]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ocfs2/aops.c
Merge remote-tracking branch 'vfs/for-next'
[karo-tx-linux.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57                                    struct buffer_head *bh_result, int create)
58 {
59         int err = -EIO;
60         int status;
61         struct ocfs2_dinode *fe = NULL;
62         struct buffer_head *bh = NULL;
63         struct buffer_head *buffer_cache_bh = NULL;
64         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65         void *kaddr;
66
67         trace_ocfs2_symlink_get_block(
68                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
69                         (unsigned long long)iblock, bh_result, create);
70
71         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75                      (unsigned long long)iblock);
76                 goto bail;
77         }
78
79         status = ocfs2_read_inode_block(inode, &bh);
80         if (status < 0) {
81                 mlog_errno(status);
82                 goto bail;
83         }
84         fe = (struct ocfs2_dinode *) bh->b_data;
85
86         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87                                                     le32_to_cpu(fe->i_clusters))) {
88                 err = -ENOMEM;
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         err = -ENOMEM;
102                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103                         goto bail;
104                 }
105
106                 /* we haven't locked out transactions, so a commit
107                  * could've happened. Since we've got a reference on
108                  * the bh, even if it commits while we're doing the
109                  * copy, the data is still good. */
110                 if (buffer_jbd(buffer_cache_bh)
111                     && ocfs2_inode_is_new(inode)) {
112                         kaddr = kmap_atomic(bh_result->b_page);
113                         if (!kaddr) {
114                                 mlog(ML_ERROR, "couldn't kmap!\n");
115                                 goto bail;
116                         }
117                         memcpy(kaddr + (bh_result->b_size * iblock),
118                                buffer_cache_bh->b_data,
119                                bh_result->b_size);
120                         kunmap_atomic(kaddr);
121                         set_buffer_uptodate(bh_result);
122                 }
123                 brelse(buffer_cache_bh);
124         }
125
126         map_bh(bh_result, inode->i_sb,
127                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129         err = 0;
130
131 bail:
132         brelse(bh);
133
134         return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138                     struct buffer_head *bh_result, int create)
139 {
140         int err = 0;
141         unsigned int ext_flags;
142         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143         u64 p_blkno, count, past_eof;
144         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147                               (unsigned long long)iblock, bh_result, create);
148
149         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151                      inode, inode->i_ino);
152
153         if (S_ISLNK(inode->i_mode)) {
154                 /* this always does I/O for some reason. */
155                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156                 goto bail;
157         }
158
159         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160                                           &ext_flags);
161         if (err) {
162                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164                      (unsigned long long)p_blkno);
165                 goto bail;
166         }
167
168         if (max_blocks < count)
169                 count = max_blocks;
170
171         /*
172          * ocfs2 never allocates in this function - the only time we
173          * need to use BH_New is when we're extending i_size on a file
174          * system which doesn't support holes, in which case BH_New
175          * allows __block_write_begin() to zero.
176          *
177          * If we see this on a sparse file system, then a truncate has
178          * raced us and removed the cluster. In this case, we clear
179          * the buffers dirty and uptodate bits and let the buffer code
180          * ignore it as a hole.
181          */
182         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183                 clear_buffer_dirty(bh_result);
184                 clear_buffer_uptodate(bh_result);
185                 goto bail;
186         }
187
188         /* Treat the unwritten extent as a hole for zeroing purposes. */
189         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190                 map_bh(bh_result, inode->i_sb, p_blkno);
191
192         bh_result->b_size = count << inode->i_blkbits;
193
194         if (!ocfs2_sparse_alloc(osb)) {
195                 if (p_blkno == 0) {
196                         err = -EIO;
197                         mlog(ML_ERROR,
198                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199                              (unsigned long long)iblock,
200                              (unsigned long long)p_blkno,
201                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
202                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203                         dump_stack();
204                         goto bail;
205                 }
206         }
207
208         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211                                   (unsigned long long)past_eof);
212         if (create && (iblock >= past_eof))
213                 set_buffer_new(bh_result);
214
215 bail:
216         if (err < 0)
217                 err = -EIO;
218
219         return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223                            struct buffer_head *di_bh)
224 {
225         void *kaddr;
226         loff_t size;
227         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
232                 return -EROFS;
233         }
234
235         size = i_size_read(inode);
236
237         if (size > PAGE_CACHE_SIZE ||
238             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239                 ocfs2_error(inode->i_sb,
240                             "Inode %llu has with inline data has bad size: %Lu\n",
241                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
242                             (unsigned long long)size);
243                 return -EROFS;
244         }
245
246         kaddr = kmap_atomic(page);
247         if (size)
248                 memcpy(kaddr, di->id2.i_data.id_data, size);
249         /* Clear the remaining part of the page */
250         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251         flush_dcache_page(page);
252         kunmap_atomic(kaddr);
253
254         SetPageUptodate(page);
255
256         return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261         int ret;
262         struct buffer_head *di_bh = NULL;
263
264         BUG_ON(!PageLocked(page));
265         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267         ret = ocfs2_read_inode_block(inode, &di_bh);
268         if (ret) {
269                 mlog_errno(ret);
270                 goto out;
271         }
272
273         ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275         unlock_page(page);
276
277         brelse(di_bh);
278         return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283         struct inode *inode = page->mapping->host;
284         struct ocfs2_inode_info *oi = OCFS2_I(inode);
285         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286         int ret, unlock = 1;
287
288         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289                              (page ? page->index : 0));
290
291         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292         if (ret != 0) {
293                 if (ret == AOP_TRUNCATED_PAGE)
294                         unlock = 0;
295                 mlog_errno(ret);
296                 goto out;
297         }
298
299         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300                 /*
301                  * Unlock the page and cycle ip_alloc_sem so that we don't
302                  * busyloop waiting for ip_alloc_sem to unlock
303                  */
304                 ret = AOP_TRUNCATED_PAGE;
305                 unlock_page(page);
306                 unlock = 0;
307                 down_read(&oi->ip_alloc_sem);
308                 up_read(&oi->ip_alloc_sem);
309                 goto out_inode_unlock;
310         }
311
312         /*
313          * i_size might have just been updated as we grabed the meta lock.  We
314          * might now be discovering a truncate that hit on another node.
315          * block_read_full_page->get_block freaks out if it is asked to read
316          * beyond the end of a file, so we check here.  Callers
317          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318          * and notice that the page they just read isn't needed.
319          *
320          * XXX sys_readahead() seems to get that wrong?
321          */
322         if (start >= i_size_read(inode)) {
323                 zero_user(page, 0, PAGE_SIZE);
324                 SetPageUptodate(page);
325                 ret = 0;
326                 goto out_alloc;
327         }
328
329         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330                 ret = ocfs2_readpage_inline(inode, page);
331         else
332                 ret = block_read_full_page(page, ocfs2_get_block);
333         unlock = 0;
334
335 out_alloc:
336         up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338         ocfs2_inode_unlock(inode, 0);
339 out:
340         if (unlock)
341                 unlock_page(page);
342         return ret;
343 }
344
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355                            struct list_head *pages, unsigned nr_pages)
356 {
357         int ret, err = -EIO;
358         struct inode *inode = mapping->host;
359         struct ocfs2_inode_info *oi = OCFS2_I(inode);
360         loff_t start;
361         struct page *last;
362
363         /*
364          * Use the nonblocking flag for the dlm code to avoid page
365          * lock inversion, but don't bother with retrying.
366          */
367         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368         if (ret)
369                 return err;
370
371         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372                 ocfs2_inode_unlock(inode, 0);
373                 return err;
374         }
375
376         /*
377          * Don't bother with inline-data. There isn't anything
378          * to read-ahead in that case anyway...
379          */
380         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381                 goto out_unlock;
382
383         /*
384          * Check whether a remote node truncated this file - we just
385          * drop out in that case as it's not worth handling here.
386          */
387         last = list_entry(pages->prev, struct page, lru);
388         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389         if (start >= i_size_read(inode))
390                 goto out_unlock;
391
392         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395         up_read(&oi->ip_alloc_sem);
396         ocfs2_inode_unlock(inode, 0);
397
398         return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414         trace_ocfs2_writepage(
415                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416                 page->index);
417
418         return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(  handle_t *handle,
426                         struct buffer_head *head,
427                         unsigned from,
428                         unsigned to,
429                         int *partial,
430                         int (*fn)(      handle_t *handle,
431                                         struct buffer_head *bh))
432 {
433         struct buffer_head *bh;
434         unsigned block_start, block_end;
435         unsigned blocksize = head->b_size;
436         int err, ret = 0;
437         struct buffer_head *next;
438
439         for (   bh = head, block_start = 0;
440                 ret == 0 && (bh != head || !block_start);
441                 block_start = block_end, bh = next)
442         {
443                 next = bh->b_this_page;
444                 block_end = block_start + blocksize;
445                 if (block_end <= from || block_start >= to) {
446                         if (partial && !buffer_uptodate(bh))
447                                 *partial = 1;
448                         continue;
449                 }
450                 err = (*fn)(handle, bh);
451                 if (!ret)
452                         ret = err;
453         }
454         return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459         sector_t status;
460         u64 p_blkno = 0;
461         int err = 0;
462         struct inode *inode = mapping->host;
463
464         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465                          (unsigned long long)block);
466
467         /* We don't need to lock journal system files, since they aren't
468          * accessed concurrently from multiple nodes.
469          */
470         if (!INODE_JOURNAL(inode)) {
471                 err = ocfs2_inode_lock(inode, NULL, 0);
472                 if (err) {
473                         if (err != -ENOENT)
474                                 mlog_errno(err);
475                         goto bail;
476                 }
477                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478         }
479
480         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482                                                   NULL);
483
484         if (!INODE_JOURNAL(inode)) {
485                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486                 ocfs2_inode_unlock(inode, 0);
487         }
488
489         if (err) {
490                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491                      (unsigned long long)block);
492                 mlog_errno(err);
493                 goto bail;
494         }
495
496 bail:
497         status = err ? 0 : p_blkno;
498
499         return status;
500 }
501
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  *                                      fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516                                      struct buffer_head *bh_result, int create)
517 {
518         int ret;
519         u32 cpos = 0;
520         int alloc_locked = 0;
521         u64 p_blkno, inode_blocks, contig_blocks;
522         unsigned int ext_flags;
523         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525         unsigned long len = bh_result->b_size;
526         unsigned int clusters_to_alloc = 0, contig_clusters = 0;
527
528         cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529
530         /* This function won't even be called if the request isn't all
531          * nicely aligned and of the right size, so there's no need
532          * for us to check any of that. */
533
534         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535
536         down_read(&OCFS2_I(inode)->ip_alloc_sem);
537
538         /* This figures out the size of the next contiguous block, and
539          * our logical offset */
540         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
541                                           &contig_blocks, &ext_flags);
542         up_read(&OCFS2_I(inode)->ip_alloc_sem);
543
544         if (ret) {
545                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
546                      (unsigned long long)iblock);
547                 ret = -EIO;
548                 goto bail;
549         }
550
551         /* We should already CoW the refcounted extent in case of create. */
552         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
553
554         /* allocate blocks if no p_blkno is found, and create == 1 */
555         if (!p_blkno && create) {
556                 ret = ocfs2_inode_lock(inode, NULL, 1);
557                 if (ret < 0) {
558                         mlog_errno(ret);
559                         goto bail;
560                 }
561
562                 alloc_locked = 1;
563
564                 down_write(&OCFS2_I(inode)->ip_alloc_sem);
565
566                 /* fill hole, allocate blocks can't be larger than the size
567                  * of the hole */
568                 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
569                 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
570                                 contig_blocks);
571                 if (clusters_to_alloc > contig_clusters)
572                         clusters_to_alloc = contig_clusters;
573
574                 /* allocate extent and insert them into the extent tree */
575                 ret = ocfs2_extend_allocation(inode, cpos,
576                                 clusters_to_alloc, 0);
577                 if (ret < 0) {
578                         up_write(&OCFS2_I(inode)->ip_alloc_sem);
579                         mlog_errno(ret);
580                         goto bail;
581                 }
582
583                 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
584                                 &contig_blocks, &ext_flags);
585                 if (ret < 0) {
586                         up_write(&OCFS2_I(inode)->ip_alloc_sem);
587                         mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
588                                         (unsigned long long)iblock);
589                         ret = -EIO;
590                         goto bail;
591                 }
592                 set_buffer_new(bh_result);
593                 up_write(&OCFS2_I(inode)->ip_alloc_sem);
594         }
595
596         /*
597          * get_more_blocks() expects us to describe a hole by clearing
598          * the mapped bit on bh_result().
599          *
600          * Consider an unwritten extent as a hole.
601          */
602         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
603                 map_bh(bh_result, inode->i_sb, p_blkno);
604         else
605                 clear_buffer_mapped(bh_result);
606
607         /* make sure we don't map more than max_blocks blocks here as
608            that's all the kernel will handle at this point. */
609         if (max_blocks < contig_blocks)
610                 contig_blocks = max_blocks;
611         bh_result->b_size = contig_blocks << blocksize_bits;
612 bail:
613         if (alloc_locked)
614                 ocfs2_inode_unlock(inode, 1);
615         return ret;
616 }
617
618 /*
619  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
620  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
621  * to protect io on one node from truncation on another.
622  */
623 static int ocfs2_dio_end_io(struct kiocb *iocb,
624                              loff_t offset,
625                              ssize_t bytes,
626                              void *private)
627 {
628         struct inode *inode = file_inode(iocb->ki_filp);
629         int level;
630
631         if (bytes <= 0)
632                 return 0;
633
634         /* this io's submitter should not have unlocked this before we could */
635         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
636
637         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
638                 ocfs2_iocb_clear_unaligned_aio(iocb);
639
640                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
641         }
642
643         /* Let rw unlock to be done later to protect append direct io write */
644         if (offset + bytes <= i_size_read(inode)) {
645                 ocfs2_iocb_clear_rw_locked(iocb);
646
647                 level = ocfs2_iocb_rw_locked_level(iocb);
648                 ocfs2_rw_unlock(inode, level);
649         }
650
651         return 0;
652 }
653
654 static int ocfs2_releasepage(struct page *page, gfp_t wait)
655 {
656         if (!page_has_buffers(page))
657                 return 0;
658         return try_to_free_buffers(page);
659 }
660
661 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
662                 struct inode *inode, loff_t offset)
663 {
664         int ret = 0;
665         u32 v_cpos = 0;
666         u32 p_cpos = 0;
667         unsigned int num_clusters = 0;
668         unsigned int ext_flags = 0;
669
670         v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
671         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
672                         &num_clusters, &ext_flags);
673         if (ret < 0) {
674                 mlog_errno(ret);
675                 return ret;
676         }
677
678         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
679                 return 1;
680
681         return 0;
682 }
683
684 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
685                 struct inode *inode, loff_t offset,
686                 u64 zero_len, int cluster_align)
687 {
688         u32 p_cpos = 0;
689         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
690         unsigned int num_clusters = 0;
691         unsigned int ext_flags = 0;
692         int ret = 0;
693
694         if (offset <= i_size_read(inode) || cluster_align)
695                 return 0;
696
697         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
698                         &ext_flags);
699         if (ret < 0) {
700                 mlog_errno(ret);
701                 return ret;
702         }
703
704         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
705                 u64 s = i_size_read(inode);
706                 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
707                         (do_div(s, osb->s_clustersize) >> 9);
708
709                 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
710                                 zero_len >> 9, GFP_NOFS, false);
711                 if (ret < 0)
712                         mlog_errno(ret);
713         }
714
715         return ret;
716 }
717
718 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
719                 struct inode *inode, loff_t offset)
720 {
721         u64 zero_start, zero_len, total_zero_len;
722         u32 p_cpos = 0, clusters_to_add;
723         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
724         unsigned int num_clusters = 0;
725         unsigned int ext_flags = 0;
726         u32 size_div, offset_div;
727         int ret = 0;
728
729         {
730                 u64 o = offset;
731                 u64 s = i_size_read(inode);
732
733                 offset_div = do_div(o, osb->s_clustersize);
734                 size_div = do_div(s, osb->s_clustersize);
735         }
736
737         if (offset <= i_size_read(inode))
738                 return 0;
739
740         clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
741                 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
742         total_zero_len = offset - i_size_read(inode);
743         if (clusters_to_add)
744                 total_zero_len -= offset_div;
745
746         /* Allocate clusters to fill out holes, and this is only needed
747          * when we add more than one clusters. Otherwise the cluster will
748          * be allocated during direct IO */
749         if (clusters_to_add > 1) {
750                 ret = ocfs2_extend_allocation(inode,
751                                 OCFS2_I(inode)->ip_clusters,
752                                 clusters_to_add - 1, 0);
753                 if (ret) {
754                         mlog_errno(ret);
755                         goto out;
756                 }
757         }
758
759         while (total_zero_len) {
760                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
761                                 &ext_flags);
762                 if (ret < 0) {
763                         mlog_errno(ret);
764                         goto out;
765                 }
766
767                 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
768                         size_div;
769                 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
770                         size_div;
771                 zero_len = min(total_zero_len, zero_len);
772
773                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
774                         ret = blkdev_issue_zeroout(osb->sb->s_bdev,
775                                         zero_start >> 9, zero_len >> 9,
776                                         GFP_NOFS, false);
777                         if (ret < 0) {
778                                 mlog_errno(ret);
779                                 goto out;
780                         }
781                 }
782
783                 total_zero_len -= zero_len;
784                 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
785
786                 /* Only at first iteration can be cluster not aligned.
787                  * So set size_div to 0 for the rest */
788                 size_div = 0;
789         }
790
791 out:
792         return ret;
793 }
794
795 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
796                 struct iov_iter *iter,
797                 loff_t offset)
798 {
799         ssize_t ret = 0;
800         ssize_t written = 0;
801         bool orphaned = false;
802         int is_overwrite = 0;
803         struct file *file = iocb->ki_filp;
804         struct inode *inode = file_inode(file)->i_mapping->host;
805         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
806         struct buffer_head *di_bh = NULL;
807         size_t count = iter->count;
808         journal_t *journal = osb->journal->j_journal;
809         u64 zero_len_head, zero_len_tail;
810         int cluster_align_head, cluster_align_tail;
811         loff_t final_size = offset + count;
812         int append_write = offset >= i_size_read(inode) ? 1 : 0;
813         unsigned int num_clusters = 0;
814         unsigned int ext_flags = 0;
815
816         {
817                 u64 o = offset;
818                 u64 s = i_size_read(inode);
819
820                 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
821                 cluster_align_head = !zero_len_head;
822
823                 zero_len_tail = osb->s_clustersize -
824                         do_div(s, osb->s_clustersize);
825                 if ((offset - i_size_read(inode)) < zero_len_tail)
826                         zero_len_tail = offset - i_size_read(inode);
827                 cluster_align_tail = !zero_len_tail;
828         }
829
830         /*
831          * when final_size > inode->i_size, inode->i_size will be
832          * updated after direct write, so add the inode to orphan
833          * dir first.
834          */
835         if (final_size > i_size_read(inode)) {
836                 ret = ocfs2_add_inode_to_orphan(osb, inode);
837                 if (ret < 0) {
838                         mlog_errno(ret);
839                         goto out;
840                 }
841                 orphaned = true;
842         }
843
844         if (append_write) {
845                 ret = ocfs2_inode_lock(inode, NULL, 1);
846                 if (ret < 0) {
847                         mlog_errno(ret);
848                         goto clean_orphan;
849                 }
850
851                 /* zeroing out the previously allocated cluster tail
852                  * that but not zeroed */
853                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
854                         down_read(&OCFS2_I(inode)->ip_alloc_sem);
855                         ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
856                                         zero_len_tail, cluster_align_tail);
857                         up_read(&OCFS2_I(inode)->ip_alloc_sem);
858                 } else {
859                         down_write(&OCFS2_I(inode)->ip_alloc_sem);
860                         ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
861                                         offset);
862                         up_write(&OCFS2_I(inode)->ip_alloc_sem);
863                 }
864                 if (ret < 0) {
865                         mlog_errno(ret);
866                         ocfs2_inode_unlock(inode, 1);
867                         goto clean_orphan;
868                 }
869
870                 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
871                 if (is_overwrite < 0) {
872                         mlog_errno(is_overwrite);
873                         ret = is_overwrite;
874                         ocfs2_inode_unlock(inode, 1);
875                         goto clean_orphan;
876                 }
877
878                 ocfs2_inode_unlock(inode, 1);
879         }
880
881         written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
882                                        offset, ocfs2_direct_IO_get_blocks,
883                                        ocfs2_dio_end_io, NULL, 0);
884         /* overwrite aio may return -EIOCBQUEUED, and it is not an error */
885         if ((written < 0) && (written != -EIOCBQUEUED)) {
886                 loff_t i_size = i_size_read(inode);
887
888                 if (offset + count > i_size) {
889                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
890                         if (ret < 0) {
891                                 mlog_errno(ret);
892                                 goto clean_orphan;
893                         }
894
895                         if (i_size == i_size_read(inode)) {
896                                 ret = ocfs2_truncate_file(inode, di_bh,
897                                                 i_size);
898                                 if (ret < 0) {
899                                         if (ret != -ENOSPC)
900                                                 mlog_errno(ret);
901
902                                         ocfs2_inode_unlock(inode, 1);
903                                         brelse(di_bh);
904                                         di_bh = NULL;
905                                         goto clean_orphan;
906                                 }
907                         }
908
909                         ocfs2_inode_unlock(inode, 1);
910                         brelse(di_bh);
911                         di_bh = NULL;
912
913                         ret = jbd2_journal_force_commit(journal);
914                         if (ret < 0)
915                                 mlog_errno(ret);
916                 }
917         } else if (written > 0 && append_write && !is_overwrite &&
918                         !cluster_align_head) {
919                 /* zeroing out the allocated cluster head */
920                 u32 p_cpos = 0;
921                 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
922
923                 ret = ocfs2_inode_lock(inode, NULL, 0);
924                 if (ret < 0) {
925                         mlog_errno(ret);
926                         goto clean_orphan;
927                 }
928
929                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
930                                 &num_clusters, &ext_flags);
931                 if (ret < 0) {
932                         mlog_errno(ret);
933                         ocfs2_inode_unlock(inode, 0);
934                         goto clean_orphan;
935                 }
936
937                 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
938
939                 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
940                                 (u64)p_cpos << (osb->s_clustersize_bits - 9),
941                                 zero_len_head >> 9, GFP_NOFS, false);
942                 if (ret < 0)
943                         mlog_errno(ret);
944
945                 ocfs2_inode_unlock(inode, 0);
946         }
947
948 clean_orphan:
949         if (orphaned) {
950                 int tmp_ret;
951                 int update_isize = written > 0 ? 1 : 0;
952                 loff_t end = update_isize ? offset + written : 0;
953
954                 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
955                 if (tmp_ret < 0) {
956                         ret = tmp_ret;
957                         mlog_errno(ret);
958                         goto out;
959                 }
960
961                 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
962                                 update_isize, end);
963                 if (tmp_ret < 0) {
964                         ret = tmp_ret;
965                         mlog_errno(ret);
966                         brelse(di_bh);
967                         goto out;
968                 }
969
970                 ocfs2_inode_unlock(inode, 1);
971                 brelse(di_bh);
972
973                 tmp_ret = jbd2_journal_force_commit(journal);
974                 if (tmp_ret < 0) {
975                         ret = tmp_ret;
976                         mlog_errno(tmp_ret);
977                 }
978         }
979
980 out:
981         if (ret >= 0)
982                 ret = written;
983         return ret;
984 }
985
986 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
987                                loff_t offset)
988 {
989         struct file *file = iocb->ki_filp;
990         struct inode *inode = file_inode(file)->i_mapping->host;
991         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
992         int full_coherency = !(osb->s_mount_opt &
993                         OCFS2_MOUNT_COHERENCY_BUFFERED);
994
995         /*
996          * Fallback to buffered I/O if we see an inode without
997          * extents.
998          */
999         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
1000                 return 0;
1001
1002         /* Fallback to buffered I/O if we are appending and
1003          * concurrent O_DIRECT writes are allowed.
1004          */
1005         if (i_size_read(inode) <= offset && !full_coherency)
1006                 return 0;
1007
1008         if (iov_iter_rw(iter) == READ)
1009                 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
1010                                             iter, offset,
1011                                             ocfs2_direct_IO_get_blocks,
1012                                             ocfs2_dio_end_io, NULL, 0);
1013         else
1014                 return ocfs2_direct_IO_write(iocb, iter, offset);
1015 }
1016
1017 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
1018                                             u32 cpos,
1019                                             unsigned int *start,
1020                                             unsigned int *end)
1021 {
1022         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
1023
1024         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
1025                 unsigned int cpp;
1026
1027                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1028
1029                 cluster_start = cpos % cpp;
1030                 cluster_start = cluster_start << osb->s_clustersize_bits;
1031
1032                 cluster_end = cluster_start + osb->s_clustersize;
1033         }
1034
1035         BUG_ON(cluster_start > PAGE_SIZE);
1036         BUG_ON(cluster_end > PAGE_SIZE);
1037
1038         if (start)
1039                 *start = cluster_start;
1040         if (end)
1041                 *end = cluster_end;
1042 }
1043
1044 /*
1045  * 'from' and 'to' are the region in the page to avoid zeroing.
1046  *
1047  * If pagesize > clustersize, this function will avoid zeroing outside
1048  * of the cluster boundary.
1049  *
1050  * from == to == 0 is code for "zero the entire cluster region"
1051  */
1052 static void ocfs2_clear_page_regions(struct page *page,
1053                                      struct ocfs2_super *osb, u32 cpos,
1054                                      unsigned from, unsigned to)
1055 {
1056         void *kaddr;
1057         unsigned int cluster_start, cluster_end;
1058
1059         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1060
1061         kaddr = kmap_atomic(page);
1062
1063         if (from || to) {
1064                 if (from > cluster_start)
1065                         memset(kaddr + cluster_start, 0, from - cluster_start);
1066                 if (to < cluster_end)
1067                         memset(kaddr + to, 0, cluster_end - to);
1068         } else {
1069                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1070         }
1071
1072         kunmap_atomic(kaddr);
1073 }
1074
1075 /*
1076  * Nonsparse file systems fully allocate before we get to the write
1077  * code. This prevents ocfs2_write() from tagging the write as an
1078  * allocating one, which means ocfs2_map_page_blocks() might try to
1079  * read-in the blocks at the tail of our file. Avoid reading them by
1080  * testing i_size against each block offset.
1081  */
1082 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1083                                  unsigned int block_start)
1084 {
1085         u64 offset = page_offset(page) + block_start;
1086
1087         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1088                 return 1;
1089
1090         if (i_size_read(inode) > offset)
1091                 return 1;
1092
1093         return 0;
1094 }
1095
1096 /*
1097  * Some of this taken from __block_write_begin(). We already have our
1098  * mapping by now though, and the entire write will be allocating or
1099  * it won't, so not much need to use BH_New.
1100  *
1101  * This will also skip zeroing, which is handled externally.
1102  */
1103 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1104                           struct inode *inode, unsigned int from,
1105                           unsigned int to, int new)
1106 {
1107         int ret = 0;
1108         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1109         unsigned int block_end, block_start;
1110         unsigned int bsize = 1 << inode->i_blkbits;
1111
1112         if (!page_has_buffers(page))
1113                 create_empty_buffers(page, bsize, 0);
1114
1115         head = page_buffers(page);
1116         for (bh = head, block_start = 0; bh != head || !block_start;
1117              bh = bh->b_this_page, block_start += bsize) {
1118                 block_end = block_start + bsize;
1119
1120                 clear_buffer_new(bh);
1121
1122                 /*
1123                  * Ignore blocks outside of our i/o range -
1124                  * they may belong to unallocated clusters.
1125                  */
1126                 if (block_start >= to || block_end <= from) {
1127                         if (PageUptodate(page))
1128                                 set_buffer_uptodate(bh);
1129                         continue;
1130                 }
1131
1132                 /*
1133                  * For an allocating write with cluster size >= page
1134                  * size, we always write the entire page.
1135                  */
1136                 if (new)
1137                         set_buffer_new(bh);
1138
1139                 if (!buffer_mapped(bh)) {
1140                         map_bh(bh, inode->i_sb, *p_blkno);
1141                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1142                 }
1143
1144                 if (PageUptodate(page)) {
1145                         if (!buffer_uptodate(bh))
1146                                 set_buffer_uptodate(bh);
1147                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1148                            !buffer_new(bh) &&
1149                            ocfs2_should_read_blk(inode, page, block_start) &&
1150                            (block_start < from || block_end > to)) {
1151                         ll_rw_block(READ, 1, &bh);
1152                         *wait_bh++=bh;
1153                 }
1154
1155                 *p_blkno = *p_blkno + 1;
1156         }
1157
1158         /*
1159          * If we issued read requests - let them complete.
1160          */
1161         while(wait_bh > wait) {
1162                 wait_on_buffer(*--wait_bh);
1163                 if (!buffer_uptodate(*wait_bh))
1164                         ret = -EIO;
1165         }
1166
1167         if (ret == 0 || !new)
1168                 return ret;
1169
1170         /*
1171          * If we get -EIO above, zero out any newly allocated blocks
1172          * to avoid exposing stale data.
1173          */
1174         bh = head;
1175         block_start = 0;
1176         do {
1177                 block_end = block_start + bsize;
1178                 if (block_end <= from)
1179                         goto next_bh;
1180                 if (block_start >= to)
1181                         break;
1182
1183                 zero_user(page, block_start, bh->b_size);
1184                 set_buffer_uptodate(bh);
1185                 mark_buffer_dirty(bh);
1186
1187 next_bh:
1188                 block_start = block_end;
1189                 bh = bh->b_this_page;
1190         } while (bh != head);
1191
1192         return ret;
1193 }
1194
1195 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1196 #define OCFS2_MAX_CTXT_PAGES    1
1197 #else
1198 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1199 #endif
1200
1201 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1202
1203 /*
1204  * Describe the state of a single cluster to be written to.
1205  */
1206 struct ocfs2_write_cluster_desc {
1207         u32             c_cpos;
1208         u32             c_phys;
1209         /*
1210          * Give this a unique field because c_phys eventually gets
1211          * filled.
1212          */
1213         unsigned        c_new;
1214         unsigned        c_unwritten;
1215         unsigned        c_needs_zero;
1216 };
1217
1218 struct ocfs2_write_ctxt {
1219         /* Logical cluster position / len of write */
1220         u32                             w_cpos;
1221         u32                             w_clen;
1222
1223         /* First cluster allocated in a nonsparse extend */
1224         u32                             w_first_new_cpos;
1225
1226         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1227
1228         /*
1229          * This is true if page_size > cluster_size.
1230          *
1231          * It triggers a set of special cases during write which might
1232          * have to deal with allocating writes to partial pages.
1233          */
1234         unsigned int                    w_large_pages;
1235
1236         /*
1237          * Pages involved in this write.
1238          *
1239          * w_target_page is the page being written to by the user.
1240          *
1241          * w_pages is an array of pages which always contains
1242          * w_target_page, and in the case of an allocating write with
1243          * page_size < cluster size, it will contain zero'd and mapped
1244          * pages adjacent to w_target_page which need to be written
1245          * out in so that future reads from that region will get
1246          * zero's.
1247          */
1248         unsigned int                    w_num_pages;
1249         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1250         struct page                     *w_target_page;
1251
1252         /*
1253          * w_target_locked is used for page_mkwrite path indicating no unlocking
1254          * against w_target_page in ocfs2_write_end_nolock.
1255          */
1256         unsigned int                    w_target_locked:1;
1257
1258         /*
1259          * ocfs2_write_end() uses this to know what the real range to
1260          * write in the target should be.
1261          */
1262         unsigned int                    w_target_from;
1263         unsigned int                    w_target_to;
1264
1265         /*
1266          * We could use journal_current_handle() but this is cleaner,
1267          * IMHO -Mark
1268          */
1269         handle_t                        *w_handle;
1270
1271         struct buffer_head              *w_di_bh;
1272
1273         struct ocfs2_cached_dealloc_ctxt w_dealloc;
1274 };
1275
1276 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1277 {
1278         int i;
1279
1280         for(i = 0; i < num_pages; i++) {
1281                 if (pages[i]) {
1282                         unlock_page(pages[i]);
1283                         mark_page_accessed(pages[i]);
1284                         page_cache_release(pages[i]);
1285                 }
1286         }
1287 }
1288
1289 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1290 {
1291         int i;
1292
1293         /*
1294          * w_target_locked is only set to true in the page_mkwrite() case.
1295          * The intent is to allow us to lock the target page from write_begin()
1296          * to write_end(). The caller must hold a ref on w_target_page.
1297          */
1298         if (wc->w_target_locked) {
1299                 BUG_ON(!wc->w_target_page);
1300                 for (i = 0; i < wc->w_num_pages; i++) {
1301                         if (wc->w_target_page == wc->w_pages[i]) {
1302                                 wc->w_pages[i] = NULL;
1303                                 break;
1304                         }
1305                 }
1306                 mark_page_accessed(wc->w_target_page);
1307                 page_cache_release(wc->w_target_page);
1308         }
1309         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1310 }
1311
1312 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1313 {
1314         ocfs2_unlock_pages(wc);
1315         brelse(wc->w_di_bh);
1316         kfree(wc);
1317 }
1318
1319 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1320                                   struct ocfs2_super *osb, loff_t pos,
1321                                   unsigned len, struct buffer_head *di_bh)
1322 {
1323         u32 cend;
1324         struct ocfs2_write_ctxt *wc;
1325
1326         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1327         if (!wc)
1328                 return -ENOMEM;
1329
1330         wc->w_cpos = pos >> osb->s_clustersize_bits;
1331         wc->w_first_new_cpos = UINT_MAX;
1332         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1333         wc->w_clen = cend - wc->w_cpos + 1;
1334         get_bh(di_bh);
1335         wc->w_di_bh = di_bh;
1336
1337         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1338                 wc->w_large_pages = 1;
1339         else
1340                 wc->w_large_pages = 0;
1341
1342         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1343
1344         *wcp = wc;
1345
1346         return 0;
1347 }
1348
1349 /*
1350  * If a page has any new buffers, zero them out here, and mark them uptodate
1351  * and dirty so they'll be written out (in order to prevent uninitialised
1352  * block data from leaking). And clear the new bit.
1353  */
1354 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1355 {
1356         unsigned int block_start, block_end;
1357         struct buffer_head *head, *bh;
1358
1359         BUG_ON(!PageLocked(page));
1360         if (!page_has_buffers(page))
1361                 return;
1362
1363         bh = head = page_buffers(page);
1364         block_start = 0;
1365         do {
1366                 block_end = block_start + bh->b_size;
1367
1368                 if (buffer_new(bh)) {
1369                         if (block_end > from && block_start < to) {
1370                                 if (!PageUptodate(page)) {
1371                                         unsigned start, end;
1372
1373                                         start = max(from, block_start);
1374                                         end = min(to, block_end);
1375
1376                                         zero_user_segment(page, start, end);
1377                                         set_buffer_uptodate(bh);
1378                                 }
1379
1380                                 clear_buffer_new(bh);
1381                                 mark_buffer_dirty(bh);
1382                         }
1383                 }
1384
1385                 block_start = block_end;
1386                 bh = bh->b_this_page;
1387         } while (bh != head);
1388 }
1389
1390 /*
1391  * Only called when we have a failure during allocating write to write
1392  * zero's to the newly allocated region.
1393  */
1394 static void ocfs2_write_failure(struct inode *inode,
1395                                 struct ocfs2_write_ctxt *wc,
1396                                 loff_t user_pos, unsigned user_len)
1397 {
1398         int i;
1399         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1400                 to = user_pos + user_len;
1401         struct page *tmppage;
1402
1403         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1404
1405         for(i = 0; i < wc->w_num_pages; i++) {
1406                 tmppage = wc->w_pages[i];
1407
1408                 if (page_has_buffers(tmppage)) {
1409                         if (ocfs2_should_order_data(inode))
1410                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1411
1412                         block_commit_write(tmppage, from, to);
1413                 }
1414         }
1415 }
1416
1417 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1418                                         struct ocfs2_write_ctxt *wc,
1419                                         struct page *page, u32 cpos,
1420                                         loff_t user_pos, unsigned user_len,
1421                                         int new)
1422 {
1423         int ret;
1424         unsigned int map_from = 0, map_to = 0;
1425         unsigned int cluster_start, cluster_end;
1426         unsigned int user_data_from = 0, user_data_to = 0;
1427
1428         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1429                                         &cluster_start, &cluster_end);
1430
1431         /* treat the write as new if the a hole/lseek spanned across
1432          * the page boundary.
1433          */
1434         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1435                         (page_offset(page) <= user_pos));
1436
1437         if (page == wc->w_target_page) {
1438                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1439                 map_to = map_from + user_len;
1440
1441                 if (new)
1442                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1443                                                     cluster_start, cluster_end,
1444                                                     new);
1445                 else
1446                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1447                                                     map_from, map_to, new);
1448                 if (ret) {
1449                         mlog_errno(ret);
1450                         goto out;
1451                 }
1452
1453                 user_data_from = map_from;
1454                 user_data_to = map_to;
1455                 if (new) {
1456                         map_from = cluster_start;
1457                         map_to = cluster_end;
1458                 }
1459         } else {
1460                 /*
1461                  * If we haven't allocated the new page yet, we
1462                  * shouldn't be writing it out without copying user
1463                  * data. This is likely a math error from the caller.
1464                  */
1465                 BUG_ON(!new);
1466
1467                 map_from = cluster_start;
1468                 map_to = cluster_end;
1469
1470                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1471                                             cluster_start, cluster_end, new);
1472                 if (ret) {
1473                         mlog_errno(ret);
1474                         goto out;
1475                 }
1476         }
1477
1478         /*
1479          * Parts of newly allocated pages need to be zero'd.
1480          *
1481          * Above, we have also rewritten 'to' and 'from' - as far as
1482          * the rest of the function is concerned, the entire cluster
1483          * range inside of a page needs to be written.
1484          *
1485          * We can skip this if the page is up to date - it's already
1486          * been zero'd from being read in as a hole.
1487          */
1488         if (new && !PageUptodate(page))
1489                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1490                                          cpos, user_data_from, user_data_to);
1491
1492         flush_dcache_page(page);
1493
1494 out:
1495         return ret;
1496 }
1497
1498 /*
1499  * This function will only grab one clusters worth of pages.
1500  */
1501 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1502                                       struct ocfs2_write_ctxt *wc,
1503                                       u32 cpos, loff_t user_pos,
1504                                       unsigned user_len, int new,
1505                                       struct page *mmap_page)
1506 {
1507         int ret = 0, i;
1508         unsigned long start, target_index, end_index, index;
1509         struct inode *inode = mapping->host;
1510         loff_t last_byte;
1511
1512         target_index = user_pos >> PAGE_CACHE_SHIFT;
1513
1514         /*
1515          * Figure out how many pages we'll be manipulating here. For
1516          * non allocating write, we just change the one
1517          * page. Otherwise, we'll need a whole clusters worth.  If we're
1518          * writing past i_size, we only need enough pages to cover the
1519          * last page of the write.
1520          */
1521         if (new) {
1522                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1523                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1524                 /*
1525                  * We need the index *past* the last page we could possibly
1526                  * touch.  This is the page past the end of the write or
1527                  * i_size, whichever is greater.
1528                  */
1529                 last_byte = max(user_pos + user_len, i_size_read(inode));
1530                 BUG_ON(last_byte < 1);
1531                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1532                 if ((start + wc->w_num_pages) > end_index)
1533                         wc->w_num_pages = end_index - start;
1534         } else {
1535                 wc->w_num_pages = 1;
1536                 start = target_index;
1537         }
1538
1539         for(i = 0; i < wc->w_num_pages; i++) {
1540                 index = start + i;
1541
1542                 if (index == target_index && mmap_page) {
1543                         /*
1544                          * ocfs2_pagemkwrite() is a little different
1545                          * and wants us to directly use the page
1546                          * passed in.
1547                          */
1548                         lock_page(mmap_page);
1549
1550                         /* Exit and let the caller retry */
1551                         if (mmap_page->mapping != mapping) {
1552                                 WARN_ON(mmap_page->mapping);
1553                                 unlock_page(mmap_page);
1554                                 ret = -EAGAIN;
1555                                 goto out;
1556                         }
1557
1558                         page_cache_get(mmap_page);
1559                         wc->w_pages[i] = mmap_page;
1560                         wc->w_target_locked = true;
1561                 } else {
1562                         wc->w_pages[i] = find_or_create_page(mapping, index,
1563                                                              GFP_NOFS);
1564                         if (!wc->w_pages[i]) {
1565                                 ret = -ENOMEM;
1566                                 mlog_errno(ret);
1567                                 goto out;
1568                         }
1569                 }
1570                 wait_for_stable_page(wc->w_pages[i]);
1571
1572                 if (index == target_index)
1573                         wc->w_target_page = wc->w_pages[i];
1574         }
1575 out:
1576         if (ret)
1577                 wc->w_target_locked = false;
1578         return ret;
1579 }
1580
1581 /*
1582  * Prepare a single cluster for write one cluster into the file.
1583  */
1584 static int ocfs2_write_cluster(struct address_space *mapping,
1585                                u32 phys, unsigned int unwritten,
1586                                unsigned int should_zero,
1587                                struct ocfs2_alloc_context *data_ac,
1588                                struct ocfs2_alloc_context *meta_ac,
1589                                struct ocfs2_write_ctxt *wc, u32 cpos,
1590                                loff_t user_pos, unsigned user_len)
1591 {
1592         int ret, i, new;
1593         u64 v_blkno, p_blkno;
1594         struct inode *inode = mapping->host;
1595         struct ocfs2_extent_tree et;
1596
1597         new = phys == 0 ? 1 : 0;
1598         if (new) {
1599                 u32 tmp_pos;
1600
1601                 /*
1602                  * This is safe to call with the page locks - it won't take
1603                  * any additional semaphores or cluster locks.
1604                  */
1605                 tmp_pos = cpos;
1606                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1607                                            &tmp_pos, 1, 0, wc->w_di_bh,
1608                                            wc->w_handle, data_ac,
1609                                            meta_ac, NULL);
1610                 /*
1611                  * This shouldn't happen because we must have already
1612                  * calculated the correct meta data allocation required. The
1613                  * internal tree allocation code should know how to increase
1614                  * transaction credits itself.
1615                  *
1616                  * If need be, we could handle -EAGAIN for a
1617                  * RESTART_TRANS here.
1618                  */
1619                 mlog_bug_on_msg(ret == -EAGAIN,
1620                                 "Inode %llu: EAGAIN return during allocation.\n",
1621                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1622                 if (ret < 0) {
1623                         mlog_errno(ret);
1624                         goto out;
1625                 }
1626         } else if (unwritten) {
1627                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1628                                               wc->w_di_bh);
1629                 ret = ocfs2_mark_extent_written(inode, &et,
1630                                                 wc->w_handle, cpos, 1, phys,
1631                                                 meta_ac, &wc->w_dealloc);
1632                 if (ret < 0) {
1633                         mlog_errno(ret);
1634                         goto out;
1635                 }
1636         }
1637
1638         if (should_zero)
1639                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1640         else
1641                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1642
1643         /*
1644          * The only reason this should fail is due to an inability to
1645          * find the extent added.
1646          */
1647         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1648                                           NULL);
1649         if (ret < 0) {
1650                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1651                             "at logical block %llu",
1652                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1653                             (unsigned long long)v_blkno);
1654                 goto out;
1655         }
1656
1657         BUG_ON(p_blkno == 0);
1658
1659         for(i = 0; i < wc->w_num_pages; i++) {
1660                 int tmpret;
1661
1662                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1663                                                       wc->w_pages[i], cpos,
1664                                                       user_pos, user_len,
1665                                                       should_zero);
1666                 if (tmpret) {
1667                         mlog_errno(tmpret);
1668                         if (ret == 0)
1669                                 ret = tmpret;
1670                 }
1671         }
1672
1673         /*
1674          * We only have cleanup to do in case of allocating write.
1675          */
1676         if (ret && new)
1677                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1678
1679 out:
1680
1681         return ret;
1682 }
1683
1684 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1685                                        struct ocfs2_alloc_context *data_ac,
1686                                        struct ocfs2_alloc_context *meta_ac,
1687                                        struct ocfs2_write_ctxt *wc,
1688                                        loff_t pos, unsigned len)
1689 {
1690         int ret, i;
1691         loff_t cluster_off;
1692         unsigned int local_len = len;
1693         struct ocfs2_write_cluster_desc *desc;
1694         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1695
1696         for (i = 0; i < wc->w_clen; i++) {
1697                 desc = &wc->w_desc[i];
1698
1699                 /*
1700                  * We have to make sure that the total write passed in
1701                  * doesn't extend past a single cluster.
1702                  */
1703                 local_len = len;
1704                 cluster_off = pos & (osb->s_clustersize - 1);
1705                 if ((cluster_off + local_len) > osb->s_clustersize)
1706                         local_len = osb->s_clustersize - cluster_off;
1707
1708                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1709                                           desc->c_unwritten,
1710                                           desc->c_needs_zero,
1711                                           data_ac, meta_ac,
1712                                           wc, desc->c_cpos, pos, local_len);
1713                 if (ret) {
1714                         mlog_errno(ret);
1715                         goto out;
1716                 }
1717
1718                 len -= local_len;
1719                 pos += local_len;
1720         }
1721
1722         ret = 0;
1723 out:
1724         return ret;
1725 }
1726
1727 /*
1728  * ocfs2_write_end() wants to know which parts of the target page it
1729  * should complete the write on. It's easiest to compute them ahead of
1730  * time when a more complete view of the write is available.
1731  */
1732 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1733                                         struct ocfs2_write_ctxt *wc,
1734                                         loff_t pos, unsigned len, int alloc)
1735 {
1736         struct ocfs2_write_cluster_desc *desc;
1737
1738         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1739         wc->w_target_to = wc->w_target_from + len;
1740
1741         if (alloc == 0)
1742                 return;
1743
1744         /*
1745          * Allocating write - we may have different boundaries based
1746          * on page size and cluster size.
1747          *
1748          * NOTE: We can no longer compute one value from the other as
1749          * the actual write length and user provided length may be
1750          * different.
1751          */
1752
1753         if (wc->w_large_pages) {
1754                 /*
1755                  * We only care about the 1st and last cluster within
1756                  * our range and whether they should be zero'd or not. Either
1757                  * value may be extended out to the start/end of a
1758                  * newly allocated cluster.
1759                  */
1760                 desc = &wc->w_desc[0];
1761                 if (desc->c_needs_zero)
1762                         ocfs2_figure_cluster_boundaries(osb,
1763                                                         desc->c_cpos,
1764                                                         &wc->w_target_from,
1765                                                         NULL);
1766
1767                 desc = &wc->w_desc[wc->w_clen - 1];
1768                 if (desc->c_needs_zero)
1769                         ocfs2_figure_cluster_boundaries(osb,
1770                                                         desc->c_cpos,
1771                                                         NULL,
1772                                                         &wc->w_target_to);
1773         } else {
1774                 wc->w_target_from = 0;
1775                 wc->w_target_to = PAGE_CACHE_SIZE;
1776         }
1777 }
1778
1779 /*
1780  * Populate each single-cluster write descriptor in the write context
1781  * with information about the i/o to be done.
1782  *
1783  * Returns the number of clusters that will have to be allocated, as
1784  * well as a worst case estimate of the number of extent records that
1785  * would have to be created during a write to an unwritten region.
1786  */
1787 static int ocfs2_populate_write_desc(struct inode *inode,
1788                                      struct ocfs2_write_ctxt *wc,
1789                                      unsigned int *clusters_to_alloc,
1790                                      unsigned int *extents_to_split)
1791 {
1792         int ret;
1793         struct ocfs2_write_cluster_desc *desc;
1794         unsigned int num_clusters = 0;
1795         unsigned int ext_flags = 0;
1796         u32 phys = 0;
1797         int i;
1798
1799         *clusters_to_alloc = 0;
1800         *extents_to_split = 0;
1801
1802         for (i = 0; i < wc->w_clen; i++) {
1803                 desc = &wc->w_desc[i];
1804                 desc->c_cpos = wc->w_cpos + i;
1805
1806                 if (num_clusters == 0) {
1807                         /*
1808                          * Need to look up the next extent record.
1809                          */
1810                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1811                                                  &num_clusters, &ext_flags);
1812                         if (ret) {
1813                                 mlog_errno(ret);
1814                                 goto out;
1815                         }
1816
1817                         /* We should already CoW the refcountd extent. */
1818                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1819
1820                         /*
1821                          * Assume worst case - that we're writing in
1822                          * the middle of the extent.
1823                          *
1824                          * We can assume that the write proceeds from
1825                          * left to right, in which case the extent
1826                          * insert code is smart enough to coalesce the
1827                          * next splits into the previous records created.
1828                          */
1829                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1830                                 *extents_to_split = *extents_to_split + 2;
1831                 } else if (phys) {
1832                         /*
1833                          * Only increment phys if it doesn't describe
1834                          * a hole.
1835                          */
1836                         phys++;
1837                 }
1838
1839                 /*
1840                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1841                  * file that got extended.  w_first_new_cpos tells us
1842                  * where the newly allocated clusters are so we can
1843                  * zero them.
1844                  */
1845                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1846                         BUG_ON(phys == 0);
1847                         desc->c_needs_zero = 1;
1848                 }
1849
1850                 desc->c_phys = phys;
1851                 if (phys == 0) {
1852                         desc->c_new = 1;
1853                         desc->c_needs_zero = 1;
1854                         *clusters_to_alloc = *clusters_to_alloc + 1;
1855                 }
1856
1857                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1858                         desc->c_unwritten = 1;
1859                         desc->c_needs_zero = 1;
1860                 }
1861
1862                 num_clusters--;
1863         }
1864
1865         ret = 0;
1866 out:
1867         return ret;
1868 }
1869
1870 static int ocfs2_write_begin_inline(struct address_space *mapping,
1871                                     struct inode *inode,
1872                                     struct ocfs2_write_ctxt *wc)
1873 {
1874         int ret;
1875         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1876         struct page *page;
1877         handle_t *handle;
1878         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1879
1880         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1881         if (IS_ERR(handle)) {
1882                 ret = PTR_ERR(handle);
1883                 mlog_errno(ret);
1884                 goto out;
1885         }
1886
1887         page = find_or_create_page(mapping, 0, GFP_NOFS);
1888         if (!page) {
1889                 ocfs2_commit_trans(osb, handle);
1890                 ret = -ENOMEM;
1891                 mlog_errno(ret);
1892                 goto out;
1893         }
1894         /*
1895          * If we don't set w_num_pages then this page won't get unlocked
1896          * and freed on cleanup of the write context.
1897          */
1898         wc->w_pages[0] = wc->w_target_page = page;
1899         wc->w_num_pages = 1;
1900
1901         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1902                                       OCFS2_JOURNAL_ACCESS_WRITE);
1903         if (ret) {
1904                 ocfs2_commit_trans(osb, handle);
1905
1906                 mlog_errno(ret);
1907                 goto out;
1908         }
1909
1910         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1911                 ocfs2_set_inode_data_inline(inode, di);
1912
1913         if (!PageUptodate(page)) {
1914                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1915                 if (ret) {
1916                         ocfs2_commit_trans(osb, handle);
1917
1918                         goto out;
1919                 }
1920         }
1921
1922         wc->w_handle = handle;
1923 out:
1924         return ret;
1925 }
1926
1927 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1928 {
1929         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1930
1931         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1932                 return 1;
1933         return 0;
1934 }
1935
1936 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1937                                           struct inode *inode, loff_t pos,
1938                                           unsigned len, struct page *mmap_page,
1939                                           struct ocfs2_write_ctxt *wc)
1940 {
1941         int ret, written = 0;
1942         loff_t end = pos + len;
1943         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1944         struct ocfs2_dinode *di = NULL;
1945
1946         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1947                                              len, (unsigned long long)pos,
1948                                              oi->ip_dyn_features);
1949
1950         /*
1951          * Handle inodes which already have inline data 1st.
1952          */
1953         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1954                 if (mmap_page == NULL &&
1955                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1956                         goto do_inline_write;
1957
1958                 /*
1959                  * The write won't fit - we have to give this inode an
1960                  * inline extent list now.
1961                  */
1962                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1963                 if (ret)
1964                         mlog_errno(ret);
1965                 goto out;
1966         }
1967
1968         /*
1969          * Check whether the inode can accept inline data.
1970          */
1971         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1972                 return 0;
1973
1974         /*
1975          * Check whether the write can fit.
1976          */
1977         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1978         if (mmap_page ||
1979             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1980                 return 0;
1981
1982 do_inline_write:
1983         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1984         if (ret) {
1985                 mlog_errno(ret);
1986                 goto out;
1987         }
1988
1989         /*
1990          * This signals to the caller that the data can be written
1991          * inline.
1992          */
1993         written = 1;
1994 out:
1995         return written ? written : ret;
1996 }
1997
1998 /*
1999  * This function only does anything for file systems which can't
2000  * handle sparse files.
2001  *
2002  * What we want to do here is fill in any hole between the current end
2003  * of allocation and the end of our write. That way the rest of the
2004  * write path can treat it as an non-allocating write, which has no
2005  * special case code for sparse/nonsparse files.
2006  */
2007 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
2008                                         struct buffer_head *di_bh,
2009                                         loff_t pos, unsigned len,
2010                                         struct ocfs2_write_ctxt *wc)
2011 {
2012         int ret;
2013         loff_t newsize = pos + len;
2014
2015         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2016
2017         if (newsize <= i_size_read(inode))
2018                 return 0;
2019
2020         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
2021         if (ret)
2022                 mlog_errno(ret);
2023
2024         wc->w_first_new_cpos =
2025                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
2026
2027         return ret;
2028 }
2029
2030 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2031                            loff_t pos)
2032 {
2033         int ret = 0;
2034
2035         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2036         if (pos > i_size_read(inode))
2037                 ret = ocfs2_zero_extend(inode, di_bh, pos);
2038
2039         return ret;
2040 }
2041
2042 /*
2043  * Try to flush truncate logs if we can free enough clusters from it.
2044  * As for return value, "< 0" means error, "0" no space and "1" means
2045  * we have freed enough spaces and let the caller try to allocate again.
2046  */
2047 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2048                                           unsigned int needed)
2049 {
2050         tid_t target;
2051         int ret = 0;
2052         unsigned int truncated_clusters;
2053
2054         inode_lock(osb->osb_tl_inode);
2055         truncated_clusters = osb->truncated_clusters;
2056         inode_unlock(osb->osb_tl_inode);
2057
2058         /*
2059          * Check whether we can succeed in allocating if we free
2060          * the truncate log.
2061          */
2062         if (truncated_clusters < needed)
2063                 goto out;
2064
2065         ret = ocfs2_flush_truncate_log(osb);
2066         if (ret) {
2067                 mlog_errno(ret);
2068                 goto out;
2069         }
2070
2071         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2072                 jbd2_log_wait_commit(osb->journal->j_journal, target);
2073                 ret = 1;
2074         }
2075 out:
2076         return ret;
2077 }
2078
2079 int ocfs2_write_begin_nolock(struct file *filp,
2080                              struct address_space *mapping,
2081                              loff_t pos, unsigned len, unsigned flags,
2082                              struct page **pagep, void **fsdata,
2083                              struct buffer_head *di_bh, struct page *mmap_page)
2084 {
2085         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2086         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2087         struct ocfs2_write_ctxt *wc;
2088         struct inode *inode = mapping->host;
2089         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2090         struct ocfs2_dinode *di;
2091         struct ocfs2_alloc_context *data_ac = NULL;
2092         struct ocfs2_alloc_context *meta_ac = NULL;
2093         handle_t *handle;
2094         struct ocfs2_extent_tree et;
2095         int try_free = 1, ret1;
2096
2097 try_again:
2098         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2099         if (ret) {
2100                 mlog_errno(ret);
2101                 return ret;
2102         }
2103
2104         if (ocfs2_supports_inline_data(osb)) {
2105                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2106                                                      mmap_page, wc);
2107                 if (ret == 1) {
2108                         ret = 0;
2109                         goto success;
2110                 }
2111                 if (ret < 0) {
2112                         mlog_errno(ret);
2113                         goto out;
2114                 }
2115         }
2116
2117         if (ocfs2_sparse_alloc(osb))
2118                 ret = ocfs2_zero_tail(inode, di_bh, pos);
2119         else
2120                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2121                                                    wc);
2122         if (ret) {
2123                 mlog_errno(ret);
2124                 goto out;
2125         }
2126
2127         ret = ocfs2_check_range_for_refcount(inode, pos, len);
2128         if (ret < 0) {
2129                 mlog_errno(ret);
2130                 goto out;
2131         } else if (ret == 1) {
2132                 clusters_need = wc->w_clen;
2133                 ret = ocfs2_refcount_cow(inode, di_bh,
2134                                          wc->w_cpos, wc->w_clen, UINT_MAX);
2135                 if (ret) {
2136                         mlog_errno(ret);
2137                         goto out;
2138                 }
2139         }
2140
2141         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2142                                         &extents_to_split);
2143         if (ret) {
2144                 mlog_errno(ret);
2145                 goto out;
2146         }
2147         clusters_need += clusters_to_alloc;
2148
2149         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2150
2151         trace_ocfs2_write_begin_nolock(
2152                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2153                         (long long)i_size_read(inode),
2154                         le32_to_cpu(di->i_clusters),
2155                         pos, len, flags, mmap_page,
2156                         clusters_to_alloc, extents_to_split);
2157
2158         /*
2159          * We set w_target_from, w_target_to here so that
2160          * ocfs2_write_end() knows which range in the target page to
2161          * write out. An allocation requires that we write the entire
2162          * cluster range.
2163          */
2164         if (clusters_to_alloc || extents_to_split) {
2165                 /*
2166                  * XXX: We are stretching the limits of
2167                  * ocfs2_lock_allocators(). It greatly over-estimates
2168                  * the work to be done.
2169                  */
2170                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2171                                               wc->w_di_bh);
2172                 ret = ocfs2_lock_allocators(inode, &et,
2173                                             clusters_to_alloc, extents_to_split,
2174                                             &data_ac, &meta_ac);
2175                 if (ret) {
2176                         mlog_errno(ret);
2177                         goto out;
2178                 }
2179
2180                 if (data_ac)
2181                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2182
2183                 credits = ocfs2_calc_extend_credits(inode->i_sb,
2184                                                     &di->id2.i_list);
2185
2186         }
2187
2188         /*
2189          * We have to zero sparse allocated clusters, unwritten extent clusters,
2190          * and non-sparse clusters we just extended.  For non-sparse writes,
2191          * we know zeros will only be needed in the first and/or last cluster.
2192          */
2193         if (clusters_to_alloc || extents_to_split ||
2194             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2195                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2196                 cluster_of_pages = 1;
2197         else
2198                 cluster_of_pages = 0;
2199
2200         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2201
2202         handle = ocfs2_start_trans(osb, credits);
2203         if (IS_ERR(handle)) {
2204                 ret = PTR_ERR(handle);
2205                 mlog_errno(ret);
2206                 goto out;
2207         }
2208
2209         wc->w_handle = handle;
2210
2211         if (clusters_to_alloc) {
2212                 ret = dquot_alloc_space_nodirty(inode,
2213                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2214                 if (ret)
2215                         goto out_commit;
2216         }
2217
2218         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2219                                       OCFS2_JOURNAL_ACCESS_WRITE);
2220         if (ret) {
2221                 mlog_errno(ret);
2222                 goto out_quota;
2223         }
2224
2225         /*
2226          * Fill our page array first. That way we've grabbed enough so
2227          * that we can zero and flush if we error after adding the
2228          * extent.
2229          */
2230         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2231                                          cluster_of_pages, mmap_page);
2232         if (ret && ret != -EAGAIN) {
2233                 mlog_errno(ret);
2234                 goto out_quota;
2235         }
2236
2237         /*
2238          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2239          * the target page. In this case, we exit with no error and no target
2240          * page. This will trigger the caller, page_mkwrite(), to re-try
2241          * the operation.
2242          */
2243         if (ret == -EAGAIN) {
2244                 BUG_ON(wc->w_target_page);
2245                 ret = 0;
2246                 goto out_quota;
2247         }
2248
2249         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2250                                           len);
2251         if (ret) {
2252                 mlog_errno(ret);
2253                 goto out_quota;
2254         }
2255
2256         if (data_ac)
2257                 ocfs2_free_alloc_context(data_ac);
2258         if (meta_ac)
2259                 ocfs2_free_alloc_context(meta_ac);
2260
2261 success:
2262         *pagep = wc->w_target_page;
2263         *fsdata = wc;
2264         return 0;
2265 out_quota:
2266         if (clusters_to_alloc)
2267                 dquot_free_space(inode,
2268                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2269 out_commit:
2270         ocfs2_commit_trans(osb, handle);
2271
2272 out:
2273         ocfs2_free_write_ctxt(wc);
2274
2275         if (data_ac) {
2276                 ocfs2_free_alloc_context(data_ac);
2277                 data_ac = NULL;
2278         }
2279         if (meta_ac) {
2280                 ocfs2_free_alloc_context(meta_ac);
2281                 meta_ac = NULL;
2282         }
2283
2284         if (ret == -ENOSPC && try_free) {
2285                 /*
2286                  * Try to free some truncate log so that we can have enough
2287                  * clusters to allocate.
2288                  */
2289                 try_free = 0;
2290
2291                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2292                 if (ret1 == 1)
2293                         goto try_again;
2294
2295                 if (ret1 < 0)
2296                         mlog_errno(ret1);
2297         }
2298
2299         return ret;
2300 }
2301
2302 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2303                              loff_t pos, unsigned len, unsigned flags,
2304                              struct page **pagep, void **fsdata)
2305 {
2306         int ret;
2307         struct buffer_head *di_bh = NULL;
2308         struct inode *inode = mapping->host;
2309
2310         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2311         if (ret) {
2312                 mlog_errno(ret);
2313                 return ret;
2314         }
2315
2316         /*
2317          * Take alloc sem here to prevent concurrent lookups. That way
2318          * the mapping, zeroing and tree manipulation within
2319          * ocfs2_write() will be safe against ->readpage(). This
2320          * should also serve to lock out allocation from a shared
2321          * writeable region.
2322          */
2323         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2324
2325         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2326                                        fsdata, di_bh, NULL);
2327         if (ret) {
2328                 mlog_errno(ret);
2329                 goto out_fail;
2330         }
2331
2332         brelse(di_bh);
2333
2334         return 0;
2335
2336 out_fail:
2337         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2338
2339         brelse(di_bh);
2340         ocfs2_inode_unlock(inode, 1);
2341
2342         return ret;
2343 }
2344
2345 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2346                                    unsigned len, unsigned *copied,
2347                                    struct ocfs2_dinode *di,
2348                                    struct ocfs2_write_ctxt *wc)
2349 {
2350         void *kaddr;
2351
2352         if (unlikely(*copied < len)) {
2353                 if (!PageUptodate(wc->w_target_page)) {
2354                         *copied = 0;
2355                         return;
2356                 }
2357         }
2358
2359         kaddr = kmap_atomic(wc->w_target_page);
2360         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2361         kunmap_atomic(kaddr);
2362
2363         trace_ocfs2_write_end_inline(
2364              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2365              (unsigned long long)pos, *copied,
2366              le16_to_cpu(di->id2.i_data.id_count),
2367              le16_to_cpu(di->i_dyn_features));
2368 }
2369
2370 int ocfs2_write_end_nolock(struct address_space *mapping,
2371                            loff_t pos, unsigned len, unsigned copied,
2372                            struct page *page, void *fsdata)
2373 {
2374         int i, ret;
2375         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2376         struct inode *inode = mapping->host;
2377         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2378         struct ocfs2_write_ctxt *wc = fsdata;
2379         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2380         handle_t *handle = wc->w_handle;
2381         struct page *tmppage;
2382
2383         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2384                         OCFS2_JOURNAL_ACCESS_WRITE);
2385         if (ret) {
2386                 copied = ret;
2387                 mlog_errno(ret);
2388                 goto out;
2389         }
2390
2391         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2392                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2393                 goto out_write_size;
2394         }
2395
2396         if (unlikely(copied < len)) {
2397                 if (!PageUptodate(wc->w_target_page))
2398                         copied = 0;
2399
2400                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2401                                        start+len);
2402         }
2403         flush_dcache_page(wc->w_target_page);
2404
2405         for(i = 0; i < wc->w_num_pages; i++) {
2406                 tmppage = wc->w_pages[i];
2407
2408                 if (tmppage == wc->w_target_page) {
2409                         from = wc->w_target_from;
2410                         to = wc->w_target_to;
2411
2412                         BUG_ON(from > PAGE_CACHE_SIZE ||
2413                                to > PAGE_CACHE_SIZE ||
2414                                to < from);
2415                 } else {
2416                         /*
2417                          * Pages adjacent to the target (if any) imply
2418                          * a hole-filling write in which case we want
2419                          * to flush their entire range.
2420                          */
2421                         from = 0;
2422                         to = PAGE_CACHE_SIZE;
2423                 }
2424
2425                 if (page_has_buffers(tmppage)) {
2426                         if (ocfs2_should_order_data(inode))
2427                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2428                         block_commit_write(tmppage, from, to);
2429                 }
2430         }
2431
2432 out_write_size:
2433         pos += copied;
2434         if (pos > i_size_read(inode)) {
2435                 i_size_write(inode, pos);
2436                 mark_inode_dirty(inode);
2437         }
2438         inode->i_blocks = ocfs2_inode_sector_count(inode);
2439         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2440         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2441         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2442         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2443         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2444         ocfs2_journal_dirty(handle, wc->w_di_bh);
2445
2446 out:
2447         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2448          * lock, or it will cause a deadlock since journal commit threads holds
2449          * this lock and will ask for the page lock when flushing the data.
2450          * put it here to preserve the unlock order.
2451          */
2452         ocfs2_unlock_pages(wc);
2453
2454         ocfs2_commit_trans(osb, handle);
2455
2456         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2457
2458         brelse(wc->w_di_bh);
2459         kfree(wc);
2460
2461         return copied;
2462 }
2463
2464 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2465                            loff_t pos, unsigned len, unsigned copied,
2466                            struct page *page, void *fsdata)
2467 {
2468         int ret;
2469         struct inode *inode = mapping->host;
2470
2471         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2472
2473         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2474         ocfs2_inode_unlock(inode, 1);
2475
2476         return ret;
2477 }
2478
2479 const struct address_space_operations ocfs2_aops = {
2480         .readpage               = ocfs2_readpage,
2481         .readpages              = ocfs2_readpages,
2482         .writepage              = ocfs2_writepage,
2483         .write_begin            = ocfs2_write_begin,
2484         .write_end              = ocfs2_write_end,
2485         .bmap                   = ocfs2_bmap,
2486         .direct_IO              = ocfs2_direct_IO,
2487         .invalidatepage         = block_invalidatepage,
2488         .releasepage            = ocfs2_releasepage,
2489         .migratepage            = buffer_migrate_page,
2490         .is_partially_uptodate  = block_is_partially_uptodate,
2491         .error_remove_page      = generic_error_remove_page,
2492 };