]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/proc/task_mmu.c
ipc/msg.c: use freezable blocking call
[karo-tx-linux.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17
18 #include <asm/elf.h>
19 #include <asm/uaccess.h>
20 #include <asm/tlbflush.h>
21 #include "internal.h"
22
23 void task_mem(struct seq_file *m, struct mm_struct *mm)
24 {
25         unsigned long data, text, lib, swap, ptes, pmds;
26         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
27
28         /*
29          * Note: to minimize their overhead, mm maintains hiwater_vm and
30          * hiwater_rss only when about to *lower* total_vm or rss.  Any
31          * collector of these hiwater stats must therefore get total_vm
32          * and rss too, which will usually be the higher.  Barriers? not
33          * worth the effort, such snapshots can always be inconsistent.
34          */
35         hiwater_vm = total_vm = mm->total_vm;
36         if (hiwater_vm < mm->hiwater_vm)
37                 hiwater_vm = mm->hiwater_vm;
38         hiwater_rss = total_rss = get_mm_rss(mm);
39         if (hiwater_rss < mm->hiwater_rss)
40                 hiwater_rss = mm->hiwater_rss;
41
42         data = mm->total_vm - mm->shared_vm - mm->stack_vm;
43         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
44         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
45         swap = get_mm_counter(mm, MM_SWAPENTS);
46         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
47         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
48         seq_printf(m,
49                 "VmPeak:\t%8lu kB\n"
50                 "VmSize:\t%8lu kB\n"
51                 "VmLck:\t%8lu kB\n"
52                 "VmPin:\t%8lu kB\n"
53                 "VmHWM:\t%8lu kB\n"
54                 "VmRSS:\t%8lu kB\n"
55                 "VmData:\t%8lu kB\n"
56                 "VmStk:\t%8lu kB\n"
57                 "VmExe:\t%8lu kB\n"
58                 "VmLib:\t%8lu kB\n"
59                 "VmPTE:\t%8lu kB\n"
60                 "VmPMD:\t%8lu kB\n"
61                 "VmSwap:\t%8lu kB\n",
62                 hiwater_vm << (PAGE_SHIFT-10),
63                 total_vm << (PAGE_SHIFT-10),
64                 mm->locked_vm << (PAGE_SHIFT-10),
65                 mm->pinned_vm << (PAGE_SHIFT-10),
66                 hiwater_rss << (PAGE_SHIFT-10),
67                 total_rss << (PAGE_SHIFT-10),
68                 data << (PAGE_SHIFT-10),
69                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
70                 ptes >> 10,
71                 pmds >> 10,
72                 swap << (PAGE_SHIFT-10));
73         hugetlb_report_usage(m, mm);
74 }
75
76 unsigned long task_vsize(struct mm_struct *mm)
77 {
78         return PAGE_SIZE * mm->total_vm;
79 }
80
81 unsigned long task_statm(struct mm_struct *mm,
82                          unsigned long *shared, unsigned long *text,
83                          unsigned long *data, unsigned long *resident)
84 {
85         *shared = get_mm_counter(mm, MM_FILEPAGES);
86         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
87                                                                 >> PAGE_SHIFT;
88         *data = mm->total_vm - mm->shared_vm;
89         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
90         return mm->total_vm;
91 }
92
93 #ifdef CONFIG_NUMA
94 /*
95  * Save get_task_policy() for show_numa_map().
96  */
97 static void hold_task_mempolicy(struct proc_maps_private *priv)
98 {
99         struct task_struct *task = priv->task;
100
101         task_lock(task);
102         priv->task_mempolicy = get_task_policy(task);
103         mpol_get(priv->task_mempolicy);
104         task_unlock(task);
105 }
106 static void release_task_mempolicy(struct proc_maps_private *priv)
107 {
108         mpol_put(priv->task_mempolicy);
109 }
110 #else
111 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 {
113 }
114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116 }
117 #endif
118
119 static void vma_stop(struct proc_maps_private *priv)
120 {
121         struct mm_struct *mm = priv->mm;
122
123         release_task_mempolicy(priv);
124         up_read(&mm->mmap_sem);
125         mmput(mm);
126 }
127
128 static struct vm_area_struct *
129 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
130 {
131         if (vma == priv->tail_vma)
132                 return NULL;
133         return vma->vm_next ?: priv->tail_vma;
134 }
135
136 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
137 {
138         if (m->count < m->size) /* vma is copied successfully */
139                 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
140 }
141
142 static void *m_start(struct seq_file *m, loff_t *ppos)
143 {
144         struct proc_maps_private *priv = m->private;
145         unsigned long last_addr = m->version;
146         struct mm_struct *mm;
147         struct vm_area_struct *vma;
148         unsigned int pos = *ppos;
149
150         /* See m_cache_vma(). Zero at the start or after lseek. */
151         if (last_addr == -1UL)
152                 return NULL;
153
154         priv->task = get_proc_task(priv->inode);
155         if (!priv->task)
156                 return ERR_PTR(-ESRCH);
157
158         mm = priv->mm;
159         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
160                 return NULL;
161
162         down_read(&mm->mmap_sem);
163         hold_task_mempolicy(priv);
164         priv->tail_vma = get_gate_vma(mm);
165
166         if (last_addr) {
167                 vma = find_vma(mm, last_addr);
168                 if (vma && (vma = m_next_vma(priv, vma)))
169                         return vma;
170         }
171
172         m->version = 0;
173         if (pos < mm->map_count) {
174                 for (vma = mm->mmap; pos; pos--) {
175                         m->version = vma->vm_start;
176                         vma = vma->vm_next;
177                 }
178                 return vma;
179         }
180
181         /* we do not bother to update m->version in this case */
182         if (pos == mm->map_count && priv->tail_vma)
183                 return priv->tail_vma;
184
185         vma_stop(priv);
186         return NULL;
187 }
188
189 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
190 {
191         struct proc_maps_private *priv = m->private;
192         struct vm_area_struct *next;
193
194         (*pos)++;
195         next = m_next_vma(priv, v);
196         if (!next)
197                 vma_stop(priv);
198         return next;
199 }
200
201 static void m_stop(struct seq_file *m, void *v)
202 {
203         struct proc_maps_private *priv = m->private;
204
205         if (!IS_ERR_OR_NULL(v))
206                 vma_stop(priv);
207         if (priv->task) {
208                 put_task_struct(priv->task);
209                 priv->task = NULL;
210         }
211 }
212
213 static int proc_maps_open(struct inode *inode, struct file *file,
214                         const struct seq_operations *ops, int psize)
215 {
216         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
217
218         if (!priv)
219                 return -ENOMEM;
220
221         priv->inode = inode;
222         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
223         if (IS_ERR(priv->mm)) {
224                 int err = PTR_ERR(priv->mm);
225
226                 seq_release_private(inode, file);
227                 return err;
228         }
229
230         return 0;
231 }
232
233 static int proc_map_release(struct inode *inode, struct file *file)
234 {
235         struct seq_file *seq = file->private_data;
236         struct proc_maps_private *priv = seq->private;
237
238         if (priv->mm)
239                 mmdrop(priv->mm);
240
241         return seq_release_private(inode, file);
242 }
243
244 static int do_maps_open(struct inode *inode, struct file *file,
245                         const struct seq_operations *ops)
246 {
247         return proc_maps_open(inode, file, ops,
248                                 sizeof(struct proc_maps_private));
249 }
250
251 static pid_t pid_of_stack(struct proc_maps_private *priv,
252                                 struct vm_area_struct *vma, bool is_pid)
253 {
254         struct inode *inode = priv->inode;
255         struct task_struct *task;
256         pid_t ret = 0;
257
258         rcu_read_lock();
259         task = pid_task(proc_pid(inode), PIDTYPE_PID);
260         if (task) {
261                 task = task_of_stack(task, vma, is_pid);
262                 if (task)
263                         ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
264         }
265         rcu_read_unlock();
266
267         return ret;
268 }
269
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
272 {
273         struct mm_struct *mm = vma->vm_mm;
274         struct file *file = vma->vm_file;
275         struct proc_maps_private *priv = m->private;
276         vm_flags_t flags = vma->vm_flags;
277         unsigned long ino = 0;
278         unsigned long long pgoff = 0;
279         unsigned long start, end;
280         dev_t dev = 0;
281         const char *name = NULL;
282
283         if (file) {
284                 struct inode *inode = file_inode(vma->vm_file);
285                 dev = inode->i_sb->s_dev;
286                 ino = inode->i_ino;
287                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
288         }
289
290         /* We don't show the stack guard page in /proc/maps */
291         start = vma->vm_start;
292         if (stack_guard_page_start(vma, start))
293                 start += PAGE_SIZE;
294         end = vma->vm_end;
295         if (stack_guard_page_end(vma, end))
296                 end -= PAGE_SIZE;
297
298         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
299         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
300                         start,
301                         end,
302                         flags & VM_READ ? 'r' : '-',
303                         flags & VM_WRITE ? 'w' : '-',
304                         flags & VM_EXEC ? 'x' : '-',
305                         flags & VM_MAYSHARE ? 's' : 'p',
306                         pgoff,
307                         MAJOR(dev), MINOR(dev), ino);
308
309         /*
310          * Print the dentry name for named mappings, and a
311          * special [heap] marker for the heap:
312          */
313         if (file) {
314                 seq_pad(m, ' ');
315                 seq_file_path(m, file, "\n");
316                 goto done;
317         }
318
319         if (vma->vm_ops && vma->vm_ops->name) {
320                 name = vma->vm_ops->name(vma);
321                 if (name)
322                         goto done;
323         }
324
325         name = arch_vma_name(vma);
326         if (!name) {
327                 pid_t tid;
328
329                 if (!mm) {
330                         name = "[vdso]";
331                         goto done;
332                 }
333
334                 if (vma->vm_start <= mm->brk &&
335                     vma->vm_end >= mm->start_brk) {
336                         name = "[heap]";
337                         goto done;
338                 }
339
340                 tid = pid_of_stack(priv, vma, is_pid);
341                 if (tid != 0) {
342                         /*
343                          * Thread stack in /proc/PID/task/TID/maps or
344                          * the main process stack.
345                          */
346                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
347                             vma->vm_end >= mm->start_stack)) {
348                                 name = "[stack]";
349                         } else {
350                                 /* Thread stack in /proc/PID/maps */
351                                 seq_pad(m, ' ');
352                                 seq_printf(m, "[stack:%d]", tid);
353                         }
354                 }
355         }
356
357 done:
358         if (name) {
359                 seq_pad(m, ' ');
360                 seq_puts(m, name);
361         }
362         seq_putc(m, '\n');
363 }
364
365 static int show_map(struct seq_file *m, void *v, int is_pid)
366 {
367         show_map_vma(m, v, is_pid);
368         m_cache_vma(m, v);
369         return 0;
370 }
371
372 static int show_pid_map(struct seq_file *m, void *v)
373 {
374         return show_map(m, v, 1);
375 }
376
377 static int show_tid_map(struct seq_file *m, void *v)
378 {
379         return show_map(m, v, 0);
380 }
381
382 static const struct seq_operations proc_pid_maps_op = {
383         .start  = m_start,
384         .next   = m_next,
385         .stop   = m_stop,
386         .show   = show_pid_map
387 };
388
389 static const struct seq_operations proc_tid_maps_op = {
390         .start  = m_start,
391         .next   = m_next,
392         .stop   = m_stop,
393         .show   = show_tid_map
394 };
395
396 static int pid_maps_open(struct inode *inode, struct file *file)
397 {
398         return do_maps_open(inode, file, &proc_pid_maps_op);
399 }
400
401 static int tid_maps_open(struct inode *inode, struct file *file)
402 {
403         return do_maps_open(inode, file, &proc_tid_maps_op);
404 }
405
406 const struct file_operations proc_pid_maps_operations = {
407         .open           = pid_maps_open,
408         .read           = seq_read,
409         .llseek         = seq_lseek,
410         .release        = proc_map_release,
411 };
412
413 const struct file_operations proc_tid_maps_operations = {
414         .open           = tid_maps_open,
415         .read           = seq_read,
416         .llseek         = seq_lseek,
417         .release        = proc_map_release,
418 };
419
420 /*
421  * Proportional Set Size(PSS): my share of RSS.
422  *
423  * PSS of a process is the count of pages it has in memory, where each
424  * page is divided by the number of processes sharing it.  So if a
425  * process has 1000 pages all to itself, and 1000 shared with one other
426  * process, its PSS will be 1500.
427  *
428  * To keep (accumulated) division errors low, we adopt a 64bit
429  * fixed-point pss counter to minimize division errors. So (pss >>
430  * PSS_SHIFT) would be the real byte count.
431  *
432  * A shift of 12 before division means (assuming 4K page size):
433  *      - 1M 3-user-pages add up to 8KB errors;
434  *      - supports mapcount up to 2^24, or 16M;
435  *      - supports PSS up to 2^52 bytes, or 4PB.
436  */
437 #define PSS_SHIFT 12
438
439 #ifdef CONFIG_PROC_PAGE_MONITOR
440 struct mem_size_stats {
441         unsigned long resident;
442         unsigned long shared_clean;
443         unsigned long shared_dirty;
444         unsigned long private_clean;
445         unsigned long private_dirty;
446         unsigned long referenced;
447         unsigned long anonymous;
448         unsigned long anonymous_thp;
449         unsigned long swap;
450         unsigned long shared_hugetlb;
451         unsigned long private_hugetlb;
452         u64 pss;
453         u64 swap_pss;
454 };
455
456 static void smaps_account(struct mem_size_stats *mss, struct page *page,
457                 bool compound, bool young, bool dirty)
458 {
459         int i, nr = compound ? HPAGE_PMD_NR : 1;
460         unsigned long size = nr * PAGE_SIZE;
461
462         if (PageAnon(page))
463                 mss->anonymous += size;
464
465         mss->resident += size;
466         /* Accumulate the size in pages that have been accessed. */
467         if (young || page_is_young(page) || PageReferenced(page))
468                 mss->referenced += size;
469
470         /*
471          * page_count(page) == 1 guarantees the page is mapped exactly once.
472          * If any subpage of the compound page mapped with PTE it would elevate
473          * page_count().
474          */
475         if (page_count(page) == 1) {
476                 if (dirty || PageDirty(page))
477                         mss->private_dirty += size;
478                 else
479                         mss->private_clean += size;
480                 mss->pss += (u64)size << PSS_SHIFT;
481                 return;
482         }
483
484         for (i = 0; i < nr; i++, page++) {
485                 int mapcount = page_mapcount(page);
486
487                 if (mapcount >= 2) {
488                         if (dirty || PageDirty(page))
489                                 mss->shared_dirty += PAGE_SIZE;
490                         else
491                                 mss->shared_clean += PAGE_SIZE;
492                         mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
493                 } else {
494                         if (dirty || PageDirty(page))
495                                 mss->private_dirty += PAGE_SIZE;
496                         else
497                                 mss->private_clean += PAGE_SIZE;
498                         mss->pss += PAGE_SIZE << PSS_SHIFT;
499                 }
500         }
501 }
502
503 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
504                 struct mm_walk *walk)
505 {
506         struct mem_size_stats *mss = walk->private;
507         struct vm_area_struct *vma = walk->vma;
508         struct page *page = NULL;
509
510         if (pte_present(*pte)) {
511                 page = vm_normal_page(vma, addr, *pte);
512         } else if (is_swap_pte(*pte)) {
513                 swp_entry_t swpent = pte_to_swp_entry(*pte);
514
515                 if (!non_swap_entry(swpent)) {
516                         int mapcount;
517
518                         mss->swap += PAGE_SIZE;
519                         mapcount = swp_swapcount(swpent);
520                         if (mapcount >= 2) {
521                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
522
523                                 do_div(pss_delta, mapcount);
524                                 mss->swap_pss += pss_delta;
525                         } else {
526                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
527                         }
528                 } else if (is_migration_entry(swpent))
529                         page = migration_entry_to_page(swpent);
530         }
531
532         if (!page)
533                 return;
534
535         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
536 }
537
538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
539 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
540                 struct mm_walk *walk)
541 {
542         struct mem_size_stats *mss = walk->private;
543         struct vm_area_struct *vma = walk->vma;
544         struct page *page;
545
546         /* FOLL_DUMP will return -EFAULT on huge zero page */
547         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
548         if (IS_ERR_OR_NULL(page))
549                 return;
550         mss->anonymous_thp += HPAGE_PMD_SIZE;
551         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
552 }
553 #else
554 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
555                 struct mm_walk *walk)
556 {
557 }
558 #endif
559
560 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
561                            struct mm_walk *walk)
562 {
563         struct vm_area_struct *vma = walk->vma;
564         pte_t *pte;
565         spinlock_t *ptl;
566
567         if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
568                 smaps_pmd_entry(pmd, addr, walk);
569                 spin_unlock(ptl);
570                 return 0;
571         }
572
573         if (pmd_trans_unstable(pmd))
574                 return 0;
575         /*
576          * The mmap_sem held all the way back in m_start() is what
577          * keeps khugepaged out of here and from collapsing things
578          * in here.
579          */
580         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
581         for (; addr != end; pte++, addr += PAGE_SIZE)
582                 smaps_pte_entry(pte, addr, walk);
583         pte_unmap_unlock(pte - 1, ptl);
584         cond_resched();
585         return 0;
586 }
587
588 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
589 {
590         /*
591          * Don't forget to update Documentation/ on changes.
592          */
593         static const char mnemonics[BITS_PER_LONG][2] = {
594                 /*
595                  * In case if we meet a flag we don't know about.
596                  */
597                 [0 ... (BITS_PER_LONG-1)] = "??",
598
599                 [ilog2(VM_READ)]        = "rd",
600                 [ilog2(VM_WRITE)]       = "wr",
601                 [ilog2(VM_EXEC)]        = "ex",
602                 [ilog2(VM_SHARED)]      = "sh",
603                 [ilog2(VM_MAYREAD)]     = "mr",
604                 [ilog2(VM_MAYWRITE)]    = "mw",
605                 [ilog2(VM_MAYEXEC)]     = "me",
606                 [ilog2(VM_MAYSHARE)]    = "ms",
607                 [ilog2(VM_GROWSDOWN)]   = "gd",
608                 [ilog2(VM_PFNMAP)]      = "pf",
609                 [ilog2(VM_DENYWRITE)]   = "dw",
610 #ifdef CONFIG_X86_INTEL_MPX
611                 [ilog2(VM_MPX)]         = "mp",
612 #endif
613                 [ilog2(VM_LOCKED)]      = "lo",
614                 [ilog2(VM_IO)]          = "io",
615                 [ilog2(VM_SEQ_READ)]    = "sr",
616                 [ilog2(VM_RAND_READ)]   = "rr",
617                 [ilog2(VM_DONTCOPY)]    = "dc",
618                 [ilog2(VM_DONTEXPAND)]  = "de",
619                 [ilog2(VM_ACCOUNT)]     = "ac",
620                 [ilog2(VM_NORESERVE)]   = "nr",
621                 [ilog2(VM_HUGETLB)]     = "ht",
622                 [ilog2(VM_ARCH_1)]      = "ar",
623                 [ilog2(VM_DONTDUMP)]    = "dd",
624 #ifdef CONFIG_MEM_SOFT_DIRTY
625                 [ilog2(VM_SOFTDIRTY)]   = "sd",
626 #endif
627                 [ilog2(VM_MIXEDMAP)]    = "mm",
628                 [ilog2(VM_HUGEPAGE)]    = "hg",
629                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
630                 [ilog2(VM_MERGEABLE)]   = "mg",
631                 [ilog2(VM_UFFD_MISSING)]= "um",
632                 [ilog2(VM_UFFD_WP)]     = "uw",
633         };
634         size_t i;
635
636         seq_puts(m, "VmFlags: ");
637         for (i = 0; i < BITS_PER_LONG; i++) {
638                 if (vma->vm_flags & (1UL << i)) {
639                         seq_printf(m, "%c%c ",
640                                    mnemonics[i][0], mnemonics[i][1]);
641                 }
642         }
643         seq_putc(m, '\n');
644 }
645
646 #ifdef CONFIG_HUGETLB_PAGE
647 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
648                                  unsigned long addr, unsigned long end,
649                                  struct mm_walk *walk)
650 {
651         struct mem_size_stats *mss = walk->private;
652         struct vm_area_struct *vma = walk->vma;
653         struct page *page = NULL;
654
655         if (pte_present(*pte)) {
656                 page = vm_normal_page(vma, addr, *pte);
657         } else if (is_swap_pte(*pte)) {
658                 swp_entry_t swpent = pte_to_swp_entry(*pte);
659
660                 if (is_migration_entry(swpent))
661                         page = migration_entry_to_page(swpent);
662         }
663         if (page) {
664                 int mapcount = page_mapcount(page);
665
666                 if (mapcount >= 2)
667                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
668                 else
669                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
670         }
671         return 0;
672 }
673 #endif /* HUGETLB_PAGE */
674
675 static int show_smap(struct seq_file *m, void *v, int is_pid)
676 {
677         struct vm_area_struct *vma = v;
678         struct mem_size_stats mss;
679         struct mm_walk smaps_walk = {
680                 .pmd_entry = smaps_pte_range,
681 #ifdef CONFIG_HUGETLB_PAGE
682                 .hugetlb_entry = smaps_hugetlb_range,
683 #endif
684                 .mm = vma->vm_mm,
685                 .private = &mss,
686         };
687
688         memset(&mss, 0, sizeof mss);
689         /* mmap_sem is held in m_start */
690         walk_page_vma(vma, &smaps_walk);
691
692         show_map_vma(m, vma, is_pid);
693
694         seq_printf(m,
695                    "Size:           %8lu kB\n"
696                    "Rss:            %8lu kB\n"
697                    "Pss:            %8lu kB\n"
698                    "Shared_Clean:   %8lu kB\n"
699                    "Shared_Dirty:   %8lu kB\n"
700                    "Private_Clean:  %8lu kB\n"
701                    "Private_Dirty:  %8lu kB\n"
702                    "Referenced:     %8lu kB\n"
703                    "Anonymous:      %8lu kB\n"
704                    "AnonHugePages:  %8lu kB\n"
705                    "Shared_Hugetlb: %8lu kB\n"
706                    "Private_Hugetlb: %8lu kB\n"
707                    "Swap:           %8lu kB\n"
708                    "SwapPss:        %8lu kB\n"
709                    "KernelPageSize: %8lu kB\n"
710                    "MMUPageSize:    %8lu kB\n"
711                    "Locked:         %8lu kB\n",
712                    (vma->vm_end - vma->vm_start) >> 10,
713                    mss.resident >> 10,
714                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
715                    mss.shared_clean  >> 10,
716                    mss.shared_dirty  >> 10,
717                    mss.private_clean >> 10,
718                    mss.private_dirty >> 10,
719                    mss.referenced >> 10,
720                    mss.anonymous >> 10,
721                    mss.anonymous_thp >> 10,
722                    mss.shared_hugetlb >> 10,
723                    mss.private_hugetlb >> 10,
724                    mss.swap >> 10,
725                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
726                    vma_kernel_pagesize(vma) >> 10,
727                    vma_mmu_pagesize(vma) >> 10,
728                    (vma->vm_flags & VM_LOCKED) ?
729                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
730
731         show_smap_vma_flags(m, vma);
732         m_cache_vma(m, vma);
733         return 0;
734 }
735
736 static int show_pid_smap(struct seq_file *m, void *v)
737 {
738         return show_smap(m, v, 1);
739 }
740
741 static int show_tid_smap(struct seq_file *m, void *v)
742 {
743         return show_smap(m, v, 0);
744 }
745
746 static const struct seq_operations proc_pid_smaps_op = {
747         .start  = m_start,
748         .next   = m_next,
749         .stop   = m_stop,
750         .show   = show_pid_smap
751 };
752
753 static const struct seq_operations proc_tid_smaps_op = {
754         .start  = m_start,
755         .next   = m_next,
756         .stop   = m_stop,
757         .show   = show_tid_smap
758 };
759
760 static int pid_smaps_open(struct inode *inode, struct file *file)
761 {
762         return do_maps_open(inode, file, &proc_pid_smaps_op);
763 }
764
765 static int tid_smaps_open(struct inode *inode, struct file *file)
766 {
767         return do_maps_open(inode, file, &proc_tid_smaps_op);
768 }
769
770 const struct file_operations proc_pid_smaps_operations = {
771         .open           = pid_smaps_open,
772         .read           = seq_read,
773         .llseek         = seq_lseek,
774         .release        = proc_map_release,
775 };
776
777 const struct file_operations proc_tid_smaps_operations = {
778         .open           = tid_smaps_open,
779         .read           = seq_read,
780         .llseek         = seq_lseek,
781         .release        = proc_map_release,
782 };
783
784 enum clear_refs_types {
785         CLEAR_REFS_ALL = 1,
786         CLEAR_REFS_ANON,
787         CLEAR_REFS_MAPPED,
788         CLEAR_REFS_SOFT_DIRTY,
789         CLEAR_REFS_MM_HIWATER_RSS,
790         CLEAR_REFS_LAST,
791 };
792
793 struct clear_refs_private {
794         enum clear_refs_types type;
795 };
796
797 #ifdef CONFIG_MEM_SOFT_DIRTY
798 static inline void clear_soft_dirty(struct vm_area_struct *vma,
799                 unsigned long addr, pte_t *pte)
800 {
801         /*
802          * The soft-dirty tracker uses #PF-s to catch writes
803          * to pages, so write-protect the pte as well. See the
804          * Documentation/vm/soft-dirty.txt for full description
805          * of how soft-dirty works.
806          */
807         pte_t ptent = *pte;
808
809         if (pte_present(ptent)) {
810                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
811                 ptent = pte_wrprotect(ptent);
812                 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
813                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
814         } else if (is_swap_pte(ptent)) {
815                 ptent = pte_swp_clear_soft_dirty(ptent);
816                 set_pte_at(vma->vm_mm, addr, pte, ptent);
817         }
818 }
819 #else
820 static inline void clear_soft_dirty(struct vm_area_struct *vma,
821                 unsigned long addr, pte_t *pte)
822 {
823 }
824 #endif
825
826 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
827 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
828                 unsigned long addr, pmd_t *pmdp)
829 {
830         pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
831
832         pmd = pmd_wrprotect(pmd);
833         pmd = pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
834
835         if (vma->vm_flags & VM_SOFTDIRTY)
836                 vma->vm_flags &= ~VM_SOFTDIRTY;
837
838         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
839 }
840 #else
841 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
842                 unsigned long addr, pmd_t *pmdp)
843 {
844 }
845 #endif
846
847 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
848                                 unsigned long end, struct mm_walk *walk)
849 {
850         struct clear_refs_private *cp = walk->private;
851         struct vm_area_struct *vma = walk->vma;
852         pte_t *pte, ptent;
853         spinlock_t *ptl;
854         struct page *page;
855
856         if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
857                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
858                         clear_soft_dirty_pmd(vma, addr, pmd);
859                         goto out;
860                 }
861
862                 page = pmd_page(*pmd);
863
864                 /* Clear accessed and referenced bits. */
865                 pmdp_test_and_clear_young(vma, addr, pmd);
866                 test_and_clear_page_young(page);
867                 ClearPageReferenced(page);
868 out:
869                 spin_unlock(ptl);
870                 return 0;
871         }
872
873         if (pmd_trans_unstable(pmd))
874                 return 0;
875
876         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
877         for (; addr != end; pte++, addr += PAGE_SIZE) {
878                 ptent = *pte;
879
880                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
881                         clear_soft_dirty(vma, addr, pte);
882                         continue;
883                 }
884
885                 if (!pte_present(ptent))
886                         continue;
887
888                 page = vm_normal_page(vma, addr, ptent);
889                 if (!page)
890                         continue;
891
892                 /* Clear accessed and referenced bits. */
893                 ptep_test_and_clear_young(vma, addr, pte);
894                 test_and_clear_page_young(page);
895                 ClearPageReferenced(page);
896         }
897         pte_unmap_unlock(pte - 1, ptl);
898         cond_resched();
899         return 0;
900 }
901
902 static int clear_refs_test_walk(unsigned long start, unsigned long end,
903                                 struct mm_walk *walk)
904 {
905         struct clear_refs_private *cp = walk->private;
906         struct vm_area_struct *vma = walk->vma;
907
908         if (vma->vm_flags & VM_PFNMAP)
909                 return 1;
910
911         /*
912          * Writing 1 to /proc/pid/clear_refs affects all pages.
913          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
914          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
915          * Writing 4 to /proc/pid/clear_refs affects all pages.
916          */
917         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
918                 return 1;
919         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
920                 return 1;
921         return 0;
922 }
923
924 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
925                                 size_t count, loff_t *ppos)
926 {
927         struct task_struct *task;
928         char buffer[PROC_NUMBUF];
929         struct mm_struct *mm;
930         struct vm_area_struct *vma;
931         enum clear_refs_types type;
932         int itype;
933         int rv;
934
935         memset(buffer, 0, sizeof(buffer));
936         if (count > sizeof(buffer) - 1)
937                 count = sizeof(buffer) - 1;
938         if (copy_from_user(buffer, buf, count))
939                 return -EFAULT;
940         rv = kstrtoint(strstrip(buffer), 10, &itype);
941         if (rv < 0)
942                 return rv;
943         type = (enum clear_refs_types)itype;
944         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
945                 return -EINVAL;
946
947         task = get_proc_task(file_inode(file));
948         if (!task)
949                 return -ESRCH;
950         mm = get_task_mm(task);
951         if (mm) {
952                 struct clear_refs_private cp = {
953                         .type = type,
954                 };
955                 struct mm_walk clear_refs_walk = {
956                         .pmd_entry = clear_refs_pte_range,
957                         .test_walk = clear_refs_test_walk,
958                         .mm = mm,
959                         .private = &cp,
960                 };
961
962                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
963                         /*
964                          * Writing 5 to /proc/pid/clear_refs resets the peak
965                          * resident set size to this mm's current rss value.
966                          */
967                         down_write(&mm->mmap_sem);
968                         reset_mm_hiwater_rss(mm);
969                         up_write(&mm->mmap_sem);
970                         goto out_mm;
971                 }
972
973                 down_read(&mm->mmap_sem);
974                 if (type == CLEAR_REFS_SOFT_DIRTY) {
975                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
976                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
977                                         continue;
978                                 up_read(&mm->mmap_sem);
979                                 down_write(&mm->mmap_sem);
980                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
981                                         vma->vm_flags &= ~VM_SOFTDIRTY;
982                                         vma_set_page_prot(vma);
983                                 }
984                                 downgrade_write(&mm->mmap_sem);
985                                 break;
986                         }
987                         mmu_notifier_invalidate_range_start(mm, 0, -1);
988                 }
989                 walk_page_range(0, ~0UL, &clear_refs_walk);
990                 if (type == CLEAR_REFS_SOFT_DIRTY)
991                         mmu_notifier_invalidate_range_end(mm, 0, -1);
992                 flush_tlb_mm(mm);
993                 up_read(&mm->mmap_sem);
994 out_mm:
995                 mmput(mm);
996         }
997         put_task_struct(task);
998
999         return count;
1000 }
1001
1002 const struct file_operations proc_clear_refs_operations = {
1003         .write          = clear_refs_write,
1004         .llseek         = noop_llseek,
1005 };
1006
1007 typedef struct {
1008         u64 pme;
1009 } pagemap_entry_t;
1010
1011 struct pagemapread {
1012         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1013         pagemap_entry_t *buffer;
1014         bool show_pfn;
1015 };
1016
1017 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1018 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1019
1020 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1021 #define PM_PFRAME_BITS          55
1022 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1023 #define PM_SOFT_DIRTY           BIT_ULL(55)
1024 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1025 #define PM_FILE                 BIT_ULL(61)
1026 #define PM_SWAP                 BIT_ULL(62)
1027 #define PM_PRESENT              BIT_ULL(63)
1028
1029 #define PM_END_OF_BUFFER    1
1030
1031 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1032 {
1033         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1034 }
1035
1036 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1037                           struct pagemapread *pm)
1038 {
1039         pm->buffer[pm->pos++] = *pme;
1040         if (pm->pos >= pm->len)
1041                 return PM_END_OF_BUFFER;
1042         return 0;
1043 }
1044
1045 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1046                                 struct mm_walk *walk)
1047 {
1048         struct pagemapread *pm = walk->private;
1049         unsigned long addr = start;
1050         int err = 0;
1051
1052         while (addr < end) {
1053                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1054                 pagemap_entry_t pme = make_pme(0, 0);
1055                 /* End of address space hole, which we mark as non-present. */
1056                 unsigned long hole_end;
1057
1058                 if (vma)
1059                         hole_end = min(end, vma->vm_start);
1060                 else
1061                         hole_end = end;
1062
1063                 for (; addr < hole_end; addr += PAGE_SIZE) {
1064                         err = add_to_pagemap(addr, &pme, pm);
1065                         if (err)
1066                                 goto out;
1067                 }
1068
1069                 if (!vma)
1070                         break;
1071
1072                 /* Addresses in the VMA. */
1073                 if (vma->vm_flags & VM_SOFTDIRTY)
1074                         pme = make_pme(0, PM_SOFT_DIRTY);
1075                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1076                         err = add_to_pagemap(addr, &pme, pm);
1077                         if (err)
1078                                 goto out;
1079                 }
1080         }
1081 out:
1082         return err;
1083 }
1084
1085 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1086                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1087 {
1088         u64 frame = 0, flags = 0;
1089         struct page *page = NULL;
1090
1091         if (pte_present(pte)) {
1092                 if (pm->show_pfn)
1093                         frame = pte_pfn(pte);
1094                 flags |= PM_PRESENT;
1095                 page = vm_normal_page(vma, addr, pte);
1096                 if (pte_soft_dirty(pte))
1097                         flags |= PM_SOFT_DIRTY;
1098         } else if (is_swap_pte(pte)) {
1099                 swp_entry_t entry;
1100                 if (pte_swp_soft_dirty(pte))
1101                         flags |= PM_SOFT_DIRTY;
1102                 entry = pte_to_swp_entry(pte);
1103                 frame = swp_type(entry) |
1104                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1105                 flags |= PM_SWAP;
1106                 if (is_migration_entry(entry))
1107                         page = migration_entry_to_page(entry);
1108         }
1109
1110         if (page && !PageAnon(page))
1111                 flags |= PM_FILE;
1112         if (page && page_mapcount(page) == 1)
1113                 flags |= PM_MMAP_EXCLUSIVE;
1114         if (vma->vm_flags & VM_SOFTDIRTY)
1115                 flags |= PM_SOFT_DIRTY;
1116
1117         return make_pme(frame, flags);
1118 }
1119
1120 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1121                              struct mm_walk *walk)
1122 {
1123         struct vm_area_struct *vma = walk->vma;
1124         struct pagemapread *pm = walk->private;
1125         spinlock_t *ptl;
1126         pte_t *pte, *orig_pte;
1127         int err = 0;
1128
1129 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1130         if (pmd_trans_huge_lock(pmdp, vma, &ptl)) {
1131                 u64 flags = 0, frame = 0;
1132                 pmd_t pmd = *pmdp;
1133
1134                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1135                         flags |= PM_SOFT_DIRTY;
1136
1137                 /*
1138                  * Currently pmd for thp is always present because thp
1139                  * can not be swapped-out, migrated, or HWPOISONed
1140                  * (split in such cases instead.)
1141                  * This if-check is just to prepare for future implementation.
1142                  */
1143                 if (pmd_present(pmd)) {
1144                         struct page *page = pmd_page(pmd);
1145
1146                         if (page_mapcount(page) == 1)
1147                                 flags |= PM_MMAP_EXCLUSIVE;
1148
1149                         flags |= PM_PRESENT;
1150                         if (pm->show_pfn)
1151                                 frame = pmd_pfn(pmd) +
1152                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1153                 }
1154
1155                 for (; addr != end; addr += PAGE_SIZE) {
1156                         pagemap_entry_t pme = make_pme(frame, flags);
1157
1158                         err = add_to_pagemap(addr, &pme, pm);
1159                         if (err)
1160                                 break;
1161                         if (pm->show_pfn && (flags & PM_PRESENT))
1162                                 frame++;
1163                 }
1164                 spin_unlock(ptl);
1165                 return err;
1166         }
1167
1168         if (pmd_trans_unstable(pmdp))
1169                 return 0;
1170 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1171
1172         /*
1173          * We can assume that @vma always points to a valid one and @end never
1174          * goes beyond vma->vm_end.
1175          */
1176         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1177         for (; addr < end; pte++, addr += PAGE_SIZE) {
1178                 pagemap_entry_t pme;
1179
1180                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1181                 err = add_to_pagemap(addr, &pme, pm);
1182                 if (err)
1183                         break;
1184         }
1185         pte_unmap_unlock(orig_pte, ptl);
1186
1187         cond_resched();
1188
1189         return err;
1190 }
1191
1192 #ifdef CONFIG_HUGETLB_PAGE
1193 /* This function walks within one hugetlb entry in the single call */
1194 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1195                                  unsigned long addr, unsigned long end,
1196                                  struct mm_walk *walk)
1197 {
1198         struct pagemapread *pm = walk->private;
1199         struct vm_area_struct *vma = walk->vma;
1200         u64 flags = 0, frame = 0;
1201         int err = 0;
1202         pte_t pte;
1203
1204         if (vma->vm_flags & VM_SOFTDIRTY)
1205                 flags |= PM_SOFT_DIRTY;
1206
1207         pte = huge_ptep_get(ptep);
1208         if (pte_present(pte)) {
1209                 struct page *page = pte_page(pte);
1210
1211                 if (!PageAnon(page))
1212                         flags |= PM_FILE;
1213
1214                 if (page_mapcount(page) == 1)
1215                         flags |= PM_MMAP_EXCLUSIVE;
1216
1217                 flags |= PM_PRESENT;
1218                 if (pm->show_pfn)
1219                         frame = pte_pfn(pte) +
1220                                 ((addr & ~hmask) >> PAGE_SHIFT);
1221         }
1222
1223         for (; addr != end; addr += PAGE_SIZE) {
1224                 pagemap_entry_t pme = make_pme(frame, flags);
1225
1226                 err = add_to_pagemap(addr, &pme, pm);
1227                 if (err)
1228                         return err;
1229                 if (pm->show_pfn && (flags & PM_PRESENT))
1230                         frame++;
1231         }
1232
1233         cond_resched();
1234
1235         return err;
1236 }
1237 #endif /* HUGETLB_PAGE */
1238
1239 /*
1240  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1241  *
1242  * For each page in the address space, this file contains one 64-bit entry
1243  * consisting of the following:
1244  *
1245  * Bits 0-54  page frame number (PFN) if present
1246  * Bits 0-4   swap type if swapped
1247  * Bits 5-54  swap offset if swapped
1248  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1249  * Bit  56    page exclusively mapped
1250  * Bits 57-60 zero
1251  * Bit  61    page is file-page or shared-anon
1252  * Bit  62    page swapped
1253  * Bit  63    page present
1254  *
1255  * If the page is not present but in swap, then the PFN contains an
1256  * encoding of the swap file number and the page's offset into the
1257  * swap. Unmapped pages return a null PFN. This allows determining
1258  * precisely which pages are mapped (or in swap) and comparing mapped
1259  * pages between processes.
1260  *
1261  * Efficient users of this interface will use /proc/pid/maps to
1262  * determine which areas of memory are actually mapped and llseek to
1263  * skip over unmapped regions.
1264  */
1265 static ssize_t pagemap_read(struct file *file, char __user *buf,
1266                             size_t count, loff_t *ppos)
1267 {
1268         struct mm_struct *mm = file->private_data;
1269         struct pagemapread pm;
1270         struct mm_walk pagemap_walk = {};
1271         unsigned long src;
1272         unsigned long svpfn;
1273         unsigned long start_vaddr;
1274         unsigned long end_vaddr;
1275         int ret = 0, copied = 0;
1276
1277         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1278                 goto out;
1279
1280         ret = -EINVAL;
1281         /* file position must be aligned */
1282         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1283                 goto out_mm;
1284
1285         ret = 0;
1286         if (!count)
1287                 goto out_mm;
1288
1289         /* do not disclose physical addresses: attack vector */
1290         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1291
1292         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1293         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1294         ret = -ENOMEM;
1295         if (!pm.buffer)
1296                 goto out_mm;
1297
1298         pagemap_walk.pmd_entry = pagemap_pmd_range;
1299         pagemap_walk.pte_hole = pagemap_pte_hole;
1300 #ifdef CONFIG_HUGETLB_PAGE
1301         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1302 #endif
1303         pagemap_walk.mm = mm;
1304         pagemap_walk.private = &pm;
1305
1306         src = *ppos;
1307         svpfn = src / PM_ENTRY_BYTES;
1308         start_vaddr = svpfn << PAGE_SHIFT;
1309         end_vaddr = mm->task_size;
1310
1311         /* watch out for wraparound */
1312         if (svpfn > mm->task_size >> PAGE_SHIFT)
1313                 start_vaddr = end_vaddr;
1314
1315         /*
1316          * The odds are that this will stop walking way
1317          * before end_vaddr, because the length of the
1318          * user buffer is tracked in "pm", and the walk
1319          * will stop when we hit the end of the buffer.
1320          */
1321         ret = 0;
1322         while (count && (start_vaddr < end_vaddr)) {
1323                 int len;
1324                 unsigned long end;
1325
1326                 pm.pos = 0;
1327                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1328                 /* overflow ? */
1329                 if (end < start_vaddr || end > end_vaddr)
1330                         end = end_vaddr;
1331                 down_read(&mm->mmap_sem);
1332                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1333                 up_read(&mm->mmap_sem);
1334                 start_vaddr = end;
1335
1336                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1337                 if (copy_to_user(buf, pm.buffer, len)) {
1338                         ret = -EFAULT;
1339                         goto out_free;
1340                 }
1341                 copied += len;
1342                 buf += len;
1343                 count -= len;
1344         }
1345         *ppos += copied;
1346         if (!ret || ret == PM_END_OF_BUFFER)
1347                 ret = copied;
1348
1349 out_free:
1350         kfree(pm.buffer);
1351 out_mm:
1352         mmput(mm);
1353 out:
1354         return ret;
1355 }
1356
1357 static int pagemap_open(struct inode *inode, struct file *file)
1358 {
1359         struct mm_struct *mm;
1360
1361         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1362         if (IS_ERR(mm))
1363                 return PTR_ERR(mm);
1364         file->private_data = mm;
1365         return 0;
1366 }
1367
1368 static int pagemap_release(struct inode *inode, struct file *file)
1369 {
1370         struct mm_struct *mm = file->private_data;
1371
1372         if (mm)
1373                 mmdrop(mm);
1374         return 0;
1375 }
1376
1377 const struct file_operations proc_pagemap_operations = {
1378         .llseek         = mem_lseek, /* borrow this */
1379         .read           = pagemap_read,
1380         .open           = pagemap_open,
1381         .release        = pagemap_release,
1382 };
1383 #endif /* CONFIG_PROC_PAGE_MONITOR */
1384
1385 #ifdef CONFIG_NUMA
1386
1387 struct numa_maps {
1388         unsigned long pages;
1389         unsigned long anon;
1390         unsigned long active;
1391         unsigned long writeback;
1392         unsigned long mapcount_max;
1393         unsigned long dirty;
1394         unsigned long swapcache;
1395         unsigned long node[MAX_NUMNODES];
1396 };
1397
1398 struct numa_maps_private {
1399         struct proc_maps_private proc_maps;
1400         struct numa_maps md;
1401 };
1402
1403 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1404                         unsigned long nr_pages)
1405 {
1406         int count = page_mapcount(page);
1407
1408         md->pages += nr_pages;
1409         if (pte_dirty || PageDirty(page))
1410                 md->dirty += nr_pages;
1411
1412         if (PageSwapCache(page))
1413                 md->swapcache += nr_pages;
1414
1415         if (PageActive(page) || PageUnevictable(page))
1416                 md->active += nr_pages;
1417
1418         if (PageWriteback(page))
1419                 md->writeback += nr_pages;
1420
1421         if (PageAnon(page))
1422                 md->anon += nr_pages;
1423
1424         if (count > md->mapcount_max)
1425                 md->mapcount_max = count;
1426
1427         md->node[page_to_nid(page)] += nr_pages;
1428 }
1429
1430 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1431                 unsigned long addr)
1432 {
1433         struct page *page;
1434         int nid;
1435
1436         if (!pte_present(pte))
1437                 return NULL;
1438
1439         page = vm_normal_page(vma, addr, pte);
1440         if (!page)
1441                 return NULL;
1442
1443         if (PageReserved(page))
1444                 return NULL;
1445
1446         nid = page_to_nid(page);
1447         if (!node_isset(nid, node_states[N_MEMORY]))
1448                 return NULL;
1449
1450         return page;
1451 }
1452
1453 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1454                 unsigned long end, struct mm_walk *walk)
1455 {
1456         struct numa_maps *md = walk->private;
1457         struct vm_area_struct *vma = walk->vma;
1458         spinlock_t *ptl;
1459         pte_t *orig_pte;
1460         pte_t *pte;
1461
1462         if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
1463                 pte_t huge_pte = *(pte_t *)pmd;
1464                 struct page *page;
1465
1466                 page = can_gather_numa_stats(huge_pte, vma, addr);
1467                 if (page)
1468                         gather_stats(page, md, pte_dirty(huge_pte),
1469                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1470                 spin_unlock(ptl);
1471                 return 0;
1472         }
1473
1474         if (pmd_trans_unstable(pmd))
1475                 return 0;
1476         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1477         do {
1478                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1479                 if (!page)
1480                         continue;
1481                 gather_stats(page, md, pte_dirty(*pte), 1);
1482
1483         } while (pte++, addr += PAGE_SIZE, addr != end);
1484         pte_unmap_unlock(orig_pte, ptl);
1485         return 0;
1486 }
1487 #ifdef CONFIG_HUGETLB_PAGE
1488 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1489                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1490 {
1491         struct numa_maps *md;
1492         struct page *page;
1493
1494         if (!pte_present(*pte))
1495                 return 0;
1496
1497         page = pte_page(*pte);
1498         if (!page)
1499                 return 0;
1500
1501         md = walk->private;
1502         gather_stats(page, md, pte_dirty(*pte), 1);
1503         return 0;
1504 }
1505
1506 #else
1507 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1508                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1509 {
1510         return 0;
1511 }
1512 #endif
1513
1514 /*
1515  * Display pages allocated per node and memory policy via /proc.
1516  */
1517 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1518 {
1519         struct numa_maps_private *numa_priv = m->private;
1520         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1521         struct vm_area_struct *vma = v;
1522         struct numa_maps *md = &numa_priv->md;
1523         struct file *file = vma->vm_file;
1524         struct mm_struct *mm = vma->vm_mm;
1525         struct mm_walk walk = {
1526                 .hugetlb_entry = gather_hugetlb_stats,
1527                 .pmd_entry = gather_pte_stats,
1528                 .private = md,
1529                 .mm = mm,
1530         };
1531         struct mempolicy *pol;
1532         char buffer[64];
1533         int nid;
1534
1535         if (!mm)
1536                 return 0;
1537
1538         /* Ensure we start with an empty set of numa_maps statistics. */
1539         memset(md, 0, sizeof(*md));
1540
1541         pol = __get_vma_policy(vma, vma->vm_start);
1542         if (pol) {
1543                 mpol_to_str(buffer, sizeof(buffer), pol);
1544                 mpol_cond_put(pol);
1545         } else {
1546                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1547         }
1548
1549         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1550
1551         if (file) {
1552                 seq_puts(m, " file=");
1553                 seq_file_path(m, file, "\n\t= ");
1554         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1555                 seq_puts(m, " heap");
1556         } else {
1557                 pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1558                 if (tid != 0) {
1559                         /*
1560                          * Thread stack in /proc/PID/task/TID/maps or
1561                          * the main process stack.
1562                          */
1563                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
1564                             vma->vm_end >= mm->start_stack))
1565                                 seq_puts(m, " stack");
1566                         else
1567                                 seq_printf(m, " stack:%d", tid);
1568                 }
1569         }
1570
1571         if (is_vm_hugetlb_page(vma))
1572                 seq_puts(m, " huge");
1573
1574         /* mmap_sem is held by m_start */
1575         walk_page_vma(vma, &walk);
1576
1577         if (!md->pages)
1578                 goto out;
1579
1580         if (md->anon)
1581                 seq_printf(m, " anon=%lu", md->anon);
1582
1583         if (md->dirty)
1584                 seq_printf(m, " dirty=%lu", md->dirty);
1585
1586         if (md->pages != md->anon && md->pages != md->dirty)
1587                 seq_printf(m, " mapped=%lu", md->pages);
1588
1589         if (md->mapcount_max > 1)
1590                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1591
1592         if (md->swapcache)
1593                 seq_printf(m, " swapcache=%lu", md->swapcache);
1594
1595         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1596                 seq_printf(m, " active=%lu", md->active);
1597
1598         if (md->writeback)
1599                 seq_printf(m, " writeback=%lu", md->writeback);
1600
1601         for_each_node_state(nid, N_MEMORY)
1602                 if (md->node[nid])
1603                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1604
1605         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1606 out:
1607         seq_putc(m, '\n');
1608         m_cache_vma(m, vma);
1609         return 0;
1610 }
1611
1612 static int show_pid_numa_map(struct seq_file *m, void *v)
1613 {
1614         return show_numa_map(m, v, 1);
1615 }
1616
1617 static int show_tid_numa_map(struct seq_file *m, void *v)
1618 {
1619         return show_numa_map(m, v, 0);
1620 }
1621
1622 static const struct seq_operations proc_pid_numa_maps_op = {
1623         .start  = m_start,
1624         .next   = m_next,
1625         .stop   = m_stop,
1626         .show   = show_pid_numa_map,
1627 };
1628
1629 static const struct seq_operations proc_tid_numa_maps_op = {
1630         .start  = m_start,
1631         .next   = m_next,
1632         .stop   = m_stop,
1633         .show   = show_tid_numa_map,
1634 };
1635
1636 static int numa_maps_open(struct inode *inode, struct file *file,
1637                           const struct seq_operations *ops)
1638 {
1639         return proc_maps_open(inode, file, ops,
1640                                 sizeof(struct numa_maps_private));
1641 }
1642
1643 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1644 {
1645         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1646 }
1647
1648 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1649 {
1650         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1651 }
1652
1653 const struct file_operations proc_pid_numa_maps_operations = {
1654         .open           = pid_numa_maps_open,
1655         .read           = seq_read,
1656         .llseek         = seq_lseek,
1657         .release        = proc_map_release,
1658 };
1659
1660 const struct file_operations proc_tid_numa_maps_operations = {
1661         .open           = tid_numa_maps_open,
1662         .read           = seq_read,
1663         .llseek         = seq_lseek,
1664         .release        = proc_map_release,
1665 };
1666 #endif /* CONFIG_NUMA */