirty, journaled buffers will be written back to disk without
2133  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2134  * filesystem, but we _do_ attempt to leave as much data as possible
2135  * behind for fsck to use for cleanup.
2136  *
2137  * Any attempt to get a new transaction handle on a journal which is in
2138  * ABORT state will just result in an -EROFS error return.  A
2139  * jbd2_journal_stop on an existing handle will return -EIO if we have
2140  * entered abort state during the update.
2141  *
2142  * Recursive transactions are not disturbed by journal abort until the
2143  * final jbd2_journal_stop, which will receive the -EIO error.
2144  *
2145  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2146  * which will be recorded (if possible) in the journal superblock.  This
2147  * allows a client to record failure conditions in the middle of a
2148  * transaction without having to complete the transaction to record the
2149  * failure to disk.  ext3_error, for example, now uses this
2150  * functionality.
2151  *
2152  * Errors which originate from within the journaling layer will NOT
2153  * supply an errno; a null errno implies that absolutely no further
2154  * writes are done to the journal (unless there are any already in
2155  * progress).
2156  *
2157  */
2158
2159 void jbd2_journal_abort(journal_t *journal, int errno)
2160 {
2161         __journal_abort_soft(journal, errno);
2162 }
2163
2164 /**
2165  * int jbd2_journal_errno () - returns the journal's error state.
2166  * @journal: journal to examine.
2167  *
2168  * This is the errno number set with jbd2_journal_abort(), the last
2169  * time the journal was mounted - if the journal was stopped
2170  * without calling abort this will be 0.
2171  *
2172  * If the journal has been aborted on this mount time -EROFS will
2173  * be returned.
2174  */
2175 int jbd2_journal_errno(journal_t *journal)
2176 {
2177         int err;
2178
2179         read_lock(&journal->j_state_lock);
2180         if (journal->j_flags & JBD2_ABORT)
2181                 err = -EROFS;
2182         else
2183                 err = journal->j_errno;
2184         read_unlock(&journal->j_state_lock);
2185         return err;
2186 }
2187
2188 /**
2189  * int jbd2_journal_clear_err () - clears the journal's error state
2190  * @journal: journal to act on.
2191  *
2192  * An error must be cleared or acked to take a FS out of readonly
2193  * mode.
2194  */
2195 int jbd2_journal_clear_err(journal_t *journal)
2196 {
2197         int err = 0;
2198
2199         write_lock(&journal->j_state_lock);
2200         if (journal->j_flags & JBD2_ABORT)
2201                 err = -EROFS;
2202         else
2203                 journal->j_errno = 0;
2204         write_unlock(&journal->j_state_lock);
2205         return err;
2206 }
2207
2208 /**
2209  * void jbd2_journal_ack_err() - Ack journal err.
2210  * @journal: journal to act on.
2211  *
2212  * An error must be cleared or acked to take a FS out of readonly
2213  * mode.
2214  */
2215 void jbd2_journal_ack_err(journal_t *journal)
2216 {
2217         write_lock(&journal->j_state_lock);
2218         if (journal->j_errno)
2219                 journal->j_flags |= JBD2_ACK_ERR;
2220         write_unlock(&journal->j_state_lock);
2221 }
2222
2223 int jbd2_journal_blocks_per_page(struct inode *inode)
2224 {
2225         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2226 }
2227
2228 /*
2229  * helper functions to deal with 32 or 64bit block numbers.
2230  */
2231 size_t journal_tag_bytes(journal_t *journal)
2232 {
2233         size_t sz;
2234
2235         if (jbd2_has_feature_csum3(journal))
2236                 return sizeof(journal_block_tag3_t);
2237
2238         sz = sizeof(journal_block_tag_t);
2239
2240         if (jbd2_has_feature_csum2(journal))
2241                 sz += sizeof(__u16);
2242
2243         if (jbd2_has_feature_64bit(journal))
2244                 return sz;
2245         else
2246                 return sz - sizeof(__u32);
2247 }
2248
2249 /*
2250  * JBD memory management
2251  *
2252  * These functions are used to allocate block-sized chunks of memory
2253  * used for making copies of buffer_head data.  Very often it will be
2254  * page-sized chunks of data, but sometimes it will be in
2255  * sub-page-size chunks.  (For example, 16k pages on Power systems
2256  * with a 4k block file system.)  For blocks smaller than a page, we
2257  * use a SLAB allocator.  There are slab caches for each block size,
2258  * which are allocated at mount time, if necessary, and we only free
2259  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2260  * this reason we don't need to a mutex to protect access to
2261  * jbd2_slab[] allocating or releasing memory; only in
2262  * jbd2_journal_create_slab().
2263  */
2264 #define JBD2_MAX_SLABS 8
2265 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2266
2267 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2268         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2269         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2270 };
2271
2272
2273 static void jbd2_journal_destroy_slabs(void)
2274 {
2275         int i;
2276
2277         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2278                 if (jbd2_slab[i])
2279                         kmem_cache_destroy(jbd2_slab[i]);
2280                 jbd2_slab[i] = NULL;
2281         }
2282 }
2283
2284 static int jbd2_journal_create_slab(size_t size)
2285 {
2286         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2287         int i = order_base_2(size) - 10;
2288         size_t slab_size;
2289
2290         if (size == PAGE_SIZE)
2291                 return 0;
2292
2293         if (i >= JBD2_MAX_SLABS)
2294                 return -EINVAL;
2295
2296         if (unlikely(i < 0))
2297                 i = 0;
2298         mutex_lock(&jbd2_slab_create_mutex);
2299         if (jbd2_slab[i]) {
2300                 mutex_unlock(&jbd2_slab_create_mutex);
2301                 return 0;       /* Already created */
2302         }
2303
2304         slab_size = 1 << (i+10);
2305         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2306                                          slab_size, 0, NULL);
2307         mutex_unlock(&jbd2_slab_create_mutex);
2308         if (!jbd2_slab[i]) {
2309                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2310                 return -ENOMEM;
2311         }
2312         return 0;
2313 }
2314
2315 static struct kmem_cache *get_slab(size_t size)
2316 {
2317         int i = order_base_2(size) - 10;
2318
2319         BUG_ON(i >= JBD2_MAX_SLABS);
2320         if (unlikely(i < 0))
2321                 i = 0;
2322         BUG_ON(jbd2_slab[i] == NULL);
2323         return jbd2_slab[i];
2324 }
2325
2326 void *jbd2_alloc(size_t size, gfp_t flags)
2327 {
2328         void *ptr;
2329
2330         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2331
2332         if (size < PAGE_SIZE)
2333                 ptr = kmem_cache_alloc(get_slab(size), flags);
2334         else
2335                 ptr = (void *)__get_free_pages(flags, get_order(size));
2336
2337         /* Check alignment; SLUB has gotten this wrong in the past,
2338          * and this can lead to user data corruption! */
2339         BUG_ON(((unsigned long) ptr) & (size-1));
2340
2341         return ptr;
2342 }
2343
2344 void jbd2_free(void *ptr, size_t size)
2345 {
2346         if (size < PAGE_SIZE)
2347                 kmem_cache_free(get_slab(size), ptr);
2348         else
2349                 free_pages((unsigned long)ptr, get_order(size));
2350 };
2351
2352 /*
2353  * Journal_head storage management
2354  */
2355 static struct kmem_cache *jbd2_journal_head_cache;
2356 #ifdef CONFIG_JBD2_DEBUG
2357 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2358 #endif
2359
2360 static int jbd2_journal_init_journal_head_cache(void)
2361 {
2362         int retval;
2363
2364         J_ASSERT(jbd2_journal_head_cache == NULL);
2365         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2366                                 sizeof(struct journal_head),
2367                                 0,              /* offset */
2368                                 SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2369                                 NULL);          /* ctor */
2370         retval = 0;
2371         if (!jbd2_journal_head_cache) {
2372                 retval = -ENOMEM;
2373                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2374         }
2375         return retval;
2376 }
2377
2378 static void jbd2_journal_destroy_journal_head_cache(void)
2379 {
2380         if (jbd2_journal_head_cache) {
2381                 kmem_cache_destroy(jbd2_journal_head_cache);
2382                 jbd2_journal_head_cache = NULL;
2383         }
2384 }
2385
2386 /*
2387  * journal_head splicing and dicing
2388  */
2389 static struct journal_head *journal_alloc_journal_head(void)
2390 {
2391         struct journal_head *ret;
2392
2393 #ifdef CONFIG_JBD2_DEBUG
2394         atomic_inc(&nr_journal_heads);
2395 #endif
2396         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2397         if (!ret) {
2398                 jbd_debug(1, "out of memory for journal_head\n");
2399                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2400                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2401                                 GFP_NOFS | __GFP_NOFAIL);
2402         }
2403         return ret;
2404 }
2405
2406 static void journal_free_journal_head(struct journal_head *jh)
2407 {
2408 #ifdef CONFIG_JBD2_DEBUG
2409         atomic_dec(&nr_journal_heads);
2410         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2411 #endif
2412         kmem_cache_free(jbd2_journal_head_cache, jh);
2413 }
2414
2415 /*
2416  * A journal_head is attached to a buffer_head whenever JBD has an
2417  * interest in the buffer.
2418  *
2419  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2420  * is set.  This bit is tested in core kernel code where we need to take
2421  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2422  * there.
2423  *
2424  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2425  *
2426  * When a buffer has its BH_JBD bit set it is immune from being released by
2427  * core kernel code, mainly via ->b_count.
2428  *
2429  * A journal_head is detached from its buffer_head when the journal_head's
2430  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2431  * transaction (b_cp_transaction) hold their references to b_jcount.
2432  *
2433  * Various places in the kernel want to attach a journal_head to a buffer_head
2434  * _before_ attaching the journal_head to a transaction.  To protect the
2435  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2436  * journal_head's b_jcount refcount by one.  The caller must call
2437  * jbd2_journal_put_journal_head() to undo this.
2438  *
2439  * So the typical usage would be:
2440  *
2441  *      (Attach a journal_head if needed.  Increments b_jcount)
2442  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2443  *      ...
2444  *      (Get another reference for transaction)
2445  *      jbd2_journal_grab_journal_head(bh);
2446  *      jh->b_transaction = xxx;
2447  *      (Put original reference)
2448  *      jbd2_journal_put_journal_head(jh);
2449  */
2450
2451 /*
2452  * Give a buffer_head a journal_head.
2453  *
2454  * May sleep.
2455  */
2456 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2457 {
2458         struct journal_head *jh;
2459         struct journal_head *new_jh = NULL;
2460
2461 repeat:
2462         if (!buffer_jbd(bh))
2463                 new_jh = journal_alloc_journal_head();
2464
2465         jbd_lock_bh_journal_head(bh);
2466         if (buffer_jbd(bh)) {
2467                 jh = bh2jh(bh);
2468         } else {
2469                 J_ASSERT_BH(bh,
2470                         (atomic_read(&bh->b_count) > 0) ||
2471                         (bh->b_page && bh->b_page->mapping));
2472
2473                 if (!new_jh) {
2474                         jbd_unlock_bh_journal_head(bh);
2475                         goto repeat;
2476                 }
2477
2478                 jh = new_jh;
2479                 new_jh = NULL;          /* We consumed it */
2480                 set_buffer_jbd(bh);
2481                 bh->b_private = jh;
2482                 jh->b_bh = bh;
2483                 get_bh(bh);
2484                 BUFFER_TRACE(bh, "added journal_head");
2485         }
2486         jh->b_jcount++;
2487         jbd_unlock_bh_journal_head(bh);
2488         if (new_jh)
2489                 journal_free_journal_head(new_jh);
2490         return bh->b_private;
2491 }
2492
2493 /*
2494  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2495  * having a journal_head, return NULL
2496  */
2497 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2498 {
2499         struct journal_head *jh = NULL;
2500
2501         jbd_lock_bh_journal_head(bh);
2502         if (buffer_jbd(bh)) {
2503                 jh = bh2jh(bh);
2504                 jh->b_jcount++;
2505         }
2506         jbd_unlock_bh_journal_head(bh);
2507         return jh;
2508 }
2509
2510 static void __journal_remove_journal_head(struct buffer_head *bh)
2511 {
2512         struct journal_head *jh = bh2jh(bh);
2513
2514         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2515         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2516         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2517         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2518         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2519         J_ASSERT_BH(bh, buffer_jbd(bh));
2520         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2521         BUFFER_TRACE(bh, "remove journal_head");
2522         if (jh->b_frozen_data) {
2523                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2524                 jbd2_free(jh->b_frozen_data, bh->b_size);
2525         }
2526         if (jh->b_committed_data) {
2527                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2528                 jbd2_free(jh->b_committed_data, bh->b_size);
2529         }
2530         bh->b_private = NULL;
2531         jh->b_bh = NULL;        /* debug, really */
2532         clear_buffer_jbd(bh);
2533         journal_free_journal_head(jh);
2534 }
2535
2536 /*
2537  * Drop a reference on the passed journal_head.  If it fell to zero then
2538  * release the journal_head from the buffer_head.
2539  */
2540 void jbd2_journal_put_journal_head(struct journal_head *jh)
2541 {
2542         struct buffer_head *bh = jh2bh(jh);
2543
2544         jbd_lock_bh_journal_head(bh);
2545         J_ASSERT_JH(jh, jh->b_jcount > 0);
2546         --jh->b_jcount;
2547         if (!jh->b_jcount) {
2548                 __journal_remove_journal_head(bh);
2549                 jbd_unlock_bh_journal_head(bh);
2550                 __brelse(bh);
2551         } else
2552                 jbd_unlock_bh_journal_head(bh);
2553 }
2554
2555 /*
2556  * Initialize jbd inode head
2557  */
2558 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2559 {
2560         jinode->i_transaction = NULL;
2561         jinode->i_next_transaction = NULL;
2562         jinode->i_vfs_inode = inode;
2563         jinode->i_flags = 0;
2564         INIT_LIST_HEAD(&jinode->i_list);
2565 }
2566
2567 /*
2568  * Function to be called before we start removing inode from memory (i.e.,
2569  * clear_inode() is a fine place to be called from). It removes inode from
2570  * transaction's lists.
2571  */
2572 void jbd2_journal_release_jbd_inode(journal_t *journal,
2573                                     struct jbd2_inode *jinode)
2574 {
2575         if (!journal)
2576                 return;
2577 restart:
2578         spin_lock(&journal->j_list_lock);
2579         /* Is commit writing out inode - we have to wait */
2580         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2581                 wait_queue_head_t *wq;
2582                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2583                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2584                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2585                 spin_unlock(&journal->j_list_lock);
2586                 schedule();
2587                 finish_wait(wq, &wait.wait);
2588                 goto restart;
2589         }
2590
2591         if (jinode->i_transaction) {
2592                 list_del(&jinode->i_list);
2593                 jinode->i_transaction = NULL;
2594         }
2595         spin_unlock(&journal->j_list_lock);
2596 }
2597
2598
2599 #ifdef CONFIG_PROC_FS
2600
2601 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2602
2603 static void __init jbd2_create_jbd_stats_proc_entry(void)
2604 {
2605         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2606 }
2607
2608 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2609 {
2610         if (proc_jbd2_stats)
2611                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2612 }
2613
2614 #else
2615
2616 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2617 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2618
2619 #endif
2620
2621 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2622
2623 static int __init jbd2_journal_init_handle_cache(void)
2624 {
2625         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2626         if (jbd2_handle_cache == NULL) {
2627                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2628                 return -ENOMEM;
2629         }
2630         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2631         if (jbd2_inode_cache == NULL) {
2632                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2633                 kmem_cache_destroy(jbd2_handle_cache);
2634                 return -ENOMEM;
2635         }
2636         return 0;
2637 }
2638
2639 static void jbd2_journal_destroy_handle_cache(void)
2640 {
2641         if (jbd2_handle_cache)
2642                 kmem_cache_destroy(jbd2_handle_cache);
2643         if (jbd2_inode_cache)
2644                 kmem_cache_destroy(jbd2_inode_cache);
2645
2646 }
2647
2648 /*
2649  * Module startup and shutdown
2650  */
2651
2652 static int __init journal_init_caches(void)
2653 {
2654         int ret;
2655
2656         ret = jbd2_journal_init_revoke_caches();
2657         if (ret == 0)
2658                 ret = jbd2_journal_init_journal_head_cache();
2659         if (ret == 0)
2660                 ret = jbd2_journal_init_handle_cache();
2661         if (ret == 0)
2662                 ret = jbd2_journal_init_transaction_cache();
2663         return ret;
2664 }
2665
2666 static void jbd2_journal_destroy_caches(void)
2667 {
2668         jbd2_journal_destroy_revoke_caches();
2669         jbd2_journal_destroy_journal_head_cache();
2670         jbd2_journal_destroy_handle_cache();
2671         jbd2_journal_destroy_transaction_cache();
2672         jbd2_journal_destroy_slabs();
2673 }
2674
2675 static int __init journal_init(void)
2676 {
2677         int ret;
2678
2679         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2680
2681         ret = journal_init_caches();
2682         if (ret == 0) {
2683                 jbd2_create_jbd_stats_proc_entry();
2684         } else {
2685                 jbd2_journal_destroy_caches();
2686         }
2687         return ret;
2688 }
2689
2690 static void __exit journal_exit(void)
2691 {
2692 #ifdef CONFIG_JBD2_DEBUG
2693         int n = atomic_read(&nr_journal_heads);
2694         if (n)
2695                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2696 #endif
2697         jbd2_remove_jbd_stats_proc_entry();
2698         jbd2_journal_destroy_caches();
2699 }
2700
2701 MODULE_LICENSE("GPL");
2702 module_init(journal_init);
2703 module_exit(journal_exit);
2704