]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/jbd2/transaction.c
jbd2: change jbd2_journal_invalidatepage to accept length
[karo-tx-linux.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41         J_ASSERT(!transaction_cache);
42         transaction_cache = kmem_cache_create("jbd2_transaction_s",
43                                         sizeof(transaction_t),
44                                         0,
45                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46                                         NULL);
47         if (transaction_cache)
48                 return 0;
49         return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         if (transaction_cache) {
55                 kmem_cache_destroy(transaction_cache);
56                 transaction_cache = NULL;
57         }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63                 return;
64         kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *      The journal MUST be locked.  We don't perform atomic mallocs on the
77  *      new transaction and we can't block without protecting against other
78  *      processes trying to touch the journal while it is in transition.
79  *
80  */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85         transaction->t_journal = journal;
86         transaction->t_state = T_RUNNING;
87         transaction->t_start_time = ktime_get();
88         transaction->t_tid = journal->j_transaction_sequence++;
89         transaction->t_expires = jiffies + journal->j_commit_interval;
90         spin_lock_init(&transaction->t_handle_lock);
91         atomic_set(&transaction->t_updates, 0);
92         atomic_set(&transaction->t_outstanding_credits, 0);
93         atomic_set(&transaction->t_handle_count, 0);
94         INIT_LIST_HEAD(&transaction->t_inode_list);
95         INIT_LIST_HEAD(&transaction->t_private_list);
96
97         /* Set up the commit timer for the new transaction. */
98         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
99         add_timer(&journal->j_commit_timer);
100
101         J_ASSERT(journal->j_running_transaction == NULL);
102         journal->j_running_transaction = transaction;
103         transaction->t_max_wait = 0;
104         transaction->t_start = jiffies;
105         transaction->t_requested = 0;
106
107         return transaction;
108 }
109
110 /*
111  * Handle management.
112  *
113  * A handle_t is an object which represents a single atomic update to a
114  * filesystem, and which tracks all of the modifications which form part
115  * of that one update.
116  */
117
118 /*
119  * Update transaction's maximum wait time, if debugging is enabled.
120  *
121  * In order for t_max_wait to be reliable, it must be protected by a
122  * lock.  But doing so will mean that start_this_handle() can not be
123  * run in parallel on SMP systems, which limits our scalability.  So
124  * unless debugging is enabled, we no longer update t_max_wait, which
125  * means that maximum wait time reported by the jbd2_run_stats
126  * tracepoint will always be zero.
127  */
128 static inline void update_t_max_wait(transaction_t *transaction,
129                                      unsigned long ts)
130 {
131 #ifdef CONFIG_JBD2_DEBUG
132         if (jbd2_journal_enable_debug &&
133             time_after(transaction->t_start, ts)) {
134                 ts = jbd2_time_diff(ts, transaction->t_start);
135                 spin_lock(&transaction->t_handle_lock);
136                 if (ts > transaction->t_max_wait)
137                         transaction->t_max_wait = ts;
138                 spin_unlock(&transaction->t_handle_lock);
139         }
140 #endif
141 }
142
143 /*
144  * start_this_handle: Given a handle, deal with any locking or stalling
145  * needed to make sure that there is enough journal space for the handle
146  * to begin.  Attach the handle to a transaction and set up the
147  * transaction's buffer credits.
148  */
149
150 static int start_this_handle(journal_t *journal, handle_t *handle,
151                              gfp_t gfp_mask)
152 {
153         transaction_t   *transaction, *new_transaction = NULL;
154         tid_t           tid;
155         int             needed, need_to_start;
156         int             nblocks = handle->h_buffer_credits;
157         unsigned long ts = jiffies;
158
159         if (nblocks > journal->j_max_transaction_buffers) {
160                 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
161                        current->comm, nblocks,
162                        journal->j_max_transaction_buffers);
163                 return -ENOSPC;
164         }
165
166 alloc_transaction:
167         if (!journal->j_running_transaction) {
168                 new_transaction = kmem_cache_zalloc(transaction_cache,
169                                                     gfp_mask);
170                 if (!new_transaction) {
171                         /*
172                          * If __GFP_FS is not present, then we may be
173                          * being called from inside the fs writeback
174                          * layer, so we MUST NOT fail.  Since
175                          * __GFP_NOFAIL is going away, we will arrange
176                          * to retry the allocation ourselves.
177                          */
178                         if ((gfp_mask & __GFP_FS) == 0) {
179                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
180                                 goto alloc_transaction;
181                         }
182                         return -ENOMEM;
183                 }
184         }
185
186         jbd_debug(3, "New handle %p going live.\n", handle);
187
188         /*
189          * We need to hold j_state_lock until t_updates has been incremented,
190          * for proper journal barrier handling
191          */
192 repeat:
193         read_lock(&journal->j_state_lock);
194         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
195         if (is_journal_aborted(journal) ||
196             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
197                 read_unlock(&journal->j_state_lock);
198                 jbd2_journal_free_transaction(new_transaction);
199                 return -EROFS;
200         }
201
202         /* Wait on the journal's transaction barrier if necessary */
203         if (journal->j_barrier_count) {
204                 read_unlock(&journal->j_state_lock);
205                 wait_event(journal->j_wait_transaction_locked,
206                                 journal->j_barrier_count == 0);
207                 goto repeat;
208         }
209
210         if (!journal->j_running_transaction) {
211                 read_unlock(&journal->j_state_lock);
212                 if (!new_transaction)
213                         goto alloc_transaction;
214                 write_lock(&journal->j_state_lock);
215                 if (!journal->j_running_transaction &&
216                     !journal->j_barrier_count) {
217                         jbd2_get_transaction(journal, new_transaction);
218                         new_transaction = NULL;
219                 }
220                 write_unlock(&journal->j_state_lock);
221                 goto repeat;
222         }
223
224         transaction = journal->j_running_transaction;
225
226         /*
227          * If the current transaction is locked down for commit, wait for the
228          * lock to be released.
229          */
230         if (transaction->t_state == T_LOCKED) {
231                 DEFINE_WAIT(wait);
232
233                 prepare_to_wait(&journal->j_wait_transaction_locked,
234                                         &wait, TASK_UNINTERRUPTIBLE);
235                 read_unlock(&journal->j_state_lock);
236                 schedule();
237                 finish_wait(&journal->j_wait_transaction_locked, &wait);
238                 goto repeat;
239         }
240
241         /*
242          * If there is not enough space left in the log to write all potential
243          * buffers requested by this operation, we need to stall pending a log
244          * checkpoint to free some more log space.
245          */
246         needed = atomic_add_return(nblocks,
247                                    &transaction->t_outstanding_credits);
248
249         if (needed > journal->j_max_transaction_buffers) {
250                 /*
251                  * If the current transaction is already too large, then start
252                  * to commit it: we can then go back and attach this handle to
253                  * a new transaction.
254                  */
255                 DEFINE_WAIT(wait);
256
257                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
258                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
259                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
260                                 TASK_UNINTERRUPTIBLE);
261                 tid = transaction->t_tid;
262                 need_to_start = !tid_geq(journal->j_commit_request, tid);
263                 read_unlock(&journal->j_state_lock);
264                 if (need_to_start)
265                         jbd2_log_start_commit(journal, tid);
266                 schedule();
267                 finish_wait(&journal->j_wait_transaction_locked, &wait);
268                 goto repeat;
269         }
270
271         /*
272          * The commit code assumes that it can get enough log space
273          * without forcing a checkpoint.  This is *critical* for
274          * correctness: a checkpoint of a buffer which is also
275          * associated with a committing transaction creates a deadlock,
276          * so commit simply cannot force through checkpoints.
277          *
278          * We must therefore ensure the necessary space in the journal
279          * *before* starting to dirty potentially checkpointed buffers
280          * in the new transaction.
281          *
282          * The worst part is, any transaction currently committing can
283          * reduce the free space arbitrarily.  Be careful to account for
284          * those buffers when checkpointing.
285          */
286
287         /*
288          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
289          * a _lot_ of headroom: 1/4 of the journal plus the size of
290          * the committing transaction.  Really, we only need to give it
291          * committing_transaction->t_outstanding_credits plus "enough" for
292          * the log control blocks.
293          * Also, this test is inconsistent with the matching one in
294          * jbd2_journal_extend().
295          */
296         if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
297                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
298                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
299                 read_unlock(&journal->j_state_lock);
300                 write_lock(&journal->j_state_lock);
301                 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
302                         __jbd2_log_wait_for_space(journal);
303                 write_unlock(&journal->j_state_lock);
304                 goto repeat;
305         }
306
307         /* OK, account for the buffers that this operation expects to
308          * use and add the handle to the running transaction. 
309          */
310         update_t_max_wait(transaction, ts);
311         handle->h_transaction = transaction;
312         handle->h_requested_credits = nblocks;
313         handle->h_start_jiffies = jiffies;
314         atomic_inc(&transaction->t_updates);
315         atomic_inc(&transaction->t_handle_count);
316         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
317                   handle, nblocks,
318                   atomic_read(&transaction->t_outstanding_credits),
319                   __jbd2_log_space_left(journal));
320         read_unlock(&journal->j_state_lock);
321
322         lock_map_acquire(&handle->h_lockdep_map);
323         jbd2_journal_free_transaction(new_transaction);
324         return 0;
325 }
326
327 static struct lock_class_key jbd2_handle_key;
328
329 /* Allocate a new handle.  This should probably be in a slab... */
330 static handle_t *new_handle(int nblocks)
331 {
332         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
333         if (!handle)
334                 return NULL;
335         handle->h_buffer_credits = nblocks;
336         handle->h_ref = 1;
337
338         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
339                                                 &jbd2_handle_key, 0);
340
341         return handle;
342 }
343
344 /**
345  * handle_t *jbd2_journal_start() - Obtain a new handle.
346  * @journal: Journal to start transaction on.
347  * @nblocks: number of block buffer we might modify
348  *
349  * We make sure that the transaction can guarantee at least nblocks of
350  * modified buffers in the log.  We block until the log can guarantee
351  * that much space.
352  *
353  * This function is visible to journal users (like ext3fs), so is not
354  * called with the journal already locked.
355  *
356  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
357  * on failure.
358  */
359 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask,
360                               unsigned int type, unsigned int line_no)
361 {
362         handle_t *handle = journal_current_handle();
363         int err;
364
365         if (!journal)
366                 return ERR_PTR(-EROFS);
367
368         if (handle) {
369                 J_ASSERT(handle->h_transaction->t_journal == journal);
370                 handle->h_ref++;
371                 return handle;
372         }
373
374         handle = new_handle(nblocks);
375         if (!handle)
376                 return ERR_PTR(-ENOMEM);
377
378         current->journal_info = handle;
379
380         err = start_this_handle(journal, handle, gfp_mask);
381         if (err < 0) {
382                 jbd2_free_handle(handle);
383                 current->journal_info = NULL;
384                 return ERR_PTR(err);
385         }
386         handle->h_type = type;
387         handle->h_line_no = line_no;
388         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
389                                 handle->h_transaction->t_tid, type,
390                                 line_no, nblocks);
391         return handle;
392 }
393 EXPORT_SYMBOL(jbd2__journal_start);
394
395
396 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
397 {
398         return jbd2__journal_start(journal, nblocks, GFP_NOFS, 0, 0);
399 }
400 EXPORT_SYMBOL(jbd2_journal_start);
401
402
403 /**
404  * int jbd2_journal_extend() - extend buffer credits.
405  * @handle:  handle to 'extend'
406  * @nblocks: nr blocks to try to extend by.
407  *
408  * Some transactions, such as large extends and truncates, can be done
409  * atomically all at once or in several stages.  The operation requests
410  * a credit for a number of buffer modications in advance, but can
411  * extend its credit if it needs more.
412  *
413  * jbd2_journal_extend tries to give the running handle more buffer credits.
414  * It does not guarantee that allocation - this is a best-effort only.
415  * The calling process MUST be able to deal cleanly with a failure to
416  * extend here.
417  *
418  * Return 0 on success, non-zero on failure.
419  *
420  * return code < 0 implies an error
421  * return code > 0 implies normal transaction-full status.
422  */
423 int jbd2_journal_extend(handle_t *handle, int nblocks)
424 {
425         transaction_t *transaction = handle->h_transaction;
426         journal_t *journal = transaction->t_journal;
427         int result;
428         int wanted;
429
430         result = -EIO;
431         if (is_handle_aborted(handle))
432                 goto out;
433
434         result = 1;
435
436         read_lock(&journal->j_state_lock);
437
438         /* Don't extend a locked-down transaction! */
439         if (handle->h_transaction->t_state != T_RUNNING) {
440                 jbd_debug(3, "denied handle %p %d blocks: "
441                           "transaction not running\n", handle, nblocks);
442                 goto error_out;
443         }
444
445         spin_lock(&transaction->t_handle_lock);
446         wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
447
448         if (wanted > journal->j_max_transaction_buffers) {
449                 jbd_debug(3, "denied handle %p %d blocks: "
450                           "transaction too large\n", handle, nblocks);
451                 goto unlock;
452         }
453
454         if (wanted > __jbd2_log_space_left(journal)) {
455                 jbd_debug(3, "denied handle %p %d blocks: "
456                           "insufficient log space\n", handle, nblocks);
457                 goto unlock;
458         }
459
460         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
461                                  handle->h_transaction->t_tid,
462                                  handle->h_type, handle->h_line_no,
463                                  handle->h_buffer_credits,
464                                  nblocks);
465
466         handle->h_buffer_credits += nblocks;
467         handle->h_requested_credits += nblocks;
468         atomic_add(nblocks, &transaction->t_outstanding_credits);
469         result = 0;
470
471         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
472 unlock:
473         spin_unlock(&transaction->t_handle_lock);
474 error_out:
475         read_unlock(&journal->j_state_lock);
476 out:
477         return result;
478 }
479
480
481 /**
482  * int jbd2_journal_restart() - restart a handle .
483  * @handle:  handle to restart
484  * @nblocks: nr credits requested
485  *
486  * Restart a handle for a multi-transaction filesystem
487  * operation.
488  *
489  * If the jbd2_journal_extend() call above fails to grant new buffer credits
490  * to a running handle, a call to jbd2_journal_restart will commit the
491  * handle's transaction so far and reattach the handle to a new
492  * transaction capabable of guaranteeing the requested number of
493  * credits.
494  */
495 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
496 {
497         transaction_t *transaction = handle->h_transaction;
498         journal_t *journal = transaction->t_journal;
499         tid_t           tid;
500         int             need_to_start, ret;
501
502         /* If we've had an abort of any type, don't even think about
503          * actually doing the restart! */
504         if (is_handle_aborted(handle))
505                 return 0;
506
507         /*
508          * First unlink the handle from its current transaction, and start the
509          * commit on that.
510          */
511         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
512         J_ASSERT(journal_current_handle() == handle);
513
514         read_lock(&journal->j_state_lock);
515         spin_lock(&transaction->t_handle_lock);
516         atomic_sub(handle->h_buffer_credits,
517                    &transaction->t_outstanding_credits);
518         if (atomic_dec_and_test(&transaction->t_updates))
519                 wake_up(&journal->j_wait_updates);
520         spin_unlock(&transaction->t_handle_lock);
521
522         jbd_debug(2, "restarting handle %p\n", handle);
523         tid = transaction->t_tid;
524         need_to_start = !tid_geq(journal->j_commit_request, tid);
525         read_unlock(&journal->j_state_lock);
526         if (need_to_start)
527                 jbd2_log_start_commit(journal, tid);
528
529         lock_map_release(&handle->h_lockdep_map);
530         handle->h_buffer_credits = nblocks;
531         ret = start_this_handle(journal, handle, gfp_mask);
532         return ret;
533 }
534 EXPORT_SYMBOL(jbd2__journal_restart);
535
536
537 int jbd2_journal_restart(handle_t *handle, int nblocks)
538 {
539         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
540 }
541 EXPORT_SYMBOL(jbd2_journal_restart);
542
543 /**
544  * void jbd2_journal_lock_updates () - establish a transaction barrier.
545  * @journal:  Journal to establish a barrier on.
546  *
547  * This locks out any further updates from being started, and blocks
548  * until all existing updates have completed, returning only once the
549  * journal is in a quiescent state with no updates running.
550  *
551  * The journal lock should not be held on entry.
552  */
553 void jbd2_journal_lock_updates(journal_t *journal)
554 {
555         DEFINE_WAIT(wait);
556
557         write_lock(&journal->j_state_lock);
558         ++journal->j_barrier_count;
559
560         /* Wait until there are no running updates */
561         while (1) {
562                 transaction_t *transaction = journal->j_running_transaction;
563
564                 if (!transaction)
565                         break;
566
567                 spin_lock(&transaction->t_handle_lock);
568                 prepare_to_wait(&journal->j_wait_updates, &wait,
569                                 TASK_UNINTERRUPTIBLE);
570                 if (!atomic_read(&transaction->t_updates)) {
571                         spin_unlock(&transaction->t_handle_lock);
572                         finish_wait(&journal->j_wait_updates, &wait);
573                         break;
574                 }
575                 spin_unlock(&transaction->t_handle_lock);
576                 write_unlock(&journal->j_state_lock);
577                 schedule();
578                 finish_wait(&journal->j_wait_updates, &wait);
579                 write_lock(&journal->j_state_lock);
580         }
581         write_unlock(&journal->j_state_lock);
582
583         /*
584          * We have now established a barrier against other normal updates, but
585          * we also need to barrier against other jbd2_journal_lock_updates() calls
586          * to make sure that we serialise special journal-locked operations
587          * too.
588          */
589         mutex_lock(&journal->j_barrier);
590 }
591
592 /**
593  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
594  * @journal:  Journal to release the barrier on.
595  *
596  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
597  *
598  * Should be called without the journal lock held.
599  */
600 void jbd2_journal_unlock_updates (journal_t *journal)
601 {
602         J_ASSERT(journal->j_barrier_count != 0);
603
604         mutex_unlock(&journal->j_barrier);
605         write_lock(&journal->j_state_lock);
606         --journal->j_barrier_count;
607         write_unlock(&journal->j_state_lock);
608         wake_up(&journal->j_wait_transaction_locked);
609 }
610
611 static void warn_dirty_buffer(struct buffer_head *bh)
612 {
613         char b[BDEVNAME_SIZE];
614
615         printk(KERN_WARNING
616                "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
617                "There's a risk of filesystem corruption in case of system "
618                "crash.\n",
619                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
620 }
621
622 /*
623  * If the buffer is already part of the current transaction, then there
624  * is nothing we need to do.  If it is already part of a prior
625  * transaction which we are still committing to disk, then we need to
626  * make sure that we do not overwrite the old copy: we do copy-out to
627  * preserve the copy going to disk.  We also account the buffer against
628  * the handle's metadata buffer credits (unless the buffer is already
629  * part of the transaction, that is).
630  *
631  */
632 static int
633 do_get_write_access(handle_t *handle, struct journal_head *jh,
634                         int force_copy)
635 {
636         struct buffer_head *bh;
637         transaction_t *transaction;
638         journal_t *journal;
639         int error;
640         char *frozen_buffer = NULL;
641         int need_copy = 0;
642         unsigned long start_lock, time_lock;
643
644         if (is_handle_aborted(handle))
645                 return -EROFS;
646
647         transaction = handle->h_transaction;
648         journal = transaction->t_journal;
649
650         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
651
652         JBUFFER_TRACE(jh, "entry");
653 repeat:
654         bh = jh2bh(jh);
655
656         /* @@@ Need to check for errors here at some point. */
657
658         start_lock = jiffies;
659         lock_buffer(bh);
660         jbd_lock_bh_state(bh);
661
662         /* If it takes too long to lock the buffer, trace it */
663         time_lock = jbd2_time_diff(start_lock, jiffies);
664         if (time_lock > HZ/10)
665                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
666                         jiffies_to_msecs(time_lock));
667
668         /* We now hold the buffer lock so it is safe to query the buffer
669          * state.  Is the buffer dirty?
670          *
671          * If so, there are two possibilities.  The buffer may be
672          * non-journaled, and undergoing a quite legitimate writeback.
673          * Otherwise, it is journaled, and we don't expect dirty buffers
674          * in that state (the buffers should be marked JBD_Dirty
675          * instead.)  So either the IO is being done under our own
676          * control and this is a bug, or it's a third party IO such as
677          * dump(8) (which may leave the buffer scheduled for read ---
678          * ie. locked but not dirty) or tune2fs (which may actually have
679          * the buffer dirtied, ugh.)  */
680
681         if (buffer_dirty(bh)) {
682                 /*
683                  * First question: is this buffer already part of the current
684                  * transaction or the existing committing transaction?
685                  */
686                 if (jh->b_transaction) {
687                         J_ASSERT_JH(jh,
688                                 jh->b_transaction == transaction ||
689                                 jh->b_transaction ==
690                                         journal->j_committing_transaction);
691                         if (jh->b_next_transaction)
692                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
693                                                         transaction);
694                         warn_dirty_buffer(bh);
695                 }
696                 /*
697                  * In any case we need to clean the dirty flag and we must
698                  * do it under the buffer lock to be sure we don't race
699                  * with running write-out.
700                  */
701                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
702                 clear_buffer_dirty(bh);
703                 set_buffer_jbddirty(bh);
704         }
705
706         unlock_buffer(bh);
707
708         error = -EROFS;
709         if (is_handle_aborted(handle)) {
710                 jbd_unlock_bh_state(bh);
711                 goto out;
712         }
713         error = 0;
714
715         /*
716          * The buffer is already part of this transaction if b_transaction or
717          * b_next_transaction points to it
718          */
719         if (jh->b_transaction == transaction ||
720             jh->b_next_transaction == transaction)
721                 goto done;
722
723         /*
724          * this is the first time this transaction is touching this buffer,
725          * reset the modified flag
726          */
727        jh->b_modified = 0;
728
729         /*
730          * If there is already a copy-out version of this buffer, then we don't
731          * need to make another one
732          */
733         if (jh->b_frozen_data) {
734                 JBUFFER_TRACE(jh, "has frozen data");
735                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
736                 jh->b_next_transaction = transaction;
737                 goto done;
738         }
739
740         /* Is there data here we need to preserve? */
741
742         if (jh->b_transaction && jh->b_transaction != transaction) {
743                 JBUFFER_TRACE(jh, "owned by older transaction");
744                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
745                 J_ASSERT_JH(jh, jh->b_transaction ==
746                                         journal->j_committing_transaction);
747
748                 /* There is one case we have to be very careful about.
749                  * If the committing transaction is currently writing
750                  * this buffer out to disk and has NOT made a copy-out,
751                  * then we cannot modify the buffer contents at all
752                  * right now.  The essence of copy-out is that it is the
753                  * extra copy, not the primary copy, which gets
754                  * journaled.  If the primary copy is already going to
755                  * disk then we cannot do copy-out here. */
756
757                 if (jh->b_jlist == BJ_Shadow) {
758                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
759                         wait_queue_head_t *wqh;
760
761                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
762
763                         JBUFFER_TRACE(jh, "on shadow: sleep");
764                         jbd_unlock_bh_state(bh);
765                         /* commit wakes up all shadow buffers after IO */
766                         for ( ; ; ) {
767                                 prepare_to_wait(wqh, &wait.wait,
768                                                 TASK_UNINTERRUPTIBLE);
769                                 if (jh->b_jlist != BJ_Shadow)
770                                         break;
771                                 schedule();
772                         }
773                         finish_wait(wqh, &wait.wait);
774                         goto repeat;
775                 }
776
777                 /* Only do the copy if the currently-owning transaction
778                  * still needs it.  If it is on the Forget list, the
779                  * committing transaction is past that stage.  The
780                  * buffer had better remain locked during the kmalloc,
781                  * but that should be true --- we hold the journal lock
782                  * still and the buffer is already on the BUF_JOURNAL
783                  * list so won't be flushed.
784                  *
785                  * Subtle point, though: if this is a get_undo_access,
786                  * then we will be relying on the frozen_data to contain
787                  * the new value of the committed_data record after the
788                  * transaction, so we HAVE to force the frozen_data copy
789                  * in that case. */
790
791                 if (jh->b_jlist != BJ_Forget || force_copy) {
792                         JBUFFER_TRACE(jh, "generate frozen data");
793                         if (!frozen_buffer) {
794                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
795                                 jbd_unlock_bh_state(bh);
796                                 frozen_buffer =
797                                         jbd2_alloc(jh2bh(jh)->b_size,
798                                                          GFP_NOFS);
799                                 if (!frozen_buffer) {
800                                         printk(KERN_EMERG
801                                                "%s: OOM for frozen_buffer\n",
802                                                __func__);
803                                         JBUFFER_TRACE(jh, "oom!");
804                                         error = -ENOMEM;
805                                         jbd_lock_bh_state(bh);
806                                         goto done;
807                                 }
808                                 goto repeat;
809                         }
810                         jh->b_frozen_data = frozen_buffer;
811                         frozen_buffer = NULL;
812                         need_copy = 1;
813                 }
814                 jh->b_next_transaction = transaction;
815         }
816
817
818         /*
819          * Finally, if the buffer is not journaled right now, we need to make
820          * sure it doesn't get written to disk before the caller actually
821          * commits the new data
822          */
823         if (!jh->b_transaction) {
824                 JBUFFER_TRACE(jh, "no transaction");
825                 J_ASSERT_JH(jh, !jh->b_next_transaction);
826                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
827                 spin_lock(&journal->j_list_lock);
828                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
829                 spin_unlock(&journal->j_list_lock);
830         }
831
832 done:
833         if (need_copy) {
834                 struct page *page;
835                 int offset;
836                 char *source;
837
838                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
839                             "Possible IO failure.\n");
840                 page = jh2bh(jh)->b_page;
841                 offset = offset_in_page(jh2bh(jh)->b_data);
842                 source = kmap_atomic(page);
843                 /* Fire data frozen trigger just before we copy the data */
844                 jbd2_buffer_frozen_trigger(jh, source + offset,
845                                            jh->b_triggers);
846                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
847                 kunmap_atomic(source);
848
849                 /*
850                  * Now that the frozen data is saved off, we need to store
851                  * any matching triggers.
852                  */
853                 jh->b_frozen_triggers = jh->b_triggers;
854         }
855         jbd_unlock_bh_state(bh);
856
857         /*
858          * If we are about to journal a buffer, then any revoke pending on it is
859          * no longer valid
860          */
861         jbd2_journal_cancel_revoke(handle, jh);
862
863 out:
864         if (unlikely(frozen_buffer))    /* It's usually NULL */
865                 jbd2_free(frozen_buffer, bh->b_size);
866
867         JBUFFER_TRACE(jh, "exit");
868         return error;
869 }
870
871 /**
872  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
873  * @handle: transaction to add buffer modifications to
874  * @bh:     bh to be used for metadata writes
875  *
876  * Returns an error code or 0 on success.
877  *
878  * In full data journalling mode the buffer may be of type BJ_AsyncData,
879  * because we're write()ing a buffer which is also part of a shared mapping.
880  */
881
882 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
883 {
884         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
885         int rc;
886
887         /* We do not want to get caught playing with fields which the
888          * log thread also manipulates.  Make sure that the buffer
889          * completes any outstanding IO before proceeding. */
890         rc = do_get_write_access(handle, jh, 0);
891         jbd2_journal_put_journal_head(jh);
892         return rc;
893 }
894
895
896 /*
897  * When the user wants to journal a newly created buffer_head
898  * (ie. getblk() returned a new buffer and we are going to populate it
899  * manually rather than reading off disk), then we need to keep the
900  * buffer_head locked until it has been completely filled with new
901  * data.  In this case, we should be able to make the assertion that
902  * the bh is not already part of an existing transaction.
903  *
904  * The buffer should already be locked by the caller by this point.
905  * There is no lock ranking violation: it was a newly created,
906  * unlocked buffer beforehand. */
907
908 /**
909  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
910  * @handle: transaction to new buffer to
911  * @bh: new buffer.
912  *
913  * Call this if you create a new bh.
914  */
915 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
916 {
917         transaction_t *transaction = handle->h_transaction;
918         journal_t *journal = transaction->t_journal;
919         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
920         int err;
921
922         jbd_debug(5, "journal_head %p\n", jh);
923         err = -EROFS;
924         if (is_handle_aborted(handle))
925                 goto out;
926         err = 0;
927
928         JBUFFER_TRACE(jh, "entry");
929         /*
930          * The buffer may already belong to this transaction due to pre-zeroing
931          * in the filesystem's new_block code.  It may also be on the previous,
932          * committing transaction's lists, but it HAS to be in Forget state in
933          * that case: the transaction must have deleted the buffer for it to be
934          * reused here.
935          */
936         jbd_lock_bh_state(bh);
937         spin_lock(&journal->j_list_lock);
938         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
939                 jh->b_transaction == NULL ||
940                 (jh->b_transaction == journal->j_committing_transaction &&
941                           jh->b_jlist == BJ_Forget)));
942
943         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
944         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
945
946         if (jh->b_transaction == NULL) {
947                 /*
948                  * Previous jbd2_journal_forget() could have left the buffer
949                  * with jbddirty bit set because it was being committed. When
950                  * the commit finished, we've filed the buffer for
951                  * checkpointing and marked it dirty. Now we are reallocating
952                  * the buffer so the transaction freeing it must have
953                  * committed and so it's safe to clear the dirty bit.
954                  */
955                 clear_buffer_dirty(jh2bh(jh));
956                 /* first access by this transaction */
957                 jh->b_modified = 0;
958
959                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
960                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
961         } else if (jh->b_transaction == journal->j_committing_transaction) {
962                 /* first access by this transaction */
963                 jh->b_modified = 0;
964
965                 JBUFFER_TRACE(jh, "set next transaction");
966                 jh->b_next_transaction = transaction;
967         }
968         spin_unlock(&journal->j_list_lock);
969         jbd_unlock_bh_state(bh);
970
971         /*
972          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
973          * blocks which contain freed but then revoked metadata.  We need
974          * to cancel the revoke in case we end up freeing it yet again
975          * and the reallocating as data - this would cause a second revoke,
976          * which hits an assertion error.
977          */
978         JBUFFER_TRACE(jh, "cancelling revoke");
979         jbd2_journal_cancel_revoke(handle, jh);
980 out:
981         jbd2_journal_put_journal_head(jh);
982         return err;
983 }
984
985 /**
986  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
987  *     non-rewindable consequences
988  * @handle: transaction
989  * @bh: buffer to undo
990  *
991  * Sometimes there is a need to distinguish between metadata which has
992  * been committed to disk and that which has not.  The ext3fs code uses
993  * this for freeing and allocating space, we have to make sure that we
994  * do not reuse freed space until the deallocation has been committed,
995  * since if we overwrote that space we would make the delete
996  * un-rewindable in case of a crash.
997  *
998  * To deal with that, jbd2_journal_get_undo_access requests write access to a
999  * buffer for parts of non-rewindable operations such as delete
1000  * operations on the bitmaps.  The journaling code must keep a copy of
1001  * the buffer's contents prior to the undo_access call until such time
1002  * as we know that the buffer has definitely been committed to disk.
1003  *
1004  * We never need to know which transaction the committed data is part
1005  * of, buffers touched here are guaranteed to be dirtied later and so
1006  * will be committed to a new transaction in due course, at which point
1007  * we can discard the old committed data pointer.
1008  *
1009  * Returns error number or 0 on success.
1010  */
1011 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1012 {
1013         int err;
1014         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1015         char *committed_data = NULL;
1016
1017         JBUFFER_TRACE(jh, "entry");
1018
1019         /*
1020          * Do this first --- it can drop the journal lock, so we want to
1021          * make sure that obtaining the committed_data is done
1022          * atomically wrt. completion of any outstanding commits.
1023          */
1024         err = do_get_write_access(handle, jh, 1);
1025         if (err)
1026                 goto out;
1027
1028 repeat:
1029         if (!jh->b_committed_data) {
1030                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1031                 if (!committed_data) {
1032                         printk(KERN_EMERG "%s: No memory for committed data\n",
1033                                 __func__);
1034                         err = -ENOMEM;
1035                         goto out;
1036                 }
1037         }
1038
1039         jbd_lock_bh_state(bh);
1040         if (!jh->b_committed_data) {
1041                 /* Copy out the current buffer contents into the
1042                  * preserved, committed copy. */
1043                 JBUFFER_TRACE(jh, "generate b_committed data");
1044                 if (!committed_data) {
1045                         jbd_unlock_bh_state(bh);
1046                         goto repeat;
1047                 }
1048
1049                 jh->b_committed_data = committed_data;
1050                 committed_data = NULL;
1051                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1052         }
1053         jbd_unlock_bh_state(bh);
1054 out:
1055         jbd2_journal_put_journal_head(jh);
1056         if (unlikely(committed_data))
1057                 jbd2_free(committed_data, bh->b_size);
1058         return err;
1059 }
1060
1061 /**
1062  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1063  * @bh: buffer to trigger on
1064  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1065  *
1066  * Set any triggers on this journal_head.  This is always safe, because
1067  * triggers for a committing buffer will be saved off, and triggers for
1068  * a running transaction will match the buffer in that transaction.
1069  *
1070  * Call with NULL to clear the triggers.
1071  */
1072 void jbd2_journal_set_triggers(struct buffer_head *bh,
1073                                struct jbd2_buffer_trigger_type *type)
1074 {
1075         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1076
1077         if (WARN_ON(!jh))
1078                 return;
1079         jh->b_triggers = type;
1080         jbd2_journal_put_journal_head(jh);
1081 }
1082
1083 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1084                                 struct jbd2_buffer_trigger_type *triggers)
1085 {
1086         struct buffer_head *bh = jh2bh(jh);
1087
1088         if (!triggers || !triggers->t_frozen)
1089                 return;
1090
1091         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1092 }
1093
1094 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1095                                struct jbd2_buffer_trigger_type *triggers)
1096 {
1097         if (!triggers || !triggers->t_abort)
1098                 return;
1099
1100         triggers->t_abort(triggers, jh2bh(jh));
1101 }
1102
1103
1104
1105 /**
1106  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1107  * @handle: transaction to add buffer to.
1108  * @bh: buffer to mark
1109  *
1110  * mark dirty metadata which needs to be journaled as part of the current
1111  * transaction.
1112  *
1113  * The buffer must have previously had jbd2_journal_get_write_access()
1114  * called so that it has a valid journal_head attached to the buffer
1115  * head.
1116  *
1117  * The buffer is placed on the transaction's metadata list and is marked
1118  * as belonging to the transaction.
1119  *
1120  * Returns error number or 0 on success.
1121  *
1122  * Special care needs to be taken if the buffer already belongs to the
1123  * current committing transaction (in which case we should have frozen
1124  * data present for that commit).  In that case, we don't relink the
1125  * buffer: that only gets done when the old transaction finally
1126  * completes its commit.
1127  */
1128 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1129 {
1130         transaction_t *transaction = handle->h_transaction;
1131         journal_t *journal = transaction->t_journal;
1132         struct journal_head *jh;
1133         int ret = 0;
1134
1135         if (is_handle_aborted(handle))
1136                 goto out;
1137         jh = jbd2_journal_grab_journal_head(bh);
1138         if (!jh) {
1139                 ret = -EUCLEAN;
1140                 goto out;
1141         }
1142         jbd_debug(5, "journal_head %p\n", jh);
1143         JBUFFER_TRACE(jh, "entry");
1144
1145         jbd_lock_bh_state(bh);
1146
1147         if (jh->b_modified == 0) {
1148                 /*
1149                  * This buffer's got modified and becoming part
1150                  * of the transaction. This needs to be done
1151                  * once a transaction -bzzz
1152                  */
1153                 jh->b_modified = 1;
1154                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1155                 handle->h_buffer_credits--;
1156         }
1157
1158         /*
1159          * fastpath, to avoid expensive locking.  If this buffer is already
1160          * on the running transaction's metadata list there is nothing to do.
1161          * Nobody can take it off again because there is a handle open.
1162          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1163          * result in this test being false, so we go in and take the locks.
1164          */
1165         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1166                 JBUFFER_TRACE(jh, "fastpath");
1167                 if (unlikely(jh->b_transaction !=
1168                              journal->j_running_transaction)) {
1169                         printk(KERN_EMERG "JBD: %s: "
1170                                "jh->b_transaction (%llu, %p, %u) != "
1171                                "journal->j_running_transaction (%p, %u)",
1172                                journal->j_devname,
1173                                (unsigned long long) bh->b_blocknr,
1174                                jh->b_transaction,
1175                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1176                                journal->j_running_transaction,
1177                                journal->j_running_transaction ?
1178                                journal->j_running_transaction->t_tid : 0);
1179                         ret = -EINVAL;
1180                 }
1181                 goto out_unlock_bh;
1182         }
1183
1184         set_buffer_jbddirty(bh);
1185
1186         /*
1187          * Metadata already on the current transaction list doesn't
1188          * need to be filed.  Metadata on another transaction's list must
1189          * be committing, and will be refiled once the commit completes:
1190          * leave it alone for now.
1191          */
1192         if (jh->b_transaction != transaction) {
1193                 JBUFFER_TRACE(jh, "already on other transaction");
1194                 if (unlikely(jh->b_transaction !=
1195                              journal->j_committing_transaction)) {
1196                         printk(KERN_EMERG "JBD: %s: "
1197                                "jh->b_transaction (%llu, %p, %u) != "
1198                                "journal->j_committing_transaction (%p, %u)",
1199                                journal->j_devname,
1200                                (unsigned long long) bh->b_blocknr,
1201                                jh->b_transaction,
1202                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1203                                journal->j_committing_transaction,
1204                                journal->j_committing_transaction ?
1205                                journal->j_committing_transaction->t_tid : 0);
1206                         ret = -EINVAL;
1207                 }
1208                 if (unlikely(jh->b_next_transaction != transaction)) {
1209                         printk(KERN_EMERG "JBD: %s: "
1210                                "jh->b_next_transaction (%llu, %p, %u) != "
1211                                "transaction (%p, %u)",
1212                                journal->j_devname,
1213                                (unsigned long long) bh->b_blocknr,
1214                                jh->b_next_transaction,
1215                                jh->b_next_transaction ?
1216                                jh->b_next_transaction->t_tid : 0,
1217                                transaction, transaction->t_tid);
1218                         ret = -EINVAL;
1219                 }
1220                 /* And this case is illegal: we can't reuse another
1221                  * transaction's data buffer, ever. */
1222                 goto out_unlock_bh;
1223         }
1224
1225         /* That test should have eliminated the following case: */
1226         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1227
1228         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1229         spin_lock(&journal->j_list_lock);
1230         __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1231         spin_unlock(&journal->j_list_lock);
1232 out_unlock_bh:
1233         jbd_unlock_bh_state(bh);
1234         jbd2_journal_put_journal_head(jh);
1235 out:
1236         JBUFFER_TRACE(jh, "exit");
1237         WARN_ON(ret);   /* All errors are bugs, so dump the stack */
1238         return ret;
1239 }
1240
1241 /**
1242  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1243  * @handle: transaction handle
1244  * @bh:     bh to 'forget'
1245  *
1246  * We can only do the bforget if there are no commits pending against the
1247  * buffer.  If the buffer is dirty in the current running transaction we
1248  * can safely unlink it.
1249  *
1250  * bh may not be a journalled buffer at all - it may be a non-JBD
1251  * buffer which came off the hashtable.  Check for this.
1252  *
1253  * Decrements bh->b_count by one.
1254  *
1255  * Allow this call even if the handle has aborted --- it may be part of
1256  * the caller's cleanup after an abort.
1257  */
1258 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1259 {
1260         transaction_t *transaction = handle->h_transaction;
1261         journal_t *journal = transaction->t_journal;
1262         struct journal_head *jh;
1263         int drop_reserve = 0;
1264         int err = 0;
1265         int was_modified = 0;
1266
1267         BUFFER_TRACE(bh, "entry");
1268
1269         jbd_lock_bh_state(bh);
1270         spin_lock(&journal->j_list_lock);
1271
1272         if (!buffer_jbd(bh))
1273                 goto not_jbd;
1274         jh = bh2jh(bh);
1275
1276         /* Critical error: attempting to delete a bitmap buffer, maybe?
1277          * Don't do any jbd operations, and return an error. */
1278         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1279                          "inconsistent data on disk")) {
1280                 err = -EIO;
1281                 goto not_jbd;
1282         }
1283
1284         /* keep track of whether or not this transaction modified us */
1285         was_modified = jh->b_modified;
1286
1287         /*
1288          * The buffer's going from the transaction, we must drop
1289          * all references -bzzz
1290          */
1291         jh->b_modified = 0;
1292
1293         if (jh->b_transaction == handle->h_transaction) {
1294                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1295
1296                 /* If we are forgetting a buffer which is already part
1297                  * of this transaction, then we can just drop it from
1298                  * the transaction immediately. */
1299                 clear_buffer_dirty(bh);
1300                 clear_buffer_jbddirty(bh);
1301
1302                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1303
1304                 /*
1305                  * we only want to drop a reference if this transaction
1306                  * modified the buffer
1307                  */
1308                 if (was_modified)
1309                         drop_reserve = 1;
1310
1311                 /*
1312                  * We are no longer going to journal this buffer.
1313                  * However, the commit of this transaction is still
1314                  * important to the buffer: the delete that we are now
1315                  * processing might obsolete an old log entry, so by
1316                  * committing, we can satisfy the buffer's checkpoint.
1317                  *
1318                  * So, if we have a checkpoint on the buffer, we should
1319                  * now refile the buffer on our BJ_Forget list so that
1320                  * we know to remove the checkpoint after we commit.
1321                  */
1322
1323                 if (jh->b_cp_transaction) {
1324                         __jbd2_journal_temp_unlink_buffer(jh);
1325                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1326                 } else {
1327                         __jbd2_journal_unfile_buffer(jh);
1328                         if (!buffer_jbd(bh)) {
1329                                 spin_unlock(&journal->j_list_lock);
1330                                 jbd_unlock_bh_state(bh);
1331                                 __bforget(bh);
1332                                 goto drop;
1333                         }
1334                 }
1335         } else if (jh->b_transaction) {
1336                 J_ASSERT_JH(jh, (jh->b_transaction ==
1337                                  journal->j_committing_transaction));
1338                 /* However, if the buffer is still owned by a prior
1339                  * (committing) transaction, we can't drop it yet... */
1340                 JBUFFER_TRACE(jh, "belongs to older transaction");
1341                 /* ... but we CAN drop it from the new transaction if we
1342                  * have also modified it since the original commit. */
1343
1344                 if (jh->b_next_transaction) {
1345                         J_ASSERT(jh->b_next_transaction == transaction);
1346                         jh->b_next_transaction = NULL;
1347
1348                         /*
1349                          * only drop a reference if this transaction modified
1350                          * the buffer
1351                          */
1352                         if (was_modified)
1353                                 drop_reserve = 1;
1354                 }
1355         }
1356
1357 not_jbd:
1358         spin_unlock(&journal->j_list_lock);
1359         jbd_unlock_bh_state(bh);
1360         __brelse(bh);
1361 drop:
1362         if (drop_reserve) {
1363                 /* no need to reserve log space for this block -bzzz */
1364                 handle->h_buffer_credits++;
1365         }
1366         return err;
1367 }
1368
1369 /**
1370  * int jbd2_journal_stop() - complete a transaction
1371  * @handle: tranaction to complete.
1372  *
1373  * All done for a particular handle.
1374  *
1375  * There is not much action needed here.  We just return any remaining
1376  * buffer credits to the transaction and remove the handle.  The only
1377  * complication is that we need to start a commit operation if the
1378  * filesystem is marked for synchronous update.
1379  *
1380  * jbd2_journal_stop itself will not usually return an error, but it may
1381  * do so in unusual circumstances.  In particular, expect it to
1382  * return -EIO if a jbd2_journal_abort has been executed since the
1383  * transaction began.
1384  */
1385 int jbd2_journal_stop(handle_t *handle)
1386 {
1387         transaction_t *transaction = handle->h_transaction;
1388         journal_t *journal = transaction->t_journal;
1389         int err, wait_for_commit = 0;
1390         tid_t tid;
1391         pid_t pid;
1392
1393         J_ASSERT(journal_current_handle() == handle);
1394
1395         if (is_handle_aborted(handle))
1396                 err = -EIO;
1397         else {
1398                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1399                 err = 0;
1400         }
1401
1402         if (--handle->h_ref > 0) {
1403                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1404                           handle->h_ref);
1405                 return err;
1406         }
1407
1408         jbd_debug(4, "Handle %p going down\n", handle);
1409         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1410                                 handle->h_transaction->t_tid,
1411                                 handle->h_type, handle->h_line_no,
1412                                 jiffies - handle->h_start_jiffies,
1413                                 handle->h_sync, handle->h_requested_credits,
1414                                 (handle->h_requested_credits -
1415                                  handle->h_buffer_credits));
1416
1417         /*
1418          * Implement synchronous transaction batching.  If the handle
1419          * was synchronous, don't force a commit immediately.  Let's
1420          * yield and let another thread piggyback onto this
1421          * transaction.  Keep doing that while new threads continue to
1422          * arrive.  It doesn't cost much - we're about to run a commit
1423          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1424          * operations by 30x or more...
1425          *
1426          * We try and optimize the sleep time against what the
1427          * underlying disk can do, instead of having a static sleep
1428          * time.  This is useful for the case where our storage is so
1429          * fast that it is more optimal to go ahead and force a flush
1430          * and wait for the transaction to be committed than it is to
1431          * wait for an arbitrary amount of time for new writers to
1432          * join the transaction.  We achieve this by measuring how
1433          * long it takes to commit a transaction, and compare it with
1434          * how long this transaction has been running, and if run time
1435          * < commit time then we sleep for the delta and commit.  This
1436          * greatly helps super fast disks that would see slowdowns as
1437          * more threads started doing fsyncs.
1438          *
1439          * But don't do this if this process was the most recent one
1440          * to perform a synchronous write.  We do this to detect the
1441          * case where a single process is doing a stream of sync
1442          * writes.  No point in waiting for joiners in that case.
1443          */
1444         pid = current->pid;
1445         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1446                 u64 commit_time, trans_time;
1447
1448                 journal->j_last_sync_writer = pid;
1449
1450                 read_lock(&journal->j_state_lock);
1451                 commit_time = journal->j_average_commit_time;
1452                 read_unlock(&journal->j_state_lock);
1453
1454                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1455                                                    transaction->t_start_time));
1456
1457                 commit_time = max_t(u64, commit_time,
1458                                     1000*journal->j_min_batch_time);
1459                 commit_time = min_t(u64, commit_time,
1460                                     1000*journal->j_max_batch_time);
1461
1462                 if (trans_time < commit_time) {
1463                         ktime_t expires = ktime_add_ns(ktime_get(),
1464                                                        commit_time);
1465                         set_current_state(TASK_UNINTERRUPTIBLE);
1466                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1467                 }
1468         }
1469
1470         if (handle->h_sync)
1471                 transaction->t_synchronous_commit = 1;
1472         current->journal_info = NULL;
1473         atomic_sub(handle->h_buffer_credits,
1474                    &transaction->t_outstanding_credits);
1475
1476         /*
1477          * If the handle is marked SYNC, we need to set another commit
1478          * going!  We also want to force a commit if the current
1479          * transaction is occupying too much of the log, or if the
1480          * transaction is too old now.
1481          */
1482         if (handle->h_sync ||
1483             (atomic_read(&transaction->t_outstanding_credits) >
1484              journal->j_max_transaction_buffers) ||
1485             time_after_eq(jiffies, transaction->t_expires)) {
1486                 /* Do this even for aborted journals: an abort still
1487                  * completes the commit thread, it just doesn't write
1488                  * anything to disk. */
1489
1490                 jbd_debug(2, "transaction too old, requesting commit for "
1491                                         "handle %p\n", handle);
1492                 /* This is non-blocking */
1493                 jbd2_log_start_commit(journal, transaction->t_tid);
1494
1495                 /*
1496                  * Special case: JBD2_SYNC synchronous updates require us
1497                  * to wait for the commit to complete.
1498                  */
1499                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1500                         wait_for_commit = 1;
1501         }
1502
1503         /*
1504          * Once we drop t_updates, if it goes to zero the transaction
1505          * could start committing on us and eventually disappear.  So
1506          * once we do this, we must not dereference transaction
1507          * pointer again.
1508          */
1509         tid = transaction->t_tid;
1510         if (atomic_dec_and_test(&transaction->t_updates)) {
1511                 wake_up(&journal->j_wait_updates);
1512                 if (journal->j_barrier_count)
1513                         wake_up(&journal->j_wait_transaction_locked);
1514         }
1515
1516         if (wait_for_commit)
1517                 err = jbd2_log_wait_commit(journal, tid);
1518
1519         lock_map_release(&handle->h_lockdep_map);
1520
1521         jbd2_free_handle(handle);
1522         return err;
1523 }
1524
1525 /**
1526  * int jbd2_journal_force_commit() - force any uncommitted transactions
1527  * @journal: journal to force
1528  *
1529  * For synchronous operations: force any uncommitted transactions
1530  * to disk.  May seem kludgy, but it reuses all the handle batching
1531  * code in a very simple manner.
1532  */
1533 int jbd2_journal_force_commit(journal_t *journal)
1534 {
1535         handle_t *handle;
1536         int ret;
1537
1538         handle = jbd2_journal_start(journal, 1);
1539         if (IS_ERR(handle)) {
1540                 ret = PTR_ERR(handle);
1541         } else {
1542                 handle->h_sync = 1;
1543                 ret = jbd2_journal_stop(handle);
1544         }
1545         return ret;
1546 }
1547
1548 /*
1549  *
1550  * List management code snippets: various functions for manipulating the
1551  * transaction buffer lists.
1552  *
1553  */
1554
1555 /*
1556  * Append a buffer to a transaction list, given the transaction's list head
1557  * pointer.
1558  *
1559  * j_list_lock is held.
1560  *
1561  * jbd_lock_bh_state(jh2bh(jh)) is held.
1562  */
1563
1564 static inline void
1565 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1566 {
1567         if (!*list) {
1568                 jh->b_tnext = jh->b_tprev = jh;
1569                 *list = jh;
1570         } else {
1571                 /* Insert at the tail of the list to preserve order */
1572                 struct journal_head *first = *list, *last = first->b_tprev;
1573                 jh->b_tprev = last;
1574                 jh->b_tnext = first;
1575                 last->b_tnext = first->b_tprev = jh;
1576         }
1577 }
1578
1579 /*
1580  * Remove a buffer from a transaction list, given the transaction's list
1581  * head pointer.
1582  *
1583  * Called with j_list_lock held, and the journal may not be locked.
1584  *
1585  * jbd_lock_bh_state(jh2bh(jh)) is held.
1586  */
1587
1588 static inline void
1589 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1590 {
1591         if (*list == jh) {
1592                 *list = jh->b_tnext;
1593                 if (*list == jh)
1594                         *list = NULL;
1595         }
1596         jh->b_tprev->b_tnext = jh->b_tnext;
1597         jh->b_tnext->b_tprev = jh->b_tprev;
1598 }
1599
1600 /*
1601  * Remove a buffer from the appropriate transaction list.
1602  *
1603  * Note that this function can *change* the value of
1604  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1605  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1606  * of these pointers, it could go bad.  Generally the caller needs to re-read
1607  * the pointer from the transaction_t.
1608  *
1609  * Called under j_list_lock.
1610  */
1611 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1612 {
1613         struct journal_head **list = NULL;
1614         transaction_t *transaction;
1615         struct buffer_head *bh = jh2bh(jh);
1616
1617         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1618         transaction = jh->b_transaction;
1619         if (transaction)
1620                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1621
1622         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1623         if (jh->b_jlist != BJ_None)
1624                 J_ASSERT_JH(jh, transaction != NULL);
1625
1626         switch (jh->b_jlist) {
1627         case BJ_None:
1628                 return;
1629         case BJ_Metadata:
1630                 transaction->t_nr_buffers--;
1631                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1632                 list = &transaction->t_buffers;
1633                 break;
1634         case BJ_Forget:
1635                 list = &transaction->t_forget;
1636                 break;
1637         case BJ_IO:
1638                 list = &transaction->t_iobuf_list;
1639                 break;
1640         case BJ_Shadow:
1641                 list = &transaction->t_shadow_list;
1642                 break;
1643         case BJ_LogCtl:
1644                 list = &transaction->t_log_list;
1645                 break;
1646         case BJ_Reserved:
1647                 list = &transaction->t_reserved_list;
1648                 break;
1649         }
1650
1651         __blist_del_buffer(list, jh);
1652         jh->b_jlist = BJ_None;
1653         if (test_clear_buffer_jbddirty(bh))
1654                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1655 }
1656
1657 /*
1658  * Remove buffer from all transactions.
1659  *
1660  * Called with bh_state lock and j_list_lock
1661  *
1662  * jh and bh may be already freed when this function returns.
1663  */
1664 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1665 {
1666         __jbd2_journal_temp_unlink_buffer(jh);
1667         jh->b_transaction = NULL;
1668         jbd2_journal_put_journal_head(jh);
1669 }
1670
1671 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1672 {
1673         struct buffer_head *bh = jh2bh(jh);
1674
1675         /* Get reference so that buffer cannot be freed before we unlock it */
1676         get_bh(bh);
1677         jbd_lock_bh_state(bh);
1678         spin_lock(&journal->j_list_lock);
1679         __jbd2_journal_unfile_buffer(jh);
1680         spin_unlock(&journal->j_list_lock);
1681         jbd_unlock_bh_state(bh);
1682         __brelse(bh);
1683 }
1684
1685 /*
1686  * Called from jbd2_journal_try_to_free_buffers().
1687  *
1688  * Called under jbd_lock_bh_state(bh)
1689  */
1690 static void
1691 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1692 {
1693         struct journal_head *jh;
1694
1695         jh = bh2jh(bh);
1696
1697         if (buffer_locked(bh) || buffer_dirty(bh))
1698                 goto out;
1699
1700         if (jh->b_next_transaction != NULL)
1701                 goto out;
1702
1703         spin_lock(&journal->j_list_lock);
1704         if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1705                 /* written-back checkpointed metadata buffer */
1706                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1707                 __jbd2_journal_remove_checkpoint(jh);
1708         }
1709         spin_unlock(&journal->j_list_lock);
1710 out:
1711         return;
1712 }
1713
1714 /**
1715  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1716  * @journal: journal for operation
1717  * @page: to try and free
1718  * @gfp_mask: we use the mask to detect how hard should we try to release
1719  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1720  * release the buffers.
1721  *
1722  *
1723  * For all the buffers on this page,
1724  * if they are fully written out ordered data, move them onto BUF_CLEAN
1725  * so try_to_free_buffers() can reap them.
1726  *
1727  * This function returns non-zero if we wish try_to_free_buffers()
1728  * to be called. We do this if the page is releasable by try_to_free_buffers().
1729  * We also do it if the page has locked or dirty buffers and the caller wants
1730  * us to perform sync or async writeout.
1731  *
1732  * This complicates JBD locking somewhat.  We aren't protected by the
1733  * BKL here.  We wish to remove the buffer from its committing or
1734  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1735  *
1736  * This may *change* the value of transaction_t->t_datalist, so anyone
1737  * who looks at t_datalist needs to lock against this function.
1738  *
1739  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1740  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1741  * will come out of the lock with the buffer dirty, which makes it
1742  * ineligible for release here.
1743  *
1744  * Who else is affected by this?  hmm...  Really the only contender
1745  * is do_get_write_access() - it could be looking at the buffer while
1746  * journal_try_to_free_buffer() is changing its state.  But that
1747  * cannot happen because we never reallocate freed data as metadata
1748  * while the data is part of a transaction.  Yes?
1749  *
1750  * Return 0 on failure, 1 on success
1751  */
1752 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1753                                 struct page *page, gfp_t gfp_mask)
1754 {
1755         struct buffer_head *head;
1756         struct buffer_head *bh;
1757         int ret = 0;
1758
1759         J_ASSERT(PageLocked(page));
1760
1761         head = page_buffers(page);
1762         bh = head;
1763         do {
1764                 struct journal_head *jh;
1765
1766                 /*
1767                  * We take our own ref against the journal_head here to avoid
1768                  * having to add tons of locking around each instance of
1769                  * jbd2_journal_put_journal_head().
1770                  */
1771                 jh = jbd2_journal_grab_journal_head(bh);
1772                 if (!jh)
1773                         continue;
1774
1775                 jbd_lock_bh_state(bh);
1776                 __journal_try_to_free_buffer(journal, bh);
1777                 jbd2_journal_put_journal_head(jh);
1778                 jbd_unlock_bh_state(bh);
1779                 if (buffer_jbd(bh))
1780                         goto busy;
1781         } while ((bh = bh->b_this_page) != head);
1782
1783         ret = try_to_free_buffers(page);
1784
1785 busy:
1786         return ret;
1787 }
1788
1789 /*
1790  * This buffer is no longer needed.  If it is on an older transaction's
1791  * checkpoint list we need to record it on this transaction's forget list
1792  * to pin this buffer (and hence its checkpointing transaction) down until
1793  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1794  * release it.
1795  * Returns non-zero if JBD no longer has an interest in the buffer.
1796  *
1797  * Called under j_list_lock.
1798  *
1799  * Called under jbd_lock_bh_state(bh).
1800  */
1801 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1802 {
1803         int may_free = 1;
1804         struct buffer_head *bh = jh2bh(jh);
1805
1806         if (jh->b_cp_transaction) {
1807                 JBUFFER_TRACE(jh, "on running+cp transaction");
1808                 __jbd2_journal_temp_unlink_buffer(jh);
1809                 /*
1810                  * We don't want to write the buffer anymore, clear the
1811                  * bit so that we don't confuse checks in
1812                  * __journal_file_buffer
1813                  */
1814                 clear_buffer_dirty(bh);
1815                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1816                 may_free = 0;
1817         } else {
1818                 JBUFFER_TRACE(jh, "on running transaction");
1819                 __jbd2_journal_unfile_buffer(jh);
1820         }
1821         return may_free;
1822 }
1823
1824 /*
1825  * jbd2_journal_invalidatepage
1826  *
1827  * This code is tricky.  It has a number of cases to deal with.
1828  *
1829  * There are two invariants which this code relies on:
1830  *
1831  * i_size must be updated on disk before we start calling invalidatepage on the
1832  * data.
1833  *
1834  *  This is done in ext3 by defining an ext3_setattr method which
1835  *  updates i_size before truncate gets going.  By maintaining this
1836  *  invariant, we can be sure that it is safe to throw away any buffers
1837  *  attached to the current transaction: once the transaction commits,
1838  *  we know that the data will not be needed.
1839  *
1840  *  Note however that we can *not* throw away data belonging to the
1841  *  previous, committing transaction!
1842  *
1843  * Any disk blocks which *are* part of the previous, committing
1844  * transaction (and which therefore cannot be discarded immediately) are
1845  * not going to be reused in the new running transaction
1846  *
1847  *  The bitmap committed_data images guarantee this: any block which is
1848  *  allocated in one transaction and removed in the next will be marked
1849  *  as in-use in the committed_data bitmap, so cannot be reused until
1850  *  the next transaction to delete the block commits.  This means that
1851  *  leaving committing buffers dirty is quite safe: the disk blocks
1852  *  cannot be reallocated to a different file and so buffer aliasing is
1853  *  not possible.
1854  *
1855  *
1856  * The above applies mainly to ordered data mode.  In writeback mode we
1857  * don't make guarantees about the order in which data hits disk --- in
1858  * particular we don't guarantee that new dirty data is flushed before
1859  * transaction commit --- so it is always safe just to discard data
1860  * immediately in that mode.  --sct
1861  */
1862
1863 /*
1864  * The journal_unmap_buffer helper function returns zero if the buffer
1865  * concerned remains pinned as an anonymous buffer belonging to an older
1866  * transaction.
1867  *
1868  * We're outside-transaction here.  Either or both of j_running_transaction
1869  * and j_committing_transaction may be NULL.
1870  */
1871 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1872                                 int partial_page)
1873 {
1874         transaction_t *transaction;
1875         struct journal_head *jh;
1876         int may_free = 1;
1877
1878         BUFFER_TRACE(bh, "entry");
1879
1880         /*
1881          * It is safe to proceed here without the j_list_lock because the
1882          * buffers cannot be stolen by try_to_free_buffers as long as we are
1883          * holding the page lock. --sct
1884          */
1885
1886         if (!buffer_jbd(bh))
1887                 goto zap_buffer_unlocked;
1888
1889         /* OK, we have data buffer in journaled mode */
1890         write_lock(&journal->j_state_lock);
1891         jbd_lock_bh_state(bh);
1892         spin_lock(&journal->j_list_lock);
1893
1894         jh = jbd2_journal_grab_journal_head(bh);
1895         if (!jh)
1896                 goto zap_buffer_no_jh;
1897
1898         /*
1899          * We cannot remove the buffer from checkpoint lists until the
1900          * transaction adding inode to orphan list (let's call it T)
1901          * is committed.  Otherwise if the transaction changing the
1902          * buffer would be cleaned from the journal before T is
1903          * committed, a crash will cause that the correct contents of
1904          * the buffer will be lost.  On the other hand we have to
1905          * clear the buffer dirty bit at latest at the moment when the
1906          * transaction marking the buffer as freed in the filesystem
1907          * structures is committed because from that moment on the
1908          * block can be reallocated and used by a different page.
1909          * Since the block hasn't been freed yet but the inode has
1910          * already been added to orphan list, it is safe for us to add
1911          * the buffer to BJ_Forget list of the newest transaction.
1912          *
1913          * Also we have to clear buffer_mapped flag of a truncated buffer
1914          * because the buffer_head may be attached to the page straddling
1915          * i_size (can happen only when blocksize < pagesize) and thus the
1916          * buffer_head can be reused when the file is extended again. So we end
1917          * up keeping around invalidated buffers attached to transactions'
1918          * BJ_Forget list just to stop checkpointing code from cleaning up
1919          * the transaction this buffer was modified in.
1920          */
1921         transaction = jh->b_transaction;
1922         if (transaction == NULL) {
1923                 /* First case: not on any transaction.  If it
1924                  * has no checkpoint link, then we can zap it:
1925                  * it's a writeback-mode buffer so we don't care
1926                  * if it hits disk safely. */
1927                 if (!jh->b_cp_transaction) {
1928                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1929                         goto zap_buffer;
1930                 }
1931
1932                 if (!buffer_dirty(bh)) {
1933                         /* bdflush has written it.  We can drop it now */
1934                         goto zap_buffer;
1935                 }
1936
1937                 /* OK, it must be in the journal but still not
1938                  * written fully to disk: it's metadata or
1939                  * journaled data... */
1940
1941                 if (journal->j_running_transaction) {
1942                         /* ... and once the current transaction has
1943                          * committed, the buffer won't be needed any
1944                          * longer. */
1945                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1946                         may_free = __dispose_buffer(jh,
1947                                         journal->j_running_transaction);
1948                         goto zap_buffer;
1949                 } else {
1950                         /* There is no currently-running transaction. So the
1951                          * orphan record which we wrote for this file must have
1952                          * passed into commit.  We must attach this buffer to
1953                          * the committing transaction, if it exists. */
1954                         if (journal->j_committing_transaction) {
1955                                 JBUFFER_TRACE(jh, "give to committing trans");
1956                                 may_free = __dispose_buffer(jh,
1957                                         journal->j_committing_transaction);
1958                                 goto zap_buffer;
1959                         } else {
1960                                 /* The orphan record's transaction has
1961                                  * committed.  We can cleanse this buffer */
1962                                 clear_buffer_jbddirty(bh);
1963                                 goto zap_buffer;
1964                         }
1965                 }
1966         } else if (transaction == journal->j_committing_transaction) {
1967                 JBUFFER_TRACE(jh, "on committing transaction");
1968                 /*
1969                  * The buffer is committing, we simply cannot touch
1970                  * it. If the page is straddling i_size we have to wait
1971                  * for commit and try again.
1972                  */
1973                 if (partial_page) {
1974                         jbd2_journal_put_journal_head(jh);
1975                         spin_unlock(&journal->j_list_lock);
1976                         jbd_unlock_bh_state(bh);
1977                         write_unlock(&journal->j_state_lock);
1978                         return -EBUSY;
1979                 }
1980                 /*
1981                  * OK, buffer won't be reachable after truncate. We just set
1982                  * j_next_transaction to the running transaction (if there is
1983                  * one) and mark buffer as freed so that commit code knows it
1984                  * should clear dirty bits when it is done with the buffer.
1985                  */
1986                 set_buffer_freed(bh);
1987                 if (journal->j_running_transaction && buffer_jbddirty(bh))
1988                         jh->b_next_transaction = journal->j_running_transaction;
1989                 jbd2_journal_put_journal_head(jh);
1990                 spin_unlock(&journal->j_list_lock);
1991                 jbd_unlock_bh_state(bh);
1992                 write_unlock(&journal->j_state_lock);
1993                 return 0;
1994         } else {
1995                 /* Good, the buffer belongs to the running transaction.
1996                  * We are writing our own transaction's data, not any
1997                  * previous one's, so it is safe to throw it away
1998                  * (remember that we expect the filesystem to have set
1999                  * i_size already for this truncate so recovery will not
2000                  * expose the disk blocks we are discarding here.) */
2001                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2002                 JBUFFER_TRACE(jh, "on running transaction");
2003                 may_free = __dispose_buffer(jh, transaction);
2004         }
2005
2006 zap_buffer:
2007         /*
2008          * This is tricky. Although the buffer is truncated, it may be reused
2009          * if blocksize < pagesize and it is attached to the page straddling
2010          * EOF. Since the buffer might have been added to BJ_Forget list of the
2011          * running transaction, journal_get_write_access() won't clear
2012          * b_modified and credit accounting gets confused. So clear b_modified
2013          * here.
2014          */
2015         jh->b_modified = 0;
2016         jbd2_journal_put_journal_head(jh);
2017 zap_buffer_no_jh:
2018         spin_unlock(&journal->j_list_lock);
2019         jbd_unlock_bh_state(bh);
2020         write_unlock(&journal->j_state_lock);
2021 zap_buffer_unlocked:
2022         clear_buffer_dirty(bh);
2023         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2024         clear_buffer_mapped(bh);
2025         clear_buffer_req(bh);
2026         clear_buffer_new(bh);
2027         clear_buffer_delay(bh);
2028         clear_buffer_unwritten(bh);
2029         bh->b_bdev = NULL;
2030         return may_free;
2031 }
2032
2033 /**
2034  * void jbd2_journal_invalidatepage()
2035  * @journal: journal to use for flush...
2036  * @page:    page to flush
2037  * @offset:  start of the range to invalidate
2038  * @length:  length of the range to invalidate
2039  *
2040  * Reap page buffers containing data after in the specified range in page.
2041  * Can return -EBUSY if buffers are part of the committing transaction and
2042  * the page is straddling i_size. Caller then has to wait for current commit
2043  * and try again.
2044  */
2045 int jbd2_journal_invalidatepage(journal_t *journal,
2046                                 struct page *page,
2047                                 unsigned int offset,
2048                                 unsigned int length)
2049 {
2050         struct buffer_head *head, *bh, *next;
2051         unsigned int stop = offset + length;
2052         unsigned int curr_off = 0;
2053         int partial_page = (offset || length < PAGE_CACHE_SIZE);
2054         int may_free = 1;
2055         int ret = 0;
2056
2057         if (!PageLocked(page))
2058                 BUG();
2059         if (!page_has_buffers(page))
2060                 return 0;
2061
2062         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2063
2064         /* We will potentially be playing with lists other than just the
2065          * data lists (especially for journaled data mode), so be
2066          * cautious in our locking. */
2067
2068         head = bh = page_buffers(page);
2069         do {
2070                 unsigned int next_off = curr_off + bh->b_size;
2071                 next = bh->b_this_page;
2072
2073                 if (next_off > stop)
2074                         return 0;
2075
2076                 if (offset <= curr_off) {
2077                         /* This block is wholly outside the truncation point */
2078                         lock_buffer(bh);
2079                         ret = journal_unmap_buffer(journal, bh, partial_page);
2080                         unlock_buffer(bh);
2081                         if (ret < 0)
2082                                 return ret;
2083                         may_free &= ret;
2084                 }
2085                 curr_off = next_off;
2086                 bh = next;
2087
2088         } while (bh != head);
2089
2090         if (!partial_page) {
2091                 if (may_free && try_to_free_buffers(page))
2092                         J_ASSERT(!page_has_buffers(page));
2093         }
2094         return 0;
2095 }
2096
2097 /*
2098  * File a buffer on the given transaction list.
2099  */
2100 void __jbd2_journal_file_buffer(struct journal_head *jh,
2101                         transaction_t *transaction, int jlist)
2102 {
2103         struct journal_head **list = NULL;
2104         int was_dirty = 0;
2105         struct buffer_head *bh = jh2bh(jh);
2106
2107         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2108         assert_spin_locked(&transaction->t_journal->j_list_lock);
2109
2110         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2111         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2112                                 jh->b_transaction == NULL);
2113
2114         if (jh->b_transaction && jh->b_jlist == jlist)
2115                 return;
2116
2117         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2118             jlist == BJ_Shadow || jlist == BJ_Forget) {
2119                 /*
2120                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2121                  * instead of buffer_dirty. We should not see a dirty bit set
2122                  * here because we clear it in do_get_write_access but e.g.
2123                  * tune2fs can modify the sb and set the dirty bit at any time
2124                  * so we try to gracefully handle that.
2125                  */
2126                 if (buffer_dirty(bh))
2127                         warn_dirty_buffer(bh);
2128                 if (test_clear_buffer_dirty(bh) ||
2129                     test_clear_buffer_jbddirty(bh))
2130                         was_dirty = 1;
2131         }
2132
2133         if (jh->b_transaction)
2134                 __jbd2_journal_temp_unlink_buffer(jh);
2135         else
2136                 jbd2_journal_grab_journal_head(bh);
2137         jh->b_transaction = transaction;
2138
2139         switch (jlist) {
2140         case BJ_None:
2141                 J_ASSERT_JH(jh, !jh->b_committed_data);
2142                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2143                 return;
2144         case BJ_Metadata:
2145                 transaction->t_nr_buffers++;
2146                 list = &transaction->t_buffers;
2147                 break;
2148         case BJ_Forget:
2149                 list = &transaction->t_forget;
2150                 break;
2151         case BJ_IO:
2152                 list = &transaction->t_iobuf_list;
2153                 break;
2154         case BJ_Shadow:
2155                 list = &transaction->t_shadow_list;
2156                 break;
2157         case BJ_LogCtl:
2158                 list = &transaction->t_log_list;
2159                 break;
2160         case BJ_Reserved:
2161                 list = &transaction->t_reserved_list;
2162                 break;
2163         }
2164
2165         __blist_add_buffer(list, jh);
2166         jh->b_jlist = jlist;
2167
2168         if (was_dirty)
2169                 set_buffer_jbddirty(bh);
2170 }
2171
2172 void jbd2_journal_file_buffer(struct journal_head *jh,
2173                                 transaction_t *transaction, int jlist)
2174 {
2175         jbd_lock_bh_state(jh2bh(jh));
2176         spin_lock(&transaction->t_journal->j_list_lock);
2177         __jbd2_journal_file_buffer(jh, transaction, jlist);
2178         spin_unlock(&transaction->t_journal->j_list_lock);
2179         jbd_unlock_bh_state(jh2bh(jh));
2180 }
2181
2182 /*
2183  * Remove a buffer from its current buffer list in preparation for
2184  * dropping it from its current transaction entirely.  If the buffer has
2185  * already started to be used by a subsequent transaction, refile the
2186  * buffer on that transaction's metadata list.
2187  *
2188  * Called under j_list_lock
2189  * Called under jbd_lock_bh_state(jh2bh(jh))
2190  *
2191  * jh and bh may be already free when this function returns
2192  */
2193 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2194 {
2195         int was_dirty, jlist;
2196         struct buffer_head *bh = jh2bh(jh);
2197
2198         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2199         if (jh->b_transaction)
2200                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2201
2202         /* If the buffer is now unused, just drop it. */
2203         if (jh->b_next_transaction == NULL) {
2204                 __jbd2_journal_unfile_buffer(jh);
2205                 return;
2206         }
2207
2208         /*
2209          * It has been modified by a later transaction: add it to the new
2210          * transaction's metadata list.
2211          */
2212
2213         was_dirty = test_clear_buffer_jbddirty(bh);
2214         __jbd2_journal_temp_unlink_buffer(jh);
2215         /*
2216          * We set b_transaction here because b_next_transaction will inherit
2217          * our jh reference and thus __jbd2_journal_file_buffer() must not
2218          * take a new one.
2219          */
2220         jh->b_transaction = jh->b_next_transaction;
2221         jh->b_next_transaction = NULL;
2222         if (buffer_freed(bh))
2223                 jlist = BJ_Forget;
2224         else if (jh->b_modified)
2225                 jlist = BJ_Metadata;
2226         else
2227                 jlist = BJ_Reserved;
2228         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2229         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2230
2231         if (was_dirty)
2232                 set_buffer_jbddirty(bh);
2233 }
2234
2235 /*
2236  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2237  * bh reference so that we can safely unlock bh.
2238  *
2239  * The jh and bh may be freed by this call.
2240  */
2241 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2242 {
2243         struct buffer_head *bh = jh2bh(jh);
2244
2245         /* Get reference so that buffer cannot be freed before we unlock it */
2246         get_bh(bh);
2247         jbd_lock_bh_state(bh);
2248         spin_lock(&journal->j_list_lock);
2249         __jbd2_journal_refile_buffer(jh);
2250         jbd_unlock_bh_state(bh);
2251         spin_unlock(&journal->j_list_lock);
2252         __brelse(bh);
2253 }
2254
2255 /*
2256  * File inode in the inode list of the handle's transaction
2257  */
2258 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2259 {
2260         transaction_t *transaction = handle->h_transaction;
2261         journal_t *journal = transaction->t_journal;
2262
2263         if (is_handle_aborted(handle))
2264                 return -EIO;
2265
2266         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2267                         transaction->t_tid);
2268
2269         /*
2270          * First check whether inode isn't already on the transaction's
2271          * lists without taking the lock. Note that this check is safe
2272          * without the lock as we cannot race with somebody removing inode
2273          * from the transaction. The reason is that we remove inode from the
2274          * transaction only in journal_release_jbd_inode() and when we commit
2275          * the transaction. We are guarded from the first case by holding
2276          * a reference to the inode. We are safe against the second case
2277          * because if jinode->i_transaction == transaction, commit code
2278          * cannot touch the transaction because we hold reference to it,
2279          * and if jinode->i_next_transaction == transaction, commit code
2280          * will only file the inode where we want it.
2281          */
2282         if (jinode->i_transaction == transaction ||
2283             jinode->i_next_transaction == transaction)
2284                 return 0;
2285
2286         spin_lock(&journal->j_list_lock);
2287
2288         if (jinode->i_transaction == transaction ||
2289             jinode->i_next_transaction == transaction)
2290                 goto done;
2291
2292         /*
2293          * We only ever set this variable to 1 so the test is safe. Since
2294          * t_need_data_flush is likely to be set, we do the test to save some
2295          * cacheline bouncing
2296          */
2297         if (!transaction->t_need_data_flush)
2298                 transaction->t_need_data_flush = 1;
2299         /* On some different transaction's list - should be
2300          * the committing one */
2301         if (jinode->i_transaction) {
2302                 J_ASSERT(jinode->i_next_transaction == NULL);
2303                 J_ASSERT(jinode->i_transaction ==
2304                                         journal->j_committing_transaction);
2305                 jinode->i_next_transaction = transaction;
2306                 goto done;
2307         }
2308         /* Not on any transaction list... */
2309         J_ASSERT(!jinode->i_next_transaction);
2310         jinode->i_transaction = transaction;
2311         list_add(&jinode->i_list, &transaction->t_inode_list);
2312 done:
2313         spin_unlock(&journal->j_list_lock);
2314
2315         return 0;
2316 }
2317
2318 /*
2319  * File truncate and transaction commit interact with each other in a
2320  * non-trivial way.  If a transaction writing data block A is
2321  * committing, we cannot discard the data by truncate until we have
2322  * written them.  Otherwise if we crashed after the transaction with
2323  * write has committed but before the transaction with truncate has
2324  * committed, we could see stale data in block A.  This function is a
2325  * helper to solve this problem.  It starts writeout of the truncated
2326  * part in case it is in the committing transaction.
2327  *
2328  * Filesystem code must call this function when inode is journaled in
2329  * ordered mode before truncation happens and after the inode has been
2330  * placed on orphan list with the new inode size. The second condition
2331  * avoids the race that someone writes new data and we start
2332  * committing the transaction after this function has been called but
2333  * before a transaction for truncate is started (and furthermore it
2334  * allows us to optimize the case where the addition to orphan list
2335  * happens in the same transaction as write --- we don't have to write
2336  * any data in such case).
2337  */
2338 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2339                                         struct jbd2_inode *jinode,
2340                                         loff_t new_size)
2341 {
2342         transaction_t *inode_trans, *commit_trans;
2343         int ret = 0;
2344
2345         /* This is a quick check to avoid locking if not necessary */
2346         if (!jinode->i_transaction)
2347                 goto out;
2348         /* Locks are here just to force reading of recent values, it is
2349          * enough that the transaction was not committing before we started
2350          * a transaction adding the inode to orphan list */
2351         read_lock(&journal->j_state_lock);
2352         commit_trans = journal->j_committing_transaction;
2353         read_unlock(&journal->j_state_lock);
2354         spin_lock(&journal->j_list_lock);
2355         inode_trans = jinode->i_transaction;
2356         spin_unlock(&journal->j_list_lock);
2357         if (inode_trans == commit_trans) {
2358                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2359                         new_size, LLONG_MAX);
2360                 if (ret)
2361                         jbd2_journal_abort(journal, ret);
2362         }
2363 out:
2364         return ret;
2365 }