]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/events/core.c
Merge tag 'for-linus-20170812' of git://git.infradead.org/linux-mtd
[karo-tx-linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         WARN_ON_ONCE(!irqs_disabled());
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         WARN_ON_ONCE(!irqs_disabled());
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 #ifdef CONFIG_CGROUP_PERF
586
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590         struct perf_event_context *ctx = event->ctx;
591         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
593         /* @event doesn't care about cgroup */
594         if (!event->cgrp)
595                 return true;
596
597         /* wants specific cgroup scope but @cpuctx isn't associated with any */
598         if (!cpuctx->cgrp)
599                 return false;
600
601         /*
602          * Cgroup scoping is recursive.  An event enabled for a cgroup is
603          * also enabled for all its descendant cgroups.  If @cpuctx's
604          * cgroup is a descendant of @event's (the test covers identity
605          * case), it's a match.
606          */
607         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608                                     event->cgrp->css.cgroup);
609 }
610
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613         css_put(&event->cgrp->css);
614         event->cgrp = NULL;
615 }
616
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619         return event->cgrp != NULL;
620 }
621
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624         struct perf_cgroup_info *t;
625
626         t = per_cpu_ptr(event->cgrp->info, event->cpu);
627         return t->time;
628 }
629
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632         struct perf_cgroup_info *info;
633         u64 now;
634
635         now = perf_clock();
636
637         info = this_cpu_ptr(cgrp->info);
638
639         info->time += now - info->timestamp;
640         info->timestamp = now;
641 }
642
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646         if (cgrp_out)
647                 __update_cgrp_time(cgrp_out);
648 }
649
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652         struct perf_cgroup *cgrp;
653
654         /*
655          * ensure we access cgroup data only when needed and
656          * when we know the cgroup is pinned (css_get)
657          */
658         if (!is_cgroup_event(event))
659                 return;
660
661         cgrp = perf_cgroup_from_task(current, event->ctx);
662         /*
663          * Do not update time when cgroup is not active
664          */
665         if (cgrp == event->cgrp)
666                 __update_cgrp_time(event->cgrp);
667 }
668
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671                           struct perf_event_context *ctx)
672 {
673         struct perf_cgroup *cgrp;
674         struct perf_cgroup_info *info;
675
676         /*
677          * ctx->lock held by caller
678          * ensure we do not access cgroup data
679          * unless we have the cgroup pinned (css_get)
680          */
681         if (!task || !ctx->nr_cgroups)
682                 return;
683
684         cgrp = perf_cgroup_from_task(task, ctx);
685         info = this_cpu_ptr(cgrp->info);
686         info->timestamp = ctx->timestamp;
687 }
688
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
691 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
693
694 /*
695  * reschedule events based on the cgroup constraint of task.
696  *
697  * mode SWOUT : schedule out everything
698  * mode SWIN : schedule in based on cgroup for next
699  */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702         struct perf_cpu_context *cpuctx;
703         struct list_head *list;
704         unsigned long flags;
705
706         /*
707          * Disable interrupts and preemption to avoid this CPU's
708          * cgrp_cpuctx_entry to change under us.
709          */
710         local_irq_save(flags);
711
712         list = this_cpu_ptr(&cgrp_cpuctx_list);
713         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715
716                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717                 perf_pmu_disable(cpuctx->ctx.pmu);
718
719                 if (mode & PERF_CGROUP_SWOUT) {
720                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721                         /*
722                          * must not be done before ctxswout due
723                          * to event_filter_match() in event_sched_out()
724                          */
725                         cpuctx->cgrp = NULL;
726                 }
727
728                 if (mode & PERF_CGROUP_SWIN) {
729                         WARN_ON_ONCE(cpuctx->cgrp);
730                         /*
731                          * set cgrp before ctxsw in to allow
732                          * event_filter_match() to not have to pass
733                          * task around
734                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
735                          * because cgorup events are only per-cpu
736                          */
737                         cpuctx->cgrp = perf_cgroup_from_task(task,
738                                                              &cpuctx->ctx);
739                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740                 }
741                 perf_pmu_enable(cpuctx->ctx.pmu);
742                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743         }
744
745         local_irq_restore(flags);
746 }
747
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749                                          struct task_struct *next)
750 {
751         struct perf_cgroup *cgrp1;
752         struct perf_cgroup *cgrp2 = NULL;
753
754         rcu_read_lock();
755         /*
756          * we come here when we know perf_cgroup_events > 0
757          * we do not need to pass the ctx here because we know
758          * we are holding the rcu lock
759          */
760         cgrp1 = perf_cgroup_from_task(task, NULL);
761         cgrp2 = perf_cgroup_from_task(next, NULL);
762
763         /*
764          * only schedule out current cgroup events if we know
765          * that we are switching to a different cgroup. Otherwise,
766          * do no touch the cgroup events.
767          */
768         if (cgrp1 != cgrp2)
769                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770
771         rcu_read_unlock();
772 }
773
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775                                         struct task_struct *task)
776 {
777         struct perf_cgroup *cgrp1;
778         struct perf_cgroup *cgrp2 = NULL;
779
780         rcu_read_lock();
781         /*
782          * we come here when we know perf_cgroup_events > 0
783          * we do not need to pass the ctx here because we know
784          * we are holding the rcu lock
785          */
786         cgrp1 = perf_cgroup_from_task(task, NULL);
787         cgrp2 = perf_cgroup_from_task(prev, NULL);
788
789         /*
790          * only need to schedule in cgroup events if we are changing
791          * cgroup during ctxsw. Cgroup events were not scheduled
792          * out of ctxsw out if that was not the case.
793          */
794         if (cgrp1 != cgrp2)
795                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796
797         rcu_read_unlock();
798 }
799
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801                                       struct perf_event_attr *attr,
802                                       struct perf_event *group_leader)
803 {
804         struct perf_cgroup *cgrp;
805         struct cgroup_subsys_state *css;
806         struct fd f = fdget(fd);
807         int ret = 0;
808
809         if (!f.file)
810                 return -EBADF;
811
812         css = css_tryget_online_from_dir(f.file->f_path.dentry,
813                                          &perf_event_cgrp_subsys);
814         if (IS_ERR(css)) {
815                 ret = PTR_ERR(css);
816                 goto out;
817         }
818
819         cgrp = container_of(css, struct perf_cgroup, css);
820         event->cgrp = cgrp;
821
822         /*
823          * all events in a group must monitor
824          * the same cgroup because a task belongs
825          * to only one perf cgroup at a time
826          */
827         if (group_leader && group_leader->cgrp != cgrp) {
828                 perf_detach_cgroup(event);
829                 ret = -EINVAL;
830         }
831 out:
832         fdput(f);
833         return ret;
834 }
835
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839         struct perf_cgroup_info *t;
840         t = per_cpu_ptr(event->cgrp->info, event->cpu);
841         event->shadow_ctx_time = now - t->timestamp;
842 }
843
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847         /*
848          * when the current task's perf cgroup does not match
849          * the event's, we need to remember to call the
850          * perf_mark_enable() function the first time a task with
851          * a matching perf cgroup is scheduled in.
852          */
853         if (is_cgroup_event(event) && !perf_cgroup_match(event))
854                 event->cgrp_defer_enabled = 1;
855 }
856
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859                          struct perf_event_context *ctx)
860 {
861         struct perf_event *sub;
862         u64 tstamp = perf_event_time(event);
863
864         if (!event->cgrp_defer_enabled)
865                 return;
866
867         event->cgrp_defer_enabled = 0;
868
869         event->tstamp_enabled = tstamp - event->total_time_enabled;
870         list_for_each_entry(sub, &event->sibling_list, group_entry) {
871                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873                         sub->cgrp_defer_enabled = 0;
874                 }
875         }
876 }
877
878 /*
879  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880  * cleared when last cgroup event is removed.
881  */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884                          struct perf_event_context *ctx, bool add)
885 {
886         struct perf_cpu_context *cpuctx;
887         struct list_head *cpuctx_entry;
888
889         if (!is_cgroup_event(event))
890                 return;
891
892         if (add && ctx->nr_cgroups++)
893                 return;
894         else if (!add && --ctx->nr_cgroups)
895                 return;
896         /*
897          * Because cgroup events are always per-cpu events,
898          * this will always be called from the right CPU.
899          */
900         cpuctx = __get_cpu_context(ctx);
901         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903         if (add) {
904                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905                 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906                         cpuctx->cgrp = event->cgrp;
907         } else {
908                 list_del(cpuctx_entry);
909                 cpuctx->cgrp = NULL;
910         }
911 }
912
913 #else /* !CONFIG_CGROUP_PERF */
914
915 static inline bool
916 perf_cgroup_match(struct perf_event *event)
917 {
918         return true;
919 }
920
921 static inline void perf_detach_cgroup(struct perf_event *event)
922 {}
923
924 static inline int is_cgroup_event(struct perf_event *event)
925 {
926         return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938                                          struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943                                         struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948                                       struct perf_event_attr *attr,
949                                       struct perf_event *group_leader)
950 {
951         return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956                           struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972         return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982                          struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988                          struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disabled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004         struct perf_cpu_context *cpuctx;
1005         int rotations = 0;
1006
1007         WARN_ON(!irqs_disabled());
1008
1009         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010         rotations = perf_rotate_context(cpuctx);
1011
1012         raw_spin_lock(&cpuctx->hrtimer_lock);
1013         if (rotations)
1014                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015         else
1016                 cpuctx->hrtimer_active = 0;
1017         raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024         struct hrtimer *timer = &cpuctx->hrtimer;
1025         struct pmu *pmu = cpuctx->ctx.pmu;
1026         u64 interval;
1027
1028         /* no multiplexing needed for SW PMU */
1029         if (pmu->task_ctx_nr == perf_sw_context)
1030                 return;
1031
1032         /*
1033          * check default is sane, if not set then force to
1034          * default interval (1/tick)
1035          */
1036         interval = pmu->hrtimer_interval_ms;
1037         if (interval < 1)
1038                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044         timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049         struct hrtimer *timer = &cpuctx->hrtimer;
1050         struct pmu *pmu = cpuctx->ctx.pmu;
1051         unsigned long flags;
1052
1053         /* not for SW PMU */
1054         if (pmu->task_ctx_nr == perf_sw_context)
1055                 return 0;
1056
1057         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058         if (!cpuctx->hrtimer_active) {
1059                 cpuctx->hrtimer_active = 1;
1060                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062         }
1063         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065         return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071         if (!(*count)++)
1072                 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078         if (!--(*count))
1079                 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094         WARN_ON(!irqs_disabled());
1095
1096         WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098         list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103         WARN_ON(!irqs_disabled());
1104
1105         WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107         list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117         struct perf_event_context *ctx;
1118
1119         ctx = container_of(head, struct perf_event_context, rcu_head);
1120         kfree(ctx->task_ctx_data);
1121         kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126         if (atomic_dec_and_test(&ctx->refcount)) {
1127                 if (ctx->parent_ctx)
1128                         put_ctx(ctx->parent_ctx);
1129                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130                         put_task_struct(ctx->task);
1131                 call_rcu(&ctx->rcu_head, free_ctx);
1132         }
1133 }
1134
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()    [ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()                   [ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()         [ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event() [ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *      task_struct::perf_event_mutex
1190  *        perf_event_context::mutex
1191  *          perf_event::child_mutex;
1192  *            perf_event_context::lock
1193  *          perf_event::mmap_mutex
1194  *          mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199         struct perf_event_context *ctx;
1200
1201 again:
1202         rcu_read_lock();
1203         ctx = ACCESS_ONCE(event->ctx);
1204         if (!atomic_inc_not_zero(&ctx->refcount)) {
1205                 rcu_read_unlock();
1206                 goto again;
1207         }
1208         rcu_read_unlock();
1209
1210         mutex_lock_nested(&ctx->mutex, nesting);
1211         if (event->ctx != ctx) {
1212                 mutex_unlock(&ctx->mutex);
1213                 put_ctx(ctx);
1214                 goto again;
1215         }
1216
1217         return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223         return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227                                   struct perf_event_context *ctx)
1228 {
1229         mutex_unlock(&ctx->mutex);
1230         put_ctx(ctx);
1231 }
1232
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243         lockdep_assert_held(&ctx->lock);
1244
1245         if (parent_ctx)
1246                 ctx->parent_ctx = NULL;
1247         ctx->generation++;
1248
1249         return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254         /*
1255          * only top level events have the pid namespace they were created in
1256          */
1257         if (event->parent)
1258                 event = event->parent;
1259
1260         return task_tgid_nr_ns(p, event->ns);
1261 }
1262
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265         /*
1266          * only top level events have the pid namespace they were created in
1267          */
1268         if (event->parent)
1269                 event = event->parent;
1270
1271         return task_pid_nr_ns(p, event->ns);
1272 }
1273
1274 /*
1275  * If we inherit events we want to return the parent event id
1276  * to userspace.
1277  */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280         u64 id = event->id;
1281
1282         if (event->parent)
1283                 id = event->parent->id;
1284
1285         return id;
1286 }
1287
1288 /*
1289  * Get the perf_event_context for a task and lock it.
1290  *
1291  * This has to cope with with the fact that until it is locked,
1292  * the context could get moved to another task.
1293  */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297         struct perf_event_context *ctx;
1298
1299 retry:
1300         /*
1301          * One of the few rules of preemptible RCU is that one cannot do
1302          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303          * part of the read side critical section was irqs-enabled -- see
1304          * rcu_read_unlock_special().
1305          *
1306          * Since ctx->lock nests under rq->lock we must ensure the entire read
1307          * side critical section has interrupts disabled.
1308          */
1309         local_irq_save(*flags);
1310         rcu_read_lock();
1311         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312         if (ctx) {
1313                 /*
1314                  * If this context is a clone of another, it might
1315                  * get swapped for another underneath us by
1316                  * perf_event_task_sched_out, though the
1317                  * rcu_read_lock() protects us from any context
1318                  * getting freed.  Lock the context and check if it
1319                  * got swapped before we could get the lock, and retry
1320                  * if so.  If we locked the right context, then it
1321                  * can't get swapped on us any more.
1322                  */
1323                 raw_spin_lock(&ctx->lock);
1324                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325                         raw_spin_unlock(&ctx->lock);
1326                         rcu_read_unlock();
1327                         local_irq_restore(*flags);
1328                         goto retry;
1329                 }
1330
1331                 if (ctx->task == TASK_TOMBSTONE ||
1332                     !atomic_inc_not_zero(&ctx->refcount)) {
1333                         raw_spin_unlock(&ctx->lock);
1334                         ctx = NULL;
1335                 } else {
1336                         WARN_ON_ONCE(ctx->task != task);
1337                 }
1338         }
1339         rcu_read_unlock();
1340         if (!ctx)
1341                 local_irq_restore(*flags);
1342         return ctx;
1343 }
1344
1345 /*
1346  * Get the context for a task and increment its pin_count so it
1347  * can't get swapped to another task.  This also increments its
1348  * reference count so that the context can't get freed.
1349  */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353         struct perf_event_context *ctx;
1354         unsigned long flags;
1355
1356         ctx = perf_lock_task_context(task, ctxn, &flags);
1357         if (ctx) {
1358                 ++ctx->pin_count;
1359                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360         }
1361         return ctx;
1362 }
1363
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366         unsigned long flags;
1367
1368         raw_spin_lock_irqsave(&ctx->lock, flags);
1369         --ctx->pin_count;
1370         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372
1373 /*
1374  * Update the record of the current time in a context.
1375  */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378         u64 now = perf_clock();
1379
1380         ctx->time += now - ctx->timestamp;
1381         ctx->timestamp = now;
1382 }
1383
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386         struct perf_event_context *ctx = event->ctx;
1387
1388         if (is_cgroup_event(event))
1389                 return perf_cgroup_event_time(event);
1390
1391         return ctx ? ctx->time : 0;
1392 }
1393
1394 /*
1395  * Update the total_time_enabled and total_time_running fields for a event.
1396  */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399         struct perf_event_context *ctx = event->ctx;
1400         u64 run_end;
1401
1402         lockdep_assert_held(&ctx->lock);
1403
1404         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406                 return;
1407
1408         /*
1409          * in cgroup mode, time_enabled represents
1410          * the time the event was enabled AND active
1411          * tasks were in the monitored cgroup. This is
1412          * independent of the activity of the context as
1413          * there may be a mix of cgroup and non-cgroup events.
1414          *
1415          * That is why we treat cgroup events differently
1416          * here.
1417          */
1418         if (is_cgroup_event(event))
1419                 run_end = perf_cgroup_event_time(event);
1420         else if (ctx->is_active)
1421                 run_end = ctx->time;
1422         else
1423                 run_end = event->tstamp_stopped;
1424
1425         event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427         if (event->state == PERF_EVENT_STATE_INACTIVE)
1428                 run_end = event->tstamp_stopped;
1429         else
1430                 run_end = perf_event_time(event);
1431
1432         event->total_time_running = run_end - event->tstamp_running;
1433
1434 }
1435
1436 /*
1437  * Update total_time_enabled and total_time_running for all events in a group.
1438  */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441         struct perf_event *event;
1442
1443         update_event_times(leader);
1444         list_for_each_entry(event, &leader->sibling_list, group_entry)
1445                 update_event_times(event);
1446 }
1447
1448 static enum event_type_t get_event_type(struct perf_event *event)
1449 {
1450         struct perf_event_context *ctx = event->ctx;
1451         enum event_type_t event_type;
1452
1453         lockdep_assert_held(&ctx->lock);
1454
1455         /*
1456          * It's 'group type', really, because if our group leader is
1457          * pinned, so are we.
1458          */
1459         if (event->group_leader != event)
1460                 event = event->group_leader;
1461
1462         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1463         if (!ctx->task)
1464                 event_type |= EVENT_CPU;
1465
1466         return event_type;
1467 }
1468
1469 static struct list_head *
1470 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1471 {
1472         if (event->attr.pinned)
1473                 return &ctx->pinned_groups;
1474         else
1475                 return &ctx->flexible_groups;
1476 }
1477
1478 /*
1479  * Add a event from the lists for its context.
1480  * Must be called with ctx->mutex and ctx->lock held.
1481  */
1482 static void
1483 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1484 {
1485         lockdep_assert_held(&ctx->lock);
1486
1487         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1488         event->attach_state |= PERF_ATTACH_CONTEXT;
1489
1490         /*
1491          * If we're a stand alone event or group leader, we go to the context
1492          * list, group events are kept attached to the group so that
1493          * perf_group_detach can, at all times, locate all siblings.
1494          */
1495         if (event->group_leader == event) {
1496                 struct list_head *list;
1497
1498                 event->group_caps = event->event_caps;
1499
1500                 list = ctx_group_list(event, ctx);
1501                 list_add_tail(&event->group_entry, list);
1502         }
1503
1504         list_update_cgroup_event(event, ctx, true);
1505
1506         list_add_rcu(&event->event_entry, &ctx->event_list);
1507         ctx->nr_events++;
1508         if (event->attr.inherit_stat)
1509                 ctx->nr_stat++;
1510
1511         ctx->generation++;
1512 }
1513
1514 /*
1515  * Initialize event state based on the perf_event_attr::disabled.
1516  */
1517 static inline void perf_event__state_init(struct perf_event *event)
1518 {
1519         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1520                                               PERF_EVENT_STATE_INACTIVE;
1521 }
1522
1523 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1524 {
1525         int entry = sizeof(u64); /* value */
1526         int size = 0;
1527         int nr = 1;
1528
1529         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1530                 size += sizeof(u64);
1531
1532         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1533                 size += sizeof(u64);
1534
1535         if (event->attr.read_format & PERF_FORMAT_ID)
1536                 entry += sizeof(u64);
1537
1538         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1539                 nr += nr_siblings;
1540                 size += sizeof(u64);
1541         }
1542
1543         size += entry * nr;
1544         event->read_size = size;
1545 }
1546
1547 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1548 {
1549         struct perf_sample_data *data;
1550         u16 size = 0;
1551
1552         if (sample_type & PERF_SAMPLE_IP)
1553                 size += sizeof(data->ip);
1554
1555         if (sample_type & PERF_SAMPLE_ADDR)
1556                 size += sizeof(data->addr);
1557
1558         if (sample_type & PERF_SAMPLE_PERIOD)
1559                 size += sizeof(data->period);
1560
1561         if (sample_type & PERF_SAMPLE_WEIGHT)
1562                 size += sizeof(data->weight);
1563
1564         if (sample_type & PERF_SAMPLE_READ)
1565                 size += event->read_size;
1566
1567         if (sample_type & PERF_SAMPLE_DATA_SRC)
1568                 size += sizeof(data->data_src.val);
1569
1570         if (sample_type & PERF_SAMPLE_TRANSACTION)
1571                 size += sizeof(data->txn);
1572
1573         event->header_size = size;
1574 }
1575
1576 /*
1577  * Called at perf_event creation and when events are attached/detached from a
1578  * group.
1579  */
1580 static void perf_event__header_size(struct perf_event *event)
1581 {
1582         __perf_event_read_size(event,
1583                                event->group_leader->nr_siblings);
1584         __perf_event_header_size(event, event->attr.sample_type);
1585 }
1586
1587 static void perf_event__id_header_size(struct perf_event *event)
1588 {
1589         struct perf_sample_data *data;
1590         u64 sample_type = event->attr.sample_type;
1591         u16 size = 0;
1592
1593         if (sample_type & PERF_SAMPLE_TID)
1594                 size += sizeof(data->tid_entry);
1595
1596         if (sample_type & PERF_SAMPLE_TIME)
1597                 size += sizeof(data->time);
1598
1599         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1600                 size += sizeof(data->id);
1601
1602         if (sample_type & PERF_SAMPLE_ID)
1603                 size += sizeof(data->id);
1604
1605         if (sample_type & PERF_SAMPLE_STREAM_ID)
1606                 size += sizeof(data->stream_id);
1607
1608         if (sample_type & PERF_SAMPLE_CPU)
1609                 size += sizeof(data->cpu_entry);
1610
1611         event->id_header_size = size;
1612 }
1613
1614 static bool perf_event_validate_size(struct perf_event *event)
1615 {
1616         /*
1617          * The values computed here will be over-written when we actually
1618          * attach the event.
1619          */
1620         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1621         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1622         perf_event__id_header_size(event);
1623
1624         /*
1625          * Sum the lot; should not exceed the 64k limit we have on records.
1626          * Conservative limit to allow for callchains and other variable fields.
1627          */
1628         if (event->read_size + event->header_size +
1629             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1630                 return false;
1631
1632         return true;
1633 }
1634
1635 static void perf_group_attach(struct perf_event *event)
1636 {
1637         struct perf_event *group_leader = event->group_leader, *pos;
1638
1639         lockdep_assert_held(&event->ctx->lock);
1640
1641         /*
1642          * We can have double attach due to group movement in perf_event_open.
1643          */
1644         if (event->attach_state & PERF_ATTACH_GROUP)
1645                 return;
1646
1647         event->attach_state |= PERF_ATTACH_GROUP;
1648
1649         if (group_leader == event)
1650                 return;
1651
1652         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1653
1654         group_leader->group_caps &= event->event_caps;
1655
1656         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1657         group_leader->nr_siblings++;
1658
1659         perf_event__header_size(group_leader);
1660
1661         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1662                 perf_event__header_size(pos);
1663 }
1664
1665 /*
1666  * Remove a event from the lists for its context.
1667  * Must be called with ctx->mutex and ctx->lock held.
1668  */
1669 static void
1670 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1671 {
1672         WARN_ON_ONCE(event->ctx != ctx);
1673         lockdep_assert_held(&ctx->lock);
1674
1675         /*
1676          * We can have double detach due to exit/hot-unplug + close.
1677          */
1678         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1679                 return;
1680
1681         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1682
1683         list_update_cgroup_event(event, ctx, false);
1684
1685         ctx->nr_events--;
1686         if (event->attr.inherit_stat)
1687                 ctx->nr_stat--;
1688
1689         list_del_rcu(&event->event_entry);
1690
1691         if (event->group_leader == event)
1692                 list_del_init(&event->group_entry);
1693
1694         update_group_times(event);
1695
1696         /*
1697          * If event was in error state, then keep it
1698          * that way, otherwise bogus counts will be
1699          * returned on read(). The only way to get out
1700          * of error state is by explicit re-enabling
1701          * of the event
1702          */
1703         if (event->state > PERF_EVENT_STATE_OFF)
1704                 event->state = PERF_EVENT_STATE_OFF;
1705
1706         ctx->generation++;
1707 }
1708
1709 static void perf_group_detach(struct perf_event *event)
1710 {
1711         struct perf_event *sibling, *tmp;
1712         struct list_head *list = NULL;
1713
1714         lockdep_assert_held(&event->ctx->lock);
1715
1716         /*
1717          * We can have double detach due to exit/hot-unplug + close.
1718          */
1719         if (!(event->attach_state & PERF_ATTACH_GROUP))
1720                 return;
1721
1722         event->attach_state &= ~PERF_ATTACH_GROUP;
1723
1724         /*
1725          * If this is a sibling, remove it from its group.
1726          */
1727         if (event->group_leader != event) {
1728                 list_del_init(&event->group_entry);
1729                 event->group_leader->nr_siblings--;
1730                 goto out;
1731         }
1732
1733         if (!list_empty(&event->group_entry))
1734                 list = &event->group_entry;
1735
1736         /*
1737          * If this was a group event with sibling events then
1738          * upgrade the siblings to singleton events by adding them
1739          * to whatever list we are on.
1740          */
1741         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1742                 if (list)
1743                         list_move_tail(&sibling->group_entry, list);
1744                 sibling->group_leader = sibling;
1745
1746                 /* Inherit group flags from the previous leader */
1747                 sibling->group_caps = event->group_caps;
1748
1749                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1750         }
1751
1752 out:
1753         perf_event__header_size(event->group_leader);
1754
1755         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1756                 perf_event__header_size(tmp);
1757 }
1758
1759 static bool is_orphaned_event(struct perf_event *event)
1760 {
1761         return event->state == PERF_EVENT_STATE_DEAD;
1762 }
1763
1764 static inline int __pmu_filter_match(struct perf_event *event)
1765 {
1766         struct pmu *pmu = event->pmu;
1767         return pmu->filter_match ? pmu->filter_match(event) : 1;
1768 }
1769
1770 /*
1771  * Check whether we should attempt to schedule an event group based on
1772  * PMU-specific filtering. An event group can consist of HW and SW events,
1773  * potentially with a SW leader, so we must check all the filters, to
1774  * determine whether a group is schedulable:
1775  */
1776 static inline int pmu_filter_match(struct perf_event *event)
1777 {
1778         struct perf_event *child;
1779
1780         if (!__pmu_filter_match(event))
1781                 return 0;
1782
1783         list_for_each_entry(child, &event->sibling_list, group_entry) {
1784                 if (!__pmu_filter_match(child))
1785                         return 0;
1786         }
1787
1788         return 1;
1789 }
1790
1791 static inline int
1792 event_filter_match(struct perf_event *event)
1793 {
1794         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1795                perf_cgroup_match(event) && pmu_filter_match(event);
1796 }
1797
1798 static void
1799 event_sched_out(struct perf_event *event,
1800                   struct perf_cpu_context *cpuctx,
1801                   struct perf_event_context *ctx)
1802 {
1803         u64 tstamp = perf_event_time(event);
1804         u64 delta;
1805
1806         WARN_ON_ONCE(event->ctx != ctx);
1807         lockdep_assert_held(&ctx->lock);
1808
1809         /*
1810          * An event which could not be activated because of
1811          * filter mismatch still needs to have its timings
1812          * maintained, otherwise bogus information is return
1813          * via read() for time_enabled, time_running:
1814          */
1815         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1816             !event_filter_match(event)) {
1817                 delta = tstamp - event->tstamp_stopped;
1818                 event->tstamp_running += delta;
1819                 event->tstamp_stopped = tstamp;
1820         }
1821
1822         if (event->state != PERF_EVENT_STATE_ACTIVE)
1823                 return;
1824
1825         perf_pmu_disable(event->pmu);
1826
1827         event->tstamp_stopped = tstamp;
1828         event->pmu->del(event, 0);
1829         event->oncpu = -1;
1830         event->state = PERF_EVENT_STATE_INACTIVE;
1831         if (event->pending_disable) {
1832                 event->pending_disable = 0;
1833                 event->state = PERF_EVENT_STATE_OFF;
1834         }
1835
1836         if (!is_software_event(event))
1837                 cpuctx->active_oncpu--;
1838         if (!--ctx->nr_active)
1839                 perf_event_ctx_deactivate(ctx);
1840         if (event->attr.freq && event->attr.sample_freq)
1841                 ctx->nr_freq--;
1842         if (event->attr.exclusive || !cpuctx->active_oncpu)
1843                 cpuctx->exclusive = 0;
1844
1845         perf_pmu_enable(event->pmu);
1846 }
1847
1848 static void
1849 group_sched_out(struct perf_event *group_event,
1850                 struct perf_cpu_context *cpuctx,
1851                 struct perf_event_context *ctx)
1852 {
1853         struct perf_event *event;
1854         int state = group_event->state;
1855
1856         perf_pmu_disable(ctx->pmu);
1857
1858         event_sched_out(group_event, cpuctx, ctx);
1859
1860         /*
1861          * Schedule out siblings (if any):
1862          */
1863         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1864                 event_sched_out(event, cpuctx, ctx);
1865
1866         perf_pmu_enable(ctx->pmu);
1867
1868         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1869                 cpuctx->exclusive = 0;
1870 }
1871
1872 #define DETACH_GROUP    0x01UL
1873
1874 /*
1875  * Cross CPU call to remove a performance event
1876  *
1877  * We disable the event on the hardware level first. After that we
1878  * remove it from the context list.
1879  */
1880 static void
1881 __perf_remove_from_context(struct perf_event *event,
1882                            struct perf_cpu_context *cpuctx,
1883                            struct perf_event_context *ctx,
1884                            void *info)
1885 {
1886         unsigned long flags = (unsigned long)info;
1887
1888         event_sched_out(event, cpuctx, ctx);
1889         if (flags & DETACH_GROUP)
1890                 perf_group_detach(event);
1891         list_del_event(event, ctx);
1892
1893         if (!ctx->nr_events && ctx->is_active) {
1894                 ctx->is_active = 0;
1895                 if (ctx->task) {
1896                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1897                         cpuctx->task_ctx = NULL;
1898                 }
1899         }
1900 }
1901
1902 /*
1903  * Remove the event from a task's (or a CPU's) list of events.
1904  *
1905  * If event->ctx is a cloned context, callers must make sure that
1906  * every task struct that event->ctx->task could possibly point to
1907  * remains valid.  This is OK when called from perf_release since
1908  * that only calls us on the top-level context, which can't be a clone.
1909  * When called from perf_event_exit_task, it's OK because the
1910  * context has been detached from its task.
1911  */
1912 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1913 {
1914         struct perf_event_context *ctx = event->ctx;
1915
1916         lockdep_assert_held(&ctx->mutex);
1917
1918         event_function_call(event, __perf_remove_from_context, (void *)flags);
1919
1920         /*
1921          * The above event_function_call() can NO-OP when it hits
1922          * TASK_TOMBSTONE. In that case we must already have been detached
1923          * from the context (by perf_event_exit_event()) but the grouping
1924          * might still be in-tact.
1925          */
1926         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1927         if ((flags & DETACH_GROUP) &&
1928             (event->attach_state & PERF_ATTACH_GROUP)) {
1929                 /*
1930                  * Since in that case we cannot possibly be scheduled, simply
1931                  * detach now.
1932                  */
1933                 raw_spin_lock_irq(&ctx->lock);
1934                 perf_group_detach(event);
1935                 raw_spin_unlock_irq(&ctx->lock);
1936         }
1937 }
1938
1939 /*
1940  * Cross CPU call to disable a performance event
1941  */
1942 static void __perf_event_disable(struct perf_event *event,
1943                                  struct perf_cpu_context *cpuctx,
1944                                  struct perf_event_context *ctx,
1945                                  void *info)
1946 {
1947         if (event->state < PERF_EVENT_STATE_INACTIVE)
1948                 return;
1949
1950         update_context_time(ctx);
1951         update_cgrp_time_from_event(event);
1952         update_group_times(event);
1953         if (event == event->group_leader)
1954                 group_sched_out(event, cpuctx, ctx);
1955         else
1956                 event_sched_out(event, cpuctx, ctx);
1957         event->state = PERF_EVENT_STATE_OFF;
1958 }
1959
1960 /*
1961  * Disable a event.
1962  *
1963  * If event->ctx is a cloned context, callers must make sure that
1964  * every task struct that event->ctx->task could possibly point to
1965  * remains valid.  This condition is satisifed when called through
1966  * perf_event_for_each_child or perf_event_for_each because they
1967  * hold the top-level event's child_mutex, so any descendant that
1968  * goes to exit will block in perf_event_exit_event().
1969  *
1970  * When called from perf_pending_event it's OK because event->ctx
1971  * is the current context on this CPU and preemption is disabled,
1972  * hence we can't get into perf_event_task_sched_out for this context.
1973  */
1974 static void _perf_event_disable(struct perf_event *event)
1975 {
1976         struct perf_event_context *ctx = event->ctx;
1977
1978         raw_spin_lock_irq(&ctx->lock);
1979         if (event->state <= PERF_EVENT_STATE_OFF) {
1980                 raw_spin_unlock_irq(&ctx->lock);
1981                 return;
1982         }
1983         raw_spin_unlock_irq(&ctx->lock);
1984
1985         event_function_call(event, __perf_event_disable, NULL);
1986 }
1987
1988 void perf_event_disable_local(struct perf_event *event)
1989 {
1990         event_function_local(event, __perf_event_disable, NULL);
1991 }
1992
1993 /*
1994  * Strictly speaking kernel users cannot create groups and therefore this
1995  * interface does not need the perf_event_ctx_lock() magic.
1996  */
1997 void perf_event_disable(struct perf_event *event)
1998 {
1999         struct perf_event_context *ctx;
2000
2001         ctx = perf_event_ctx_lock(event);
2002         _perf_event_disable(event);
2003         perf_event_ctx_unlock(event, ctx);
2004 }
2005 EXPORT_SYMBOL_GPL(perf_event_disable);
2006
2007 void perf_event_disable_inatomic(struct perf_event *event)
2008 {
2009         event->pending_disable = 1;
2010         irq_work_queue(&event->pending);
2011 }
2012
2013 static void perf_set_shadow_time(struct perf_event *event,
2014                                  struct perf_event_context *ctx,
2015                                  u64 tstamp)
2016 {
2017         /*
2018          * use the correct time source for the time snapshot
2019          *
2020          * We could get by without this by leveraging the
2021          * fact that to get to this function, the caller
2022          * has most likely already called update_context_time()
2023          * and update_cgrp_time_xx() and thus both timestamp
2024          * are identical (or very close). Given that tstamp is,
2025          * already adjusted for cgroup, we could say that:
2026          *    tstamp - ctx->timestamp
2027          * is equivalent to
2028          *    tstamp - cgrp->timestamp.
2029          *
2030          * Then, in perf_output_read(), the calculation would
2031          * work with no changes because:
2032          * - event is guaranteed scheduled in
2033          * - no scheduled out in between
2034          * - thus the timestamp would be the same
2035          *
2036          * But this is a bit hairy.
2037          *
2038          * So instead, we have an explicit cgroup call to remain
2039          * within the time time source all along. We believe it
2040          * is cleaner and simpler to understand.
2041          */
2042         if (is_cgroup_event(event))
2043                 perf_cgroup_set_shadow_time(event, tstamp);
2044         else
2045                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2046 }
2047
2048 #define MAX_INTERRUPTS (~0ULL)
2049
2050 static void perf_log_throttle(struct perf_event *event, int enable);
2051 static void perf_log_itrace_start(struct perf_event *event);
2052
2053 static int
2054 event_sched_in(struct perf_event *event,
2055                  struct perf_cpu_context *cpuctx,
2056                  struct perf_event_context *ctx)
2057 {
2058         u64 tstamp = perf_event_time(event);
2059         int ret = 0;
2060
2061         lockdep_assert_held(&ctx->lock);
2062
2063         if (event->state <= PERF_EVENT_STATE_OFF)
2064                 return 0;
2065
2066         WRITE_ONCE(event->oncpu, smp_processor_id());
2067         /*
2068          * Order event::oncpu write to happen before the ACTIVE state
2069          * is visible.
2070          */
2071         smp_wmb();
2072         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2073
2074         /*
2075          * Unthrottle events, since we scheduled we might have missed several
2076          * ticks already, also for a heavily scheduling task there is little
2077          * guarantee it'll get a tick in a timely manner.
2078          */
2079         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2080                 perf_log_throttle(event, 1);
2081                 event->hw.interrupts = 0;
2082         }
2083
2084         /*
2085          * The new state must be visible before we turn it on in the hardware:
2086          */
2087         smp_wmb();
2088
2089         perf_pmu_disable(event->pmu);
2090
2091         perf_set_shadow_time(event, ctx, tstamp);
2092
2093         perf_log_itrace_start(event);
2094
2095         if (event->pmu->add(event, PERF_EF_START)) {
2096                 event->state = PERF_EVENT_STATE_INACTIVE;
2097                 event->oncpu = -1;
2098                 ret = -EAGAIN;
2099                 goto out;
2100         }
2101
2102         event->tstamp_running += tstamp - event->tstamp_stopped;
2103
2104         if (!is_software_event(event))
2105                 cpuctx->active_oncpu++;
2106         if (!ctx->nr_active++)
2107                 perf_event_ctx_activate(ctx);
2108         if (event->attr.freq && event->attr.sample_freq)
2109                 ctx->nr_freq++;
2110
2111         if (event->attr.exclusive)
2112                 cpuctx->exclusive = 1;
2113
2114 out:
2115         perf_pmu_enable(event->pmu);
2116
2117         return ret;
2118 }
2119
2120 static int
2121 group_sched_in(struct perf_event *group_event,
2122                struct perf_cpu_context *cpuctx,
2123                struct perf_event_context *ctx)
2124 {
2125         struct perf_event *event, *partial_group = NULL;
2126         struct pmu *pmu = ctx->pmu;
2127         u64 now = ctx->time;
2128         bool simulate = false;
2129
2130         if (group_event->state == PERF_EVENT_STATE_OFF)
2131                 return 0;
2132
2133         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2134
2135         if (event_sched_in(group_event, cpuctx, ctx)) {
2136                 pmu->cancel_txn(pmu);
2137                 perf_mux_hrtimer_restart(cpuctx);
2138                 return -EAGAIN;
2139         }
2140
2141         /*
2142          * Schedule in siblings as one group (if any):
2143          */
2144         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2145                 if (event_sched_in(event, cpuctx, ctx)) {
2146                         partial_group = event;
2147                         goto group_error;
2148                 }
2149         }
2150
2151         if (!pmu->commit_txn(pmu))
2152                 return 0;
2153
2154 group_error:
2155         /*
2156          * Groups can be scheduled in as one unit only, so undo any
2157          * partial group before returning:
2158          * The events up to the failed event are scheduled out normally,
2159          * tstamp_stopped will be updated.
2160          *
2161          * The failed events and the remaining siblings need to have
2162          * their timings updated as if they had gone thru event_sched_in()
2163          * and event_sched_out(). This is required to get consistent timings
2164          * across the group. This also takes care of the case where the group
2165          * could never be scheduled by ensuring tstamp_stopped is set to mark
2166          * the time the event was actually stopped, such that time delta
2167          * calculation in update_event_times() is correct.
2168          */
2169         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2170                 if (event == partial_group)
2171                         simulate = true;
2172
2173                 if (simulate) {
2174                         event->tstamp_running += now - event->tstamp_stopped;
2175                         event->tstamp_stopped = now;
2176                 } else {
2177                         event_sched_out(event, cpuctx, ctx);
2178                 }
2179         }
2180         event_sched_out(group_event, cpuctx, ctx);
2181
2182         pmu->cancel_txn(pmu);
2183
2184         perf_mux_hrtimer_restart(cpuctx);
2185
2186         return -EAGAIN;
2187 }
2188
2189 /*
2190  * Work out whether we can put this event group on the CPU now.
2191  */
2192 static int group_can_go_on(struct perf_event *event,
2193                            struct perf_cpu_context *cpuctx,
2194                            int can_add_hw)
2195 {
2196         /*
2197          * Groups consisting entirely of software events can always go on.
2198          */
2199         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2200                 return 1;
2201         /*
2202          * If an exclusive group is already on, no other hardware
2203          * events can go on.
2204          */
2205         if (cpuctx->exclusive)
2206                 return 0;
2207         /*
2208          * If this group is exclusive and there are already
2209          * events on the CPU, it can't go on.
2210          */
2211         if (event->attr.exclusive && cpuctx->active_oncpu)
2212                 return 0;
2213         /*
2214          * Otherwise, try to add it if all previous groups were able
2215          * to go on.
2216          */
2217         return can_add_hw;
2218 }
2219
2220 static void add_event_to_ctx(struct perf_event *event,
2221                                struct perf_event_context *ctx)
2222 {
2223         u64 tstamp = perf_event_time(event);
2224
2225         list_add_event(event, ctx);
2226         perf_group_attach(event);
2227         event->tstamp_enabled = tstamp;
2228         event->tstamp_running = tstamp;
2229         event->tstamp_stopped = tstamp;
2230 }
2231
2232 static void ctx_sched_out(struct perf_event_context *ctx,
2233                           struct perf_cpu_context *cpuctx,
2234                           enum event_type_t event_type);
2235 static void
2236 ctx_sched_in(struct perf_event_context *ctx,
2237              struct perf_cpu_context *cpuctx,
2238              enum event_type_t event_type,
2239              struct task_struct *task);
2240
2241 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2242                                struct perf_event_context *ctx,
2243                                enum event_type_t event_type)
2244 {
2245         if (!cpuctx->task_ctx)
2246                 return;
2247
2248         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2249                 return;
2250
2251         ctx_sched_out(ctx, cpuctx, event_type);
2252 }
2253
2254 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2255                                 struct perf_event_context *ctx,
2256                                 struct task_struct *task)
2257 {
2258         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2259         if (ctx)
2260                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2261         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2262         if (ctx)
2263                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2264 }
2265
2266 /*
2267  * We want to maintain the following priority of scheduling:
2268  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2269  *  - task pinned (EVENT_PINNED)
2270  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2271  *  - task flexible (EVENT_FLEXIBLE).
2272  *
2273  * In order to avoid unscheduling and scheduling back in everything every
2274  * time an event is added, only do it for the groups of equal priority and
2275  * below.
2276  *
2277  * This can be called after a batch operation on task events, in which case
2278  * event_type is a bit mask of the types of events involved. For CPU events,
2279  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2280  */
2281 static void ctx_resched(struct perf_cpu_context *cpuctx,
2282                         struct perf_event_context *task_ctx,
2283                         enum event_type_t event_type)
2284 {
2285         enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2286         bool cpu_event = !!(event_type & EVENT_CPU);
2287
2288         /*
2289          * If pinned groups are involved, flexible groups also need to be
2290          * scheduled out.
2291          */
2292         if (event_type & EVENT_PINNED)
2293                 event_type |= EVENT_FLEXIBLE;
2294
2295         perf_pmu_disable(cpuctx->ctx.pmu);
2296         if (task_ctx)
2297                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2298
2299         /*
2300          * Decide which cpu ctx groups to schedule out based on the types
2301          * of events that caused rescheduling:
2302          *  - EVENT_CPU: schedule out corresponding groups;
2303          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2304          *  - otherwise, do nothing more.
2305          */
2306         if (cpu_event)
2307                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2308         else if (ctx_event_type & EVENT_PINNED)
2309                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2310
2311         perf_event_sched_in(cpuctx, task_ctx, current);
2312         perf_pmu_enable(cpuctx->ctx.pmu);
2313 }
2314
2315 /*
2316  * Cross CPU call to install and enable a performance event
2317  *
2318  * Very similar to remote_function() + event_function() but cannot assume that
2319  * things like ctx->is_active and cpuctx->task_ctx are set.
2320  */
2321 static int  __perf_install_in_context(void *info)
2322 {
2323         struct perf_event *event = info;
2324         struct perf_event_context *ctx = event->ctx;
2325         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2326         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2327         bool reprogram = true;
2328         int ret = 0;
2329
2330         raw_spin_lock(&cpuctx->ctx.lock);
2331         if (ctx->task) {
2332                 raw_spin_lock(&ctx->lock);
2333                 task_ctx = ctx;
2334
2335                 reprogram = (ctx->task == current);
2336
2337                 /*
2338                  * If the task is running, it must be running on this CPU,
2339                  * otherwise we cannot reprogram things.
2340                  *
2341                  * If its not running, we don't care, ctx->lock will
2342                  * serialize against it becoming runnable.
2343                  */
2344                 if (task_curr(ctx->task) && !reprogram) {
2345                         ret = -ESRCH;
2346                         goto unlock;
2347                 }
2348
2349                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2350         } else if (task_ctx) {
2351                 raw_spin_lock(&task_ctx->lock);
2352         }
2353
2354         if (reprogram) {
2355                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2356                 add_event_to_ctx(event, ctx);
2357                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2358         } else {
2359                 add_event_to_ctx(event, ctx);
2360         }
2361
2362 unlock:
2363         perf_ctx_unlock(cpuctx, task_ctx);
2364
2365         return ret;
2366 }
2367
2368 /*
2369  * Attach a performance event to a context.
2370  *
2371  * Very similar to event_function_call, see comment there.
2372  */
2373 static void
2374 perf_install_in_context(struct perf_event_context *ctx,
2375                         struct perf_event *event,
2376                         int cpu)
2377 {
2378         struct task_struct *task = READ_ONCE(ctx->task);
2379
2380         lockdep_assert_held(&ctx->mutex);
2381
2382         if (event->cpu != -1)
2383                 event->cpu = cpu;
2384
2385         /*
2386          * Ensures that if we can observe event->ctx, both the event and ctx
2387          * will be 'complete'. See perf_iterate_sb_cpu().
2388          */
2389         smp_store_release(&event->ctx, ctx);
2390
2391         if (!task) {
2392                 cpu_function_call(cpu, __perf_install_in_context, event);
2393                 return;
2394         }
2395
2396         /*
2397          * Should not happen, we validate the ctx is still alive before calling.
2398          */
2399         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2400                 return;
2401
2402         /*
2403          * Installing events is tricky because we cannot rely on ctx->is_active
2404          * to be set in case this is the nr_events 0 -> 1 transition.
2405          *
2406          * Instead we use task_curr(), which tells us if the task is running.
2407          * However, since we use task_curr() outside of rq::lock, we can race
2408          * against the actual state. This means the result can be wrong.
2409          *
2410          * If we get a false positive, we retry, this is harmless.
2411          *
2412          * If we get a false negative, things are complicated. If we are after
2413          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2414          * value must be correct. If we're before, it doesn't matter since
2415          * perf_event_context_sched_in() will program the counter.
2416          *
2417          * However, this hinges on the remote context switch having observed
2418          * our task->perf_event_ctxp[] store, such that it will in fact take
2419          * ctx::lock in perf_event_context_sched_in().
2420          *
2421          * We do this by task_function_call(), if the IPI fails to hit the task
2422          * we know any future context switch of task must see the
2423          * perf_event_ctpx[] store.
2424          */
2425
2426         /*
2427          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2428          * task_cpu() load, such that if the IPI then does not find the task
2429          * running, a future context switch of that task must observe the
2430          * store.
2431          */
2432         smp_mb();
2433 again:
2434         if (!task_function_call(task, __perf_install_in_context, event))
2435                 return;
2436
2437         raw_spin_lock_irq(&ctx->lock);
2438         task = ctx->task;
2439         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2440                 /*
2441                  * Cannot happen because we already checked above (which also
2442                  * cannot happen), and we hold ctx->mutex, which serializes us
2443                  * against perf_event_exit_task_context().
2444                  */
2445                 raw_spin_unlock_irq(&ctx->lock);
2446                 return;
2447         }
2448         /*
2449          * If the task is not running, ctx->lock will avoid it becoming so,
2450          * thus we can safely install the event.
2451          */
2452         if (task_curr(task)) {
2453                 raw_spin_unlock_irq(&ctx->lock);
2454                 goto again;
2455         }
2456         add_event_to_ctx(event, ctx);
2457         raw_spin_unlock_irq(&ctx->lock);
2458 }
2459
2460 /*
2461  * Put a event into inactive state and update time fields.
2462  * Enabling the leader of a group effectively enables all
2463  * the group members that aren't explicitly disabled, so we
2464  * have to update their ->tstamp_enabled also.
2465  * Note: this works for group members as well as group leaders
2466  * since the non-leader members' sibling_lists will be empty.
2467  */
2468 static void __perf_event_mark_enabled(struct perf_event *event)
2469 {
2470         struct perf_event *sub;
2471         u64 tstamp = perf_event_time(event);
2472
2473         event->state = PERF_EVENT_STATE_INACTIVE;
2474         event->tstamp_enabled = tstamp - event->total_time_enabled;
2475         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2476                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2477                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2478         }
2479 }
2480
2481 /*
2482  * Cross CPU call to enable a performance event
2483  */
2484 static void __perf_event_enable(struct perf_event *event,
2485                                 struct perf_cpu_context *cpuctx,
2486                                 struct perf_event_context *ctx,
2487                                 void *info)
2488 {
2489         struct perf_event *leader = event->group_leader;
2490         struct perf_event_context *task_ctx;
2491
2492         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2493             event->state <= PERF_EVENT_STATE_ERROR)
2494                 return;
2495
2496         if (ctx->is_active)
2497                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2498
2499         __perf_event_mark_enabled(event);
2500
2501         if (!ctx->is_active)
2502                 return;
2503
2504         if (!event_filter_match(event)) {
2505                 if (is_cgroup_event(event))
2506                         perf_cgroup_defer_enabled(event);
2507                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2508                 return;
2509         }
2510
2511         /*
2512          * If the event is in a group and isn't the group leader,
2513          * then don't put it on unless the group is on.
2514          */
2515         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2516                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2517                 return;
2518         }
2519
2520         task_ctx = cpuctx->task_ctx;
2521         if (ctx->task)
2522                 WARN_ON_ONCE(task_ctx != ctx);
2523
2524         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2525 }
2526
2527 /*
2528  * Enable a event.
2529  *
2530  * If event->ctx is a cloned context, callers must make sure that
2531  * every task struct that event->ctx->task could possibly point to
2532  * remains valid.  This condition is satisfied when called through
2533  * perf_event_for_each_child or perf_event_for_each as described
2534  * for perf_event_disable.
2535  */
2536 static void _perf_event_enable(struct perf_event *event)
2537 {
2538         struct perf_event_context *ctx = event->ctx;
2539
2540         raw_spin_lock_irq(&ctx->lock);
2541         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2542             event->state <  PERF_EVENT_STATE_ERROR) {
2543                 raw_spin_unlock_irq(&ctx->lock);
2544                 return;
2545         }
2546
2547         /*
2548          * If the event is in error state, clear that first.
2549          *
2550          * That way, if we see the event in error state below, we know that it
2551          * has gone back into error state, as distinct from the task having
2552          * been scheduled away before the cross-call arrived.
2553          */
2554         if (event->state == PERF_EVENT_STATE_ERROR)
2555                 event->state = PERF_EVENT_STATE_OFF;
2556         raw_spin_unlock_irq(&ctx->lock);
2557
2558         event_function_call(event, __perf_event_enable, NULL);
2559 }
2560
2561 /*
2562  * See perf_event_disable();
2563  */
2564 void perf_event_enable(struct perf_event *event)
2565 {
2566         struct perf_event_context *ctx;
2567
2568         ctx = perf_event_ctx_lock(event);
2569         _perf_event_enable(event);
2570         perf_event_ctx_unlock(event, ctx);
2571 }
2572 EXPORT_SYMBOL_GPL(perf_event_enable);
2573
2574 struct stop_event_data {
2575         struct perf_event       *event;
2576         unsigned int            restart;
2577 };
2578
2579 static int __perf_event_stop(void *info)
2580 {
2581         struct stop_event_data *sd = info;
2582         struct perf_event *event = sd->event;
2583
2584         /* if it's already INACTIVE, do nothing */
2585         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2586                 return 0;
2587
2588         /* matches smp_wmb() in event_sched_in() */
2589         smp_rmb();
2590
2591         /*
2592          * There is a window with interrupts enabled before we get here,
2593          * so we need to check again lest we try to stop another CPU's event.
2594          */
2595         if (READ_ONCE(event->oncpu) != smp_processor_id())
2596                 return -EAGAIN;
2597
2598         event->pmu->stop(event, PERF_EF_UPDATE);
2599
2600         /*
2601          * May race with the actual stop (through perf_pmu_output_stop()),
2602          * but it is only used for events with AUX ring buffer, and such
2603          * events will refuse to restart because of rb::aux_mmap_count==0,
2604          * see comments in perf_aux_output_begin().
2605          *
2606          * Since this is happening on a event-local CPU, no trace is lost
2607          * while restarting.
2608          */
2609         if (sd->restart)
2610                 event->pmu->start(event, 0);
2611
2612         return 0;
2613 }
2614
2615 static int perf_event_stop(struct perf_event *event, int restart)
2616 {
2617         struct stop_event_data sd = {
2618                 .event          = event,
2619                 .restart        = restart,
2620         };
2621         int ret = 0;
2622
2623         do {
2624                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2625                         return 0;
2626
2627                 /* matches smp_wmb() in event_sched_in() */
2628                 smp_rmb();
2629
2630                 /*
2631                  * We only want to restart ACTIVE events, so if the event goes
2632                  * inactive here (event->oncpu==-1), there's nothing more to do;
2633                  * fall through with ret==-ENXIO.
2634                  */
2635                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2636                                         __perf_event_stop, &sd);
2637         } while (ret == -EAGAIN);
2638
2639         return ret;
2640 }
2641
2642 /*
2643  * In order to contain the amount of racy and tricky in the address filter
2644  * configuration management, it is a two part process:
2645  *
2646  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2647  *      we update the addresses of corresponding vmas in
2648  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2649  * (p2) when an event is scheduled in (pmu::add), it calls
2650  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2651  *      if the generation has changed since the previous call.
2652  *
2653  * If (p1) happens while the event is active, we restart it to force (p2).
2654  *
2655  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2656  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2657  *     ioctl;
2658  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2659  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2660  *     for reading;
2661  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2662  *     of exec.
2663  */
2664 void perf_event_addr_filters_sync(struct perf_event *event)
2665 {
2666         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2667
2668         if (!has_addr_filter(event))
2669                 return;
2670
2671         raw_spin_lock(&ifh->lock);
2672         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2673                 event->pmu->addr_filters_sync(event);
2674                 event->hw.addr_filters_gen = event->addr_filters_gen;
2675         }
2676         raw_spin_unlock(&ifh->lock);
2677 }
2678 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2679
2680 static int _perf_event_refresh(struct perf_event *event, int refresh)
2681 {
2682         /*
2683          * not supported on inherited events
2684          */
2685         if (event->attr.inherit || !is_sampling_event(event))
2686                 return -EINVAL;
2687
2688         atomic_add(refresh, &event->event_limit);
2689         _perf_event_enable(event);
2690
2691         return 0;
2692 }
2693
2694 /*
2695  * See perf_event_disable()
2696  */
2697 int perf_event_refresh(struct perf_event *event, int refresh)
2698 {
2699         struct perf_event_context *ctx;
2700         int ret;
2701
2702         ctx = perf_event_ctx_lock(event);
2703         ret = _perf_event_refresh(event, refresh);
2704         perf_event_ctx_unlock(event, ctx);
2705
2706         return ret;
2707 }
2708 EXPORT_SYMBOL_GPL(perf_event_refresh);
2709
2710 static void ctx_sched_out(struct perf_event_context *ctx,
2711                           struct perf_cpu_context *cpuctx,
2712                           enum event_type_t event_type)
2713 {
2714         int is_active = ctx->is_active;
2715         struct perf_event *event;
2716
2717         lockdep_assert_held(&ctx->lock);
2718
2719         if (likely(!ctx->nr_events)) {
2720                 /*
2721                  * See __perf_remove_from_context().
2722                  */
2723                 WARN_ON_ONCE(ctx->is_active);
2724                 if (ctx->task)
2725                         WARN_ON_ONCE(cpuctx->task_ctx);
2726                 return;
2727         }
2728
2729         ctx->is_active &= ~event_type;
2730         if (!(ctx->is_active & EVENT_ALL))
2731                 ctx->is_active = 0;
2732
2733         if (ctx->task) {
2734                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2735                 if (!ctx->is_active)
2736                         cpuctx->task_ctx = NULL;
2737         }
2738
2739         /*
2740          * Always update time if it was set; not only when it changes.
2741          * Otherwise we can 'forget' to update time for any but the last
2742          * context we sched out. For example:
2743          *
2744          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2745          *   ctx_sched_out(.event_type = EVENT_PINNED)
2746          *
2747          * would only update time for the pinned events.
2748          */
2749         if (is_active & EVENT_TIME) {
2750                 /* update (and stop) ctx time */
2751                 update_context_time(ctx);
2752                 update_cgrp_time_from_cpuctx(cpuctx);
2753         }
2754
2755         is_active ^= ctx->is_active; /* changed bits */
2756
2757         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2758                 return;
2759
2760         perf_pmu_disable(ctx->pmu);
2761         if (is_active & EVENT_PINNED) {
2762                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2763                         group_sched_out(event, cpuctx, ctx);
2764         }
2765
2766         if (is_active & EVENT_FLEXIBLE) {
2767                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2768                         group_sched_out(event, cpuctx, ctx);
2769         }
2770         perf_pmu_enable(ctx->pmu);
2771 }
2772
2773 /*
2774  * Test whether two contexts are equivalent, i.e. whether they have both been
2775  * cloned from the same version of the same context.
2776  *
2777  * Equivalence is measured using a generation number in the context that is
2778  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2779  * and list_del_event().
2780  */
2781 static int context_equiv(struct perf_event_context *ctx1,
2782                          struct perf_event_context *ctx2)
2783 {
2784         lockdep_assert_held(&ctx1->lock);
2785         lockdep_assert_held(&ctx2->lock);
2786
2787         /* Pinning disables the swap optimization */
2788         if (ctx1->pin_count || ctx2->pin_count)
2789                 return 0;
2790
2791         /* If ctx1 is the parent of ctx2 */
2792         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2793                 return 1;
2794
2795         /* If ctx2 is the parent of ctx1 */
2796         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2797                 return 1;
2798
2799         /*
2800          * If ctx1 and ctx2 have the same parent; we flatten the parent
2801          * hierarchy, see perf_event_init_context().
2802          */
2803         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2804                         ctx1->parent_gen == ctx2->parent_gen)
2805                 return 1;
2806
2807         /* Unmatched */
2808         return 0;
2809 }
2810
2811 static void __perf_event_sync_stat(struct perf_event *event,
2812                                      struct perf_event *next_event)
2813 {
2814         u64 value;
2815
2816         if (!event->attr.inherit_stat)
2817                 return;
2818
2819         /*
2820          * Update the event value, we cannot use perf_event_read()
2821          * because we're in the middle of a context switch and have IRQs
2822          * disabled, which upsets smp_call_function_single(), however
2823          * we know the event must be on the current CPU, therefore we
2824          * don't need to use it.
2825          */
2826         switch (event->state) {
2827         case PERF_EVENT_STATE_ACTIVE:
2828                 event->pmu->read(event);
2829                 /* fall-through */
2830
2831         case PERF_EVENT_STATE_INACTIVE:
2832                 update_event_times(event);
2833                 break;
2834
2835         default:
2836                 break;
2837         }
2838
2839         /*
2840          * In order to keep per-task stats reliable we need to flip the event
2841          * values when we flip the contexts.
2842          */
2843         value = local64_read(&next_event->count);
2844         value = local64_xchg(&event->count, value);
2845         local64_set(&next_event->count, value);
2846
2847         swap(event->total_time_enabled, next_event->total_time_enabled);
2848         swap(event->total_time_running, next_event->total_time_running);
2849
2850         /*
2851          * Since we swizzled the values, update the user visible data too.
2852          */
2853         perf_event_update_userpage(event);
2854         perf_event_update_userpage(next_event);
2855 }
2856
2857 static void perf_event_sync_stat(struct perf_event_context *ctx,
2858                                    struct perf_event_context *next_ctx)
2859 {
2860         struct perf_event *event, *next_event;
2861
2862         if (!ctx->nr_stat)
2863                 return;
2864
2865         update_context_time(ctx);
2866
2867         event = list_first_entry(&ctx->event_list,
2868                                    struct perf_event, event_entry);
2869
2870         next_event = list_first_entry(&next_ctx->event_list,
2871                                         struct perf_event, event_entry);
2872
2873         while (&event->event_entry != &ctx->event_list &&
2874                &next_event->event_entry != &next_ctx->event_list) {
2875
2876                 __perf_event_sync_stat(event, next_event);
2877
2878                 event = list_next_entry(event, event_entry);
2879                 next_event = list_next_entry(next_event, event_entry);
2880         }
2881 }
2882
2883 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2884                                          struct task_struct *next)
2885 {
2886         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2887         struct perf_event_context *next_ctx;
2888         struct perf_event_context *parent, *next_parent;
2889         struct perf_cpu_context *cpuctx;
2890         int do_switch = 1;
2891
2892         if (likely(!ctx))
2893                 return;
2894
2895         cpuctx = __get_cpu_context(ctx);
2896         if (!cpuctx->task_ctx)
2897                 return;
2898
2899         rcu_read_lock();
2900         next_ctx = next->perf_event_ctxp[ctxn];
2901         if (!next_ctx)
2902                 goto unlock;
2903
2904         parent = rcu_dereference(ctx->parent_ctx);
2905         next_parent = rcu_dereference(next_ctx->parent_ctx);
2906
2907         /* If neither context have a parent context; they cannot be clones. */
2908         if (!parent && !next_parent)
2909                 goto unlock;
2910
2911         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2912                 /*
2913                  * Looks like the two contexts are clones, so we might be
2914                  * able to optimize the context switch.  We lock both
2915                  * contexts and check that they are clones under the
2916                  * lock (including re-checking that neither has been
2917                  * uncloned in the meantime).  It doesn't matter which
2918                  * order we take the locks because no other cpu could
2919                  * be trying to lock both of these tasks.
2920                  */
2921                 raw_spin_lock(&ctx->lock);
2922                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2923                 if (context_equiv(ctx, next_ctx)) {
2924                         WRITE_ONCE(ctx->task, next);
2925                         WRITE_ONCE(next_ctx->task, task);
2926
2927                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2928
2929                         /*
2930                          * RCU_INIT_POINTER here is safe because we've not
2931                          * modified the ctx and the above modification of
2932                          * ctx->task and ctx->task_ctx_data are immaterial
2933                          * since those values are always verified under
2934                          * ctx->lock which we're now holding.
2935                          */
2936                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2937                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2938
2939                         do_switch = 0;
2940
2941                         perf_event_sync_stat(ctx, next_ctx);
2942                 }
2943                 raw_spin_unlock(&next_ctx->lock);
2944                 raw_spin_unlock(&ctx->lock);
2945         }
2946 unlock:
2947         rcu_read_unlock();
2948
2949         if (do_switch) {
2950                 raw_spin_lock(&ctx->lock);
2951                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2952                 raw_spin_unlock(&ctx->lock);
2953         }
2954 }
2955
2956 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2957
2958 void perf_sched_cb_dec(struct pmu *pmu)
2959 {
2960         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2961
2962         this_cpu_dec(perf_sched_cb_usages);
2963
2964         if (!--cpuctx->sched_cb_usage)
2965                 list_del(&cpuctx->sched_cb_entry);
2966 }
2967
2968
2969 void perf_sched_cb_inc(struct pmu *pmu)
2970 {
2971         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2972
2973         if (!cpuctx->sched_cb_usage++)
2974                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2975
2976         this_cpu_inc(perf_sched_cb_usages);
2977 }
2978
2979 /*
2980  * This function provides the context switch callback to the lower code
2981  * layer. It is invoked ONLY when the context switch callback is enabled.
2982  *
2983  * This callback is relevant even to per-cpu events; for example multi event
2984  * PEBS requires this to provide PID/TID information. This requires we flush
2985  * all queued PEBS records before we context switch to a new task.
2986  */
2987 static void perf_pmu_sched_task(struct task_struct *prev,
2988                                 struct task_struct *next,
2989                                 bool sched_in)
2990 {
2991         struct perf_cpu_context *cpuctx;
2992         struct pmu *pmu;
2993
2994         if (prev == next)
2995                 return;
2996
2997         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2998                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2999
3000                 if (WARN_ON_ONCE(!pmu->sched_task))
3001                         continue;
3002
3003                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3004                 perf_pmu_disable(pmu);
3005
3006                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3007
3008                 perf_pmu_enable(pmu);
3009                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3010         }
3011 }
3012
3013 static void perf_event_switch(struct task_struct *task,
3014                               struct task_struct *next_prev, bool sched_in);
3015
3016 #define for_each_task_context_nr(ctxn)                                  \
3017         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3018
3019 /*
3020  * Called from scheduler to remove the events of the current task,
3021  * with interrupts disabled.
3022  *
3023  * We stop each event and update the event value in event->count.
3024  *
3025  * This does not protect us against NMI, but disable()
3026  * sets the disabled bit in the control field of event _before_
3027  * accessing the event control register. If a NMI hits, then it will
3028  * not restart the event.
3029  */
3030 void __perf_event_task_sched_out(struct task_struct *task,
3031                                  struct task_struct *next)
3032 {
3033         int ctxn;
3034
3035         if (__this_cpu_read(perf_sched_cb_usages))
3036                 perf_pmu_sched_task(task, next, false);
3037
3038         if (atomic_read(&nr_switch_events))
3039                 perf_event_switch(task, next, false);
3040
3041         for_each_task_context_nr(ctxn)
3042                 perf_event_context_sched_out(task, ctxn, next);
3043
3044         /*
3045          * if cgroup events exist on this CPU, then we need
3046          * to check if we have to switch out PMU state.
3047          * cgroup event are system-wide mode only
3048          */
3049         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3050                 perf_cgroup_sched_out(task, next);
3051 }
3052
3053 /*
3054  * Called with IRQs disabled
3055  */
3056 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3057                               enum event_type_t event_type)
3058 {
3059         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3060 }
3061
3062 static void
3063 ctx_pinned_sched_in(struct perf_event_context *ctx,
3064                     struct perf_cpu_context *cpuctx)
3065 {
3066         struct perf_event *event;
3067
3068         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3069                 if (event->state <= PERF_EVENT_STATE_OFF)
3070                         continue;
3071                 if (!event_filter_match(event))
3072                         continue;
3073
3074                 /* may need to reset tstamp_enabled */
3075                 if (is_cgroup_event(event))
3076                         perf_cgroup_mark_enabled(event, ctx);
3077
3078                 if (group_can_go_on(event, cpuctx, 1))
3079                         group_sched_in(event, cpuctx, ctx);
3080
3081                 /*
3082                  * If this pinned group hasn't been scheduled,
3083                  * put it in error state.
3084                  */
3085                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3086                         update_group_times(event);
3087                         event->state = PERF_EVENT_STATE_ERROR;
3088                 }
3089         }
3090 }
3091
3092 static void
3093 ctx_flexible_sched_in(struct perf_event_context *ctx,
3094                       struct perf_cpu_context *cpuctx)
3095 {
3096         struct perf_event *event;
3097         int can_add_hw = 1;
3098
3099         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3100                 /* Ignore events in OFF or ERROR state */
3101                 if (event->state <= PERF_EVENT_STATE_OFF)
3102                         continue;
3103                 /*
3104                  * Listen to the 'cpu' scheduling filter constraint
3105                  * of events:
3106                  */
3107                 if (!event_filter_match(event))
3108                         continue;
3109
3110                 /* may need to reset tstamp_enabled */
3111                 if (is_cgroup_event(event))
3112                         perf_cgroup_mark_enabled(event, ctx);
3113
3114                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3115                         if (group_sched_in(event, cpuctx, ctx))
3116                                 can_add_hw = 0;
3117                 }
3118         }
3119 }
3120
3121 static void
3122 ctx_sched_in(struct perf_event_context *ctx,
3123              struct perf_cpu_context *cpuctx,
3124              enum event_type_t event_type,
3125              struct task_struct *task)
3126 {
3127         int is_active = ctx->is_active;
3128         u64 now;
3129
3130         lockdep_assert_held(&ctx->lock);
3131
3132         if (likely(!ctx->nr_events))
3133                 return;
3134
3135         ctx->is_active |= (event_type | EVENT_TIME);
3136         if (ctx->task) {
3137                 if (!is_active)
3138                         cpuctx->task_ctx = ctx;
3139                 else
3140                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3141         }
3142
3143         is_active ^= ctx->is_active; /* changed bits */
3144
3145         if (is_active & EVENT_TIME) {
3146                 /* start ctx time */
3147                 now = perf_clock();
3148                 ctx->timestamp = now;
3149                 perf_cgroup_set_timestamp(task, ctx);
3150         }
3151
3152         /*
3153          * First go through the list and put on any pinned groups
3154          * in order to give them the best chance of going on.
3155          */
3156         if (is_active & EVENT_PINNED)
3157                 ctx_pinned_sched_in(ctx, cpuctx);
3158
3159         /* Then walk through the lower prio flexible groups */
3160         if (is_active & EVENT_FLEXIBLE)
3161                 ctx_flexible_sched_in(ctx, cpuctx);
3162 }
3163
3164 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3165                              enum event_type_t event_type,
3166                              struct task_struct *task)
3167 {
3168         struct perf_event_context *ctx = &cpuctx->ctx;
3169
3170         ctx_sched_in(ctx, cpuctx, event_type, task);
3171 }
3172
3173 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3174                                         struct task_struct *task)
3175 {
3176         struct perf_cpu_context *cpuctx;
3177
3178         cpuctx = __get_cpu_context(ctx);
3179         if (cpuctx->task_ctx == ctx)
3180                 return;
3181
3182         perf_ctx_lock(cpuctx, ctx);
3183         perf_pmu_disable(ctx->pmu);
3184         /*
3185          * We want to keep the following priority order:
3186          * cpu pinned (that don't need to move), task pinned,
3187          * cpu flexible, task flexible.
3188          *
3189          * However, if task's ctx is not carrying any pinned
3190          * events, no need to flip the cpuctx's events around.
3191          */
3192         if (!list_empty(&ctx->pinned_groups))
3193                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3194         perf_event_sched_in(cpuctx, ctx, task);
3195         perf_pmu_enable(ctx->pmu);
3196         perf_ctx_unlock(cpuctx, ctx);
3197 }
3198
3199 /*
3200  * Called from scheduler to add the events of the current task
3201  * with interrupts disabled.
3202  *
3203  * We restore the event value and then enable it.
3204  *
3205  * This does not protect us against NMI, but enable()
3206  * sets the enabled bit in the control field of event _before_
3207  * accessing the event control register. If a NMI hits, then it will
3208  * keep the event running.
3209  */
3210 void __perf_event_task_sched_in(struct task_struct *prev,
3211                                 struct task_struct *task)
3212 {
3213         struct perf_event_context *ctx;
3214         int ctxn;
3215
3216         /*
3217          * If cgroup events exist on this CPU, then we need to check if we have
3218          * to switch in PMU state; cgroup event are system-wide mode only.
3219          *
3220          * Since cgroup events are CPU events, we must schedule these in before
3221          * we schedule in the task events.
3222          */
3223         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3224                 perf_cgroup_sched_in(prev, task);
3225
3226         for_each_task_context_nr(ctxn) {
3227                 ctx = task->perf_event_ctxp[ctxn];
3228                 if (likely(!ctx))
3229                         continue;
3230
3231                 perf_event_context_sched_in(ctx, task);
3232         }
3233
3234         if (atomic_read(&nr_switch_events))
3235                 perf_event_switch(task, prev, true);
3236
3237         if (__this_cpu_read(perf_sched_cb_usages))
3238                 perf_pmu_sched_task(prev, task, true);
3239 }
3240
3241 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3242 {
3243         u64 frequency = event->attr.sample_freq;
3244         u64 sec = NSEC_PER_SEC;
3245         u64 divisor, dividend;
3246
3247         int count_fls, nsec_fls, frequency_fls, sec_fls;
3248
3249         count_fls = fls64(count);
3250         nsec_fls = fls64(nsec);
3251         frequency_fls = fls64(frequency);
3252         sec_fls = 30;
3253
3254         /*
3255          * We got @count in @nsec, with a target of sample_freq HZ
3256          * the target period becomes:
3257          *
3258          *             @count * 10^9
3259          * period = -------------------
3260          *          @nsec * sample_freq
3261          *
3262          */
3263
3264         /*
3265          * Reduce accuracy by one bit such that @a and @b converge
3266          * to a similar magnitude.
3267          */
3268 #define REDUCE_FLS(a, b)                \
3269 do {                                    \
3270         if (a##_fls > b##_fls) {        \
3271                 a >>= 1;                \
3272                 a##_fls--;              \
3273         } else {                        \
3274                 b >>= 1;                \
3275                 b##_fls--;              \
3276         }                               \
3277 } while (0)
3278
3279         /*
3280          * Reduce accuracy until either term fits in a u64, then proceed with
3281          * the other, so that finally we can do a u64/u64 division.
3282          */
3283         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3284                 REDUCE_FLS(nsec, frequency);
3285                 REDUCE_FLS(sec, count);
3286         }
3287
3288         if (count_fls + sec_fls > 64) {
3289                 divisor = nsec * frequency;
3290
3291                 while (count_fls + sec_fls > 64) {
3292                         REDUCE_FLS(count, sec);
3293                         divisor >>= 1;
3294                 }
3295
3296                 dividend = count * sec;
3297         } else {
3298                 dividend = count * sec;
3299
3300                 while (nsec_fls + frequency_fls > 64) {
3301                         REDUCE_FLS(nsec, frequency);
3302                         dividend >>= 1;
3303                 }
3304
3305                 divisor = nsec * frequency;
3306         }
3307
3308         if (!divisor)
3309                 return dividend;
3310
3311         return div64_u64(dividend, divisor);
3312 }
3313
3314 static DEFINE_PER_CPU(int, perf_throttled_count);
3315 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3316
3317 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3318 {
3319         struct hw_perf_event *hwc = &event->hw;
3320         s64 period, sample_period;
3321         s64 delta;
3322
3323         period = perf_calculate_period(event, nsec, count);
3324
3325         delta = (s64)(period - hwc->sample_period);
3326         delta = (delta + 7) / 8; /* low pass filter */
3327
3328         sample_period = hwc->sample_period + delta;
3329
3330         if (!sample_period)
3331                 sample_period = 1;
3332
3333         hwc->sample_period = sample_period;
3334
3335         if (local64_read(&hwc->period_left) > 8*sample_period) {
3336                 if (disable)
3337                         event->pmu->stop(event, PERF_EF_UPDATE);
3338
3339                 local64_set(&hwc->period_left, 0);
3340
3341                 if (disable)
3342                         event->pmu->start(event, PERF_EF_RELOAD);
3343         }
3344 }
3345
3346 /*
3347  * combine freq adjustment with unthrottling to avoid two passes over the
3348  * events. At the same time, make sure, having freq events does not change
3349  * the rate of unthrottling as that would introduce bias.
3350  */
3351 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3352                                            int needs_unthr)
3353 {
3354         struct perf_event *event;
3355         struct hw_perf_event *hwc;
3356         u64 now, period = TICK_NSEC;
3357         s64 delta;
3358
3359         /*
3360          * only need to iterate over all events iff:
3361          * - context have events in frequency mode (needs freq adjust)
3362          * - there are events to unthrottle on this cpu
3363          */
3364         if (!(ctx->nr_freq || needs_unthr))
3365                 return;
3366
3367         raw_spin_lock(&ctx->lock);
3368         perf_pmu_disable(ctx->pmu);
3369
3370         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3371                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3372                         continue;
3373
3374                 if (!event_filter_match(event))
3375                         continue;
3376
3377                 perf_pmu_disable(event->pmu);
3378
3379                 hwc = &event->hw;
3380
3381                 if (hwc->interrupts == MAX_INTERRUPTS) {
3382                         hwc->interrupts = 0;
3383                         perf_log_throttle(event, 1);
3384                         event->pmu->start(event, 0);
3385                 }
3386
3387                 if (!event->attr.freq || !event->attr.sample_freq)
3388                         goto next;
3389
3390                 /*
3391                  * stop the event and update event->count
3392                  */
3393                 event->pmu->stop(event, PERF_EF_UPDATE);
3394
3395                 now = local64_read(&event->count);
3396                 delta = now - hwc->freq_count_stamp;
3397                 hwc->freq_count_stamp = now;
3398
3399                 /*
3400                  * restart the event
3401                  * reload only if value has changed
3402                  * we have stopped the event so tell that
3403                  * to perf_adjust_period() to avoid stopping it
3404                  * twice.
3405                  */
3406                 if (delta > 0)
3407                         perf_adjust_period(event, period, delta, false);
3408
3409                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3410         next:
3411                 perf_pmu_enable(event->pmu);
3412         }
3413
3414         perf_pmu_enable(ctx->pmu);
3415         raw_spin_unlock(&ctx->lock);
3416 }
3417
3418 /*
3419  * Round-robin a context's events:
3420  */
3421 static void rotate_ctx(struct perf_event_context *ctx)
3422 {
3423         /*
3424          * Rotate the first entry last of non-pinned groups. Rotation might be
3425          * disabled by the inheritance code.
3426          */
3427         if (!ctx->rotate_disable)
3428                 list_rotate_left(&ctx->flexible_groups);
3429 }
3430
3431 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3432 {
3433         struct perf_event_context *ctx = NULL;
3434         int rotate = 0;
3435
3436         if (cpuctx->ctx.nr_events) {
3437                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3438                         rotate = 1;
3439         }
3440
3441         ctx = cpuctx->task_ctx;
3442         if (ctx && ctx->nr_events) {
3443                 if (ctx->nr_events != ctx->nr_active)
3444                         rotate = 1;
3445         }
3446
3447         if (!rotate)
3448                 goto done;
3449
3450         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3451         perf_pmu_disable(cpuctx->ctx.pmu);
3452
3453         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3454         if (ctx)
3455                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3456
3457         rotate_ctx(&cpuctx->ctx);
3458         if (ctx)
3459                 rotate_ctx(ctx);
3460
3461         perf_event_sched_in(cpuctx, ctx, current);
3462
3463         perf_pmu_enable(cpuctx->ctx.pmu);
3464         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3465 done:
3466
3467         return rotate;
3468 }
3469
3470 void perf_event_task_tick(void)
3471 {
3472         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3473         struct perf_event_context *ctx, *tmp;
3474         int throttled;
3475
3476         WARN_ON(!irqs_disabled());
3477
3478         __this_cpu_inc(perf_throttled_seq);
3479         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3480         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3481
3482         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3483                 perf_adjust_freq_unthr_context(ctx, throttled);
3484 }
3485
3486 static int event_enable_on_exec(struct perf_event *event,
3487                                 struct perf_event_context *ctx)
3488 {
3489         if (!event->attr.enable_on_exec)
3490                 return 0;
3491
3492         event->attr.enable_on_exec = 0;
3493         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3494                 return 0;
3495
3496         __perf_event_mark_enabled(event);
3497
3498         return 1;
3499 }
3500
3501 /*
3502  * Enable all of a task's events that have been marked enable-on-exec.
3503  * This expects task == current.
3504  */
3505 static void perf_event_enable_on_exec(int ctxn)
3506 {
3507         struct perf_event_context *ctx, *clone_ctx = NULL;
3508         enum event_type_t event_type = 0;
3509         struct perf_cpu_context *cpuctx;
3510         struct perf_event *event;
3511         unsigned long flags;
3512         int enabled = 0;
3513
3514         local_irq_save(flags);
3515         ctx = current->perf_event_ctxp[ctxn];
3516         if (!ctx || !ctx->nr_events)
3517                 goto out;
3518
3519         cpuctx = __get_cpu_context(ctx);
3520         perf_ctx_lock(cpuctx, ctx);
3521         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3522         list_for_each_entry(event, &ctx->event_list, event_entry) {
3523                 enabled |= event_enable_on_exec(event, ctx);
3524                 event_type |= get_event_type(event);
3525         }
3526
3527         /*
3528          * Unclone and reschedule this context if we enabled any event.
3529          */
3530         if (enabled) {
3531                 clone_ctx = unclone_ctx(ctx);
3532                 ctx_resched(cpuctx, ctx, event_type);
3533         } else {
3534                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3535         }
3536         perf_ctx_unlock(cpuctx, ctx);
3537
3538 out:
3539         local_irq_restore(flags);
3540
3541         if (clone_ctx)
3542                 put_ctx(clone_ctx);
3543 }
3544
3545 struct perf_read_data {
3546         struct perf_event *event;
3547         bool group;
3548         int ret;
3549 };
3550
3551 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3552 {
3553         u16 local_pkg, event_pkg;
3554
3555         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3556                 int local_cpu = smp_processor_id();
3557
3558                 event_pkg = topology_physical_package_id(event_cpu);
3559                 local_pkg = topology_physical_package_id(local_cpu);
3560
3561                 if (event_pkg == local_pkg)
3562                         return local_cpu;
3563         }
3564
3565         return event_cpu;
3566 }
3567
3568 /*
3569  * Cross CPU call to read the hardware event
3570  */
3571 static void __perf_event_read(void *info)
3572 {
3573         struct perf_read_data *data = info;
3574         struct perf_event *sub, *event = data->event;
3575         struct perf_event_context *ctx = event->ctx;
3576         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3577         struct pmu *pmu = event->pmu;
3578
3579         /*
3580          * If this is a task context, we need to check whether it is
3581          * the current task context of this cpu.  If not it has been
3582          * scheduled out before the smp call arrived.  In that case
3583          * event->count would have been updated to a recent sample
3584          * when the event was scheduled out.
3585          */
3586         if (ctx->task && cpuctx->task_ctx != ctx)
3587                 return;
3588
3589         raw_spin_lock(&ctx->lock);
3590         if (ctx->is_active) {
3591                 update_context_time(ctx);
3592                 update_cgrp_time_from_event(event);
3593         }
3594
3595         update_event_times(event);
3596         if (event->state != PERF_EVENT_STATE_ACTIVE)
3597                 goto unlock;
3598
3599         if (!data->group) {
3600                 pmu->read(event);
3601                 data->ret = 0;
3602                 goto unlock;
3603         }
3604
3605         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3606
3607         pmu->read(event);
3608
3609         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3610                 update_event_times(sub);
3611                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3612                         /*
3613                          * Use sibling's PMU rather than @event's since
3614                          * sibling could be on different (eg: software) PMU.
3615                          */
3616                         sub->pmu->read(sub);
3617                 }
3618         }
3619
3620         data->ret = pmu->commit_txn(pmu);
3621
3622 unlock:
3623         raw_spin_unlock(&ctx->lock);
3624 }
3625
3626 static inline u64 perf_event_count(struct perf_event *event)
3627 {
3628         if (event->pmu->count)
3629                 return event->pmu->count(event);
3630
3631         return __perf_event_count(event);
3632 }
3633
3634 /*
3635  * NMI-safe method to read a local event, that is an event that
3636  * is:
3637  *   - either for the current task, or for this CPU
3638  *   - does not have inherit set, for inherited task events
3639  *     will not be local and we cannot read them atomically
3640  *   - must not have a pmu::count method
3641  */
3642 int perf_event_read_local(struct perf_event *event, u64 *value)
3643 {
3644         unsigned long flags;
3645         int ret = 0;
3646
3647         /*
3648          * Disabling interrupts avoids all counter scheduling (context
3649          * switches, timer based rotation and IPIs).
3650          */
3651         local_irq_save(flags);
3652
3653         /*
3654          * It must not be an event with inherit set, we cannot read
3655          * all child counters from atomic context.
3656          */
3657         if (event->attr.inherit) {
3658                 ret = -EOPNOTSUPP;
3659                 goto out;
3660         }
3661
3662         /*
3663          * It must not have a pmu::count method, those are not
3664          * NMI safe.
3665          */
3666         if (event->pmu->count) {
3667                 ret = -EOPNOTSUPP;
3668                 goto out;
3669         }
3670
3671         /* If this is a per-task event, it must be for current */
3672         if ((event->attach_state & PERF_ATTACH_TASK) &&
3673             event->hw.target != current) {
3674                 ret = -EINVAL;
3675                 goto out;
3676         }
3677
3678         /* If this is a per-CPU event, it must be for this CPU */
3679         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3680             event->cpu != smp_processor_id()) {
3681                 ret = -EINVAL;
3682                 goto out;
3683         }
3684
3685         /*
3686          * If the event is currently on this CPU, its either a per-task event,
3687          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3688          * oncpu == -1).
3689          */
3690         if (event->oncpu == smp_processor_id())
3691                 event->pmu->read(event);
3692
3693         *value = local64_read(&event->count);
3694 out:
3695         local_irq_restore(flags);
3696
3697         return ret;
3698 }
3699
3700 static int perf_event_read(struct perf_event *event, bool group)
3701 {
3702         int event_cpu, ret = 0;
3703
3704         /*
3705          * If event is enabled and currently active on a CPU, update the
3706          * value in the event structure:
3707          */
3708         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3709                 struct perf_read_data data = {
3710                         .event = event,
3711                         .group = group,
3712                         .ret = 0,
3713                 };
3714
3715                 event_cpu = READ_ONCE(event->oncpu);
3716                 if ((unsigned)event_cpu >= nr_cpu_ids)
3717                         return 0;
3718
3719                 preempt_disable();
3720                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3721
3722                 /*
3723                  * Purposely ignore the smp_call_function_single() return
3724                  * value.
3725                  *
3726                  * If event_cpu isn't a valid CPU it means the event got
3727                  * scheduled out and that will have updated the event count.
3728                  *
3729                  * Therefore, either way, we'll have an up-to-date event count
3730                  * after this.
3731                  */
3732                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3733                 preempt_enable();
3734                 ret = data.ret;
3735         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3736                 struct perf_event_context *ctx = event->ctx;
3737                 unsigned long flags;
3738
3739                 raw_spin_lock_irqsave(&ctx->lock, flags);
3740                 /*
3741                  * may read while context is not active
3742                  * (e.g., thread is blocked), in that case
3743                  * we cannot update context time
3744                  */
3745                 if (ctx->is_active) {
3746                         update_context_time(ctx);
3747                         update_cgrp_time_from_event(event);
3748                 }
3749                 if (group)
3750                         update_group_times(event);
3751                 else
3752                         update_event_times(event);
3753                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3754         }
3755
3756         return ret;
3757 }
3758
3759 /*
3760  * Initialize the perf_event context in a task_struct:
3761  */
3762 static void __perf_event_init_context(struct perf_event_context *ctx)
3763 {
3764         raw_spin_lock_init(&ctx->lock);
3765         mutex_init(&ctx->mutex);
3766         INIT_LIST_HEAD(&ctx->active_ctx_list);
3767         INIT_LIST_HEAD(&ctx->pinned_groups);
3768         INIT_LIST_HEAD(&ctx->flexible_groups);
3769         INIT_LIST_HEAD(&ctx->event_list);
3770         atomic_set(&ctx->refcount, 1);
3771 }
3772
3773 static struct perf_event_context *
3774 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3775 {
3776         struct perf_event_context *ctx;
3777
3778         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3779         if (!ctx)
3780                 return NULL;
3781
3782         __perf_event_init_context(ctx);
3783         if (task) {
3784                 ctx->task = task;
3785                 get_task_struct(task);
3786         }
3787         ctx->pmu = pmu;
3788
3789         return ctx;
3790 }
3791
3792 static struct task_struct *
3793 find_lively_task_by_vpid(pid_t vpid)
3794 {
3795         struct task_struct *task;
3796
3797         rcu_read_lock();
3798         if (!vpid)
3799                 task = current;
3800         else
3801                 task = find_task_by_vpid(vpid);
3802         if (task)
3803                 get_task_struct(task);
3804         rcu_read_unlock();
3805
3806         if (!task)
3807                 return ERR_PTR(-ESRCH);
3808
3809         return task;
3810 }
3811
3812 /*
3813  * Returns a matching context with refcount and pincount.
3814  */
3815 static struct perf_event_context *
3816 find_get_context(struct pmu *pmu, struct task_struct *task,
3817                 struct perf_event *event)
3818 {
3819         struct perf_event_context *ctx, *clone_ctx = NULL;
3820         struct perf_cpu_context *cpuctx;
3821         void *task_ctx_data = NULL;
3822         unsigned long flags;
3823         int ctxn, err;
3824         int cpu = event->cpu;
3825
3826         if (!task) {
3827                 /* Must be root to operate on a CPU event: */
3828                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3829                         return ERR_PTR(-EACCES);
3830
3831                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3832                 ctx = &cpuctx->ctx;
3833                 get_ctx(ctx);
3834                 ++ctx->pin_count;
3835
3836                 return ctx;
3837         }
3838
3839         err = -EINVAL;
3840         ctxn = pmu->task_ctx_nr;
3841         if (ctxn < 0)
3842                 goto errout;
3843
3844         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3845                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3846                 if (!task_ctx_data) {
3847                         err = -ENOMEM;
3848                         goto errout;
3849                 }
3850         }
3851
3852 retry:
3853         ctx = perf_lock_task_context(task, ctxn, &flags);
3854         if (ctx) {
3855                 clone_ctx = unclone_ctx(ctx);
3856                 ++ctx->pin_count;
3857
3858                 if (task_ctx_data && !ctx->task_ctx_data) {
3859                         ctx->task_ctx_data = task_ctx_data;
3860                         task_ctx_data = NULL;
3861                 }
3862                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3863
3864                 if (clone_ctx)
3865                         put_ctx(clone_ctx);
3866         } else {
3867                 ctx = alloc_perf_context(pmu, task);
3868                 err = -ENOMEM;
3869                 if (!ctx)
3870                         goto errout;
3871
3872                 if (task_ctx_data) {
3873                         ctx->task_ctx_data = task_ctx_data;
3874                         task_ctx_data = NULL;
3875                 }
3876
3877                 err = 0;
3878                 mutex_lock(&task->perf_event_mutex);
3879                 /*
3880                  * If it has already passed perf_event_exit_task().
3881                  * we must see PF_EXITING, it takes this mutex too.
3882                  */
3883                 if (task->flags & PF_EXITING)
3884                         err = -ESRCH;
3885                 else if (task->perf_event_ctxp[ctxn])
3886                         err = -EAGAIN;
3887                 else {
3888                         get_ctx(ctx);
3889                         ++ctx->pin_count;
3890                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3891                 }
3892                 mutex_unlock(&task->perf_event_mutex);
3893
3894                 if (unlikely(err)) {
3895                         put_ctx(ctx);
3896
3897                         if (err == -EAGAIN)
3898                                 goto retry;
3899                         goto errout;
3900                 }
3901         }
3902
3903         kfree(task_ctx_data);
3904         return ctx;
3905
3906 errout:
3907         kfree(task_ctx_data);
3908         return ERR_PTR(err);
3909 }
3910
3911 static void perf_event_free_filter(struct perf_event *event);
3912 static void perf_event_free_bpf_prog(struct perf_event *event);
3913
3914 static void free_event_rcu(struct rcu_head *head)
3915 {
3916         struct perf_event *event;
3917
3918         event = container_of(head, struct perf_event, rcu_head);
3919         if (event->ns)
3920                 put_pid_ns(event->ns);
3921         perf_event_free_filter(event);
3922         kfree(event);
3923 }
3924
3925 static void ring_buffer_attach(struct perf_event *event,
3926                                struct ring_buffer *rb);
3927
3928 static void detach_sb_event(struct perf_event *event)
3929 {
3930         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3931
3932         raw_spin_lock(&pel->lock);
3933         list_del_rcu(&event->sb_list);
3934         raw_spin_unlock(&pel->lock);
3935 }
3936
3937 static bool is_sb_event(struct perf_event *event)
3938 {
3939         struct perf_event_attr *attr = &event->attr;
3940
3941         if (event->parent)
3942                 return false;
3943
3944         if (event->attach_state & PERF_ATTACH_TASK)
3945                 return false;
3946
3947         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3948             attr->comm || attr->comm_exec ||
3949             attr->task ||
3950             attr->context_switch)
3951                 return true;
3952         return false;
3953 }
3954
3955 static void unaccount_pmu_sb_event(struct perf_event *event)
3956 {
3957         if (is_sb_event(event))
3958                 detach_sb_event(event);
3959 }
3960
3961 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3962 {
3963         if (event->parent)
3964                 return;
3965
3966         if (is_cgroup_event(event))
3967                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3968 }
3969
3970 #ifdef CONFIG_NO_HZ_FULL
3971 static DEFINE_SPINLOCK(nr_freq_lock);
3972 #endif
3973
3974 static void unaccount_freq_event_nohz(void)
3975 {
3976 #ifdef CONFIG_NO_HZ_FULL
3977         spin_lock(&nr_freq_lock);
3978         if (atomic_dec_and_test(&nr_freq_events))
3979                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3980         spin_unlock(&nr_freq_lock);
3981 #endif
3982 }
3983
3984 static void unaccount_freq_event(void)
3985 {
3986         if (tick_nohz_full_enabled())
3987                 unaccount_freq_event_nohz();
3988         else
3989                 atomic_dec(&nr_freq_events);
3990 }
3991
3992 static void unaccount_event(struct perf_event *event)
3993 {
3994         bool dec = false;
3995
3996         if (event->parent)
3997                 return;
3998
3999         if (event->attach_state & PERF_ATTACH_TASK)
4000                 dec = true;
4001         if (event->attr.mmap || event->attr.mmap_data)
4002                 atomic_dec(&nr_mmap_events);
4003         if (event->attr.comm)
4004                 atomic_dec(&nr_comm_events);
4005         if (event->attr.namespaces)
4006                 atomic_dec(&nr_namespaces_events);
4007         if (event->attr.task)
4008                 atomic_dec(&nr_task_events);
4009         if (event->attr.freq)
4010                 unaccount_freq_event();
4011         if (event->attr.context_switch) {
4012                 dec = true;
4013                 atomic_dec(&nr_switch_events);
4014         }
4015         if (is_cgroup_event(event))
4016                 dec = true;
4017         if (has_branch_stack(event))
4018                 dec = true;
4019
4020         if (dec) {
4021                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4022                         schedule_delayed_work(&perf_sched_work, HZ);
4023         }
4024
4025         unaccount_event_cpu(event, event->cpu);
4026
4027         unaccount_pmu_sb_event(event);
4028 }
4029
4030 static void perf_sched_delayed(struct work_struct *work)
4031 {
4032         mutex_lock(&perf_sched_mutex);
4033         if (atomic_dec_and_test(&perf_sched_count))
4034                 static_branch_disable(&perf_sched_events);
4035         mutex_unlock(&perf_sched_mutex);
4036 }
4037
4038 /*
4039  * The following implement mutual exclusion of events on "exclusive" pmus
4040  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4041  * at a time, so we disallow creating events that might conflict, namely:
4042  *
4043  *  1) cpu-wide events in the presence of per-task events,
4044  *  2) per-task events in the presence of cpu-wide events,
4045  *  3) two matching events on the same context.
4046  *
4047  * The former two cases are handled in the allocation path (perf_event_alloc(),
4048  * _free_event()), the latter -- before the first perf_install_in_context().
4049  */
4050 static int exclusive_event_init(struct perf_event *event)
4051 {
4052         struct pmu *pmu = event->pmu;
4053
4054         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4055                 return 0;
4056
4057         /*
4058          * Prevent co-existence of per-task and cpu-wide events on the
4059          * same exclusive pmu.
4060          *
4061          * Negative pmu::exclusive_cnt means there are cpu-wide
4062          * events on this "exclusive" pmu, positive means there are
4063          * per-task events.
4064          *
4065          * Since this is called in perf_event_alloc() path, event::ctx
4066          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4067          * to mean "per-task event", because unlike other attach states it
4068          * never gets cleared.
4069          */
4070         if (event->attach_state & PERF_ATTACH_TASK) {
4071                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4072                         return -EBUSY;
4073         } else {
4074                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4075                         return -EBUSY;
4076         }
4077
4078         return 0;
4079 }
4080
4081 static void exclusive_event_destroy(struct perf_event *event)
4082 {
4083         struct pmu *pmu = event->pmu;
4084
4085         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4086                 return;
4087
4088         /* see comment in exclusive_event_init() */
4089         if (event->attach_state & PERF_ATTACH_TASK)
4090                 atomic_dec(&pmu->exclusive_cnt);
4091         else
4092                 atomic_inc(&pmu->exclusive_cnt);
4093 }
4094
4095 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4096 {
4097         if ((e1->pmu == e2->pmu) &&
4098             (e1->cpu == e2->cpu ||
4099              e1->cpu == -1 ||
4100              e2->cpu == -1))
4101                 return true;
4102         return false;
4103 }
4104
4105 /* Called under the same ctx::mutex as perf_install_in_context() */
4106 static bool exclusive_event_installable(struct perf_event *event,
4107                                         struct perf_event_context *ctx)
4108 {
4109         struct perf_event *iter_event;
4110         struct pmu *pmu = event->pmu;
4111
4112         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4113                 return true;
4114
4115         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4116                 if (exclusive_event_match(iter_event, event))
4117                         return false;
4118         }
4119
4120         return true;
4121 }
4122
4123 static void perf_addr_filters_splice(struct perf_event *event,
4124                                        struct list_head *head);
4125
4126 static void _free_event(struct perf_event *event)
4127 {
4128         irq_work_sync(&event->pending);
4129
4130         unaccount_event(event);
4131
4132         if (event->rb) {
4133                 /*
4134                  * Can happen when we close an event with re-directed output.
4135                  *
4136                  * Since we have a 0 refcount, perf_mmap_close() will skip
4137                  * over us; possibly making our ring_buffer_put() the last.
4138                  */
4139                 mutex_lock(&event->mmap_mutex);
4140                 ring_buffer_attach(event, NULL);
4141                 mutex_unlock(&event->mmap_mutex);
4142         }
4143
4144         if (is_cgroup_event(event))
4145                 perf_detach_cgroup(event);
4146
4147         if (!event->parent) {
4148                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4149                         put_callchain_buffers();
4150         }
4151
4152         perf_event_free_bpf_prog(event);
4153         perf_addr_filters_splice(event, NULL);
4154         kfree(event->addr_filters_offs);
4155
4156         if (event->destroy)
4157                 event->destroy(event);
4158
4159         if (event->ctx)
4160                 put_ctx(event->ctx);
4161
4162         exclusive_event_destroy(event);
4163         module_put(event->pmu->module);
4164
4165         call_rcu(&event->rcu_head, free_event_rcu);
4166 }
4167
4168 /*
4169  * Used to free events which have a known refcount of 1, such as in error paths
4170  * where the event isn't exposed yet and inherited events.
4171  */
4172 static void free_event(struct perf_event *event)
4173 {
4174         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4175                                 "unexpected event refcount: %ld; ptr=%p\n",
4176                                 atomic_long_read(&event->refcount), event)) {
4177                 /* leak to avoid use-after-free */
4178                 return;
4179         }
4180
4181         _free_event(event);
4182 }
4183
4184 /*
4185  * Remove user event from the owner task.
4186  */
4187 static void perf_remove_from_owner(struct perf_event *event)
4188 {
4189         struct task_struct *owner;
4190
4191         rcu_read_lock();
4192         /*
4193          * Matches the smp_store_release() in perf_event_exit_task(). If we
4194          * observe !owner it means the list deletion is complete and we can
4195          * indeed free this event, otherwise we need to serialize on
4196          * owner->perf_event_mutex.
4197          */
4198         owner = lockless_dereference(event->owner);
4199         if (owner) {
4200                 /*
4201                  * Since delayed_put_task_struct() also drops the last
4202                  * task reference we can safely take a new reference
4203                  * while holding the rcu_read_lock().
4204                  */
4205                 get_task_struct(owner);
4206         }
4207         rcu_read_unlock();
4208
4209         if (owner) {
4210                 /*
4211                  * If we're here through perf_event_exit_task() we're already
4212                  * holding ctx->mutex which would be an inversion wrt. the
4213                  * normal lock order.
4214                  *
4215                  * However we can safely take this lock because its the child
4216                  * ctx->mutex.
4217                  */
4218                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4219
4220                 /*
4221                  * We have to re-check the event->owner field, if it is cleared
4222                  * we raced with perf_event_exit_task(), acquiring the mutex
4223                  * ensured they're done, and we can proceed with freeing the
4224                  * event.
4225                  */
4226                 if (event->owner) {
4227                         list_del_init(&event->owner_entry);
4228                         smp_store_release(&event->owner, NULL);
4229                 }
4230                 mutex_unlock(&owner->perf_event_mutex);
4231                 put_task_struct(owner);
4232         }
4233 }
4234
4235 static void put_event(struct perf_event *event)
4236 {
4237         if (!atomic_long_dec_and_test(&event->refcount))
4238                 return;
4239
4240         _free_event(event);
4241 }
4242
4243 /*
4244  * Kill an event dead; while event:refcount will preserve the event
4245  * object, it will not preserve its functionality. Once the last 'user'
4246  * gives up the object, we'll destroy the thing.
4247  */
4248 int perf_event_release_kernel(struct perf_event *event)
4249 {
4250         struct perf_event_context *ctx = event->ctx;
4251         struct perf_event *child, *tmp;
4252
4253         /*
4254          * If we got here through err_file: fput(event_file); we will not have
4255          * attached to a context yet.
4256          */
4257         if (!ctx) {
4258                 WARN_ON_ONCE(event->attach_state &
4259                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4260                 goto no_ctx;
4261         }
4262
4263         if (!is_kernel_event(event))
4264                 perf_remove_from_owner(event);
4265
4266         ctx = perf_event_ctx_lock(event);
4267         WARN_ON_ONCE(ctx->parent_ctx);
4268         perf_remove_from_context(event, DETACH_GROUP);
4269
4270         raw_spin_lock_irq(&ctx->lock);
4271         /*
4272          * Mark this event as STATE_DEAD, there is no external reference to it
4273          * anymore.
4274          *
4275          * Anybody acquiring event->child_mutex after the below loop _must_
4276          * also see this, most importantly inherit_event() which will avoid
4277          * placing more children on the list.
4278          *
4279          * Thus this guarantees that we will in fact observe and kill _ALL_
4280          * child events.
4281          */
4282         event->state = PERF_EVENT_STATE_DEAD;
4283         raw_spin_unlock_irq(&ctx->lock);
4284
4285         perf_event_ctx_unlock(event, ctx);
4286
4287 again:
4288         mutex_lock(&event->child_mutex);
4289         list_for_each_entry(child, &event->child_list, child_list) {
4290
4291                 /*
4292                  * Cannot change, child events are not migrated, see the
4293                  * comment with perf_event_ctx_lock_nested().
4294                  */
4295                 ctx = lockless_dereference(child->ctx);
4296                 /*
4297                  * Since child_mutex nests inside ctx::mutex, we must jump
4298                  * through hoops. We start by grabbing a reference on the ctx.
4299                  *
4300                  * Since the event cannot get freed while we hold the
4301                  * child_mutex, the context must also exist and have a !0
4302                  * reference count.
4303                  */
4304                 get_ctx(ctx);
4305
4306                 /*
4307                  * Now that we have a ctx ref, we can drop child_mutex, and
4308                  * acquire ctx::mutex without fear of it going away. Then we
4309                  * can re-acquire child_mutex.
4310                  */
4311                 mutex_unlock(&event->child_mutex);
4312                 mutex_lock(&ctx->mutex);
4313                 mutex_lock(&event->child_mutex);
4314
4315                 /*
4316                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4317                  * state, if child is still the first entry, it didn't get freed
4318                  * and we can continue doing so.
4319                  */
4320                 tmp = list_first_entry_or_null(&event->child_list,
4321                                                struct perf_event, child_list);
4322                 if (tmp == child) {
4323                         perf_remove_from_context(child, DETACH_GROUP);
4324                         list_del(&child->child_list);
4325                         free_event(child);
4326                         /*
4327                          * This matches the refcount bump in inherit_event();
4328                          * this can't be the last reference.
4329                          */
4330                         put_event(event);
4331                 }
4332
4333                 mutex_unlock(&event->child_mutex);
4334                 mutex_unlock(&ctx->mutex);
4335                 put_ctx(ctx);
4336                 goto again;
4337         }
4338         mutex_unlock(&event->child_mutex);
4339
4340 no_ctx:
4341         put_event(event); /* Must be the 'last' reference */
4342         return 0;
4343 }
4344 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4345
4346 /*
4347  * Called when the last reference to the file is gone.
4348  */
4349 static int perf_release(struct inode *inode, struct file *file)
4350 {
4351         perf_event_release_kernel(file->private_data);
4352         return 0;
4353 }
4354
4355 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4356 {
4357         struct perf_event *child;
4358         u64 total = 0;
4359
4360         *enabled = 0;
4361         *running = 0;
4362
4363         mutex_lock(&event->child_mutex);
4364
4365         (void)perf_event_read(event, false);
4366         total += perf_event_count(event);
4367
4368         *enabled += event->total_time_enabled +
4369                         atomic64_read(&event->child_total_time_enabled);
4370         *running += event->total_time_running +
4371                         atomic64_read(&event->child_total_time_running);
4372
4373         list_for_each_entry(child, &event->child_list, child_list) {
4374                 (void)perf_event_read(child, false);
4375                 total += perf_event_count(child);
4376                 *enabled += child->total_time_enabled;
4377                 *running += child->total_time_running;
4378         }
4379         mutex_unlock(&event->child_mutex);
4380
4381         return total;
4382 }
4383 EXPORT_SYMBOL_GPL(perf_event_read_value);
4384
4385 static int __perf_read_group_add(struct perf_event *leader,
4386                                         u64 read_format, u64 *values)
4387 {
4388         struct perf_event_context *ctx = leader->ctx;
4389         struct perf_event *sub;
4390         unsigned long flags;
4391         int n = 1; /* skip @nr */
4392         int ret;
4393
4394         ret = perf_event_read(leader, true);
4395         if (ret)
4396                 return ret;
4397
4398         /*
4399          * Since we co-schedule groups, {enabled,running} times of siblings
4400          * will be identical to those of the leader, so we only publish one
4401          * set.
4402          */
4403         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4404                 values[n++] += leader->total_time_enabled +
4405                         atomic64_read(&leader->child_total_time_enabled);
4406         }
4407
4408         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4409                 values[n++] += leader->total_time_running +
4410                         atomic64_read(&leader->child_total_time_running);
4411         }
4412
4413         /*
4414          * Write {count,id} tuples for every sibling.
4415          */
4416         values[n++] += perf_event_count(leader);
4417         if (read_format & PERF_FORMAT_ID)
4418                 values[n++] = primary_event_id(leader);
4419
4420         raw_spin_lock_irqsave(&ctx->lock, flags);
4421
4422         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4423                 values[n++] += perf_event_count(sub);
4424                 if (read_format & PERF_FORMAT_ID)
4425                         values[n++] = primary_event_id(sub);
4426         }
4427
4428         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4429         return 0;
4430 }
4431
4432 static int perf_read_group(struct perf_event *event,
4433                                    u64 read_format, char __user *buf)
4434 {
4435         struct perf_event *leader = event->group_leader, *child;
4436         struct perf_event_context *ctx = leader->ctx;
4437         int ret;
4438         u64 *values;
4439
4440         lockdep_assert_held(&ctx->mutex);
4441
4442         values = kzalloc(event->read_size, GFP_KERNEL);
4443         if (!values)
4444                 return -ENOMEM;
4445
4446         values[0] = 1 + leader->nr_siblings;
4447
4448         /*
4449          * By locking the child_mutex of the leader we effectively
4450          * lock the child list of all siblings.. XXX explain how.
4451          */
4452         mutex_lock(&leader->child_mutex);
4453
4454         ret = __perf_read_group_add(leader, read_format, values);
4455         if (ret)
4456                 goto unlock;
4457
4458         list_for_each_entry(child, &leader->child_list, child_list) {
4459                 ret = __perf_read_group_add(child, read_format, values);
4460                 if (ret)
4461                         goto unlock;
4462         }
4463
4464         mutex_unlock(&leader->child_mutex);
4465
4466         ret = event->read_size;
4467         if (copy_to_user(buf, values, event->read_size))
4468                 ret = -EFAULT;
4469         goto out;
4470
4471 unlock:
4472         mutex_unlock(&leader->child_mutex);
4473 out:
4474         kfree(values);
4475         return ret;
4476 }
4477
4478 static int perf_read_one(struct perf_event *event,
4479                                  u64 read_format, char __user *buf)
4480 {
4481         u64 enabled, running;
4482         u64 values[4];
4483         int n = 0;
4484
4485         values[n++] = perf_event_read_value(event, &enabled, &running);
4486         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4487                 values[n++] = enabled;
4488         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4489                 values[n++] = running;
4490         if (read_format & PERF_FORMAT_ID)
4491                 values[n++] = primary_event_id(event);
4492
4493         if (copy_to_user(buf, values, n * sizeof(u64)))
4494                 return -EFAULT;
4495
4496         return n * sizeof(u64);
4497 }
4498
4499 static bool is_event_hup(struct perf_event *event)
4500 {
4501         bool no_children;
4502
4503         if (event->state > PERF_EVENT_STATE_EXIT)
4504                 return false;
4505
4506         mutex_lock(&event->child_mutex);
4507         no_children = list_empty(&event->child_list);
4508         mutex_unlock(&event->child_mutex);
4509         return no_children;
4510 }
4511
4512 /*
4513  * Read the performance event - simple non blocking version for now
4514  */
4515 static ssize_t
4516 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4517 {
4518         u64 read_format = event->attr.read_format;
4519         int ret;
4520
4521         /*
4522          * Return end-of-file for a read on a event that is in
4523          * error state (i.e. because it was pinned but it couldn't be
4524          * scheduled on to the CPU at some point).
4525          */
4526         if (event->state == PERF_EVENT_STATE_ERROR)
4527                 return 0;
4528
4529         if (count < event->read_size)
4530                 return -ENOSPC;
4531
4532         WARN_ON_ONCE(event->ctx->parent_ctx);
4533         if (read_format & PERF_FORMAT_GROUP)
4534                 ret = perf_read_group(event, read_format, buf);
4535         else
4536                 ret = perf_read_one(event, read_format, buf);
4537
4538         return ret;
4539 }
4540
4541 static ssize_t
4542 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4543 {
4544         struct perf_event *event = file->private_data;
4545         struct perf_event_context *ctx;
4546         int ret;
4547
4548         ctx = perf_event_ctx_lock(event);
4549         ret = __perf_read(event, buf, count);
4550         perf_event_ctx_unlock(event, ctx);
4551
4552         return ret;
4553 }
4554
4555 static unsigned int perf_poll(struct file *file, poll_table *wait)
4556 {
4557         struct perf_event *event = file->private_data;
4558         struct ring_buffer *rb;
4559         unsigned int events = POLLHUP;
4560
4561         poll_wait(file, &event->waitq, wait);
4562
4563         if (is_event_hup(event))
4564                 return events;
4565
4566         /*
4567          * Pin the event->rb by taking event->mmap_mutex; otherwise
4568          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4569          */
4570         mutex_lock(&event->mmap_mutex);
4571         rb = event->rb;
4572         if (rb)
4573                 events = atomic_xchg(&rb->poll, 0);
4574         mutex_unlock(&event->mmap_mutex);
4575         return events;
4576 }
4577
4578 static void _perf_event_reset(struct perf_event *event)
4579 {
4580         (void)perf_event_read(event, false);
4581         local64_set(&event->count, 0);
4582         perf_event_update_userpage(event);
4583 }
4584
4585 /*
4586  * Holding the top-level event's child_mutex means that any
4587  * descendant process that has inherited this event will block
4588  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4589  * task existence requirements of perf_event_enable/disable.
4590  */
4591 static void perf_event_for_each_child(struct perf_event *event,
4592                                         void (*func)(struct perf_event *))
4593 {
4594         struct perf_event *child;
4595
4596         WARN_ON_ONCE(event->ctx->parent_ctx);
4597
4598         mutex_lock(&event->child_mutex);
4599         func(event);
4600         list_for_each_entry(child, &event->child_list, child_list)
4601                 func(child);
4602         mutex_unlock(&event->child_mutex);
4603 }
4604
4605 static void perf_event_for_each(struct perf_event *event,
4606                                   void (*func)(struct perf_event *))
4607 {
4608         struct perf_event_context *ctx = event->ctx;
4609         struct perf_event *sibling;
4610
4611         lockdep_assert_held(&ctx->mutex);
4612
4613         event = event->group_leader;
4614
4615         perf_event_for_each_child(event, func);
4616         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4617                 perf_event_for_each_child(sibling, func);
4618 }
4619
4620 static void __perf_event_period(struct perf_event *event,
4621                                 struct perf_cpu_context *cpuctx,
4622                                 struct perf_event_context *ctx,
4623                                 void *info)
4624 {
4625         u64 value = *((u64 *)info);
4626         bool active;
4627
4628         if (event->attr.freq) {
4629                 event->attr.sample_freq = value;
4630         } else {
4631                 event->attr.sample_period = value;
4632                 event->hw.sample_period = value;
4633         }
4634
4635         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4636         if (active) {
4637                 perf_pmu_disable(ctx->pmu);
4638                 /*
4639                  * We could be throttled; unthrottle now to avoid the tick
4640                  * trying to unthrottle while we already re-started the event.
4641                  */
4642                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4643                         event->hw.interrupts = 0;
4644                         perf_log_throttle(event, 1);
4645                 }
4646                 event->pmu->stop(event, PERF_EF_UPDATE);
4647         }
4648
4649         local64_set(&event->hw.period_left, 0);
4650
4651         if (active) {
4652                 event->pmu->start(event, PERF_EF_RELOAD);
4653                 perf_pmu_enable(ctx->pmu);
4654         }
4655 }
4656
4657 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4658 {
4659         u64 value;
4660
4661         if (!is_sampling_event(event))
4662                 return -EINVAL;
4663
4664         if (copy_from_user(&value, arg, sizeof(value)))
4665                 return -EFAULT;
4666
4667         if (!value)
4668                 return -EINVAL;
4669
4670         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4671                 return -EINVAL;
4672
4673         event_function_call(event, __perf_event_period, &value);
4674
4675         return 0;
4676 }
4677
4678 static const struct file_operations perf_fops;
4679
4680 static inline int perf_fget_light(int fd, struct fd *p)
4681 {
4682         struct fd f = fdget(fd);
4683         if (!f.file)
4684                 return -EBADF;
4685
4686         if (f.file->f_op != &perf_fops) {
4687                 fdput(f);
4688                 return -EBADF;
4689         }
4690         *p = f;
4691         return 0;
4692 }
4693
4694 static int perf_event_set_output(struct perf_event *event,
4695                                  struct perf_event *output_event);
4696 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4697 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4698
4699 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4700 {
4701         void (*func)(struct perf_event *);
4702         u32 flags = arg;
4703
4704         switch (cmd) {
4705         case PERF_EVENT_IOC_ENABLE:
4706                 func = _perf_event_enable;
4707                 break;
4708         case PERF_EVENT_IOC_DISABLE:
4709                 func = _perf_event_disable;
4710                 break;
4711         case PERF_EVENT_IOC_RESET:
4712                 func = _perf_event_reset;
4713                 break;
4714
4715         case PERF_EVENT_IOC_REFRESH:
4716                 return _perf_event_refresh(event, arg);
4717
4718         case PERF_EVENT_IOC_PERIOD:
4719                 return perf_event_period(event, (u64 __user *)arg);
4720
4721         case PERF_EVENT_IOC_ID:
4722         {
4723                 u64 id = primary_event_id(event);
4724
4725                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4726                         return -EFAULT;
4727                 return 0;
4728         }
4729
4730         case PERF_EVENT_IOC_SET_OUTPUT:
4731         {
4732                 int ret;
4733                 if (arg != -1) {
4734                         struct perf_event *output_event;
4735                         struct fd output;
4736                         ret = perf_fget_light(arg, &output);
4737                         if (ret)
4738                                 return ret;
4739                         output_event = output.file->private_data;
4740                         ret = perf_event_set_output(event, output_event);
4741                         fdput(output);
4742                 } else {
4743                         ret = perf_event_set_output(event, NULL);
4744                 }
4745                 return ret;
4746         }
4747
4748         case PERF_EVENT_IOC_SET_FILTER:
4749                 return perf_event_set_filter(event, (void __user *)arg);
4750
4751         case PERF_EVENT_IOC_SET_BPF:
4752                 return perf_event_set_bpf_prog(event, arg);
4753
4754         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4755                 struct ring_buffer *rb;
4756
4757                 rcu_read_lock();
4758                 rb = rcu_dereference(event->rb);
4759                 if (!rb || !rb->nr_pages) {
4760                         rcu_read_unlock();
4761                         return -EINVAL;
4762                 }
4763                 rb_toggle_paused(rb, !!arg);
4764                 rcu_read_unlock();
4765                 return 0;
4766         }
4767         default:
4768                 return -ENOTTY;
4769         }
4770
4771         if (flags & PERF_IOC_FLAG_GROUP)
4772                 perf_event_for_each(event, func);
4773         else
4774                 perf_event_for_each_child(event, func);
4775
4776         return 0;
4777 }
4778
4779 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4780 {
4781         struct perf_event *event = file->private_data;
4782         struct perf_event_context *ctx;
4783         long ret;
4784
4785         ctx = perf_event_ctx_lock(event);
4786         ret = _perf_ioctl(event, cmd, arg);
4787         perf_event_ctx_unlock(event, ctx);
4788
4789         return ret;
4790 }
4791
4792 #ifdef CONFIG_COMPAT
4793 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4794                                 unsigned long arg)
4795 {
4796         switch (_IOC_NR(cmd)) {
4797         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4798         case _IOC_NR(PERF_EVENT_IOC_ID):
4799                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4800                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4801                         cmd &= ~IOCSIZE_MASK;
4802                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4803                 }
4804                 break;
4805         }
4806         return perf_ioctl(file, cmd, arg);
4807 }
4808 #else
4809 # define perf_compat_ioctl NULL
4810 #endif
4811
4812 int perf_event_task_enable(void)
4813 {
4814         struct perf_event_context *ctx;
4815         struct perf_event *event;
4816
4817         mutex_lock(&current->perf_event_mutex);
4818         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4819                 ctx = perf_event_ctx_lock(event);
4820                 perf_event_for_each_child(event, _perf_event_enable);
4821                 perf_event_ctx_unlock(event, ctx);
4822         }
4823         mutex_unlock(&current->perf_event_mutex);
4824
4825         return 0;
4826 }
4827
4828 int perf_event_task_disable(void)
4829 {
4830         struct perf_event_context *ctx;
4831         struct perf_event *event;
4832
4833         mutex_lock(&current->perf_event_mutex);
4834         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4835                 ctx = perf_event_ctx_lock(event);
4836                 perf_event_for_each_child(event, _perf_event_disable);
4837                 perf_event_ctx_unlock(event, ctx);
4838         }
4839         mutex_unlock(&current->perf_event_mutex);
4840
4841         return 0;
4842 }
4843
4844 static int perf_event_index(struct perf_event *event)
4845 {
4846         if (event->hw.state & PERF_HES_STOPPED)
4847                 return 0;
4848
4849         if (event->state != PERF_EVENT_STATE_ACTIVE)
4850                 return 0;
4851
4852         return event->pmu->event_idx(event);
4853 }
4854
4855 static void calc_timer_values(struct perf_event *event,
4856                                 u64 *now,
4857                                 u64 *enabled,
4858                                 u64 *running)
4859 {
4860         u64 ctx_time;
4861
4862         *now = perf_clock();
4863         ctx_time = event->shadow_ctx_time + *now;
4864         *enabled = ctx_time - event->tstamp_enabled;
4865         *running = ctx_time - event->tstamp_running;
4866 }
4867
4868 static void perf_event_init_userpage(struct perf_event *event)
4869 {
4870         struct perf_event_mmap_page *userpg;
4871         struct ring_buffer *rb;
4872
4873         rcu_read_lock();
4874         rb = rcu_dereference(event->rb);
4875         if (!rb)
4876                 goto unlock;
4877
4878         userpg = rb->user_page;
4879
4880         /* Allow new userspace to detect that bit 0 is deprecated */
4881         userpg->cap_bit0_is_deprecated = 1;
4882         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4883         userpg->data_offset = PAGE_SIZE;
4884         userpg->data_size = perf_data_size(rb);
4885
4886 unlock:
4887         rcu_read_unlock();
4888 }
4889
4890 void __weak arch_perf_update_userpage(
4891         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4892 {
4893 }
4894
4895 /*
4896  * Callers need to ensure there can be no nesting of this function, otherwise
4897  * the seqlock logic goes bad. We can not serialize this because the arch
4898  * code calls this from NMI context.
4899  */
4900 void perf_event_update_userpage(struct perf_event *event)
4901 {
4902         struct perf_event_mmap_page *userpg;
4903         struct ring_buffer *rb;
4904         u64 enabled, running, now;
4905
4906         rcu_read_lock();
4907         rb = rcu_dereference(event->rb);
4908         if (!rb)
4909                 goto unlock;
4910
4911         /*
4912          * compute total_time_enabled, total_time_running
4913          * based on snapshot values taken when the event
4914          * was last scheduled in.
4915          *
4916          * we cannot simply called update_context_time()
4917          * because of locking issue as we can be called in
4918          * NMI context
4919          */
4920         calc_timer_values(event, &now, &enabled, &running);
4921
4922         userpg = rb->user_page;
4923         /*
4924          * Disable preemption so as to not let the corresponding user-space
4925          * spin too long if we get preempted.
4926          */
4927         preempt_disable();
4928         ++userpg->lock;
4929         barrier();
4930         userpg->index = perf_event_index(event);
4931         userpg->offset = perf_event_count(event);
4932         if (userpg->index)
4933                 userpg->offset -= local64_read(&event->hw.prev_count);
4934
4935         userpg->time_enabled = enabled +
4936                         atomic64_read(&event->child_total_time_enabled);
4937
4938         userpg->time_running = running +
4939                         atomic64_read(&event->child_total_time_running);
4940
4941         arch_perf_update_userpage(event, userpg, now);
4942
4943         barrier();
4944         ++userpg->lock;
4945         preempt_enable();
4946 unlock:
4947         rcu_read_unlock();
4948 }
4949
4950 static int perf_mmap_fault(struct vm_fault *vmf)
4951 {
4952         struct perf_event *event = vmf->vma->vm_file->private_data;
4953         struct ring_buffer *rb;
4954         int ret = VM_FAULT_SIGBUS;
4955
4956         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4957                 if (vmf->pgoff == 0)
4958                         ret = 0;
4959                 return ret;
4960         }
4961
4962         rcu_read_lock();
4963         rb = rcu_dereference(event->rb);
4964         if (!rb)
4965                 goto unlock;
4966
4967         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4968                 goto unlock;
4969
4970         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4971         if (!vmf->page)
4972                 goto unlock;
4973
4974         get_page(vmf->page);
4975         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4976         vmf->page->index   = vmf->pgoff;
4977
4978         ret = 0;
4979 unlock:
4980         rcu_read_unlock();
4981
4982         return ret;
4983 }
4984
4985 static void ring_buffer_attach(struct perf_event *event,
4986                                struct ring_buffer *rb)
4987 {
4988         struct ring_buffer *old_rb = NULL;
4989         unsigned long flags;
4990
4991         if (event->rb) {
4992                 /*
4993                  * Should be impossible, we set this when removing
4994                  * event->rb_entry and wait/clear when adding event->rb_entry.
4995                  */
4996                 WARN_ON_ONCE(event->rcu_pending);
4997
4998                 old_rb = event->rb;
4999                 spin_lock_irqsave(&old_rb->event_lock, flags);
5000                 list_del_rcu(&event->rb_entry);
5001                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5002
5003                 event->rcu_batches = get_state_synchronize_rcu();
5004                 event->rcu_pending = 1;
5005         }
5006
5007         if (rb) {
5008                 if (event->rcu_pending) {
5009                         cond_synchronize_rcu(event->rcu_batches);
5010                         event->rcu_pending = 0;
5011                 }
5012
5013                 spin_lock_irqsave(&rb->event_lock, flags);
5014                 list_add_rcu(&event->rb_entry, &rb->event_list);
5015                 spin_unlock_irqrestore(&rb->event_lock, flags);
5016         }
5017
5018         /*
5019          * Avoid racing with perf_mmap_close(AUX): stop the event
5020          * before swizzling the event::rb pointer; if it's getting
5021          * unmapped, its aux_mmap_count will be 0 and it won't
5022          * restart. See the comment in __perf_pmu_output_stop().
5023          *
5024          * Data will inevitably be lost when set_output is done in
5025          * mid-air, but then again, whoever does it like this is
5026          * not in for the data anyway.
5027          */
5028         if (has_aux(event))
5029                 perf_event_stop(event, 0);
5030
5031         rcu_assign_pointer(event->rb, rb);
5032
5033         if (old_rb) {
5034                 ring_buffer_put(old_rb);
5035                 /*
5036                  * Since we detached before setting the new rb, so that we
5037                  * could attach the new rb, we could have missed a wakeup.
5038                  * Provide it now.
5039                  */
5040                 wake_up_all(&event->waitq);
5041         }
5042 }
5043
5044 static void ring_buffer_wakeup(struct perf_event *event)
5045 {
5046         struct ring_buffer *rb;
5047
5048         rcu_read_lock();
5049         rb = rcu_dereference(event->rb);
5050         if (rb) {
5051                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5052                         wake_up_all(&event->waitq);
5053         }
5054         rcu_read_unlock();
5055 }
5056
5057 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5058 {
5059         struct ring_buffer *rb;
5060
5061         rcu_read_lock();
5062         rb = rcu_dereference(event->rb);
5063         if (rb) {
5064                 if (!atomic_inc_not_zero(&rb->refcount))
5065                         rb = NULL;
5066         }
5067         rcu_read_unlock();
5068
5069         return rb;
5070 }
5071
5072 void ring_buffer_put(struct ring_buffer *rb)
5073 {
5074         if (!atomic_dec_and_test(&rb->refcount))
5075                 return;
5076
5077         WARN_ON_ONCE(!list_empty(&rb->event_list));
5078
5079         call_rcu(&rb->rcu_head, rb_free_rcu);
5080 }
5081
5082 static void perf_mmap_open(struct vm_area_struct *vma)
5083 {
5084         struct perf_event *event = vma->vm_file->private_data;
5085
5086         atomic_inc(&event->mmap_count);
5087         atomic_inc(&event->rb->mmap_count);
5088
5089         if (vma->vm_pgoff)
5090                 atomic_inc(&event->rb->aux_mmap_count);
5091
5092         if (event->pmu->event_mapped)
5093                 event->pmu->event_mapped(event);
5094 }
5095
5096 static void perf_pmu_output_stop(struct perf_event *event);
5097
5098 /*
5099  * A buffer can be mmap()ed multiple times; either directly through the same
5100  * event, or through other events by use of perf_event_set_output().
5101  *
5102  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5103  * the buffer here, where we still have a VM context. This means we need
5104  * to detach all events redirecting to us.
5105  */
5106 static void perf_mmap_close(struct vm_area_struct *vma)
5107 {
5108         struct perf_event *event = vma->vm_file->private_data;
5109
5110         struct ring_buffer *rb = ring_buffer_get(event);
5111         struct user_struct *mmap_user = rb->mmap_user;
5112         int mmap_locked = rb->mmap_locked;
5113         unsigned long size = perf_data_size(rb);
5114
5115         if (event->pmu->event_unmapped)
5116                 event->pmu->event_unmapped(event);
5117
5118         /*
5119          * rb->aux_mmap_count will always drop before rb->mmap_count and
5120          * event->mmap_count, so it is ok to use event->mmap_mutex to
5121          * serialize with perf_mmap here.
5122          */
5123         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5124             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5125                 /*
5126                  * Stop all AUX events that are writing to this buffer,
5127                  * so that we can free its AUX pages and corresponding PMU
5128                  * data. Note that after rb::aux_mmap_count dropped to zero,
5129                  * they won't start any more (see perf_aux_output_begin()).
5130                  */
5131                 perf_pmu_output_stop(event);
5132
5133                 /* now it's safe to free the pages */
5134                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5135                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5136
5137                 /* this has to be the last one */
5138                 rb_free_aux(rb);
5139                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5140
5141                 mutex_unlock(&event->mmap_mutex);
5142         }
5143
5144         atomic_dec(&rb->mmap_count);
5145
5146         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5147                 goto out_put;
5148
5149         ring_buffer_attach(event, NULL);
5150         mutex_unlock(&event->mmap_mutex);
5151
5152         /* If there's still other mmap()s of this buffer, we're done. */
5153         if (atomic_read(&rb->mmap_count))
5154                 goto out_put;
5155
5156         /*
5157          * No other mmap()s, detach from all other events that might redirect
5158          * into the now unreachable buffer. Somewhat complicated by the
5159          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5160          */
5161 again:
5162         rcu_read_lock();
5163         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5164                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5165                         /*
5166                          * This event is en-route to free_event() which will
5167                          * detach it and remove it from the list.
5168                          */
5169                         continue;
5170                 }
5171                 rcu_read_unlock();
5172
5173                 mutex_lock(&event->mmap_mutex);
5174                 /*
5175                  * Check we didn't race with perf_event_set_output() which can
5176                  * swizzle the rb from under us while we were waiting to
5177                  * acquire mmap_mutex.
5178                  *
5179                  * If we find a different rb; ignore this event, a next
5180                  * iteration will no longer find it on the list. We have to
5181                  * still restart the iteration to make sure we're not now
5182                  * iterating the wrong list.
5183                  */
5184                 if (event->rb == rb)
5185                         ring_buffer_attach(event, NULL);
5186
5187                 mutex_unlock(&event->mmap_mutex);
5188                 put_event(event);
5189
5190                 /*
5191                  * Restart the iteration; either we're on the wrong list or
5192                  * destroyed its integrity by doing a deletion.
5193                  */
5194                 goto again;
5195         }
5196         rcu_read_unlock();
5197
5198         /*
5199          * It could be there's still a few 0-ref events on the list; they'll
5200          * get cleaned up by free_event() -- they'll also still have their
5201          * ref on the rb and will free it whenever they are done with it.
5202          *
5203          * Aside from that, this buffer is 'fully' detached and unmapped,
5204          * undo the VM accounting.
5205          */
5206
5207         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5208         vma->vm_mm->pinned_vm -= mmap_locked;
5209         free_uid(mmap_user);
5210
5211 out_put:
5212         ring_buffer_put(rb); /* could be last */
5213 }
5214
5215 static const struct vm_operations_struct perf_mmap_vmops = {
5216         .open           = perf_mmap_open,
5217         .close          = perf_mmap_close, /* non mergable */
5218         .fault          = perf_mmap_fault,
5219         .page_mkwrite   = perf_mmap_fault,
5220 };
5221
5222 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5223 {
5224         struct perf_event *event = file->private_data;
5225         unsigned long user_locked, user_lock_limit;
5226         struct user_struct *user = current_user();
5227         unsigned long locked, lock_limit;
5228         struct ring_buffer *rb = NULL;
5229         unsigned long vma_size;
5230         unsigned long nr_pages;
5231         long user_extra = 0, extra = 0;
5232         int ret = 0, flags = 0;
5233
5234         /*
5235          * Don't allow mmap() of inherited per-task counters. This would
5236          * create a performance issue due to all children writing to the
5237          * same rb.
5238          */
5239         if (event->cpu == -1 && event->attr.inherit)
5240                 return -EINVAL;
5241
5242         if (!(vma->vm_flags & VM_SHARED))
5243                 return -EINVAL;
5244
5245         vma_size = vma->vm_end - vma->vm_start;
5246
5247         if (vma->vm_pgoff == 0) {
5248                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5249         } else {
5250                 /*
5251                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5252                  * mapped, all subsequent mappings should have the same size
5253                  * and offset. Must be above the normal perf buffer.
5254                  */
5255                 u64 aux_offset, aux_size;
5256
5257                 if (!event->rb)
5258                         return -EINVAL;
5259
5260                 nr_pages = vma_size / PAGE_SIZE;
5261
5262                 mutex_lock(&event->mmap_mutex);
5263                 ret = -EINVAL;
5264
5265                 rb = event->rb;
5266                 if (!rb)
5267                         goto aux_unlock;
5268
5269                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5270                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5271
5272                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5273                         goto aux_unlock;
5274
5275                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5276                         goto aux_unlock;
5277
5278                 /* already mapped with a different offset */
5279                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5280                         goto aux_unlock;
5281
5282                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5283                         goto aux_unlock;
5284
5285                 /* already mapped with a different size */
5286                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5287                         goto aux_unlock;
5288
5289                 if (!is_power_of_2(nr_pages))
5290                         goto aux_unlock;
5291
5292                 if (!atomic_inc_not_zero(&rb->mmap_count))
5293                         goto aux_unlock;
5294
5295                 if (rb_has_aux(rb)) {
5296                         atomic_inc(&rb->aux_mmap_count);
5297                         ret = 0;
5298                         goto unlock;
5299                 }
5300
5301                 atomic_set(&rb->aux_mmap_count, 1);
5302                 user_extra = nr_pages;
5303
5304                 goto accounting;
5305         }
5306
5307         /*
5308          * If we have rb pages ensure they're a power-of-two number, so we
5309          * can do bitmasks instead of modulo.
5310          */
5311         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5312                 return -EINVAL;
5313
5314         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5315                 return -EINVAL;
5316
5317         WARN_ON_ONCE(event->ctx->parent_ctx);
5318 again:
5319         mutex_lock(&event->mmap_mutex);
5320         if (event->rb) {
5321                 if (event->rb->nr_pages != nr_pages) {
5322                         ret = -EINVAL;
5323                         goto unlock;
5324                 }
5325
5326                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5327                         /*
5328                          * Raced against perf_mmap_close() through
5329                          * perf_event_set_output(). Try again, hope for better
5330                          * luck.
5331                          */
5332                         mutex_unlock(&event->mmap_mutex);
5333                         goto again;
5334                 }
5335
5336                 goto unlock;
5337         }
5338
5339         user_extra = nr_pages + 1;
5340
5341 accounting:
5342         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5343
5344         /*
5345          * Increase the limit linearly with more CPUs:
5346          */
5347         user_lock_limit *= num_online_cpus();
5348
5349         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5350
5351         if (user_locked > user_lock_limit)
5352                 extra = user_locked - user_lock_limit;
5353
5354         lock_limit = rlimit(RLIMIT_MEMLOCK);
5355         lock_limit >>= PAGE_SHIFT;
5356         locked = vma->vm_mm->pinned_vm + extra;
5357
5358         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5359                 !capable(CAP_IPC_LOCK)) {
5360                 ret = -EPERM;
5361                 goto unlock;
5362         }
5363
5364         WARN_ON(!rb && event->rb);
5365
5366         if (vma->vm_flags & VM_WRITE)
5367                 flags |= RING_BUFFER_WRITABLE;
5368
5369         if (!rb) {
5370                 rb = rb_alloc(nr_pages,
5371                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5372                               event->cpu, flags);
5373
5374                 if (!rb) {
5375                         ret = -ENOMEM;
5376                         goto unlock;
5377                 }
5378
5379                 atomic_set(&rb->mmap_count, 1);
5380                 rb->mmap_user = get_current_user();
5381                 rb->mmap_locked = extra;
5382
5383                 ring_buffer_attach(event, rb);
5384
5385                 perf_event_init_userpage(event);
5386                 perf_event_update_userpage(event);
5387         } else {
5388                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5389                                    event->attr.aux_watermark, flags);
5390                 if (!ret)
5391                         rb->aux_mmap_locked = extra;
5392         }
5393
5394 unlock:
5395         if (!ret) {
5396                 atomic_long_add(user_extra, &user->locked_vm);
5397                 vma->vm_mm->pinned_vm += extra;
5398
5399                 atomic_inc(&event->mmap_count);
5400         } else if (rb) {
5401                 atomic_dec(&rb->mmap_count);
5402         }
5403 aux_unlock:
5404         mutex_unlock(&event->mmap_mutex);
5405
5406         /*
5407          * Since pinned accounting is per vm we cannot allow fork() to copy our
5408          * vma.
5409          */
5410         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5411         vma->vm_ops = &perf_mmap_vmops;
5412
5413         if (event->pmu->event_mapped)
5414                 event->pmu->event_mapped(event);
5415
5416         return ret;
5417 }
5418
5419 static int perf_fasync(int fd, struct file *filp, int on)
5420 {
5421         struct inode *inode = file_inode(filp);
5422         struct perf_event *event = filp->private_data;
5423         int retval;
5424
5425         inode_lock(inode);
5426         retval = fasync_helper(fd, filp, on, &event->fasync);
5427         inode_unlock(inode);
5428
5429         if (retval < 0)
5430                 return retval;
5431
5432         return 0;
5433 }
5434
5435 static const struct file_operations perf_fops = {
5436         .llseek                 = no_llseek,
5437         .release                = perf_release,
5438         .read                   = perf_read,
5439         .poll                   = perf_poll,
5440         .unlocked_ioctl         = perf_ioctl,
5441         .compat_ioctl           = perf_compat_ioctl,
5442         .mmap                   = perf_mmap,
5443         .fasync                 = perf_fasync,
5444 };
5445
5446 /*
5447  * Perf event wakeup
5448  *
5449  * If there's data, ensure we set the poll() state and publish everything
5450  * to user-space before waking everybody up.
5451  */
5452
5453 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5454 {
5455         /* only the parent has fasync state */
5456         if (event->parent)
5457                 event = event->parent;
5458         return &event->fasync;
5459 }
5460
5461 void perf_event_wakeup(struct perf_event *event)
5462 {
5463         ring_buffer_wakeup(event);
5464
5465         if (event->pending_kill) {
5466                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5467                 event->pending_kill = 0;
5468         }
5469 }
5470
5471 static void perf_pending_event(struct irq_work *entry)
5472 {
5473         struct perf_event *event = container_of(entry,
5474                         struct perf_event, pending);
5475         int rctx;
5476
5477         rctx = perf_swevent_get_recursion_context();
5478         /*
5479          * If we 'fail' here, that's OK, it means recursion is already disabled
5480          * and we won't recurse 'further'.
5481          */
5482
5483         if (event->pending_disable) {
5484                 event->pending_disable = 0;
5485                 perf_event_disable_local(event);
5486         }
5487
5488         if (event->pending_wakeup) {
5489                 event->pending_wakeup = 0;
5490                 perf_event_wakeup(event);
5491         }
5492
5493         if (rctx >= 0)
5494                 perf_swevent_put_recursion_context(rctx);
5495 }
5496
5497 /*
5498  * We assume there is only KVM supporting the callbacks.
5499  * Later on, we might change it to a list if there is
5500  * another virtualization implementation supporting the callbacks.
5501  */
5502 struct perf_guest_info_callbacks *perf_guest_cbs;
5503
5504 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5505 {
5506         perf_guest_cbs = cbs;
5507         return 0;
5508 }
5509 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5510
5511 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5512 {
5513         perf_guest_cbs = NULL;
5514         return 0;
5515 }
5516 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5517
5518 static void
5519 perf_output_sample_regs(struct perf_output_handle *handle,
5520                         struct pt_regs *regs, u64 mask)
5521 {
5522         int bit;
5523         DECLARE_BITMAP(_mask, 64);
5524
5525         bitmap_from_u64(_mask, mask);
5526         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5527                 u64 val;
5528
5529                 val = perf_reg_value(regs, bit);
5530                 perf_output_put(handle, val);
5531         }
5532 }
5533
5534 static void perf_sample_regs_user(struct perf_regs *regs_user,
5535                                   struct pt_regs *regs,
5536                                   struct pt_regs *regs_user_copy)
5537 {
5538         if (user_mode(regs)) {
5539                 regs_user->abi = perf_reg_abi(current);
5540                 regs_user->regs = regs;
5541         } else if (current->mm) {
5542                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5543         } else {
5544                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5545                 regs_user->regs = NULL;
5546         }
5547 }
5548
5549 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5550                                   struct pt_regs *regs)
5551 {
5552         regs_intr->regs = regs;
5553         regs_intr->abi  = perf_reg_abi(current);
5554 }
5555
5556
5557 /*
5558  * Get remaining task size from user stack pointer.
5559  *
5560  * It'd be better to take stack vma map and limit this more
5561  * precisly, but there's no way to get it safely under interrupt,
5562  * so using TASK_SIZE as limit.
5563  */
5564 static u64 perf_ustack_task_size(struct pt_regs *regs)
5565 {
5566         unsigned long addr = perf_user_stack_pointer(regs);
5567
5568         if (!addr || addr >= TASK_SIZE)
5569                 return 0;
5570
5571         return TASK_SIZE - addr;
5572 }
5573
5574 static u16
5575 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5576                         struct pt_regs *regs)
5577 {
5578         u64 task_size;
5579
5580         /* No regs, no stack pointer, no dump. */
5581         if (!regs)
5582                 return 0;
5583
5584         /*
5585          * Check if we fit in with the requested stack size into the:
5586          * - TASK_SIZE
5587          *   If we don't, we limit the size to the TASK_SIZE.
5588          *
5589          * - remaining sample size
5590          *   If we don't, we customize the stack size to
5591          *   fit in to the remaining sample size.
5592          */
5593
5594         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5595         stack_size = min(stack_size, (u16) task_size);
5596
5597         /* Current header size plus static size and dynamic size. */
5598         header_size += 2 * sizeof(u64);
5599
5600         /* Do we fit in with the current stack dump size? */
5601         if ((u16) (header_size + stack_size) < header_size) {
5602                 /*
5603                  * If we overflow the maximum size for the sample,
5604                  * we customize the stack dump size to fit in.
5605                  */
5606                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5607                 stack_size = round_up(stack_size, sizeof(u64));
5608         }
5609
5610         return stack_size;
5611 }
5612
5613 static void
5614 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5615                           struct pt_regs *regs)
5616 {
5617         /* Case of a kernel thread, nothing to dump */
5618         if (!regs) {
5619                 u64 size = 0;
5620                 perf_output_put(handle, size);
5621         } else {
5622                 unsigned long sp;
5623                 unsigned int rem;
5624                 u64 dyn_size;
5625
5626                 /*
5627                  * We dump:
5628                  * static size
5629                  *   - the size requested by user or the best one we can fit
5630                  *     in to the sample max size
5631                  * data
5632                  *   - user stack dump data
5633                  * dynamic size
5634                  *   - the actual dumped size
5635                  */
5636
5637                 /* Static size. */
5638                 perf_output_put(handle, dump_size);
5639
5640                 /* Data. */
5641                 sp = perf_user_stack_pointer(regs);
5642                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5643                 dyn_size = dump_size - rem;
5644
5645                 perf_output_skip(handle, rem);
5646
5647                 /* Dynamic size. */
5648                 perf_output_put(handle, dyn_size);
5649         }
5650 }
5651
5652 static void __perf_event_header__init_id(struct perf_event_header *header,
5653                                          struct perf_sample_data *data,
5654                                          struct perf_event *event)
5655 {
5656         u64 sample_type = event->attr.sample_type;
5657
5658         data->type = sample_type;
5659         header->size += event->id_header_size;
5660
5661         if (sample_type & PERF_SAMPLE_TID) {
5662                 /* namespace issues */
5663                 data->tid_entry.pid = perf_event_pid(event, current);
5664                 data->tid_entry.tid = perf_event_tid(event, current);
5665         }
5666
5667         if (sample_type & PERF_SAMPLE_TIME)
5668                 data->time = perf_event_clock(event);
5669
5670         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5671                 data->id = primary_event_id(event);
5672
5673         if (sample_type & PERF_SAMPLE_STREAM_ID)
5674                 data->stream_id = event->id;
5675
5676         if (sample_type & PERF_SAMPLE_CPU) {
5677                 data->cpu_entry.cpu      = raw_smp_processor_id();
5678                 data->cpu_entry.reserved = 0;
5679         }
5680 }
5681
5682 void perf_event_header__init_id(struct perf_event_header *header,
5683                                 struct perf_sample_data *data,
5684                                 struct perf_event *event)
5685 {
5686         if (event->attr.sample_id_all)
5687                 __perf_event_header__init_id(header, data, event);
5688 }
5689
5690 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5691                                            struct perf_sample_data *data)
5692 {
5693         u64 sample_type = data->type;
5694
5695         if (sample_type & PERF_SAMPLE_TID)
5696                 perf_output_put(handle, data->tid_entry);
5697
5698         if (sample_type & PERF_SAMPLE_TIME)
5699                 perf_output_put(handle, data->time);
5700
5701         if (sample_type & PERF_SAMPLE_ID)
5702                 perf_output_put(handle, data->id);
5703
5704         if (sample_type & PERF_SAMPLE_STREAM_ID)
5705                 perf_output_put(handle, data->stream_id);
5706
5707         if (sample_type & PERF_SAMPLE_CPU)
5708                 perf_output_put(handle, data->cpu_entry);
5709
5710         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5711                 perf_output_put(handle, data->id);
5712 }
5713
5714 void perf_event__output_id_sample(struct perf_event *event,
5715                                   struct perf_output_handle *handle,
5716                                   struct perf_sample_data *sample)
5717 {
5718         if (event->attr.sample_id_all)
5719                 __perf_event__output_id_sample(handle, sample);
5720 }
5721
5722 static void perf_output_read_one(struct perf_output_handle *handle,
5723                                  struct perf_event *event,
5724                                  u64 enabled, u64 running)
5725 {
5726         u64 read_format = event->attr.read_format;
5727         u64 values[4];
5728         int n = 0;
5729
5730         values[n++] = perf_event_count(event);
5731         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5732                 values[n++] = enabled +
5733                         atomic64_read(&event->child_total_time_enabled);
5734         }
5735         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5736                 values[n++] = running +
5737                         atomic64_read(&event->child_total_time_running);
5738         }
5739         if (read_format & PERF_FORMAT_ID)
5740                 values[n++] = primary_event_id(event);
5741
5742         __output_copy(handle, values, n * sizeof(u64));
5743 }
5744
5745 static void perf_output_read_group(struct perf_output_handle *handle,
5746                             struct perf_event *event,
5747                             u64 enabled, u64 running)
5748 {
5749         struct perf_event *leader = event->group_leader, *sub;
5750         u64 read_format = event->attr.read_format;
5751         u64 values[5];
5752         int n = 0;
5753
5754         values[n++] = 1 + leader->nr_siblings;
5755
5756         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5757                 values[n++] = enabled;
5758
5759         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5760                 values[n++] = running;
5761
5762         if (leader != event)
5763                 leader->pmu->read(leader);
5764
5765         values[n++] = perf_event_count(leader);
5766         if (read_format & PERF_FORMAT_ID)
5767                 values[n++] = primary_event_id(leader);
5768
5769         __output_copy(handle, values, n * sizeof(u64));
5770
5771         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5772                 n = 0;
5773
5774                 if ((sub != event) &&
5775                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5776                         sub->pmu->read(sub);
5777
5778                 values[n++] = perf_event_count(sub);
5779                 if (read_format & PERF_FORMAT_ID)
5780                         values[n++] = primary_event_id(sub);
5781
5782                 __output_copy(handle, values, n * sizeof(u64));
5783         }
5784 }
5785
5786 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5787                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5788
5789 /*
5790  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5791  *
5792  * The problem is that its both hard and excessively expensive to iterate the
5793  * child list, not to mention that its impossible to IPI the children running
5794  * on another CPU, from interrupt/NMI context.
5795  */
5796 static void perf_output_read(struct perf_output_handle *handle,
5797                              struct perf_event *event)
5798 {
5799         u64 enabled = 0, running = 0, now;
5800         u64 read_format = event->attr.read_format;
5801
5802         /*
5803          * compute total_time_enabled, total_time_running
5804          * based on snapshot values taken when the event
5805          * was last scheduled in.
5806          *
5807          * we cannot simply called update_context_time()
5808          * because of locking issue as we are called in
5809          * NMI context
5810          */
5811         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5812                 calc_timer_values(event, &now, &enabled, &running);
5813
5814         if (event->attr.read_format & PERF_FORMAT_GROUP)
5815                 perf_output_read_group(handle, event, enabled, running);
5816         else
5817                 perf_output_read_one(handle, event, enabled, running);
5818 }
5819
5820 void perf_output_sample(struct perf_output_handle *handle,
5821                         struct perf_event_header *header,
5822                         struct perf_sample_data *data,
5823                         struct perf_event *event)
5824 {
5825         u64 sample_type = data->type;
5826
5827         perf_output_put(handle, *header);
5828
5829         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5830                 perf_output_put(handle, data->id);
5831
5832         if (sample_type & PERF_SAMPLE_IP)
5833                 perf_output_put(handle, data->ip);
5834
5835         if (sample_type & PERF_SAMPLE_TID)
5836                 perf_output_put(handle, data->tid_entry);
5837
5838         if (sample_type & PERF_SAMPLE_TIME)
5839                 perf_output_put(handle, data->time);
5840
5841         if (sample_type & PERF_SAMPLE_ADDR)
5842                 perf_output_put(handle, data->addr);
5843
5844         if (sample_type & PERF_SAMPLE_ID)
5845                 perf_output_put(handle, data->id);
5846
5847         if (sample_type & PERF_SAMPLE_STREAM_ID)
5848                 perf_output_put(handle, data->stream_id);
5849
5850         if (sample_type & PERF_SAMPLE_CPU)
5851                 perf_output_put(handle, data->cpu_entry);
5852
5853         if (sample_type & PERF_SAMPLE_PERIOD)
5854                 perf_output_put(handle, data->period);
5855
5856         if (sample_type & PERF_SAMPLE_READ)
5857                 perf_output_read(handle, event);
5858
5859         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5860                 if (data->callchain) {
5861                         int size = 1;
5862
5863                         if (data->callchain)
5864                                 size += data->callchain->nr;
5865
5866                         size *= sizeof(u64);
5867
5868                         __output_copy(handle, data->callchain, size);
5869                 } else {
5870                         u64 nr = 0;
5871                         perf_output_put(handle, nr);
5872                 }
5873         }
5874
5875         if (sample_type & PERF_SAMPLE_RAW) {
5876                 struct perf_raw_record *raw = data->raw;
5877
5878                 if (raw) {
5879                         struct perf_raw_frag *frag = &raw->frag;
5880
5881                         perf_output_put(handle, raw->size);
5882                         do {
5883                                 if (frag->copy) {
5884                                         __output_custom(handle, frag->copy,
5885                                                         frag->data, frag->size);
5886                                 } else {
5887                                         __output_copy(handle, frag->data,
5888                                                       frag->size);
5889                                 }
5890                                 if (perf_raw_frag_last(frag))
5891                                         break;
5892                                 frag = frag->next;
5893                         } while (1);
5894                         if (frag->pad)
5895                                 __output_skip(handle, NULL, frag->pad);
5896                 } else {
5897                         struct {
5898                                 u32     size;
5899                                 u32     data;
5900                         } raw = {
5901                                 .size = sizeof(u32),
5902                                 .data = 0,
5903                         };
5904                         perf_output_put(handle, raw);
5905                 }
5906         }
5907
5908         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5909                 if (data->br_stack) {
5910                         size_t size;
5911
5912                         size = data->br_stack->nr
5913                              * sizeof(struct perf_branch_entry);
5914
5915                         perf_output_put(handle, data->br_stack->nr);
5916                         perf_output_copy(handle, data->br_stack->entries, size);
5917                 } else {
5918                         /*
5919                          * we always store at least the value of nr
5920                          */
5921                         u64 nr = 0;
5922                         perf_output_put(handle, nr);
5923                 }
5924         }
5925
5926         if (sample_type & PERF_SAMPLE_REGS_USER) {
5927                 u64 abi = data->regs_user.abi;
5928
5929                 /*
5930                  * If there are no regs to dump, notice it through
5931                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5932                  */
5933                 perf_output_put(handle, abi);
5934
5935                 if (abi) {
5936                         u64 mask = event->attr.sample_regs_user;
5937                         perf_output_sample_regs(handle,
5938                                                 data->regs_user.regs,
5939                                                 mask);
5940                 }
5941         }
5942
5943         if (sample_type & PERF_SAMPLE_STACK_USER) {
5944                 perf_output_sample_ustack(handle,
5945                                           data->stack_user_size,
5946                                           data->regs_user.regs);
5947         }
5948
5949         if (sample_type & PERF_SAMPLE_WEIGHT)
5950                 perf_output_put(handle, data->weight);
5951
5952         if (sample_type & PERF_SAMPLE_DATA_SRC)
5953                 perf_output_put(handle, data->data_src.val);
5954
5955         if (sample_type & PERF_SAMPLE_TRANSACTION)
5956                 perf_output_put(handle, data->txn);
5957
5958         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5959                 u64 abi = data->regs_intr.abi;
5960                 /*
5961                  * If there are no regs to dump, notice it through
5962                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5963                  */
5964                 perf_output_put(handle, abi);
5965
5966                 if (abi) {
5967                         u64 mask = event->attr.sample_regs_intr;
5968
5969                         perf_output_sample_regs(handle,
5970                                                 data->regs_intr.regs,
5971                                                 mask);
5972                 }
5973         }
5974
5975         if (!event->attr.watermark) {
5976                 int wakeup_events = event->attr.wakeup_events;
5977
5978                 if (wakeup_events) {
5979                         struct ring_buffer *rb = handle->rb;
5980                         int events = local_inc_return(&rb->events);
5981
5982                         if (events >= wakeup_events) {
5983                                 local_sub(wakeup_events, &rb->events);
5984                                 local_inc(&rb->wakeup);
5985                         }
5986                 }
5987         }
5988 }
5989
5990 void perf_prepare_sample(struct perf_event_header *header,
5991                          struct perf_sample_data *data,
5992                          struct perf_event *event,
5993                          struct pt_regs *regs)
5994 {
5995         u64 sample_type = event->attr.sample_type;
5996
5997         header->type = PERF_RECORD_SAMPLE;
5998         header->size = sizeof(*header) + event->header_size;
5999
6000         header->misc = 0;
6001         header->misc |= perf_misc_flags(regs);
6002
6003         __perf_event_header__init_id(header, data, event);
6004
6005         if (sample_type & PERF_SAMPLE_IP)
6006                 data->ip = perf_instruction_pointer(regs);
6007
6008         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6009                 int size = 1;
6010
6011                 data->callchain = perf_callchain(event, regs);
6012
6013                 if (data->callchain)
6014                         size += data->callchain->nr;
6015
6016                 header->size += size * sizeof(u64);
6017         }
6018
6019         if (sample_type & PERF_SAMPLE_RAW) {
6020                 struct perf_raw_record *raw = data->raw;
6021                 int size;
6022
6023                 if (raw) {
6024                         struct perf_raw_frag *frag = &raw->frag;
6025                         u32 sum = 0;
6026
6027                         do {
6028                                 sum += frag->size;
6029                                 if (perf_raw_frag_last(frag))
6030                                         break;
6031                                 frag = frag->next;
6032                         } while (1);
6033
6034                         size = round_up(sum + sizeof(u32), sizeof(u64));
6035                         raw->size = size - sizeof(u32);
6036                         frag->pad = raw->size - sum;
6037                 } else {
6038                         size = sizeof(u64);
6039                 }
6040
6041                 header->size += size;
6042         }
6043
6044         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6045                 int size = sizeof(u64); /* nr */
6046                 if (data->br_stack) {
6047                         size += data->br_stack->nr
6048                               * sizeof(struct perf_branch_entry);
6049                 }
6050                 header->size += size;
6051         }
6052
6053         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6054                 perf_sample_regs_user(&data->regs_user, regs,
6055                                       &data->regs_user_copy);
6056
6057         if (sample_type & PERF_SAMPLE_REGS_USER) {
6058                 /* regs dump ABI info */
6059                 int size = sizeof(u64);
6060
6061                 if (data->regs_user.regs) {
6062                         u64 mask = event->attr.sample_regs_user;
6063                         size += hweight64(mask) * sizeof(u64);
6064                 }
6065
6066                 header->size += size;
6067         }
6068
6069         if (sample_type & PERF_SAMPLE_STACK_USER) {
6070                 /*
6071                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6072                  * processed as the last one or have additional check added
6073                  * in case new sample type is added, because we could eat
6074                  * up the rest of the sample size.
6075                  */
6076                 u16 stack_size = event->attr.sample_stack_user;
6077                 u16 size = sizeof(u64);
6078
6079                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6080                                                      data->regs_user.regs);
6081
6082                 /*
6083                  * If there is something to dump, add space for the dump
6084                  * itself and for the field that tells the dynamic size,
6085                  * which is how many have been actually dumped.
6086                  */
6087                 if (stack_size)
6088                         size += sizeof(u64) + stack_size;
6089
6090                 data->stack_user_size = stack_size;
6091                 header->size += size;
6092         }
6093
6094         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6095                 /* regs dump ABI info */
6096                 int size = sizeof(u64);
6097
6098                 perf_sample_regs_intr(&data->regs_intr, regs);
6099
6100                 if (data->regs_intr.regs) {
6101                         u64 mask = event->attr.sample_regs_intr;
6102
6103                         size += hweight64(mask) * sizeof(u64);
6104                 }
6105
6106                 header->size += size;
6107         }
6108 }
6109
6110 static void __always_inline
6111 __perf_event_output(struct perf_event *event,
6112                     struct perf_sample_data *data,
6113                     struct pt_regs *regs,
6114                     int (*output_begin)(struct perf_output_handle *,
6115                                         struct perf_event *,
6116                                         unsigned int))
6117 {
6118         struct perf_output_handle handle;
6119         struct perf_event_header header;
6120
6121         /* protect the callchain buffers */
6122         rcu_read_lock();
6123
6124         perf_prepare_sample(&header, data, event, regs);
6125
6126         if (output_begin(&handle, event, header.size))
6127                 goto exit;
6128
6129         perf_output_sample(&handle, &header, data, event);
6130
6131         perf_output_end(&handle);
6132
6133 exit:
6134         rcu_read_unlock();
6135 }
6136
6137 void
6138 perf_event_output_forward(struct perf_event *event,
6139                          struct perf_sample_data *data,
6140                          struct pt_regs *regs)
6141 {
6142         __perf_event_output(event, data, regs, perf_output_begin_forward);
6143 }
6144
6145 void
6146 perf_event_output_backward(struct perf_event *event,
6147                            struct perf_sample_data *data,
6148                            struct pt_regs *regs)
6149 {
6150         __perf_event_output(event, data, regs, perf_output_begin_backward);
6151 }
6152
6153 void
6154 perf_event_output(struct perf_event *event,
6155                   struct perf_sample_data *data,
6156                   struct pt_regs *regs)
6157 {
6158         __perf_event_output(event, data, regs, perf_output_begin);
6159 }
6160
6161 /*
6162  * read event_id
6163  */
6164
6165 struct perf_read_event {
6166         struct perf_event_header        header;
6167
6168         u32                             pid;
6169         u32                             tid;
6170 };
6171
6172 static void
6173 perf_event_read_event(struct perf_event *event,
6174                         struct task_struct *task)
6175 {
6176         struct perf_output_handle handle;
6177         struct perf_sample_data sample;
6178         struct perf_read_event read_event = {
6179                 .header = {
6180                         .type = PERF_RECORD_READ,
6181                         .misc = 0,
6182                         .size = sizeof(read_event) + event->read_size,
6183                 },
6184                 .pid = perf_event_pid(event, task),
6185                 .tid = perf_event_tid(event, task),
6186         };
6187         int ret;
6188
6189         perf_event_header__init_id(&read_event.header, &sample, event);
6190         ret = perf_output_begin(&handle, event, read_event.header.size);
6191         if (ret)
6192                 return;
6193
6194         perf_output_put(&handle, read_event);
6195         perf_output_read(&handle, event);
6196         perf_event__output_id_sample(event, &handle, &sample);
6197
6198         perf_output_end(&handle);
6199 }
6200
6201 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6202
6203 static void
6204 perf_iterate_ctx(struct perf_event_context *ctx,
6205                    perf_iterate_f output,
6206                    void *data, bool all)
6207 {
6208         struct perf_event *event;
6209
6210         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6211                 if (!all) {
6212                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6213                                 continue;
6214                         if (!event_filter_match(event))
6215                                 continue;
6216                 }
6217
6218                 output(event, data);
6219         }
6220 }
6221
6222 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6223 {
6224         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6225         struct perf_event *event;
6226
6227         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6228                 /*
6229                  * Skip events that are not fully formed yet; ensure that
6230                  * if we observe event->ctx, both event and ctx will be
6231                  * complete enough. See perf_install_in_context().
6232                  */
6233                 if (!smp_load_acquire(&event->ctx))
6234                         continue;
6235
6236                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6237                         continue;
6238                 if (!event_filter_match(event))
6239                         continue;
6240                 output(event, data);
6241         }
6242 }
6243
6244 /*
6245  * Iterate all events that need to receive side-band events.
6246  *
6247  * For new callers; ensure that account_pmu_sb_event() includes
6248  * your event, otherwise it might not get delivered.
6249  */
6250 static void
6251 perf_iterate_sb(perf_iterate_f output, void *data,
6252                struct perf_event_context *task_ctx)
6253 {
6254         struct perf_event_context *ctx;
6255         int ctxn;
6256
6257         rcu_read_lock();
6258         preempt_disable();
6259
6260         /*
6261          * If we have task_ctx != NULL we only notify the task context itself.
6262          * The task_ctx is set only for EXIT events before releasing task
6263          * context.
6264          */
6265         if (task_ctx) {
6266                 perf_iterate_ctx(task_ctx, output, data, false);
6267                 goto done;
6268         }
6269
6270         perf_iterate_sb_cpu(output, data);
6271
6272         for_each_task_context_nr(ctxn) {
6273                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6274                 if (ctx)
6275                         perf_iterate_ctx(ctx, output, data, false);
6276         }
6277 done:
6278         preempt_enable();
6279         rcu_read_unlock();
6280 }
6281
6282 /*
6283  * Clear all file-based filters at exec, they'll have to be
6284  * re-instated when/if these objects are mmapped again.
6285  */
6286 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6287 {
6288         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6289         struct perf_addr_filter *filter;
6290         unsigned int restart = 0, count = 0;
6291         unsigned long flags;
6292
6293         if (!has_addr_filter(event))
6294                 return;
6295
6296         raw_spin_lock_irqsave(&ifh->lock, flags);
6297         list_for_each_entry(filter, &ifh->list, entry) {
6298                 if (filter->inode) {
6299                         event->addr_filters_offs[count] = 0;
6300                         restart++;
6301                 }
6302
6303                 count++;
6304         }
6305
6306         if (restart)
6307                 event->addr_filters_gen++;
6308         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6309
6310         if (restart)
6311                 perf_event_stop(event, 1);
6312 }
6313
6314 void perf_event_exec(void)
6315 {
6316         struct perf_event_context *ctx;
6317         int ctxn;
6318
6319         rcu_read_lock();
6320         for_each_task_context_nr(ctxn) {
6321                 ctx = current->perf_event_ctxp[ctxn];
6322                 if (!ctx)
6323                         continue;
6324
6325                 perf_event_enable_on_exec(ctxn);
6326
6327                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6328                                    true);
6329         }
6330         rcu_read_unlock();
6331 }
6332
6333 struct remote_output {
6334         struct ring_buffer      *rb;
6335         int                     err;
6336 };
6337
6338 static void __perf_event_output_stop(struct perf_event *event, void *data)
6339 {
6340         struct perf_event *parent = event->parent;
6341         struct remote_output *ro = data;
6342         struct ring_buffer *rb = ro->rb;
6343         struct stop_event_data sd = {
6344                 .event  = event,
6345         };
6346
6347         if (!has_aux(event))
6348                 return;
6349
6350         if (!parent)
6351                 parent = event;
6352
6353         /*
6354          * In case of inheritance, it will be the parent that links to the
6355          * ring-buffer, but it will be the child that's actually using it.
6356          *
6357          * We are using event::rb to determine if the event should be stopped,
6358          * however this may race with ring_buffer_attach() (through set_output),
6359          * which will make us skip the event that actually needs to be stopped.
6360          * So ring_buffer_attach() has to stop an aux event before re-assigning
6361          * its rb pointer.
6362          */
6363         if (rcu_dereference(parent->rb) == rb)
6364                 ro->err = __perf_event_stop(&sd);
6365 }
6366
6367 static int __perf_pmu_output_stop(void *info)
6368 {
6369         struct perf_event *event = info;
6370         struct pmu *pmu = event->pmu;
6371         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6372         struct remote_output ro = {
6373                 .rb     = event->rb,
6374         };
6375
6376         rcu_read_lock();
6377         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6378         if (cpuctx->task_ctx)
6379                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6380                                    &ro, false);
6381         rcu_read_unlock();
6382
6383         return ro.err;
6384 }
6385
6386 static void perf_pmu_output_stop(struct perf_event *event)
6387 {
6388         struct perf_event *iter;
6389         int err, cpu;
6390
6391 restart:
6392         rcu_read_lock();
6393         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6394                 /*
6395                  * For per-CPU events, we need to make sure that neither they
6396                  * nor their children are running; for cpu==-1 events it's
6397                  * sufficient to stop the event itself if it's active, since
6398                  * it can't have children.
6399                  */
6400                 cpu = iter->cpu;
6401                 if (cpu == -1)
6402                         cpu = READ_ONCE(iter->oncpu);
6403
6404                 if (cpu == -1)
6405                         continue;
6406
6407                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6408                 if (err == -EAGAIN) {
6409                         rcu_read_unlock();
6410                         goto restart;
6411                 }
6412         }
6413         rcu_read_unlock();
6414 }
6415
6416 /*
6417  * task tracking -- fork/exit
6418  *
6419  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6420  */
6421
6422 struct perf_task_event {
6423         struct task_struct              *task;
6424         struct perf_event_context       *task_ctx;
6425
6426         struct {
6427                 struct perf_event_header        header;
6428
6429                 u32                             pid;
6430                 u32                             ppid;
6431                 u32                             tid;
6432                 u32                             ptid;
6433                 u64                             time;
6434         } event_id;
6435 };
6436
6437 static int perf_event_task_match(struct perf_event *event)
6438 {
6439         return event->attr.comm  || event->attr.mmap ||
6440                event->attr.mmap2 || event->attr.mmap_data ||
6441                event->attr.task;
6442 }
6443
6444 static void perf_event_task_output(struct perf_event *event,
6445                                    void *data)
6446 {
6447         struct perf_task_event *task_event = data;
6448         struct perf_output_handle handle;
6449         struct perf_sample_data sample;
6450         struct task_struct *task = task_event->task;
6451         int ret, size = task_event->event_id.header.size;
6452
6453         if (!perf_event_task_match(event))
6454                 return;
6455
6456         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6457
6458         ret = perf_output_begin(&handle, event,
6459                                 task_event->event_id.header.size);
6460         if (ret)
6461                 goto out;
6462
6463         task_event->event_id.pid = perf_event_pid(event, task);
6464         task_event->event_id.ppid = perf_event_pid(event, current);
6465
6466         task_event->event_id.tid = perf_event_tid(event, task);
6467         task_event->event_id.ptid = perf_event_tid(event, current);
6468
6469         task_event->event_id.time = perf_event_clock(event);
6470
6471         perf_output_put(&handle, task_event->event_id);
6472
6473         perf_event__output_id_sample(event, &handle, &sample);
6474
6475         perf_output_end(&handle);
6476 out:
6477         task_event->event_id.header.size = size;
6478 }
6479
6480 static void perf_event_task(struct task_struct *task,
6481                               struct perf_event_context *task_ctx,
6482                               int new)
6483 {
6484         struct perf_task_event task_event;
6485
6486         if (!atomic_read(&nr_comm_events) &&
6487             !atomic_read(&nr_mmap_events) &&
6488             !atomic_read(&nr_task_events))
6489                 return;
6490
6491         task_event = (struct perf_task_event){
6492                 .task     = task,
6493                 .task_ctx = task_ctx,
6494                 .event_id    = {
6495                         .header = {
6496                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6497                                 .misc = 0,
6498                                 .size = sizeof(task_event.event_id),
6499                         },
6500                         /* .pid  */
6501                         /* .ppid */
6502                         /* .tid  */
6503                         /* .ptid */
6504                         /* .time */
6505                 },
6506         };
6507
6508         perf_iterate_sb(perf_event_task_output,
6509                        &task_event,
6510                        task_ctx);
6511 }
6512
6513 void perf_event_fork(struct task_struct *task)
6514 {
6515         perf_event_task(task, NULL, 1);
6516         perf_event_namespaces(task);
6517 }
6518
6519 /*
6520  * comm tracking
6521  */
6522
6523 struct perf_comm_event {
6524         struct task_struct      *task;
6525         char                    *comm;
6526         int                     comm_size;
6527
6528         struct {
6529                 struct perf_event_header        header;
6530
6531                 u32                             pid;
6532                 u32                             tid;
6533         } event_id;
6534 };
6535
6536 static int perf_event_comm_match(struct perf_event *event)
6537 {
6538         return event->attr.comm;
6539 }
6540
6541 static void perf_event_comm_output(struct perf_event *event,
6542                                    void *data)
6543 {
6544         struct perf_comm_event *comm_event = data;
6545         struct perf_output_handle handle;
6546         struct perf_sample_data sample;
6547         int size = comm_event->event_id.header.size;
6548         int ret;
6549
6550         if (!perf_event_comm_match(event))
6551                 return;
6552
6553         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6554         ret = perf_output_begin(&handle, event,
6555                                 comm_event->event_id.header.size);
6556
6557         if (ret)
6558                 goto out;
6559
6560         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6561         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6562
6563         perf_output_put(&handle, comm_event->event_id);
6564         __output_copy(&handle, comm_event->comm,
6565                                    comm_event->comm_size);
6566
6567         perf_event__output_id_sample(event, &handle, &sample);
6568
6569         perf_output_end(&handle);
6570 out:
6571         comm_event->event_id.header.size = size;
6572 }
6573
6574 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6575 {
6576         char comm[TASK_COMM_LEN];
6577         unsigned int size;
6578
6579         memset(comm, 0, sizeof(comm));
6580         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6581         size = ALIGN(strlen(comm)+1, sizeof(u64));
6582
6583         comm_event->comm = comm;
6584         comm_event->comm_size = size;
6585
6586         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6587
6588         perf_iterate_sb(perf_event_comm_output,
6589                        comm_event,
6590                        NULL);
6591 }
6592
6593 void perf_event_comm(struct task_struct *task, bool exec)
6594 {
6595         struct perf_comm_event comm_event;
6596
6597         if (!atomic_read(&nr_comm_events))
6598                 return;
6599
6600         comm_event = (struct perf_comm_event){
6601                 .task   = task,
6602                 /* .comm      */
6603                 /* .comm_size */
6604                 .event_id  = {
6605                         .header = {
6606                                 .type = PERF_RECORD_COMM,
6607                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6608                                 /* .size */
6609                         },
6610                         /* .pid */
6611                         /* .tid */
6612                 },
6613         };
6614
6615         perf_event_comm_event(&comm_event);
6616 }
6617
6618 /*
6619  * namespaces tracking
6620  */
6621
6622 struct perf_namespaces_event {
6623         struct task_struct              *task;
6624
6625         struct {
6626                 struct perf_event_header        header;
6627
6628                 u32                             pid;
6629                 u32                             tid;
6630                 u64                             nr_namespaces;
6631                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6632         } event_id;
6633 };
6634
6635 static int perf_event_namespaces_match(struct perf_event *event)
6636 {
6637         return event->attr.namespaces;
6638 }
6639
6640 static void perf_event_namespaces_output(struct perf_event *event,
6641                                          void *data)
6642 {
6643         struct perf_namespaces_event *namespaces_event = data;
6644         struct perf_output_handle handle;
6645         struct perf_sample_data sample;
6646         int ret;
6647
6648         if (!perf_event_namespaces_match(event))
6649                 return;
6650
6651         perf_event_header__init_id(&namespaces_event->event_id.header,
6652                                    &sample, event);
6653         ret = perf_output_begin(&handle, event,
6654                                 namespaces_event->event_id.header.size);
6655         if (ret)
6656                 return;
6657
6658         namespaces_event->event_id.pid = perf_event_pid(event,
6659                                                         namespaces_event->task);
6660         namespaces_event->event_id.tid = perf_event_tid(event,
6661                                                         namespaces_event->task);
6662
6663         perf_output_put(&handle, namespaces_event->event_id);
6664
6665         perf_event__output_id_sample(event, &handle, &sample);
6666
6667         perf_output_end(&handle);
6668 }
6669
6670 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6671                                    struct task_struct *task,
6672                                    const struct proc_ns_operations *ns_ops)
6673 {
6674         struct path ns_path;
6675         struct inode *ns_inode;
6676         void *error;
6677
6678         error = ns_get_path(&ns_path, task, ns_ops);
6679         if (!error) {
6680                 ns_inode = ns_path.dentry->d_inode;
6681                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6682                 ns_link_info->ino = ns_inode->i_ino;
6683         }
6684 }
6685
6686 void perf_event_namespaces(struct task_struct *task)
6687 {
6688         struct perf_namespaces_event namespaces_event;
6689         struct perf_ns_link_info *ns_link_info;
6690
6691         if (!atomic_read(&nr_namespaces_events))
6692                 return;
6693
6694         namespaces_event = (struct perf_namespaces_event){
6695                 .task   = task,
6696                 .event_id  = {
6697                         .header = {
6698                                 .type = PERF_RECORD_NAMESPACES,
6699                                 .misc = 0,
6700                                 .size = sizeof(namespaces_event.event_id),
6701                         },
6702                         /* .pid */
6703                         /* .tid */
6704                         .nr_namespaces = NR_NAMESPACES,
6705                         /* .link_info[NR_NAMESPACES] */
6706                 },
6707         };
6708
6709         ns_link_info = namespaces_event.event_id.link_info;
6710
6711         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6712                                task, &mntns_operations);
6713
6714 #ifdef CONFIG_USER_NS
6715         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6716                                task, &userns_operations);
6717 #endif
6718 #ifdef CONFIG_NET_NS
6719         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6720                                task, &netns_operations);
6721 #endif
6722 #ifdef CONFIG_UTS_NS
6723         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6724                                task, &utsns_operations);
6725 #endif
6726 #ifdef CONFIG_IPC_NS
6727         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6728                                task, &ipcns_operations);
6729 #endif
6730 #ifdef CONFIG_PID_NS
6731         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6732                                task, &pidns_operations);
6733 #endif
6734 #ifdef CONFIG_CGROUPS
6735         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6736                                task, &cgroupns_operations);
6737 #endif
6738
6739         perf_iterate_sb(perf_event_namespaces_output,
6740                         &namespaces_event,
6741                         NULL);
6742 }
6743
6744 /*
6745  * mmap tracking
6746  */
6747
6748 struct perf_mmap_event {
6749         struct vm_area_struct   *vma;
6750
6751         const char              *file_name;
6752         int                     file_size;
6753         int                     maj, min;
6754         u64                     ino;
6755         u64                     ino_generation;
6756         u32                     prot, flags;
6757
6758         struct {
6759                 struct perf_event_header        header;
6760
6761                 u32                             pid;
6762                 u32                             tid;
6763                 u64                             start;
6764                 u64                             len;
6765                 u64                             pgoff;
6766         } event_id;
6767 };
6768
6769 static int perf_event_mmap_match(struct perf_event *event,
6770                                  void *data)
6771 {
6772         struct perf_mmap_event *mmap_event = data;
6773         struct vm_area_struct *vma = mmap_event->vma;
6774         int executable = vma->vm_flags & VM_EXEC;
6775
6776         return (!executable && event->attr.mmap_data) ||
6777                (executable && (event->attr.mmap || event->attr.mmap2));
6778 }
6779
6780 static void perf_event_mmap_output(struct perf_event *event,
6781                                    void *data)
6782 {
6783         struct perf_mmap_event *mmap_event = data;
6784         struct perf_output_handle handle;
6785         struct perf_sample_data sample;
6786         int size = mmap_event->event_id.header.size;
6787         int ret;
6788
6789         if (!perf_event_mmap_match(event, data))
6790                 return;
6791
6792         if (event->attr.mmap2) {
6793                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6794                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6795                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6796                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6797                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6798                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6799                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6800         }
6801
6802         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6803         ret = perf_output_begin(&handle, event,
6804                                 mmap_event->event_id.header.size);
6805         if (ret)
6806                 goto out;
6807
6808         mmap_event->event_id.pid = perf_event_pid(event, current);
6809         mmap_event->event_id.tid = perf_event_tid(event, current);
6810
6811         perf_output_put(&handle, mmap_event->event_id);
6812
6813         if (event->attr.mmap2) {
6814                 perf_output_put(&handle, mmap_event->maj);
6815                 perf_output_put(&handle, mmap_event->min);
6816                 perf_output_put(&handle, mmap_event->ino);
6817                 perf_output_put(&handle, mmap_event->ino_generation);
6818                 perf_output_put(&handle, mmap_event->prot);
6819                 perf_output_put(&handle, mmap_event->flags);
6820         }
6821
6822         __output_copy(&handle, mmap_event->file_name,
6823                                    mmap_event->file_size);
6824
6825         perf_event__output_id_sample(event, &handle, &sample);
6826
6827         perf_output_end(&handle);
6828 out:
6829         mmap_event->event_id.header.size = size;
6830 }
6831
6832 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6833 {
6834         struct vm_area_struct *vma = mmap_event->vma;
6835         struct file *file = vma->vm_file;
6836         int maj = 0, min = 0;
6837         u64 ino = 0, gen = 0;
6838         u32 prot = 0, flags = 0;
6839         unsigned int size;
6840         char tmp[16];
6841         char *buf = NULL;
6842         char *name;
6843
6844         if (vma->vm_flags & VM_READ)
6845                 prot |= PROT_READ;
6846         if (vma->vm_flags & VM_WRITE)
6847                 prot |= PROT_WRITE;
6848         if (vma->vm_flags & VM_EXEC)
6849                 prot |= PROT_EXEC;
6850
6851         if (vma->vm_flags & VM_MAYSHARE)
6852                 flags = MAP_SHARED;
6853         else
6854                 flags = MAP_PRIVATE;
6855
6856         if (vma->vm_flags & VM_DENYWRITE)
6857                 flags |= MAP_DENYWRITE;
6858         if (vma->vm_flags & VM_MAYEXEC)
6859                 flags |= MAP_EXECUTABLE;
6860         if (vma->vm_flags & VM_LOCKED)
6861                 flags |= MAP_LOCKED;
6862         if (vma->vm_flags & VM_HUGETLB)
6863                 flags |= MAP_HUGETLB;
6864
6865         if (file) {
6866                 struct inode *inode;
6867                 dev_t dev;
6868
6869                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6870                 if (!buf) {
6871                         name = "//enomem";
6872                         goto cpy_name;
6873                 }
6874                 /*
6875                  * d_path() works from the end of the rb backwards, so we
6876                  * need to add enough zero bytes after the string to handle
6877                  * the 64bit alignment we do later.
6878                  */
6879                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6880                 if (IS_ERR(name)) {
6881                         name = "//toolong";
6882                         goto cpy_name;
6883                 }
6884                 inode = file_inode(vma->vm_file);
6885                 dev = inode->i_sb->s_dev;
6886                 ino = inode->i_ino;
6887                 gen = inode->i_generation;
6888                 maj = MAJOR(dev);
6889                 min = MINOR(dev);
6890
6891                 goto got_name;
6892         } else {
6893                 if (vma->vm_ops && vma->vm_ops->name) {
6894                         name = (char *) vma->vm_ops->name(vma);
6895                         if (name)
6896                                 goto cpy_name;
6897                 }
6898
6899                 name = (char *)arch_vma_name(vma);
6900                 if (name)
6901                         goto cpy_name;
6902
6903                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6904                                 vma->vm_end >= vma->vm_mm->brk) {
6905                         name = "[heap]";
6906                         goto cpy_name;
6907                 }
6908                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6909                                 vma->vm_end >= vma->vm_mm->start_stack) {
6910                         name = "[stack]";
6911                         goto cpy_name;
6912                 }
6913
6914                 name = "//anon";
6915                 goto cpy_name;
6916         }
6917
6918 cpy_name:
6919         strlcpy(tmp, name, sizeof(tmp));
6920         name = tmp;
6921 got_name:
6922         /*
6923          * Since our buffer works in 8 byte units we need to align our string
6924          * size to a multiple of 8. However, we must guarantee the tail end is
6925          * zero'd out to avoid leaking random bits to userspace.
6926          */
6927         size = strlen(name)+1;
6928         while (!IS_ALIGNED(size, sizeof(u64)))
6929                 name[size++] = '\0';
6930
6931         mmap_event->file_name = name;
6932         mmap_event->file_size = size;
6933         mmap_event->maj = maj;
6934         mmap_event->min = min;
6935         mmap_event->ino = ino;
6936         mmap_event->ino_generation = gen;
6937         mmap_event->prot = prot;
6938         mmap_event->flags = flags;
6939
6940         if (!(vma->vm_flags & VM_EXEC))
6941                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6942
6943         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6944
6945         perf_iterate_sb(perf_event_mmap_output,
6946                        mmap_event,
6947                        NULL);
6948
6949         kfree(buf);
6950 }
6951
6952 /*
6953  * Check whether inode and address range match filter criteria.
6954  */
6955 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6956                                      struct file *file, unsigned long offset,
6957                                      unsigned long size)
6958 {
6959         if (filter->inode != file_inode(file))
6960                 return false;
6961
6962         if (filter->offset > offset + size)
6963                 return false;
6964
6965         if (filter->offset + filter->size < offset)
6966                 return false;
6967
6968         return true;
6969 }
6970
6971 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6972 {
6973         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6974         struct vm_area_struct *vma = data;
6975         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6976         struct file *file = vma->vm_file;
6977         struct perf_addr_filter *filter;
6978         unsigned int restart = 0, count = 0;
6979
6980         if (!has_addr_filter(event))
6981                 return;
6982
6983         if (!file)
6984                 return;
6985
6986         raw_spin_lock_irqsave(&ifh->lock, flags);
6987         list_for_each_entry(filter, &ifh->list, entry) {
6988                 if (perf_addr_filter_match(filter, file, off,
6989                                              vma->vm_end - vma->vm_start)) {
6990                         event->addr_filters_offs[count] = vma->vm_start;
6991                         restart++;
6992                 }
6993
6994                 count++;
6995         }
6996
6997         if (restart)
6998                 event->addr_filters_gen++;
6999         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7000
7001         if (restart)
7002                 perf_event_stop(event, 1);
7003 }
7004
7005 /*
7006  * Adjust all task's events' filters to the new vma
7007  */
7008 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7009 {
7010         struct perf_event_context *ctx;
7011         int ctxn;
7012
7013         /*
7014          * Data tracing isn't supported yet and as such there is no need
7015          * to keep track of anything that isn't related to executable code:
7016          */
7017         if (!(vma->vm_flags & VM_EXEC))
7018                 return;
7019
7020         rcu_read_lock();
7021         for_each_task_context_nr(ctxn) {
7022                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7023                 if (!ctx)
7024                         continue;
7025
7026                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7027         }
7028         rcu_read_unlock();
7029 }
7030
7031 void perf_event_mmap(struct vm_area_struct *vma)
7032 {
7033         struct perf_mmap_event mmap_event;
7034
7035         if (!atomic_read(&nr_mmap_events))
7036                 return;
7037
7038         mmap_event = (struct perf_mmap_event){
7039                 .vma    = vma,
7040                 /* .file_name */
7041                 /* .file_size */
7042                 .event_id  = {
7043                         .header = {
7044                                 .type = PERF_RECORD_MMAP,
7045                                 .misc = PERF_RECORD_MISC_USER,
7046                                 /* .size */
7047                         },
7048                         /* .pid */
7049                         /* .tid */
7050                         .start  = vma->vm_start,
7051                         .len    = vma->vm_end - vma->vm_start,
7052                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7053                 },
7054                 /* .maj (attr_mmap2 only) */
7055                 /* .min (attr_mmap2 only) */
7056                 /* .ino (attr_mmap2 only) */
7057                 /* .ino_generation (attr_mmap2 only) */
7058                 /* .prot (attr_mmap2 only) */
7059                 /* .flags (attr_mmap2 only) */
7060         };
7061
7062         perf_addr_filters_adjust(vma);
7063         perf_event_mmap_event(&mmap_event);
7064 }
7065
7066 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7067                           unsigned long size, u64 flags)
7068 {
7069         struct perf_output_handle handle;
7070         struct perf_sample_data sample;
7071         struct perf_aux_event {
7072                 struct perf_event_header        header;
7073                 u64                             offset;
7074                 u64                             size;
7075                 u64                             flags;
7076         } rec = {
7077                 .header = {
7078                         .type = PERF_RECORD_AUX,
7079                         .misc = 0,
7080                         .size = sizeof(rec),
7081                 },
7082                 .offset         = head,
7083                 .size           = size,
7084                 .flags          = flags,
7085         };
7086         int ret;
7087
7088         perf_event_header__init_id(&rec.header, &sample, event);
7089         ret = perf_output_begin(&handle, event, rec.header.size);
7090
7091         if (ret)
7092                 return;
7093
7094         perf_output_put(&handle, rec);
7095         perf_event__output_id_sample(event, &handle, &sample);
7096
7097         perf_output_end(&handle);
7098 }
7099
7100 /*
7101  * Lost/dropped samples logging
7102  */
7103 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7104 {
7105         struct perf_output_handle handle;
7106         struct perf_sample_data sample;
7107         int ret;
7108
7109         struct {
7110                 struct perf_event_header        header;
7111                 u64                             lost;
7112         } lost_samples_event = {
7113                 .header = {
7114                         .type = PERF_RECORD_LOST_SAMPLES,
7115                         .misc = 0,
7116                         .size = sizeof(lost_samples_event),
7117                 },
7118                 .lost           = lost,
7119         };
7120
7121         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7122
7123         ret = perf_output_begin(&handle, event,
7124                                 lost_samples_event.header.size);
7125         if (ret)
7126                 return;
7127
7128         perf_output_put(&handle, lost_samples_event);
7129         perf_event__output_id_sample(event, &handle, &sample);
7130         perf_output_end(&handle);
7131 }
7132
7133 /*
7134  * context_switch tracking
7135  */
7136
7137 struct perf_switch_event {
7138         struct task_struct      *task;
7139         struct task_struct      *next_prev;
7140
7141         struct {
7142                 struct perf_event_header        header;
7143                 u32                             next_prev_pid;
7144                 u32                             next_prev_tid;
7145         } event_id;
7146 };
7147
7148 static int perf_event_switch_match(struct perf_event *event)
7149 {
7150         return event->attr.context_switch;
7151 }
7152
7153 static void perf_event_switch_output(struct perf_event *event, void *data)
7154 {
7155         struct perf_switch_event *se = data;
7156         struct perf_output_handle handle;
7157         struct perf_sample_data sample;
7158         int ret;
7159
7160         if (!perf_event_switch_match(event))
7161                 return;
7162
7163         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7164         if (event->ctx->task) {
7165                 se->event_id.header.type = PERF_RECORD_SWITCH;
7166                 se->event_id.header.size = sizeof(se->event_id.header);
7167         } else {
7168                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7169                 se->event_id.header.size = sizeof(se->event_id);
7170                 se->event_id.next_prev_pid =
7171                                         perf_event_pid(event, se->next_prev);
7172                 se->event_id.next_prev_tid =
7173                                         perf_event_tid(event, se->next_prev);
7174         }
7175
7176         perf_event_header__init_id(&se->event_id.header, &sample, event);
7177
7178         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7179         if (ret)
7180                 return;
7181
7182         if (event->ctx->task)
7183                 perf_output_put(&handle, se->event_id.header);
7184         else
7185                 perf_output_put(&handle, se->event_id);
7186
7187         perf_event__output_id_sample(event, &handle, &sample);
7188
7189         perf_output_end(&handle);
7190 }
7191
7192 static void perf_event_switch(struct task_struct *task,
7193                               struct task_struct *next_prev, bool sched_in)
7194 {
7195         struct perf_switch_event switch_event;
7196
7197         /* N.B. caller checks nr_switch_events != 0 */
7198
7199         switch_event = (struct perf_switch_event){
7200                 .task           = task,
7201                 .next_prev      = next_prev,
7202                 .event_id       = {
7203                         .header = {
7204                                 /* .type */
7205                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7206                                 /* .size */
7207                         },
7208                         /* .next_prev_pid */
7209                         /* .next_prev_tid */
7210                 },
7211         };
7212
7213         perf_iterate_sb(perf_event_switch_output,
7214                        &switch_event,
7215                        NULL);
7216 }
7217
7218 /*
7219  * IRQ throttle logging
7220  */
7221
7222 static void perf_log_throttle(struct perf_event *event, int enable)
7223 {
7224         struct perf_output_handle handle;
7225         struct perf_sample_data sample;
7226         int ret;
7227
7228         struct {
7229                 struct perf_event_header        header;
7230                 u64                             time;
7231                 u64                             id;
7232                 u64                             stream_id;
7233         } throttle_event = {
7234                 .header = {
7235                         .type = PERF_RECORD_THROTTLE,
7236                         .misc = 0,
7237                         .size = sizeof(throttle_event),
7238                 },
7239                 .time           = perf_event_clock(event),
7240                 .id             = primary_event_id(event),
7241                 .stream_id      = event->id,
7242         };
7243
7244         if (enable)
7245                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7246
7247         perf_event_header__init_id(&throttle_event.header, &sample, event);
7248
7249         ret = perf_output_begin(&handle, event,
7250                                 throttle_event.header.size);
7251         if (ret)
7252                 return;
7253
7254         perf_output_put(&handle, throttle_event);
7255         perf_event__output_id_sample(event, &handle, &sample);
7256         perf_output_end(&handle);
7257 }
7258
7259 static void perf_log_itrace_start(struct perf_event *event)
7260 {
7261         struct perf_output_handle handle;
7262         struct perf_sample_data sample;
7263         struct perf_aux_event {
7264                 struct perf_event_header        header;
7265                 u32                             pid;
7266                 u32                             tid;
7267         } rec;
7268         int ret;
7269
7270         if (event->parent)
7271                 event = event->parent;
7272
7273         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7274             event->hw.itrace_started)
7275                 return;
7276
7277         rec.header.type = PERF_RECORD_ITRACE_START;
7278         rec.header.misc = 0;
7279         rec.header.size = sizeof(rec);
7280         rec.pid = perf_event_pid(event, current);
7281         rec.tid = perf_event_tid(event, current);
7282
7283         perf_event_header__init_id(&rec.header, &sample, event);
7284         ret = perf_output_begin(&handle, event, rec.header.size);
7285
7286         if (ret)
7287                 return;
7288
7289         perf_output_put(&handle, rec);
7290         perf_event__output_id_sample(event, &handle, &sample);
7291
7292         perf_output_end(&handle);
7293 }
7294
7295 static int
7296 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7297 {
7298         struct hw_perf_event *hwc = &event->hw;
7299         int ret = 0;
7300         u64 seq;
7301
7302         seq = __this_cpu_read(perf_throttled_seq);
7303         if (seq != hwc->interrupts_seq) {
7304                 hwc->interrupts_seq = seq;
7305                 hwc->interrupts = 1;
7306         } else {
7307                 hwc->interrupts++;
7308                 if (unlikely(throttle
7309                              && hwc->interrupts >= max_samples_per_tick)) {
7310                         __this_cpu_inc(perf_throttled_count);
7311                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7312                         hwc->interrupts = MAX_INTERRUPTS;
7313                         perf_log_throttle(event, 0);
7314                         ret = 1;
7315                 }
7316         }
7317
7318         if (event->attr.freq) {
7319                 u64 now = perf_clock();
7320                 s64 delta = now - hwc->freq_time_stamp;
7321
7322                 hwc->freq_time_stamp = now;
7323
7324                 if (delta > 0 && delta < 2*TICK_NSEC)
7325                         perf_adjust_period(event, delta, hwc->last_period, true);
7326         }
7327
7328         return ret;
7329 }
7330
7331 int perf_event_account_interrupt(struct perf_event *event)
7332 {
7333         return __perf_event_account_interrupt(event, 1);
7334 }
7335
7336 /*
7337  * Generic event overflow handling, sampling.
7338  */
7339
7340 static int __perf_event_overflow(struct perf_event *event,
7341                                    int throttle, struct perf_sample_data *data,
7342                                    struct pt_regs *regs)
7343 {
7344         int events = atomic_read(&event->event_limit);
7345         int ret = 0;
7346
7347         /*
7348          * Non-sampling counters might still use the PMI to fold short
7349          * hardware counters, ignore those.
7350          */
7351         if (unlikely(!is_sampling_event(event)))
7352                 return 0;
7353
7354         ret = __perf_event_account_interrupt(event, throttle);
7355
7356         /*
7357          * XXX event_limit might not quite work as expected on inherited
7358          * events
7359          */
7360
7361         event->pending_kill = POLL_IN;
7362         if (events && atomic_dec_and_test(&event->event_limit)) {
7363                 ret = 1;
7364                 event->pending_kill = POLL_HUP;
7365
7366                 perf_event_disable_inatomic(event);
7367         }
7368
7369         READ_ONCE(event->overflow_handler)(event, data, regs);
7370
7371         if (*perf_event_fasync(event) && event->pending_kill) {
7372                 event->pending_wakeup = 1;
7373                 irq_work_queue(&event->pending);
7374         }
7375
7376         return ret;
7377 }
7378
7379 int perf_event_overflow(struct perf_event *event,
7380                           struct perf_sample_data *data,
7381                           struct pt_regs *regs)
7382 {
7383         return __perf_event_overflow(event, 1, data, regs);
7384 }
7385
7386 /*
7387  * Generic software event infrastructure
7388  */
7389
7390 struct swevent_htable {
7391         struct swevent_hlist            *swevent_hlist;
7392         struct mutex                    hlist_mutex;
7393         int                             hlist_refcount;
7394
7395         /* Recursion avoidance in each contexts */
7396         int                             recursion[PERF_NR_CONTEXTS];
7397 };
7398
7399 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7400
7401 /*
7402  * We directly increment event->count and keep a second value in
7403  * event->hw.period_left to count intervals. This period event
7404  * is kept in the range [-sample_period, 0] so that we can use the
7405  * sign as trigger.
7406  */
7407
7408 u64 perf_swevent_set_period(struct perf_event *event)
7409 {
7410         struct hw_perf_event *hwc = &event->hw;
7411         u64 period = hwc->last_period;
7412         u64 nr, offset;
7413         s64 old, val;
7414
7415         hwc->last_period = hwc->sample_period;
7416
7417 again:
7418         old = val = local64_read(&hwc->period_left);
7419         if (val < 0)
7420                 return 0;
7421
7422         nr = div64_u64(period + val, period);
7423         offset = nr * period;
7424         val -= offset;
7425         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7426                 goto again;
7427
7428         return nr;
7429 }
7430
7431 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7432                                     struct perf_sample_data *data,
7433                                     struct pt_regs *regs)
7434 {
7435         struct hw_perf_event *hwc = &event->hw;
7436         int throttle = 0;
7437
7438         if (!overflow)
7439                 overflow = perf_swevent_set_period(event);
7440
7441         if (hwc->interrupts == MAX_INTERRUPTS)
7442                 return;
7443
7444         for (; overflow; overflow--) {
7445                 if (__perf_event_overflow(event, throttle,
7446                                             data, regs)) {
7447                         /*
7448                          * We inhibit the overflow from happening when
7449                          * hwc->interrupts == MAX_INTERRUPTS.
7450                          */
7451                         break;
7452                 }
7453                 throttle = 1;
7454         }
7455 }
7456
7457 static void perf_swevent_event(struct perf_event *event, u64 nr,
7458                                struct perf_sample_data *data,
7459                                struct pt_regs *regs)
7460 {
7461         struct hw_perf_event *hwc = &event->hw;
7462
7463         local64_add(nr, &event->count);
7464
7465         if (!regs)
7466                 return;
7467
7468         if (!is_sampling_event(event))
7469                 return;
7470
7471         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7472                 data->period = nr;
7473                 return perf_swevent_overflow(event, 1, data, regs);
7474         } else
7475                 data->period = event->hw.last_period;
7476
7477         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7478                 return perf_swevent_overflow(event, 1, data, regs);
7479
7480         if (local64_add_negative(nr, &hwc->period_left))
7481                 return;
7482
7483         perf_swevent_overflow(event, 0, data, regs);
7484 }
7485
7486 static int perf_exclude_event(struct perf_event *event,
7487                               struct pt_regs *regs)
7488 {
7489         if (event->hw.state & PERF_HES_STOPPED)
7490                 return 1;
7491
7492         if (regs) {
7493                 if (event->attr.exclude_user && user_mode(regs))
7494                         return 1;
7495
7496                 if (event->attr.exclude_kernel && !user_mode(regs))
7497                         return 1;
7498         }
7499
7500         return 0;
7501 }
7502
7503 static int perf_swevent_match(struct perf_event *event,
7504                                 enum perf_type_id type,
7505                                 u32 event_id,
7506                                 struct perf_sample_data *data,
7507                                 struct pt_regs *regs)
7508 {
7509         if (event->attr.type != type)
7510                 return 0;
7511
7512         if (event->attr.config != event_id)
7513                 return 0;
7514
7515         if (perf_exclude_event(event, regs))
7516                 return 0;
7517
7518         return 1;
7519 }
7520
7521 static inline u64 swevent_hash(u64 type, u32 event_id)
7522 {
7523         u64 val = event_id | (type << 32);
7524
7525         return hash_64(val, SWEVENT_HLIST_BITS);
7526 }
7527
7528 static inline struct hlist_head *
7529 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7530 {
7531         u64 hash = swevent_hash(type, event_id);
7532
7533         return &hlist->heads[hash];
7534 }
7535
7536 /* For the read side: events when they trigger */
7537 static inline struct hlist_head *
7538 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7539 {
7540         struct swevent_hlist *hlist;
7541
7542         hlist = rcu_dereference(swhash->swevent_hlist);
7543         if (!hlist)
7544                 return NULL;
7545
7546         return __find_swevent_head(hlist, type, event_id);
7547 }
7548
7549 /* For the event head insertion and removal in the hlist */
7550 static inline struct hlist_head *
7551 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7552 {
7553         struct swevent_hlist *hlist;
7554         u32 event_id = event->attr.config;
7555         u64 type = event->attr.type;
7556
7557         /*
7558          * Event scheduling is always serialized against hlist allocation
7559          * and release. Which makes the protected version suitable here.
7560          * The context lock guarantees that.
7561          */
7562         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7563                                           lockdep_is_held(&event->ctx->lock));
7564         if (!hlist)
7565                 return NULL;
7566
7567         return __find_swevent_head(hlist, type, event_id);
7568 }
7569
7570 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7571                                     u64 nr,
7572                                     struct perf_sample_data *data,
7573                                     struct pt_regs *regs)
7574 {
7575         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7576         struct perf_event *event;
7577         struct hlist_head *head;
7578
7579         rcu_read_lock();
7580         head = find_swevent_head_rcu(swhash, type, event_id);
7581         if (!head)
7582                 goto end;
7583
7584         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7585                 if (perf_swevent_match(event, type, event_id, data, regs))
7586                         perf_swevent_event(event, nr, data, regs);
7587         }
7588 end:
7589         rcu_read_unlock();
7590 }
7591
7592 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7593
7594 int perf_swevent_get_recursion_context(void)
7595 {
7596         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7597
7598         return get_recursion_context(swhash->recursion);
7599 }
7600 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7601
7602 void perf_swevent_put_recursion_context(int rctx)
7603 {
7604         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7605
7606         put_recursion_context(swhash->recursion, rctx);
7607 }
7608
7609 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7610 {
7611         struct perf_sample_data data;
7612
7613         if (WARN_ON_ONCE(!regs))
7614                 return;
7615
7616         perf_sample_data_init(&data, addr, 0);
7617         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7618 }
7619
7620 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7621 {
7622         int rctx;
7623
7624         preempt_disable_notrace();
7625         rctx = perf_swevent_get_recursion_context();
7626         if (unlikely(rctx < 0))
7627                 goto fail;
7628
7629         ___perf_sw_event(event_id, nr, regs, addr);
7630
7631         perf_swevent_put_recursion_context(rctx);
7632 fail:
7633         preempt_enable_notrace();
7634 }
7635
7636 static void perf_swevent_read(struct perf_event *event)
7637 {
7638 }
7639
7640 static int perf_swevent_add(struct perf_event *event, int flags)
7641 {
7642         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7643         struct hw_perf_event *hwc = &event->hw;
7644         struct hlist_head *head;
7645
7646         if (is_sampling_event(event)) {
7647                 hwc->last_period = hwc->sample_period;
7648                 perf_swevent_set_period(event);
7649         }
7650
7651         hwc->state = !(flags & PERF_EF_START);
7652
7653         head = find_swevent_head(swhash, event);
7654         if (WARN_ON_ONCE(!head))
7655                 return -EINVAL;
7656
7657         hlist_add_head_rcu(&event->hlist_entry, head);
7658         perf_event_update_userpage(event);
7659
7660         return 0;
7661 }
7662
7663 static void perf_swevent_del(struct perf_event *event, int flags)
7664 {
7665         hlist_del_rcu(&event->hlist_entry);
7666 }
7667
7668 static void perf_swevent_start(struct perf_event *event, int flags)
7669 {
7670         event->hw.state = 0;
7671 }
7672
7673 static void perf_swevent_stop(struct perf_event *event, int flags)
7674 {
7675         event->hw.state = PERF_HES_STOPPED;
7676 }
7677
7678 /* Deref the hlist from the update side */
7679 static inline struct swevent_hlist *
7680 swevent_hlist_deref(struct swevent_htable *swhash)
7681 {
7682         return rcu_dereference_protected(swhash->swevent_hlist,
7683                                          lockdep_is_held(&swhash->hlist_mutex));
7684 }
7685
7686 static void swevent_hlist_release(struct swevent_htable *swhash)
7687 {
7688         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7689
7690         if (!hlist)
7691                 return;
7692
7693         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7694         kfree_rcu(hlist, rcu_head);
7695 }
7696
7697 static void swevent_hlist_put_cpu(int cpu)
7698 {
7699         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7700
7701         mutex_lock(&swhash->hlist_mutex);
7702
7703         if (!--swhash->hlist_refcount)
7704                 swevent_hlist_release(swhash);
7705
7706         mutex_unlock(&swhash->hlist_mutex);
7707 }
7708
7709 static void swevent_hlist_put(void)
7710 {
7711         int cpu;
7712
7713         for_each_possible_cpu(cpu)
7714                 swevent_hlist_put_cpu(cpu);
7715 }
7716
7717 static int swevent_hlist_get_cpu(int cpu)
7718 {
7719         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7720         int err = 0;
7721
7722         mutex_lock(&swhash->hlist_mutex);
7723         if (!swevent_hlist_deref(swhash) &&
7724             cpumask_test_cpu(cpu, perf_online_mask)) {
7725                 struct swevent_hlist *hlist;
7726
7727                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7728                 if (!hlist) {
7729                         err = -ENOMEM;
7730                         goto exit;
7731                 }
7732                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7733         }
7734         swhash->hlist_refcount++;
7735 exit:
7736         mutex_unlock(&swhash->hlist_mutex);
7737
7738         return err;
7739 }
7740
7741 static int swevent_hlist_get(void)
7742 {
7743         int err, cpu, failed_cpu;
7744
7745         mutex_lock(&pmus_lock);
7746         for_each_possible_cpu(cpu) {
7747                 err = swevent_hlist_get_cpu(cpu);
7748                 if (err) {
7749                         failed_cpu = cpu;
7750                         goto fail;
7751                 }
7752         }
7753         mutex_unlock(&pmus_lock);
7754         return 0;
7755 fail:
7756         for_each_possible_cpu(cpu) {
7757                 if (cpu == failed_cpu)
7758                         break;
7759                 swevent_hlist_put_cpu(cpu);
7760         }
7761         mutex_unlock(&pmus_lock);
7762         return err;
7763 }
7764
7765 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7766
7767 static void sw_perf_event_destroy(struct perf_event *event)
7768 {
7769         u64 event_id = event->attr.config;
7770
7771         WARN_ON(event->parent);
7772
7773         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7774         swevent_hlist_put();
7775 }
7776
7777 static int perf_swevent_init(struct perf_event *event)
7778 {
7779         u64 event_id = event->attr.config;
7780
7781         if (event->attr.type != PERF_TYPE_SOFTWARE)
7782                 return -ENOENT;
7783
7784         /*
7785          * no branch sampling for software events
7786          */
7787         if (has_branch_stack(event))
7788                 return -EOPNOTSUPP;
7789
7790         switch (event_id) {
7791         case PERF_COUNT_SW_CPU_CLOCK:
7792         case PERF_COUNT_SW_TASK_CLOCK:
7793                 return -ENOENT;
7794
7795         default:
7796                 break;
7797         }
7798
7799         if (event_id >= PERF_COUNT_SW_MAX)
7800                 return -ENOENT;
7801
7802         if (!event->parent) {
7803                 int err;
7804
7805                 err = swevent_hlist_get();
7806                 if (err)
7807                         return err;
7808
7809                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7810                 event->destroy = sw_perf_event_destroy;
7811         }
7812
7813         return 0;
7814 }
7815
7816 static struct pmu perf_swevent = {
7817         .task_ctx_nr    = perf_sw_context,
7818
7819         .capabilities   = PERF_PMU_CAP_NO_NMI,
7820
7821         .event_init     = perf_swevent_init,
7822         .add            = perf_swevent_add,
7823         .del            = perf_swevent_del,
7824         .start          = perf_swevent_start,
7825         .stop           = perf_swevent_stop,
7826         .read           = perf_swevent_read,
7827 };
7828
7829 #ifdef CONFIG_EVENT_TRACING
7830
7831 static int perf_tp_filter_match(struct perf_event *event,
7832                                 struct perf_sample_data *data)
7833 {
7834         void *record = data->raw->frag.data;
7835
7836         /* only top level events have filters set */
7837         if (event->parent)
7838                 event = event->parent;
7839
7840         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7841                 return 1;
7842         return 0;
7843 }
7844
7845 static int perf_tp_event_match(struct perf_event *event,
7846                                 struct perf_sample_data *data,
7847                                 struct pt_regs *regs)
7848 {
7849         if (event->hw.state & PERF_HES_STOPPED)
7850                 return 0;
7851         /*
7852          * All tracepoints are from kernel-space.
7853          */
7854         if (event->attr.exclude_kernel)
7855                 return 0;
7856
7857         if (!perf_tp_filter_match(event, data))
7858                 return 0;
7859
7860         return 1;
7861 }
7862
7863 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7864                                struct trace_event_call *call, u64 count,
7865                                struct pt_regs *regs, struct hlist_head *head,
7866                                struct task_struct *task)
7867 {
7868         struct bpf_prog *prog = call->prog;
7869
7870         if (prog) {
7871                 *(struct pt_regs **)raw_data = regs;
7872                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7873                         perf_swevent_put_recursion_context(rctx);
7874                         return;
7875                 }
7876         }
7877         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7878                       rctx, task);
7879 }
7880 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7881
7882 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7883                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7884                    struct task_struct *task)
7885 {
7886         struct perf_sample_data data;
7887         struct perf_event *event;
7888
7889         struct perf_raw_record raw = {
7890                 .frag = {
7891                         .size = entry_size,
7892                         .data = record,
7893                 },
7894         };
7895
7896         perf_sample_data_init(&data, 0, 0);
7897         data.raw = &raw;
7898
7899         perf_trace_buf_update(record, event_type);
7900
7901         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7902                 if (perf_tp_event_match(event, &data, regs))
7903                         perf_swevent_event(event, count, &data, regs);
7904         }
7905
7906         /*
7907          * If we got specified a target task, also iterate its context and
7908          * deliver this event there too.
7909          */
7910         if (task && task != current) {
7911                 struct perf_event_context *ctx;
7912                 struct trace_entry *entry = record;
7913
7914                 rcu_read_lock();
7915                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7916                 if (!ctx)
7917                         goto unlock;
7918
7919                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7920                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7921                                 continue;
7922                         if (event->attr.config != entry->type)
7923                                 continue;
7924                         if (perf_tp_event_match(event, &data, regs))
7925                                 perf_swevent_event(event, count, &data, regs);
7926                 }
7927 unlock:
7928                 rcu_read_unlock();
7929         }
7930
7931         perf_swevent_put_recursion_context(rctx);
7932 }
7933 EXPORT_SYMBOL_GPL(perf_tp_event);
7934
7935 static void tp_perf_event_destroy(struct perf_event *event)
7936 {
7937         perf_trace_destroy(event);
7938 }
7939
7940 static int perf_tp_event_init(struct perf_event *event)
7941 {
7942         int err;
7943
7944         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7945                 return -ENOENT;
7946
7947         /*
7948          * no branch sampling for tracepoint events
7949          */
7950         if (has_branch_stack(event))
7951                 return -EOPNOTSUPP;
7952
7953         err = perf_trace_init(event);
7954         if (err)
7955                 return err;
7956
7957         event->destroy = tp_perf_event_destroy;
7958
7959         return 0;
7960 }
7961
7962 static struct pmu perf_tracepoint = {
7963         .task_ctx_nr    = perf_sw_context,
7964
7965         .event_init     = perf_tp_event_init,
7966         .add            = perf_trace_add,
7967         .del            = perf_trace_del,
7968         .start          = perf_swevent_start,
7969         .stop           = perf_swevent_stop,
7970         .read           = perf_swevent_read,
7971 };
7972
7973 static inline void perf_tp_register(void)
7974 {
7975         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7976 }
7977
7978 static void perf_event_free_filter(struct perf_event *event)
7979 {
7980         ftrace_profile_free_filter(event);
7981 }
7982
7983 #ifdef CONFIG_BPF_SYSCALL
7984 static void bpf_overflow_handler(struct perf_event *event,
7985                                  struct perf_sample_data *data,
7986                                  struct pt_regs *regs)
7987 {
7988         struct bpf_perf_event_data_kern ctx = {
7989                 .data = data,
7990                 .regs = regs,
7991         };
7992         int ret = 0;
7993
7994         preempt_disable();
7995         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7996                 goto out;
7997         rcu_read_lock();
7998         ret = BPF_PROG_RUN(event->prog, &ctx);
7999         rcu_read_unlock();
8000 out:
8001         __this_cpu_dec(bpf_prog_active);
8002         preempt_enable();
8003         if (!ret)
8004                 return;
8005
8006         event->orig_overflow_handler(event, data, regs);
8007 }
8008
8009 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8010 {
8011         struct bpf_prog *prog;
8012
8013         if (event->overflow_handler_context)
8014                 /* hw breakpoint or kernel counter */
8015                 return -EINVAL;
8016
8017         if (event->prog)
8018                 return -EEXIST;
8019
8020         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8021         if (IS_ERR(prog))
8022                 return PTR_ERR(prog);
8023
8024         event->prog = prog;
8025         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8026         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8027         return 0;
8028 }
8029
8030 static void perf_event_free_bpf_handler(struct perf_event *event)
8031 {
8032         struct bpf_prog *prog = event->prog;
8033
8034         if (!prog)
8035                 return;
8036
8037         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8038         event->prog = NULL;
8039         bpf_prog_put(prog);
8040 }
8041 #else
8042 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8043 {
8044         return -EOPNOTSUPP;
8045 }
8046 static void perf_event_free_bpf_handler(struct perf_event *event)
8047 {
8048 }
8049 #endif
8050
8051 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8052 {
8053         bool is_kprobe, is_tracepoint;
8054         struct bpf_prog *prog;
8055
8056         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8057                 return perf_event_set_bpf_handler(event, prog_fd);
8058
8059         if (event->tp_event->prog)
8060                 return -EEXIST;
8061
8062         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8063         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8064         if (!is_kprobe && !is_tracepoint)
8065                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8066                 return -EINVAL;
8067
8068         prog = bpf_prog_get(prog_fd);
8069         if (IS_ERR(prog))
8070                 return PTR_ERR(prog);
8071
8072         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8073             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8074                 /* valid fd, but invalid bpf program type */
8075                 bpf_prog_put(prog);
8076                 return -EINVAL;
8077         }
8078
8079         if (is_tracepoint) {
8080                 int off = trace_event_get_offsets(event->tp_event);
8081
8082                 if (prog->aux->max_ctx_offset > off) {
8083                         bpf_prog_put(prog);
8084                         return -EACCES;
8085                 }
8086         }
8087         event->tp_event->prog = prog;
8088
8089         return 0;
8090 }
8091
8092 static void perf_event_free_bpf_prog(struct perf_event *event)
8093 {
8094         struct bpf_prog *prog;
8095
8096         perf_event_free_bpf_handler(event);
8097
8098         if (!event->tp_event)
8099                 return;
8100
8101         prog = event->tp_event->prog;
8102         if (prog) {
8103                 event->tp_event->prog = NULL;
8104                 bpf_prog_put(prog);
8105         }
8106 }
8107
8108 #else
8109
8110 static inline void perf_tp_register(void)
8111 {
8112 }
8113
8114 static void perf_event_free_filter(struct perf_event *event)
8115 {
8116 }
8117
8118 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8119 {
8120         return -ENOENT;
8121 }
8122
8123 static void perf_event_free_bpf_prog(struct perf_event *event)
8124 {
8125 }
8126 #endif /* CONFIG_EVENT_TRACING */
8127
8128 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8129 void perf_bp_event(struct perf_event *bp, void *data)
8130 {
8131         struct perf_sample_data sample;
8132         struct pt_regs *regs = data;
8133
8134         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8135
8136         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8137                 perf_swevent_event(bp, 1, &sample, regs);
8138 }
8139 #endif
8140
8141 /*
8142  * Allocate a new address filter
8143  */
8144 static struct perf_addr_filter *
8145 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8146 {
8147         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8148         struct perf_addr_filter *filter;
8149
8150         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8151         if (!filter)
8152                 return NULL;
8153
8154         INIT_LIST_HEAD(&filter->entry);
8155         list_add_tail(&filter->entry, filters);
8156
8157         return filter;
8158 }
8159
8160 static void free_filters_list(struct list_head *filters)
8161 {
8162         struct perf_addr_filter *filter, *iter;
8163
8164         list_for_each_entry_safe(filter, iter, filters, entry) {
8165                 if (filter->inode)
8166                         iput(filter->inode);
8167                 list_del(&filter->entry);
8168                 kfree(filter);
8169         }
8170 }
8171
8172 /*
8173  * Free existing address filters and optionally install new ones
8174  */
8175 static void perf_addr_filters_splice(struct perf_event *event,
8176                                      struct list_head *head)
8177 {
8178         unsigned long flags;
8179         LIST_HEAD(list);
8180
8181         if (!has_addr_filter(event))
8182                 return;
8183
8184         /* don't bother with children, they don't have their own filters */
8185         if (event->parent)
8186                 return;
8187
8188         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8189
8190         list_splice_init(&event->addr_filters.list, &list);
8191         if (head)
8192                 list_splice(head, &event->addr_filters.list);
8193
8194         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8195
8196         free_filters_list(&list);
8197 }
8198
8199 /*
8200  * Scan through mm's vmas and see if one of them matches the
8201  * @filter; if so, adjust filter's address range.
8202  * Called with mm::mmap_sem down for reading.
8203  */
8204 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8205                                             struct mm_struct *mm)
8206 {
8207         struct vm_area_struct *vma;
8208
8209         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8210                 struct file *file = vma->vm_file;
8211                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8212                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8213
8214                 if (!file)
8215                         continue;
8216
8217                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8218                         continue;
8219
8220                 return vma->vm_start;
8221         }
8222
8223         return 0;
8224 }
8225
8226 /*
8227  * Update event's address range filters based on the
8228  * task's existing mappings, if any.
8229  */
8230 static void perf_event_addr_filters_apply(struct perf_event *event)
8231 {
8232         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8233         struct task_struct *task = READ_ONCE(event->ctx->task);
8234         struct perf_addr_filter *filter;
8235         struct mm_struct *mm = NULL;
8236         unsigned int count = 0;
8237         unsigned long flags;
8238
8239         /*
8240          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8241          * will stop on the parent's child_mutex that our caller is also holding
8242          */
8243         if (task == TASK_TOMBSTONE)
8244                 return;
8245
8246         if (!ifh->nr_file_filters)
8247                 return;
8248
8249         mm = get_task_mm(event->ctx->task);
8250         if (!mm)
8251                 goto restart;
8252
8253         down_read(&mm->mmap_sem);
8254
8255         raw_spin_lock_irqsave(&ifh->lock, flags);
8256         list_for_each_entry(filter, &ifh->list, entry) {
8257                 event->addr_filters_offs[count] = 0;
8258
8259                 /*
8260                  * Adjust base offset if the filter is associated to a binary
8261                  * that needs to be mapped:
8262                  */
8263                 if (filter->inode)
8264                         event->addr_filters_offs[count] =
8265                                 perf_addr_filter_apply(filter, mm);
8266
8267                 count++;
8268         }
8269
8270         event->addr_filters_gen++;
8271         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8272
8273         up_read(&mm->mmap_sem);
8274
8275         mmput(mm);
8276
8277 restart:
8278         perf_event_stop(event, 1);
8279 }
8280
8281 /*
8282  * Address range filtering: limiting the data to certain
8283  * instruction address ranges. Filters are ioctl()ed to us from
8284  * userspace as ascii strings.
8285  *
8286  * Filter string format:
8287  *
8288  * ACTION RANGE_SPEC
8289  * where ACTION is one of the
8290  *  * "filter": limit the trace to this region
8291  *  * "start": start tracing from this address
8292  *  * "stop": stop tracing at this address/region;
8293  * RANGE_SPEC is
8294  *  * for kernel addresses: <start address>[/<size>]
8295  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8296  *
8297  * if <size> is not specified, the range is treated as a single address.
8298  */
8299 enum {
8300         IF_ACT_NONE = -1,
8301         IF_ACT_FILTER,
8302         IF_ACT_START,
8303         IF_ACT_STOP,
8304         IF_SRC_FILE,
8305         IF_SRC_KERNEL,
8306         IF_SRC_FILEADDR,
8307         IF_SRC_KERNELADDR,
8308 };
8309
8310 enum {
8311         IF_STATE_ACTION = 0,
8312         IF_STATE_SOURCE,
8313         IF_STATE_END,
8314 };
8315
8316 static const match_table_t if_tokens = {
8317         { IF_ACT_FILTER,        "filter" },
8318         { IF_ACT_START,         "start" },
8319         { IF_ACT_STOP,          "stop" },
8320         { IF_SRC_FILE,          "%u/%u@%s" },
8321         { IF_SRC_KERNEL,        "%u/%u" },
8322         { IF_SRC_FILEADDR,      "%u@%s" },
8323         { IF_SRC_KERNELADDR,    "%u" },
8324         { IF_ACT_NONE,          NULL },
8325 };
8326
8327 /*
8328  * Address filter string parser
8329  */
8330 static int
8331 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8332                              struct list_head *filters)
8333 {
8334         struct perf_addr_filter *filter = NULL;
8335         char *start, *orig, *filename = NULL;
8336         struct path path;
8337         substring_t args[MAX_OPT_ARGS];
8338         int state = IF_STATE_ACTION, token;
8339         unsigned int kernel = 0;
8340         int ret = -EINVAL;
8341
8342         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8343         if (!fstr)
8344                 return -ENOMEM;
8345
8346         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8347                 ret = -EINVAL;
8348
8349                 if (!*start)
8350                         continue;
8351
8352                 /* filter definition begins */
8353                 if (state == IF_STATE_ACTION) {
8354                         filter = perf_addr_filter_new(event, filters);
8355                         if (!filter)
8356                                 goto fail;
8357                 }
8358
8359                 token = match_token(start, if_tokens, args);
8360                 switch (token) {
8361                 case IF_ACT_FILTER:
8362                 case IF_ACT_START:
8363                         filter->filter = 1;
8364
8365                 case IF_ACT_STOP:
8366                         if (state != IF_STATE_ACTION)
8367                                 goto fail;
8368
8369                         state = IF_STATE_SOURCE;
8370                         break;
8371
8372                 case IF_SRC_KERNELADDR:
8373                 case IF_SRC_KERNEL:
8374                         kernel = 1;
8375
8376                 case IF_SRC_FILEADDR:
8377                 case IF_SRC_FILE:
8378                         if (state != IF_STATE_SOURCE)
8379                                 goto fail;
8380
8381                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8382                                 filter->range = 1;
8383
8384                         *args[0].to = 0;
8385                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8386                         if (ret)
8387                                 goto fail;
8388
8389                         if (filter->range) {
8390                                 *args[1].to = 0;
8391                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8392                                 if (ret)
8393                                         goto fail;
8394                         }
8395
8396                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8397                                 int fpos = filter->range ? 2 : 1;
8398
8399                                 filename = match_strdup(&args[fpos]);
8400                                 if (!filename) {
8401                                         ret = -ENOMEM;
8402                                         goto fail;
8403                                 }
8404                         }
8405
8406                         state = IF_STATE_END;
8407                         break;
8408
8409                 default:
8410                         goto fail;
8411                 }
8412
8413                 /*
8414                  * Filter definition is fully parsed, validate and install it.
8415                  * Make sure that it doesn't contradict itself or the event's
8416                  * attribute.
8417                  */
8418                 if (state == IF_STATE_END) {
8419                         ret = -EINVAL;
8420                         if (kernel && event->attr.exclude_kernel)
8421                                 goto fail;
8422
8423                         if (!kernel) {
8424                                 if (!filename)
8425                                         goto fail;
8426
8427                                 /*
8428                                  * For now, we only support file-based filters
8429                                  * in per-task events; doing so for CPU-wide
8430                                  * events requires additional context switching
8431                                  * trickery, since same object code will be
8432                                  * mapped at different virtual addresses in
8433                                  * different processes.
8434                                  */
8435                                 ret = -EOPNOTSUPP;
8436                                 if (!event->ctx->task)
8437                                         goto fail_free_name;
8438
8439                                 /* look up the path and grab its inode */
8440                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8441                                 if (ret)
8442                                         goto fail_free_name;
8443
8444                                 filter->inode = igrab(d_inode(path.dentry));
8445                                 path_put(&path);
8446                                 kfree(filename);
8447                                 filename = NULL;
8448
8449                                 ret = -EINVAL;
8450                                 if (!filter->inode ||
8451                                     !S_ISREG(filter->inode->i_mode))
8452                                         /* free_filters_list() will iput() */
8453                                         goto fail;
8454
8455                                 event->addr_filters.nr_file_filters++;
8456                         }
8457
8458                         /* ready to consume more filters */
8459                         state = IF_STATE_ACTION;
8460                         filter = NULL;
8461                 }
8462         }
8463
8464         if (state != IF_STATE_ACTION)
8465                 goto fail;
8466
8467         kfree(orig);
8468
8469         return 0;
8470
8471 fail_free_name:
8472         kfree(filename);
8473 fail:
8474         free_filters_list(filters);
8475         kfree(orig);
8476
8477         return ret;
8478 }
8479
8480 static int
8481 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8482 {
8483         LIST_HEAD(filters);
8484         int ret;
8485
8486         /*
8487          * Since this is called in perf_ioctl() path, we're already holding
8488          * ctx::mutex.
8489          */
8490         lockdep_assert_held(&event->ctx->mutex);
8491
8492         if (WARN_ON_ONCE(event->parent))
8493                 return -EINVAL;
8494
8495         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8496         if (ret)
8497                 goto fail_clear_files;
8498
8499         ret = event->pmu->addr_filters_validate(&filters);
8500         if (ret)
8501                 goto fail_free_filters;
8502
8503         /* remove existing filters, if any */
8504         perf_addr_filters_splice(event, &filters);
8505
8506         /* install new filters */
8507         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8508
8509         return ret;
8510
8511 fail_free_filters:
8512         free_filters_list(&filters);
8513
8514 fail_clear_files:
8515         event->addr_filters.nr_file_filters = 0;
8516
8517         return ret;
8518 }
8519
8520 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8521 {
8522         char *filter_str;
8523         int ret = -EINVAL;
8524
8525         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8526             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8527             !has_addr_filter(event))
8528                 return -EINVAL;
8529
8530         filter_str = strndup_user(arg, PAGE_SIZE);
8531         if (IS_ERR(filter_str))
8532                 return PTR_ERR(filter_str);
8533
8534         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8535             event->attr.type == PERF_TYPE_TRACEPOINT)
8536                 ret = ftrace_profile_set_filter(event, event->attr.config,
8537                                                 filter_str);
8538         else if (has_addr_filter(event))
8539                 ret = perf_event_set_addr_filter(event, filter_str);
8540
8541         kfree(filter_str);
8542         return ret;
8543 }
8544
8545 /*
8546  * hrtimer based swevent callback
8547  */
8548
8549 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8550 {
8551         enum hrtimer_restart ret = HRTIMER_RESTART;
8552         struct perf_sample_data data;
8553         struct pt_regs *regs;
8554         struct perf_event *event;
8555         u64 period;
8556
8557         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8558
8559         if (event->state != PERF_EVENT_STATE_ACTIVE)
8560                 return HRTIMER_NORESTART;
8561
8562         event->pmu->read(event);
8563
8564         perf_sample_data_init(&data, 0, event->hw.last_period);
8565         regs = get_irq_regs();
8566
8567         if (regs && !perf_exclude_event(event, regs)) {
8568                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8569                         if (__perf_event_overflow(event, 1, &data, regs))
8570                                 ret = HRTIMER_NORESTART;
8571         }
8572
8573         period = max_t(u64, 10000, event->hw.sample_period);
8574         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8575
8576         return ret;
8577 }
8578
8579 static void perf_swevent_start_hrtimer(struct perf_event *event)
8580 {
8581         struct hw_perf_event *hwc = &event->hw;
8582         s64 period;
8583
8584         if (!is_sampling_event(event))
8585                 return;
8586
8587         period = local64_read(&hwc->period_left);
8588         if (period) {
8589                 if (period < 0)
8590                         period = 10000;
8591
8592                 local64_set(&hwc->period_left, 0);
8593         } else {
8594                 period = max_t(u64, 10000, hwc->sample_period);
8595         }
8596         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8597                       HRTIMER_MODE_REL_PINNED);
8598 }
8599
8600 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8601 {
8602         struct hw_perf_event *hwc = &event->hw;
8603
8604         if (is_sampling_event(event)) {
8605                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8606                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8607
8608                 hrtimer_cancel(&hwc->hrtimer);
8609         }
8610 }
8611
8612 static void perf_swevent_init_hrtimer(struct perf_event *event)
8613 {
8614         struct hw_perf_event *hwc = &event->hw;
8615
8616         if (!is_sampling_event(event))
8617                 return;
8618
8619         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8620         hwc->hrtimer.function = perf_swevent_hrtimer;
8621
8622         /*
8623          * Since hrtimers have a fixed rate, we can do a static freq->period
8624          * mapping and avoid the whole period adjust feedback stuff.
8625          */
8626         if (event->attr.freq) {
8627                 long freq = event->attr.sample_freq;
8628
8629                 event->attr.sample_period = NSEC_PER_SEC / freq;
8630                 hwc->sample_period = event->attr.sample_period;
8631                 local64_set(&hwc->period_left, hwc->sample_period);
8632                 hwc->last_period = hwc->sample_period;
8633                 event->attr.freq = 0;
8634         }
8635 }
8636
8637 /*
8638  * Software event: cpu wall time clock
8639  */
8640
8641 static void cpu_clock_event_update(struct perf_event *event)
8642 {
8643         s64 prev;
8644         u64 now;
8645
8646         now = local_clock();
8647         prev = local64_xchg(&event->hw.prev_count, now);
8648         local64_add(now - prev, &event->count);
8649 }
8650
8651 static void cpu_clock_event_start(struct perf_event *event, int flags)
8652 {
8653         local64_set(&event->hw.prev_count, local_clock());
8654         perf_swevent_start_hrtimer(event);
8655 }
8656
8657 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8658 {
8659         perf_swevent_cancel_hrtimer(event);
8660         cpu_clock_event_update(event);
8661 }
8662
8663 static int cpu_clock_event_add(struct perf_event *event, int flags)
8664 {
8665         if (flags & PERF_EF_START)
8666                 cpu_clock_event_start(event, flags);
8667         perf_event_update_userpage(event);
8668
8669         return 0;
8670 }
8671
8672 static void cpu_clock_event_del(struct perf_event *event, int flags)
8673 {
8674         cpu_clock_event_stop(event, flags);
8675 }
8676
8677 static void cpu_clock_event_read(struct perf_event *event)
8678 {
8679         cpu_clock_event_update(event);
8680 }
8681
8682 static int cpu_clock_event_init(struct perf_event *event)
8683 {
8684         if (event->attr.type != PERF_TYPE_SOFTWARE)
8685                 return -ENOENT;
8686
8687         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8688                 return -ENOENT;
8689
8690         /*
8691          * no branch sampling for software events
8692          */
8693         if (has_branch_stack(event))
8694                 return -EOPNOTSUPP;
8695
8696         perf_swevent_init_hrtimer(event);
8697
8698         return 0;
8699 }
8700
8701 static struct pmu perf_cpu_clock = {
8702         .task_ctx_nr    = perf_sw_context,
8703
8704         .capabilities   = PERF_PMU_CAP_NO_NMI,
8705
8706         .event_init     = cpu_clock_event_init,
8707         .add            = cpu_clock_event_add,
8708         .del            = cpu_clock_event_del,
8709         .start          = cpu_clock_event_start,
8710         .stop           = cpu_clock_event_stop,
8711         .read           = cpu_clock_event_read,
8712 };
8713
8714 /*
8715  * Software event: task time clock
8716  */
8717
8718 static void task_clock_event_update(struct perf_event *event, u64 now)
8719 {
8720         u64 prev;
8721         s64 delta;
8722
8723         prev = local64_xchg(&event->hw.prev_count, now);
8724         delta = now - prev;
8725         local64_add(delta, &event->count);
8726 }
8727
8728 static void task_clock_event_start(struct perf_event *event, int flags)
8729 {
8730         local64_set(&event->hw.prev_count, event->ctx->time);
8731         perf_swevent_start_hrtimer(event);
8732 }
8733
8734 static void task_clock_event_stop(struct perf_event *event, int flags)
8735 {
8736         perf_swevent_cancel_hrtimer(event);
8737         task_clock_event_update(event, event->ctx->time);
8738 }
8739
8740 static int task_clock_event_add(struct perf_event *event, int flags)
8741 {
8742         if (flags & PERF_EF_START)
8743                 task_clock_event_start(event, flags);
8744         perf_event_update_userpage(event);
8745
8746         return 0;
8747 }
8748
8749 static void task_clock_event_del(struct perf_event *event, int flags)
8750 {
8751         task_clock_event_stop(event, PERF_EF_UPDATE);
8752 }
8753
8754 static void task_clock_event_read(struct perf_event *event)
8755 {
8756         u64 now = perf_clock();
8757         u64 delta = now - event->ctx->timestamp;
8758         u64 time = event->ctx->time + delta;
8759
8760         task_clock_event_update(event, time);
8761 }
8762
8763 static int task_clock_event_init(struct perf_event *event)
8764 {
8765         if (event->attr.type != PERF_TYPE_SOFTWARE)
8766                 return -ENOENT;
8767
8768         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8769                 return -ENOENT;
8770
8771         /*
8772          * no branch sampling for software events
8773          */
8774         if (has_branch_stack(event))
8775                 return -EOPNOTSUPP;
8776
8777         perf_swevent_init_hrtimer(event);
8778
8779         return 0;
8780 }
8781
8782 static struct pmu perf_task_clock = {
8783         .task_ctx_nr    = perf_sw_context,
8784
8785         .capabilities   = PERF_PMU_CAP_NO_NMI,
8786
8787         .event_init     = task_clock_event_init,
8788         .add            = task_clock_event_add,
8789         .del            = task_clock_event_del,
8790         .start          = task_clock_event_start,
8791         .stop           = task_clock_event_stop,
8792         .read           = task_clock_event_read,
8793 };
8794
8795 static void perf_pmu_nop_void(struct pmu *pmu)
8796 {
8797 }
8798
8799 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8800 {
8801 }
8802
8803 static int perf_pmu_nop_int(struct pmu *pmu)
8804 {
8805         return 0;
8806 }
8807
8808 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8809
8810 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8811 {
8812         __this_cpu_write(nop_txn_flags, flags);
8813
8814         if (flags & ~PERF_PMU_TXN_ADD)
8815                 return;
8816
8817         perf_pmu_disable(pmu);
8818 }
8819
8820 static int perf_pmu_commit_txn(struct pmu *pmu)
8821 {
8822         unsigned int flags = __this_cpu_read(nop_txn_flags);
8823
8824         __this_cpu_write(nop_txn_flags, 0);
8825
8826         if (flags & ~PERF_PMU_TXN_ADD)
8827                 return 0;
8828
8829         perf_pmu_enable(pmu);
8830         return 0;
8831 }
8832
8833 static void perf_pmu_cancel_txn(struct pmu *pmu)
8834 {
8835         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8836
8837         __this_cpu_write(nop_txn_flags, 0);
8838
8839         if (flags & ~PERF_PMU_TXN_ADD)
8840                 return;
8841
8842         perf_pmu_enable(pmu);
8843 }
8844
8845 static int perf_event_idx_default(struct perf_event *event)
8846 {
8847         return 0;
8848 }
8849
8850 /*
8851  * Ensures all contexts with the same task_ctx_nr have the same
8852  * pmu_cpu_context too.
8853  */
8854 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8855 {
8856         struct pmu *pmu;
8857
8858         if (ctxn < 0)
8859                 return NULL;
8860
8861         list_for_each_entry(pmu, &pmus, entry) {
8862                 if (pmu->task_ctx_nr == ctxn)
8863                         return pmu->pmu_cpu_context;
8864         }
8865
8866         return NULL;
8867 }
8868
8869 static void free_pmu_context(struct pmu *pmu)
8870 {
8871         mutex_lock(&pmus_lock);
8872         free_percpu(pmu->pmu_cpu_context);
8873         mutex_unlock(&pmus_lock);
8874 }
8875
8876 /*
8877  * Let userspace know that this PMU supports address range filtering:
8878  */
8879 static ssize_t nr_addr_filters_show(struct device *dev,
8880                                     struct device_attribute *attr,
8881                                     char *page)
8882 {
8883         struct pmu *pmu = dev_get_drvdata(dev);
8884
8885         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8886 }
8887 DEVICE_ATTR_RO(nr_addr_filters);
8888
8889 static struct idr pmu_idr;
8890
8891 static ssize_t
8892 type_show(struct device *dev, struct device_attribute *attr, char *page)
8893 {
8894         struct pmu *pmu = dev_get_drvdata(dev);
8895
8896         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8897 }
8898 static DEVICE_ATTR_RO(type);
8899
8900 static ssize_t
8901 perf_event_mux_interval_ms_show(struct device *dev,
8902                                 struct device_attribute *attr,
8903                                 char *page)
8904 {
8905         struct pmu *pmu = dev_get_drvdata(dev);
8906
8907         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8908 }
8909
8910 static DEFINE_MUTEX(mux_interval_mutex);
8911
8912 static ssize_t
8913 perf_event_mux_interval_ms_store(struct device *dev,
8914                                  struct device_attribute *attr,
8915                                  const char *buf, size_t count)
8916 {
8917         struct pmu *pmu = dev_get_drvdata(dev);
8918         int timer, cpu, ret;
8919
8920         ret = kstrtoint(buf, 0, &timer);
8921         if (ret)
8922                 return ret;
8923
8924         if (timer < 1)
8925                 return -EINVAL;
8926
8927         /* same value, noting to do */
8928         if (timer == pmu->hrtimer_interval_ms)
8929                 return count;
8930
8931         mutex_lock(&mux_interval_mutex);
8932         pmu->hrtimer_interval_ms = timer;
8933
8934         /* update all cpuctx for this PMU */
8935         cpus_read_lock();
8936         for_each_online_cpu(cpu) {
8937                 struct perf_cpu_context *cpuctx;
8938                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8939                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8940
8941                 cpu_function_call(cpu,
8942                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8943         }
8944         cpus_read_unlock();
8945         mutex_unlock(&mux_interval_mutex);
8946
8947         return count;
8948 }
8949 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8950
8951 static struct attribute *pmu_dev_attrs[] = {
8952         &dev_attr_type.attr,
8953         &dev_attr_perf_event_mux_interval_ms.attr,
8954         NULL,
8955 };
8956 ATTRIBUTE_GROUPS(pmu_dev);
8957
8958 static int pmu_bus_running;
8959 static struct bus_type pmu_bus = {
8960         .name           = "event_source",
8961         .dev_groups     = pmu_dev_groups,
8962 };
8963
8964 static void pmu_dev_release(struct device *dev)
8965 {
8966         kfree(dev);
8967 }
8968
8969 static int pmu_dev_alloc(struct pmu *pmu)
8970 {
8971         int ret = -ENOMEM;
8972
8973         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8974         if (!pmu->dev)
8975                 goto out;
8976
8977         pmu->dev->groups = pmu->attr_groups;
8978         device_initialize(pmu->dev);
8979         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8980         if (ret)
8981                 goto free_dev;
8982
8983         dev_set_drvdata(pmu->dev, pmu);
8984         pmu->dev->bus = &pmu_bus;
8985         pmu->dev->release = pmu_dev_release;
8986         ret = device_add(pmu->dev);
8987         if (ret)
8988                 goto free_dev;
8989
8990         /* For PMUs with address filters, throw in an extra attribute: */
8991         if (pmu->nr_addr_filters)
8992                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8993
8994         if (ret)
8995                 goto del_dev;
8996
8997 out:
8998         return ret;
8999
9000 del_dev:
9001         device_del(pmu->dev);
9002
9003 free_dev:
9004         put_device(pmu->dev);
9005         goto out;
9006 }
9007
9008 static struct lock_class_key cpuctx_mutex;
9009 static struct lock_class_key cpuctx_lock;
9010
9011 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9012 {
9013         int cpu, ret;
9014
9015         mutex_lock(&pmus_lock);
9016         ret = -ENOMEM;
9017         pmu->pmu_disable_count = alloc_percpu(int);
9018         if (!pmu->pmu_disable_count)
9019                 goto unlock;
9020
9021         pmu->type = -1;
9022         if (!name)
9023                 goto skip_type;
9024         pmu->name = name;
9025
9026         if (type < 0) {
9027                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9028                 if (type < 0) {
9029                         ret = type;
9030                         goto free_pdc;
9031                 }
9032         }
9033         pmu->type = type;
9034
9035         if (pmu_bus_running) {
9036                 ret = pmu_dev_alloc(pmu);
9037                 if (ret)
9038                         goto free_idr;
9039         }
9040
9041 skip_type:
9042         if (pmu->task_ctx_nr == perf_hw_context) {
9043                 static int hw_context_taken = 0;
9044
9045                 /*
9046                  * Other than systems with heterogeneous CPUs, it never makes
9047                  * sense for two PMUs to share perf_hw_context. PMUs which are
9048                  * uncore must use perf_invalid_context.
9049                  */
9050                 if (WARN_ON_ONCE(hw_context_taken &&
9051                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9052                         pmu->task_ctx_nr = perf_invalid_context;
9053
9054                 hw_context_taken = 1;
9055         }
9056
9057         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9058         if (pmu->pmu_cpu_context)
9059                 goto got_cpu_context;
9060
9061         ret = -ENOMEM;
9062         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9063         if (!pmu->pmu_cpu_context)
9064                 goto free_dev;
9065
9066         for_each_possible_cpu(cpu) {
9067                 struct perf_cpu_context *cpuctx;
9068
9069                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9070                 __perf_event_init_context(&cpuctx->ctx);
9071                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9072                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9073                 cpuctx->ctx.pmu = pmu;
9074                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9075
9076                 __perf_mux_hrtimer_init(cpuctx, cpu);
9077         }
9078
9079 got_cpu_context:
9080         if (!pmu->start_txn) {
9081                 if (pmu->pmu_enable) {
9082                         /*
9083                          * If we have pmu_enable/pmu_disable calls, install
9084                          * transaction stubs that use that to try and batch
9085                          * hardware accesses.
9086                          */
9087                         pmu->start_txn  = perf_pmu_start_txn;
9088                         pmu->commit_txn = perf_pmu_commit_txn;
9089                         pmu->cancel_txn = perf_pmu_cancel_txn;
9090                 } else {
9091                         pmu->start_txn  = perf_pmu_nop_txn;
9092                         pmu->commit_txn = perf_pmu_nop_int;
9093                         pmu->cancel_txn = perf_pmu_nop_void;
9094                 }
9095         }
9096
9097         if (!pmu->pmu_enable) {
9098                 pmu->pmu_enable  = perf_pmu_nop_void;
9099                 pmu->pmu_disable = perf_pmu_nop_void;
9100         }
9101
9102         if (!pmu->event_idx)
9103                 pmu->event_idx = perf_event_idx_default;
9104
9105         list_add_rcu(&pmu->entry, &pmus);
9106         atomic_set(&pmu->exclusive_cnt, 0);
9107         ret = 0;
9108 unlock:
9109         mutex_unlock(&pmus_lock);
9110
9111         return ret;
9112
9113 free_dev:
9114         device_del(pmu->dev);
9115         put_device(pmu->dev);
9116
9117 free_idr:
9118         if (pmu->type >= PERF_TYPE_MAX)
9119                 idr_remove(&pmu_idr, pmu->type);
9120
9121 free_pdc:
9122         free_percpu(pmu->pmu_disable_count);
9123         goto unlock;
9124 }
9125 EXPORT_SYMBOL_GPL(perf_pmu_register);
9126
9127 void perf_pmu_unregister(struct pmu *pmu)
9128 {
9129         int remove_device;
9130
9131         mutex_lock(&pmus_lock);
9132         remove_device = pmu_bus_running;
9133         list_del_rcu(&pmu->entry);
9134         mutex_unlock(&pmus_lock);
9135
9136         /*
9137          * We dereference the pmu list under both SRCU and regular RCU, so
9138          * synchronize against both of those.
9139          */
9140         synchronize_srcu(&pmus_srcu);
9141         synchronize_rcu();
9142
9143         free_percpu(pmu->pmu_disable_count);
9144         if (pmu->type >= PERF_TYPE_MAX)
9145                 idr_remove(&pmu_idr, pmu->type);
9146         if (remove_device) {
9147                 if (pmu->nr_addr_filters)
9148                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9149                 device_del(pmu->dev);
9150                 put_device(pmu->dev);
9151         }
9152         free_pmu_context(pmu);
9153 }
9154 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9155
9156 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9157 {
9158         struct perf_event_context *ctx = NULL;
9159         int ret;
9160
9161         if (!try_module_get(pmu->module))
9162                 return -ENODEV;
9163
9164         if (event->group_leader != event) {
9165                 /*
9166                  * This ctx->mutex can nest when we're called through
9167                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9168                  */
9169                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9170                                                  SINGLE_DEPTH_NESTING);
9171                 BUG_ON(!ctx);
9172         }
9173
9174         event->pmu = pmu;
9175         ret = pmu->event_init(event);
9176
9177         if (ctx)
9178                 perf_event_ctx_unlock(event->group_leader, ctx);
9179
9180         if (ret)
9181                 module_put(pmu->module);
9182
9183         return ret;
9184 }
9185
9186 static struct pmu *perf_init_event(struct perf_event *event)
9187 {
9188         struct pmu *pmu;
9189         int idx;
9190         int ret;
9191
9192         idx = srcu_read_lock(&pmus_srcu);
9193
9194         /* Try parent's PMU first: */
9195         if (event->parent && event->parent->pmu) {
9196                 pmu = event->parent->pmu;
9197                 ret = perf_try_init_event(pmu, event);
9198                 if (!ret)
9199                         goto unlock;
9200         }
9201
9202         rcu_read_lock();
9203         pmu = idr_find(&pmu_idr, event->attr.type);
9204         rcu_read_unlock();
9205         if (pmu) {
9206                 ret = perf_try_init_event(pmu, event);
9207                 if (ret)
9208                         pmu = ERR_PTR(ret);
9209                 goto unlock;
9210         }
9211
9212         list_for_each_entry_rcu(pmu, &pmus, entry) {
9213                 ret = perf_try_init_event(pmu, event);
9214                 if (!ret)
9215                         goto unlock;
9216
9217                 if (ret != -ENOENT) {
9218                         pmu = ERR_PTR(ret);
9219                         goto unlock;
9220                 }
9221         }
9222         pmu = ERR_PTR(-ENOENT);
9223 unlock:
9224         srcu_read_unlock(&pmus_srcu, idx);
9225
9226         return pmu;
9227 }
9228
9229 static void attach_sb_event(struct perf_event *event)
9230 {
9231         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9232
9233         raw_spin_lock(&pel->lock);
9234         list_add_rcu(&event->sb_list, &pel->list);
9235         raw_spin_unlock(&pel->lock);
9236 }
9237
9238 /*
9239  * We keep a list of all !task (and therefore per-cpu) events
9240  * that need to receive side-band records.
9241  *
9242  * This avoids having to scan all the various PMU per-cpu contexts
9243  * looking for them.
9244  */
9245 static void account_pmu_sb_event(struct perf_event *event)
9246 {
9247         if (is_sb_event(event))
9248                 attach_sb_event(event);
9249 }
9250
9251 static void account_event_cpu(struct perf_event *event, int cpu)
9252 {
9253         if (event->parent)
9254                 return;
9255
9256         if (is_cgroup_event(event))
9257                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9258 }
9259
9260 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9261 static void account_freq_event_nohz(void)
9262 {
9263 #ifdef CONFIG_NO_HZ_FULL
9264         /* Lock so we don't race with concurrent unaccount */
9265         spin_lock(&nr_freq_lock);
9266         if (atomic_inc_return(&nr_freq_events) == 1)
9267                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9268         spin_unlock(&nr_freq_lock);
9269 #endif
9270 }
9271
9272 static void account_freq_event(void)
9273 {
9274         if (tick_nohz_full_enabled())
9275                 account_freq_event_nohz();
9276         else
9277                 atomic_inc(&nr_freq_events);
9278 }
9279
9280
9281 static void account_event(struct perf_event *event)
9282 {
9283         bool inc = false;
9284
9285         if (event->parent)
9286                 return;
9287
9288         if (event->attach_state & PERF_ATTACH_TASK)
9289                 inc = true;
9290         if (event->attr.mmap || event->attr.mmap_data)
9291                 atomic_inc(&nr_mmap_events);
9292         if (event->attr.comm)
9293                 atomic_inc(&nr_comm_events);
9294         if (event->attr.namespaces)
9295                 atomic_inc(&nr_namespaces_events);
9296         if (event->attr.task)
9297                 atomic_inc(&nr_task_events);
9298         if (event->attr.freq)
9299                 account_freq_event();
9300         if (event->attr.context_switch) {
9301                 atomic_inc(&nr_switch_events);
9302                 inc = true;
9303         }
9304         if (has_branch_stack(event))
9305                 inc = true;
9306         if (is_cgroup_event(event))
9307                 inc = true;
9308
9309         if (inc) {
9310                 if (atomic_inc_not_zero(&perf_sched_count))
9311                         goto enabled;
9312
9313                 mutex_lock(&perf_sched_mutex);
9314                 if (!atomic_read(&perf_sched_count)) {
9315                         static_branch_enable(&perf_sched_events);
9316                         /*
9317                          * Guarantee that all CPUs observe they key change and
9318                          * call the perf scheduling hooks before proceeding to
9319                          * install events that need them.
9320                          */
9321                         synchronize_sched();
9322                 }
9323                 /*
9324                  * Now that we have waited for the sync_sched(), allow further
9325                  * increments to by-pass the mutex.
9326                  */
9327                 atomic_inc(&perf_sched_count);
9328                 mutex_unlock(&perf_sched_mutex);
9329         }
9330 enabled:
9331
9332         account_event_cpu(event, event->cpu);
9333
9334         account_pmu_sb_event(event);
9335 }
9336
9337 /*
9338  * Allocate and initialize a event structure
9339  */
9340 static struct perf_event *
9341 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9342                  struct task_struct *task,
9343                  struct perf_event *group_leader,
9344                  struct perf_event *parent_event,
9345                  perf_overflow_handler_t overflow_handler,
9346                  void *context, int cgroup_fd)
9347 {
9348         struct pmu *pmu;
9349         struct perf_event *event;
9350         struct hw_perf_event *hwc;
9351         long err = -EINVAL;
9352
9353         if ((unsigned)cpu >= nr_cpu_ids) {
9354                 if (!task || cpu != -1)
9355                         return ERR_PTR(-EINVAL);
9356         }
9357
9358         event = kzalloc(sizeof(*event), GFP_KERNEL);
9359         if (!event)
9360                 return ERR_PTR(-ENOMEM);
9361
9362         /*
9363          * Single events are their own group leaders, with an
9364          * empty sibling list:
9365          */
9366         if (!group_leader)
9367                 group_leader = event;
9368
9369         mutex_init(&event->child_mutex);
9370         INIT_LIST_HEAD(&event->child_list);
9371
9372         INIT_LIST_HEAD(&event->group_entry);
9373         INIT_LIST_HEAD(&event->event_entry);
9374         INIT_LIST_HEAD(&event->sibling_list);
9375         INIT_LIST_HEAD(&event->rb_entry);
9376         INIT_LIST_HEAD(&event->active_entry);
9377         INIT_LIST_HEAD(&event->addr_filters.list);
9378         INIT_HLIST_NODE(&event->hlist_entry);
9379
9380
9381         init_waitqueue_head(&event->waitq);
9382         init_irq_work(&event->pending, perf_pending_event);
9383
9384         mutex_init(&event->mmap_mutex);
9385         raw_spin_lock_init(&event->addr_filters.lock);
9386
9387         atomic_long_set(&event->refcount, 1);
9388         event->cpu              = cpu;
9389         event->attr             = *attr;
9390         event->group_leader     = group_leader;
9391         event->pmu              = NULL;
9392         event->oncpu            = -1;
9393
9394         event->parent           = parent_event;
9395
9396         event->ns               = get_pid_ns(task_active_pid_ns(current));
9397         event->id               = atomic64_inc_return(&perf_event_id);
9398
9399         event->state            = PERF_EVENT_STATE_INACTIVE;
9400
9401         if (task) {
9402                 event->attach_state = PERF_ATTACH_TASK;
9403                 /*
9404                  * XXX pmu::event_init needs to know what task to account to
9405                  * and we cannot use the ctx information because we need the
9406                  * pmu before we get a ctx.
9407                  */
9408                 event->hw.target = task;
9409         }
9410
9411         event->clock = &local_clock;
9412         if (parent_event)
9413                 event->clock = parent_event->clock;
9414
9415         if (!overflow_handler && parent_event) {
9416                 overflow_handler = parent_event->overflow_handler;
9417                 context = parent_event->overflow_handler_context;
9418 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9419                 if (overflow_handler == bpf_overflow_handler) {
9420                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9421
9422                         if (IS_ERR(prog)) {
9423                                 err = PTR_ERR(prog);
9424                                 goto err_ns;
9425                         }
9426                         event->prog = prog;
9427                         event->orig_overflow_handler =
9428                                 parent_event->orig_overflow_handler;
9429                 }
9430 #endif
9431         }
9432
9433         if (overflow_handler) {
9434                 event->overflow_handler = overflow_handler;
9435                 event->overflow_handler_context = context;
9436         } else if (is_write_backward(event)){
9437                 event->overflow_handler = perf_event_output_backward;
9438                 event->overflow_handler_context = NULL;
9439         } else {
9440                 event->overflow_handler = perf_event_output_forward;
9441                 event->overflow_handler_context = NULL;
9442         }
9443
9444         perf_event__state_init(event);
9445
9446         pmu = NULL;
9447
9448         hwc = &event->hw;
9449         hwc->sample_period = attr->sample_period;
9450         if (attr->freq && attr->sample_freq)
9451                 hwc->sample_period = 1;
9452         hwc->last_period = hwc->sample_period;
9453
9454         local64_set(&hwc->period_left, hwc->sample_period);
9455
9456         /*
9457          * We currently do not support PERF_SAMPLE_READ on inherited events.
9458          * See perf_output_read().
9459          */
9460         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9461                 goto err_ns;
9462
9463         if (!has_branch_stack(event))
9464                 event->attr.branch_sample_type = 0;
9465
9466         if (cgroup_fd != -1) {
9467                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9468                 if (err)
9469                         goto err_ns;
9470         }
9471
9472         pmu = perf_init_event(event);
9473         if (IS_ERR(pmu)) {
9474                 err = PTR_ERR(pmu);
9475                 goto err_ns;
9476         }
9477
9478         err = exclusive_event_init(event);
9479         if (err)
9480                 goto err_pmu;
9481
9482         if (has_addr_filter(event)) {
9483                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9484                                                    sizeof(unsigned long),
9485                                                    GFP_KERNEL);
9486                 if (!event->addr_filters_offs) {
9487                         err = -ENOMEM;
9488                         goto err_per_task;
9489                 }
9490
9491                 /* force hw sync on the address filters */
9492                 event->addr_filters_gen = 1;
9493         }
9494
9495         if (!event->parent) {
9496                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9497                         err = get_callchain_buffers(attr->sample_max_stack);
9498                         if (err)
9499                                 goto err_addr_filters;
9500                 }
9501         }
9502
9503         /* symmetric to unaccount_event() in _free_event() */
9504         account_event(event);
9505
9506         return event;
9507
9508 err_addr_filters:
9509         kfree(event->addr_filters_offs);
9510
9511 err_per_task:
9512         exclusive_event_destroy(event);
9513
9514 err_pmu:
9515         if (event->destroy)
9516                 event->destroy(event);
9517         module_put(pmu->module);
9518 err_ns:
9519         if (is_cgroup_event(event))
9520                 perf_detach_cgroup(event);
9521         if (event->ns)
9522                 put_pid_ns(event->ns);
9523         kfree(event);
9524
9525         return ERR_PTR(err);
9526 }
9527
9528 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9529                           struct perf_event_attr *attr)
9530 {
9531         u32 size;
9532         int ret;
9533
9534         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9535                 return -EFAULT;
9536
9537         /*
9538          * zero the full structure, so that a short copy will be nice.
9539          */
9540         memset(attr, 0, sizeof(*attr));
9541
9542         ret = get_user(size, &uattr->size);
9543         if (ret)
9544                 return ret;
9545
9546         if (size > PAGE_SIZE)   /* silly large */
9547                 goto err_size;
9548
9549         if (!size)              /* abi compat */
9550                 size = PERF_ATTR_SIZE_VER0;
9551
9552         if (size < PERF_ATTR_SIZE_VER0)
9553                 goto err_size;
9554
9555         /*
9556          * If we're handed a bigger struct than we know of,
9557          * ensure all the unknown bits are 0 - i.e. new
9558          * user-space does not rely on any kernel feature
9559          * extensions we dont know about yet.
9560          */
9561         if (size > sizeof(*attr)) {
9562                 unsigned char __user *addr;
9563                 unsigned char __user *end;
9564                 unsigned char val;
9565
9566                 addr = (void __user *)uattr + sizeof(*attr);
9567                 end  = (void __user *)uattr + size;
9568
9569                 for (; addr < end; addr++) {
9570                         ret = get_user(val, addr);
9571                         if (ret)
9572                                 return ret;
9573                         if (val)
9574                                 goto err_size;
9575                 }
9576                 size = sizeof(*attr);
9577         }
9578
9579         ret = copy_from_user(attr, uattr, size);
9580         if (ret)
9581                 return -EFAULT;
9582
9583         if (attr->__reserved_1)
9584                 return -EINVAL;
9585
9586         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9587                 return -EINVAL;
9588
9589         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9590                 return -EINVAL;
9591
9592         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9593                 u64 mask = attr->branch_sample_type;
9594
9595                 /* only using defined bits */
9596                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9597                         return -EINVAL;
9598
9599                 /* at least one branch bit must be set */
9600                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9601                         return -EINVAL;
9602
9603                 /* propagate priv level, when not set for branch */
9604                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9605
9606                         /* exclude_kernel checked on syscall entry */
9607                         if (!attr->exclude_kernel)
9608                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9609
9610                         if (!attr->exclude_user)
9611                                 mask |= PERF_SAMPLE_BRANCH_USER;
9612
9613                         if (!attr->exclude_hv)
9614                                 mask |= PERF_SAMPLE_BRANCH_HV;
9615                         /*
9616                          * adjust user setting (for HW filter setup)
9617                          */
9618                         attr->branch_sample_type = mask;
9619                 }
9620                 /* privileged levels capture (kernel, hv): check permissions */
9621                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9622                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9623                         return -EACCES;
9624         }
9625
9626         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9627                 ret = perf_reg_validate(attr->sample_regs_user);
9628                 if (ret)
9629                         return ret;
9630         }
9631
9632         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9633                 if (!arch_perf_have_user_stack_dump())
9634                         return -ENOSYS;
9635
9636                 /*
9637                  * We have __u32 type for the size, but so far
9638                  * we can only use __u16 as maximum due to the
9639                  * __u16 sample size limit.
9640                  */
9641                 if (attr->sample_stack_user >= USHRT_MAX)
9642                         ret = -EINVAL;
9643                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9644                         ret = -EINVAL;
9645         }
9646
9647         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9648                 ret = perf_reg_validate(attr->sample_regs_intr);
9649 out:
9650         return ret;
9651
9652 err_size:
9653         put_user(sizeof(*attr), &uattr->size);
9654         ret = -E2BIG;
9655         goto out;
9656 }
9657
9658 static int
9659 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9660 {
9661         struct ring_buffer *rb = NULL;
9662         int ret = -EINVAL;
9663
9664         if (!output_event)
9665                 goto set;
9666
9667         /* don't allow circular references */
9668         if (event == output_event)
9669                 goto out;
9670
9671         /*
9672          * Don't allow cross-cpu buffers
9673          */
9674         if (output_event->cpu != event->cpu)
9675                 goto out;
9676
9677         /*
9678          * If its not a per-cpu rb, it must be the same task.
9679          */
9680         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9681                 goto out;
9682
9683         /*
9684          * Mixing clocks in the same buffer is trouble you don't need.
9685          */
9686         if (output_event->clock != event->clock)
9687                 goto out;
9688
9689         /*
9690          * Either writing ring buffer from beginning or from end.
9691          * Mixing is not allowed.
9692          */
9693         if (is_write_backward(output_event) != is_write_backward(event))
9694                 goto out;
9695
9696         /*
9697          * If both events generate aux data, they must be on the same PMU
9698          */
9699         if (has_aux(event) && has_aux(output_event) &&
9700             event->pmu != output_event->pmu)
9701                 goto out;
9702
9703 set:
9704         mutex_lock(&event->mmap_mutex);
9705         /* Can't redirect output if we've got an active mmap() */
9706         if (atomic_read(&event->mmap_count))
9707                 goto unlock;
9708
9709         if (output_event) {
9710                 /* get the rb we want to redirect to */
9711                 rb = ring_buffer_get(output_event);
9712                 if (!rb)
9713                         goto unlock;
9714         }
9715
9716         ring_buffer_attach(event, rb);
9717
9718         ret = 0;
9719 unlock:
9720         mutex_unlock(&event->mmap_mutex);
9721
9722 out:
9723         return ret;
9724 }
9725
9726 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9727 {
9728         if (b < a)
9729                 swap(a, b);
9730
9731         mutex_lock(a);
9732         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9733 }
9734
9735 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9736 {
9737         bool nmi_safe = false;
9738
9739         switch (clk_id) {
9740         case CLOCK_MONOTONIC:
9741                 event->clock = &ktime_get_mono_fast_ns;
9742                 nmi_safe = true;
9743                 break;
9744
9745         case CLOCK_MONOTONIC_RAW:
9746                 event->clock = &ktime_get_raw_fast_ns;
9747                 nmi_safe = true;
9748                 break;
9749
9750         case CLOCK_REALTIME:
9751                 event->clock = &ktime_get_real_ns;
9752                 break;
9753
9754         case CLOCK_BOOTTIME:
9755                 event->clock = &ktime_get_boot_ns;
9756                 break;
9757
9758         case CLOCK_TAI:
9759                 event->clock = &ktime_get_tai_ns;
9760                 break;
9761
9762         default:
9763                 return -EINVAL;
9764         }
9765
9766         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9767                 return -EINVAL;
9768
9769         return 0;
9770 }
9771
9772 /*
9773  * Variation on perf_event_ctx_lock_nested(), except we take two context
9774  * mutexes.
9775  */
9776 static struct perf_event_context *
9777 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9778                              struct perf_event_context *ctx)
9779 {
9780         struct perf_event_context *gctx;
9781
9782 again:
9783         rcu_read_lock();
9784         gctx = READ_ONCE(group_leader->ctx);
9785         if (!atomic_inc_not_zero(&gctx->refcount)) {
9786                 rcu_read_unlock();
9787                 goto again;
9788         }
9789         rcu_read_unlock();
9790
9791         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9792
9793         if (group_leader->ctx != gctx) {
9794                 mutex_unlock(&ctx->mutex);
9795                 mutex_unlock(&gctx->mutex);
9796                 put_ctx(gctx);
9797                 goto again;
9798         }
9799
9800         return gctx;
9801 }
9802
9803 /**
9804  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9805  *
9806  * @attr_uptr:  event_id type attributes for monitoring/sampling
9807  * @pid:                target pid
9808  * @cpu:                target cpu
9809  * @group_fd:           group leader event fd
9810  */
9811 SYSCALL_DEFINE5(perf_event_open,
9812                 struct perf_event_attr __user *, attr_uptr,
9813                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9814 {
9815         struct perf_event *group_leader = NULL, *output_event = NULL;
9816         struct perf_event *event, *sibling;
9817         struct perf_event_attr attr;
9818         struct perf_event_context *ctx, *uninitialized_var(gctx);
9819         struct file *event_file = NULL;
9820         struct fd group = {NULL, 0};
9821         struct task_struct *task = NULL;
9822         struct pmu *pmu;
9823         int event_fd;
9824         int move_group = 0;
9825         int err;
9826         int f_flags = O_RDWR;
9827         int cgroup_fd = -1;
9828
9829         /* for future expandability... */
9830         if (flags & ~PERF_FLAG_ALL)
9831                 return -EINVAL;
9832
9833         err = perf_copy_attr(attr_uptr, &attr);
9834         if (err)
9835                 return err;
9836
9837         if (!attr.exclude_kernel) {
9838                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9839                         return -EACCES;
9840         }
9841
9842         if (attr.namespaces) {
9843                 if (!capable(CAP_SYS_ADMIN))
9844                         return -EACCES;
9845         }
9846
9847         if (attr.freq) {
9848                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9849                         return -EINVAL;
9850         } else {
9851                 if (attr.sample_period & (1ULL << 63))
9852                         return -EINVAL;
9853         }
9854
9855         if (!attr.sample_max_stack)
9856                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9857
9858         /*
9859          * In cgroup mode, the pid argument is used to pass the fd
9860          * opened to the cgroup directory in cgroupfs. The cpu argument
9861          * designates the cpu on which to monitor threads from that
9862          * cgroup.
9863          */
9864         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9865                 return -EINVAL;
9866
9867         if (flags & PERF_FLAG_FD_CLOEXEC)
9868                 f_flags |= O_CLOEXEC;
9869
9870         event_fd = get_unused_fd_flags(f_flags);
9871         if (event_fd < 0)
9872                 return event_fd;
9873
9874         if (group_fd != -1) {
9875                 err = perf_fget_light(group_fd, &group);
9876                 if (err)
9877                         goto err_fd;
9878                 group_leader = group.file->private_data;
9879                 if (flags & PERF_FLAG_FD_OUTPUT)
9880                         output_event = group_leader;
9881                 if (flags & PERF_FLAG_FD_NO_GROUP)
9882                         group_leader = NULL;
9883         }
9884
9885         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9886                 task = find_lively_task_by_vpid(pid);
9887                 if (IS_ERR(task)) {
9888                         err = PTR_ERR(task);
9889                         goto err_group_fd;
9890                 }
9891         }
9892
9893         if (task && group_leader &&
9894             group_leader->attr.inherit != attr.inherit) {
9895                 err = -EINVAL;
9896                 goto err_task;
9897         }
9898
9899         if (task) {
9900                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9901                 if (err)
9902                         goto err_task;
9903
9904                 /*
9905                  * Reuse ptrace permission checks for now.
9906                  *
9907                  * We must hold cred_guard_mutex across this and any potential
9908                  * perf_install_in_context() call for this new event to
9909                  * serialize against exec() altering our credentials (and the
9910                  * perf_event_exit_task() that could imply).
9911                  */
9912                 err = -EACCES;
9913                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9914                         goto err_cred;
9915         }
9916
9917         if (flags & PERF_FLAG_PID_CGROUP)
9918                 cgroup_fd = pid;
9919
9920         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9921                                  NULL, NULL, cgroup_fd);
9922         if (IS_ERR(event)) {
9923                 err = PTR_ERR(event);
9924                 goto err_cred;
9925         }
9926
9927         if (is_sampling_event(event)) {
9928                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9929                         err = -EOPNOTSUPP;
9930                         goto err_alloc;
9931                 }
9932         }
9933
9934         /*
9935          * Special case software events and allow them to be part of
9936          * any hardware group.
9937          */
9938         pmu = event->pmu;
9939
9940         if (attr.use_clockid) {
9941                 err = perf_event_set_clock(event, attr.clockid);
9942                 if (err)
9943                         goto err_alloc;
9944         }
9945
9946         if (pmu->task_ctx_nr == perf_sw_context)
9947                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9948
9949         if (group_leader &&
9950             (is_software_event(event) != is_software_event(group_leader))) {
9951                 if (is_software_event(event)) {
9952                         /*
9953                          * If event and group_leader are not both a software
9954                          * event, and event is, then group leader is not.
9955                          *
9956                          * Allow the addition of software events to !software
9957                          * groups, this is safe because software events never
9958                          * fail to schedule.
9959                          */
9960                         pmu = group_leader->pmu;
9961                 } else if (is_software_event(group_leader) &&
9962                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9963                         /*
9964                          * In case the group is a pure software group, and we
9965                          * try to add a hardware event, move the whole group to
9966                          * the hardware context.
9967                          */
9968                         move_group = 1;
9969                 }
9970         }
9971
9972         /*
9973          * Get the target context (task or percpu):
9974          */
9975         ctx = find_get_context(pmu, task, event);
9976         if (IS_ERR(ctx)) {
9977                 err = PTR_ERR(ctx);
9978                 goto err_alloc;
9979         }
9980
9981         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9982                 err = -EBUSY;
9983                 goto err_context;
9984         }
9985
9986         /*
9987          * Look up the group leader (we will attach this event to it):
9988          */
9989         if (group_leader) {
9990                 err = -EINVAL;
9991
9992                 /*
9993                  * Do not allow a recursive hierarchy (this new sibling
9994                  * becoming part of another group-sibling):
9995                  */
9996                 if (group_leader->group_leader != group_leader)
9997                         goto err_context;
9998
9999                 /* All events in a group should have the same clock */
10000                 if (group_leader->clock != event->clock)
10001                         goto err_context;
10002
10003                 /*
10004                  * Do not allow to attach to a group in a different
10005                  * task or CPU context:
10006                  */
10007                 if (move_group) {
10008                         /*
10009                          * Make sure we're both on the same task, or both
10010                          * per-cpu events.
10011                          */
10012                         if (group_leader->ctx->task != ctx->task)
10013                                 goto err_context;
10014
10015                         /*
10016                          * Make sure we're both events for the same CPU;
10017                          * grouping events for different CPUs is broken; since
10018                          * you can never concurrently schedule them anyhow.
10019                          */
10020                         if (group_leader->cpu != event->cpu)
10021                                 goto err_context;
10022                 } else {
10023                         if (group_leader->ctx != ctx)
10024                                 goto err_context;
10025                 }
10026
10027                 /*
10028                  * Only a group leader can be exclusive or pinned
10029                  */
10030                 if (attr.exclusive || attr.pinned)
10031                         goto err_context;
10032         }
10033
10034         if (output_event) {
10035                 err = perf_event_set_output(event, output_event);
10036                 if (err)
10037                         goto err_context;
10038         }
10039
10040         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10041                                         f_flags);
10042         if (IS_ERR(event_file)) {
10043                 err = PTR_ERR(event_file);
10044                 event_file = NULL;
10045                 goto err_context;
10046         }
10047
10048         if (move_group) {
10049                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10050
10051                 if (gctx->task == TASK_TOMBSTONE) {
10052                         err = -ESRCH;
10053                         goto err_locked;
10054                 }
10055
10056                 /*
10057                  * Check if we raced against another sys_perf_event_open() call
10058                  * moving the software group underneath us.
10059                  */
10060                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10061                         /*
10062                          * If someone moved the group out from under us, check
10063                          * if this new event wound up on the same ctx, if so
10064                          * its the regular !move_group case, otherwise fail.
10065                          */
10066                         if (gctx != ctx) {
10067                                 err = -EINVAL;
10068                                 goto err_locked;
10069                         } else {
10070                                 perf_event_ctx_unlock(group_leader, gctx);
10071                                 move_group = 0;
10072                         }
10073                 }
10074         } else {
10075                 mutex_lock(&ctx->mutex);
10076         }
10077
10078         if (ctx->task == TASK_TOMBSTONE) {
10079                 err = -ESRCH;
10080                 goto err_locked;
10081         }
10082
10083         if (!perf_event_validate_size(event)) {
10084                 err = -E2BIG;
10085                 goto err_locked;
10086         }
10087
10088         if (!task) {
10089                 /*
10090                  * Check if the @cpu we're creating an event for is online.
10091                  *
10092                  * We use the perf_cpu_context::ctx::mutex to serialize against
10093                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10094                  */
10095                 struct perf_cpu_context *cpuctx =
10096                         container_of(ctx, struct perf_cpu_context, ctx);
10097
10098                 if (!cpuctx->online) {
10099                         err = -ENODEV;
10100                         goto err_locked;
10101                 }
10102         }
10103
10104
10105         /*
10106          * Must be under the same ctx::mutex as perf_install_in_context(),
10107          * because we need to serialize with concurrent event creation.
10108          */
10109         if (!exclusive_event_installable(event, ctx)) {
10110                 /* exclusive and group stuff are assumed mutually exclusive */
10111                 WARN_ON_ONCE(move_group);
10112
10113                 err = -EBUSY;
10114                 goto err_locked;
10115         }
10116
10117         WARN_ON_ONCE(ctx->parent_ctx);
10118
10119         /*
10120          * This is the point on no return; we cannot fail hereafter. This is
10121          * where we start modifying current state.
10122          */
10123
10124         if (move_group) {
10125                 /*
10126                  * See perf_event_ctx_lock() for comments on the details
10127                  * of swizzling perf_event::ctx.
10128                  */
10129                 perf_remove_from_context(group_leader, 0);
10130                 put_ctx(gctx);
10131
10132                 list_for_each_entry(sibling, &group_leader->sibling_list,
10133                                     group_entry) {
10134                         perf_remove_from_context(sibling, 0);
10135                         put_ctx(gctx);
10136                 }
10137
10138                 /*
10139                  * Wait for everybody to stop referencing the events through
10140                  * the old lists, before installing it on new lists.
10141                  */
10142                 synchronize_rcu();
10143
10144                 /*
10145                  * Install the group siblings before the group leader.
10146                  *
10147                  * Because a group leader will try and install the entire group
10148                  * (through the sibling list, which is still in-tact), we can
10149                  * end up with siblings installed in the wrong context.
10150                  *
10151                  * By installing siblings first we NO-OP because they're not
10152                  * reachable through the group lists.
10153                  */
10154                 list_for_each_entry(sibling, &group_leader->sibling_list,
10155                                     group_entry) {
10156                         perf_event__state_init(sibling);
10157                         perf_install_in_context(ctx, sibling, sibling->cpu);
10158                         get_ctx(ctx);
10159                 }
10160
10161                 /*
10162                  * Removing from the context ends up with disabled
10163                  * event. What we want here is event in the initial
10164                  * startup state, ready to be add into new context.
10165                  */
10166                 perf_event__state_init(group_leader);
10167                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10168                 get_ctx(ctx);
10169         }
10170
10171         /*
10172          * Precalculate sample_data sizes; do while holding ctx::mutex such
10173          * that we're serialized against further additions and before
10174          * perf_install_in_context() which is the point the event is active and
10175          * can use these values.
10176          */
10177         perf_event__header_size(event);
10178         perf_event__id_header_size(event);
10179
10180         event->owner = current;
10181
10182         perf_install_in_context(ctx, event, event->cpu);
10183         perf_unpin_context(ctx);
10184
10185         if (move_group)
10186                 perf_event_ctx_unlock(group_leader, gctx);
10187         mutex_unlock(&ctx->mutex);
10188
10189         if (task) {
10190                 mutex_unlock(&task->signal->cred_guard_mutex);
10191                 put_task_struct(task);
10192         }
10193
10194         mutex_lock(&current->perf_event_mutex);
10195         list_add_tail(&event->owner_entry, &current->perf_event_list);
10196         mutex_unlock(&current->perf_event_mutex);
10197
10198         /*
10199          * Drop the reference on the group_event after placing the
10200          * new event on the sibling_list. This ensures destruction
10201          * of the group leader will find the pointer to itself in
10202          * perf_group_detach().
10203          */
10204         fdput(group);
10205         fd_install(event_fd, event_file);
10206         return event_fd;
10207
10208 err_locked:
10209         if (move_group)
10210                 perf_event_ctx_unlock(group_leader, gctx);
10211         mutex_unlock(&ctx->mutex);
10212 /* err_file: */
10213         fput(event_file);
10214 err_context:
10215         perf_unpin_context(ctx);
10216         put_ctx(ctx);
10217 err_alloc:
10218         /*
10219          * If event_file is set, the fput() above will have called ->release()
10220          * and that will take care of freeing the event.
10221          */
10222         if (!event_file)
10223                 free_event(event);
10224 err_cred:
10225         if (task)
10226                 mutex_unlock(&task->signal->cred_guard_mutex);
10227 err_task:
10228         if (task)
10229                 put_task_struct(task);
10230 err_group_fd:
10231         fdput(group);
10232 err_fd:
10233         put_unused_fd(event_fd);
10234         return err;
10235 }
10236
10237 /**
10238  * perf_event_create_kernel_counter
10239  *
10240  * @attr: attributes of the counter to create
10241  * @cpu: cpu in which the counter is bound
10242  * @task: task to profile (NULL for percpu)
10243  */
10244 struct perf_event *
10245 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10246                                  struct task_struct *task,
10247                                  perf_overflow_handler_t overflow_handler,
10248                                  void *context)
10249 {
10250         struct perf_event_context *ctx;
10251         struct perf_event *event;
10252         int err;
10253
10254         /*
10255          * Get the target context (task or percpu):
10256          */
10257
10258         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10259                                  overflow_handler, context, -1);
10260         if (IS_ERR(event)) {
10261                 err = PTR_ERR(event);
10262                 goto err;
10263         }
10264
10265         /* Mark owner so we could distinguish it from user events. */
10266         event->owner = TASK_TOMBSTONE;
10267
10268         ctx = find_get_context(event->pmu, task, event);
10269         if (IS_ERR(ctx)) {
10270                 err = PTR_ERR(ctx);
10271                 goto err_free;
10272         }
10273
10274         WARN_ON_ONCE(ctx->parent_ctx);
10275         mutex_lock(&ctx->mutex);
10276         if (ctx->task == TASK_TOMBSTONE) {
10277                 err = -ESRCH;
10278                 goto err_unlock;
10279         }
10280
10281         if (!task) {
10282                 /*
10283                  * Check if the @cpu we're creating an event for is online.
10284                  *
10285                  * We use the perf_cpu_context::ctx::mutex to serialize against
10286                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10287                  */
10288                 struct perf_cpu_context *cpuctx =
10289                         container_of(ctx, struct perf_cpu_context, ctx);
10290                 if (!cpuctx->online) {
10291                         err = -ENODEV;
10292                         goto err_unlock;
10293                 }
10294         }
10295
10296         if (!exclusive_event_installable(event, ctx)) {
10297                 err = -EBUSY;
10298                 goto err_unlock;
10299         }
10300
10301         perf_install_in_context(ctx, event, cpu);
10302         perf_unpin_context(ctx);
10303         mutex_unlock(&ctx->mutex);
10304
10305         return event;
10306
10307 err_unlock:
10308         mutex_unlock(&ctx->mutex);
10309         perf_unpin_context(ctx);
10310         put_ctx(ctx);
10311 err_free:
10312         free_event(event);
10313 err:
10314         return ERR_PTR(err);
10315 }
10316 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10317
10318 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10319 {
10320         struct perf_event_context *src_ctx;
10321         struct perf_event_context *dst_ctx;
10322         struct perf_event *event, *tmp;
10323         LIST_HEAD(events);
10324
10325         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10326         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10327
10328         /*
10329          * See perf_event_ctx_lock() for comments on the details
10330          * of swizzling perf_event::ctx.
10331          */
10332         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10333         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10334                                  event_entry) {
10335                 perf_remove_from_context(event, 0);
10336                 unaccount_event_cpu(event, src_cpu);
10337                 put_ctx(src_ctx);
10338                 list_add(&event->migrate_entry, &events);
10339         }
10340
10341         /*
10342          * Wait for the events to quiesce before re-instating them.
10343          */
10344         synchronize_rcu();
10345
10346         /*
10347          * Re-instate events in 2 passes.
10348          *
10349          * Skip over group leaders and only install siblings on this first
10350          * pass, siblings will not get enabled without a leader, however a
10351          * leader will enable its siblings, even if those are still on the old
10352          * context.
10353          */
10354         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10355                 if (event->group_leader == event)
10356                         continue;
10357
10358                 list_del(&event->migrate_entry);
10359                 if (event->state >= PERF_EVENT_STATE_OFF)
10360                         event->state = PERF_EVENT_STATE_INACTIVE;
10361                 account_event_cpu(event, dst_cpu);
10362                 perf_install_in_context(dst_ctx, event, dst_cpu);
10363                 get_ctx(dst_ctx);
10364         }
10365
10366         /*
10367          * Once all the siblings are setup properly, install the group leaders
10368          * to make it go.
10369          */
10370         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10371                 list_del(&event->migrate_entry);
10372                 if (event->state >= PERF_EVENT_STATE_OFF)
10373                         event->state = PERF_EVENT_STATE_INACTIVE;
10374                 account_event_cpu(event, dst_cpu);
10375                 perf_install_in_context(dst_ctx, event, dst_cpu);
10376                 get_ctx(dst_ctx);
10377         }
10378         mutex_unlock(&dst_ctx->mutex);
10379         mutex_unlock(&src_ctx->mutex);
10380 }
10381 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10382
10383 static void sync_child_event(struct perf_event *child_event,
10384                                struct task_struct *child)
10385 {
10386         struct perf_event *parent_event = child_event->parent;
10387         u64 child_val;
10388
10389         if (child_event->attr.inherit_stat)
10390                 perf_event_read_event(child_event, child);
10391
10392         child_val = perf_event_count(child_event);
10393
10394         /*
10395          * Add back the child's count to the parent's count:
10396          */
10397         atomic64_add(child_val, &parent_event->child_count);
10398         atomic64_add(child_event->total_time_enabled,
10399                      &parent_event->child_total_time_enabled);
10400         atomic64_add(child_event->total_time_running,
10401                      &parent_event->child_total_time_running);
10402 }
10403
10404 static void
10405 perf_event_exit_event(struct perf_event *child_event,
10406                       struct perf_event_context *child_ctx,
10407                       struct task_struct *child)
10408 {
10409         struct perf_event *parent_event = child_event->parent;
10410
10411         /*
10412          * Do not destroy the 'original' grouping; because of the context
10413          * switch optimization the original events could've ended up in a
10414          * random child task.
10415          *
10416          * If we were to destroy the original group, all group related
10417          * operations would cease to function properly after this random
10418          * child dies.
10419          *
10420          * Do destroy all inherited groups, we don't care about those
10421          * and being thorough is better.
10422          */
10423         raw_spin_lock_irq(&child_ctx->lock);
10424         WARN_ON_ONCE(child_ctx->is_active);
10425
10426         if (parent_event)
10427                 perf_group_detach(child_event);
10428         list_del_event(child_event, child_ctx);
10429         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10430         raw_spin_unlock_irq(&child_ctx->lock);
10431
10432         /*
10433          * Parent events are governed by their filedesc, retain them.
10434          */
10435         if (!parent_event) {
10436                 perf_event_wakeup(child_event);
10437                 return;
10438         }
10439         /*
10440          * Child events can be cleaned up.
10441          */
10442
10443         sync_child_event(child_event, child);
10444
10445         /*
10446          * Remove this event from the parent's list
10447          */
10448         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10449         mutex_lock(&parent_event->child_mutex);
10450         list_del_init(&child_event->child_list);
10451         mutex_unlock(&parent_event->child_mutex);
10452
10453         /*
10454          * Kick perf_poll() for is_event_hup().
10455          */
10456         perf_event_wakeup(parent_event);
10457         free_event(child_event);
10458         put_event(parent_event);
10459 }
10460
10461 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10462 {
10463         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10464         struct perf_event *child_event, *next;
10465
10466         WARN_ON_ONCE(child != current);
10467
10468         child_ctx = perf_pin_task_context(child, ctxn);
10469         if (!child_ctx)
10470                 return;
10471
10472         /*
10473          * In order to reduce the amount of tricky in ctx tear-down, we hold
10474          * ctx::mutex over the entire thing. This serializes against almost
10475          * everything that wants to access the ctx.
10476          *
10477          * The exception is sys_perf_event_open() /
10478          * perf_event_create_kernel_count() which does find_get_context()
10479          * without ctx::mutex (it cannot because of the move_group double mutex
10480          * lock thing). See the comments in perf_install_in_context().
10481          */
10482         mutex_lock(&child_ctx->mutex);
10483
10484         /*
10485          * In a single ctx::lock section, de-schedule the events and detach the
10486          * context from the task such that we cannot ever get it scheduled back
10487          * in.
10488          */
10489         raw_spin_lock_irq(&child_ctx->lock);
10490         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10491
10492         /*
10493          * Now that the context is inactive, destroy the task <-> ctx relation
10494          * and mark the context dead.
10495          */
10496         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10497         put_ctx(child_ctx); /* cannot be last */
10498         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10499         put_task_struct(current); /* cannot be last */
10500
10501         clone_ctx = unclone_ctx(child_ctx);
10502         raw_spin_unlock_irq(&child_ctx->lock);
10503
10504         if (clone_ctx)
10505                 put_ctx(clone_ctx);
10506
10507         /*
10508          * Report the task dead after unscheduling the events so that we
10509          * won't get any samples after PERF_RECORD_EXIT. We can however still
10510          * get a few PERF_RECORD_READ events.
10511          */
10512         perf_event_task(child, child_ctx, 0);
10513
10514         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10515                 perf_event_exit_event(child_event, child_ctx, child);
10516
10517         mutex_unlock(&child_ctx->mutex);
10518
10519         put_ctx(child_ctx);
10520 }
10521
10522 /*
10523  * When a child task exits, feed back event values to parent events.
10524  *
10525  * Can be called with cred_guard_mutex held when called from
10526  * install_exec_creds().
10527  */
10528 void perf_event_exit_task(struct task_struct *child)
10529 {
10530         struct perf_event *event, *tmp;
10531         int ctxn;
10532
10533         mutex_lock(&child->perf_event_mutex);
10534         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10535                                  owner_entry) {
10536                 list_del_init(&event->owner_entry);
10537
10538                 /*
10539                  * Ensure the list deletion is visible before we clear
10540                  * the owner, closes a race against perf_release() where
10541                  * we need to serialize on the owner->perf_event_mutex.
10542                  */
10543                 smp_store_release(&event->owner, NULL);
10544         }
10545         mutex_unlock(&child->perf_event_mutex);
10546
10547         for_each_task_context_nr(ctxn)
10548                 perf_event_exit_task_context(child, ctxn);
10549
10550         /*
10551          * The perf_event_exit_task_context calls perf_event_task
10552          * with child's task_ctx, which generates EXIT events for
10553          * child contexts and sets child->perf_event_ctxp[] to NULL.
10554          * At this point we need to send EXIT events to cpu contexts.
10555          */
10556         perf_event_task(child, NULL, 0);
10557 }
10558
10559 static void perf_free_event(struct perf_event *event,
10560                             struct perf_event_context *ctx)
10561 {
10562         struct perf_event *parent = event->parent;
10563
10564         if (WARN_ON_ONCE(!parent))
10565                 return;
10566
10567         mutex_lock(&parent->child_mutex);
10568         list_del_init(&event->child_list);
10569         mutex_unlock(&parent->child_mutex);
10570
10571         put_event(parent);
10572
10573         raw_spin_lock_irq(&ctx->lock);
10574         perf_group_detach(event);
10575         list_del_event(event, ctx);
10576         raw_spin_unlock_irq(&ctx->lock);
10577         free_event(event);
10578 }
10579
10580 /*
10581  * Free an unexposed, unused context as created by inheritance by
10582  * perf_event_init_task below, used by fork() in case of fail.
10583  *
10584  * Not all locks are strictly required, but take them anyway to be nice and
10585  * help out with the lockdep assertions.
10586  */
10587 void perf_event_free_task(struct task_struct *task)
10588 {
10589         struct perf_event_context *ctx;
10590         struct perf_event *event, *tmp;
10591         int ctxn;
10592
10593         for_each_task_context_nr(ctxn) {
10594                 ctx = task->perf_event_ctxp[ctxn];
10595                 if (!ctx)
10596                         continue;
10597
10598                 mutex_lock(&ctx->mutex);
10599                 raw_spin_lock_irq(&ctx->lock);
10600                 /*
10601                  * Destroy the task <-> ctx relation and mark the context dead.
10602                  *
10603                  * This is important because even though the task hasn't been
10604                  * exposed yet the context has been (through child_list).
10605                  */
10606                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10607                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10608                 put_task_struct(task); /* cannot be last */
10609                 raw_spin_unlock_irq(&ctx->lock);
10610
10611                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10612                         perf_free_event(event, ctx);
10613
10614                 mutex_unlock(&ctx->mutex);
10615                 put_ctx(ctx);
10616         }
10617 }
10618
10619 void perf_event_delayed_put(struct task_struct *task)
10620 {
10621         int ctxn;
10622
10623         for_each_task_context_nr(ctxn)
10624                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10625 }
10626
10627 struct file *perf_event_get(unsigned int fd)
10628 {
10629         struct file *file;
10630
10631         file = fget_raw(fd);
10632         if (!file)
10633                 return ERR_PTR(-EBADF);
10634
10635         if (file->f_op != &perf_fops) {
10636                 fput(file);
10637                 return ERR_PTR(-EBADF);
10638         }
10639
10640         return file;
10641 }
10642
10643 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10644 {
10645         if (!event)
10646                 return ERR_PTR(-EINVAL);
10647
10648         return &event->attr;
10649 }
10650
10651 /*
10652  * Inherit a event from parent task to child task.
10653  *
10654  * Returns:
10655  *  - valid pointer on success
10656  *  - NULL for orphaned events
10657  *  - IS_ERR() on error
10658  */
10659 static struct perf_event *
10660 inherit_event(struct perf_event *parent_event,
10661               struct task_struct *parent,
10662               struct perf_event_context *parent_ctx,
10663               struct task_struct *child,
10664               struct perf_event *group_leader,
10665               struct perf_event_context *child_ctx)
10666 {
10667         enum perf_event_active_state parent_state = parent_event->state;
10668         struct perf_event *child_event;
10669         unsigned long flags;
10670
10671         /*
10672          * Instead of creating recursive hierarchies of events,
10673          * we link inherited events back to the original parent,
10674          * which has a filp for sure, which we use as the reference
10675          * count:
10676          */
10677         if (parent_event->parent)
10678                 parent_event = parent_event->parent;
10679
10680         child_event = perf_event_alloc(&parent_event->attr,
10681                                            parent_event->cpu,
10682                                            child,
10683                                            group_leader, parent_event,
10684                                            NULL, NULL, -1);
10685         if (IS_ERR(child_event))
10686                 return child_event;
10687
10688         /*
10689          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10690          * must be under the same lock in order to serialize against
10691          * perf_event_release_kernel(), such that either we must observe
10692          * is_orphaned_event() or they will observe us on the child_list.
10693          */
10694         mutex_lock(&parent_event->child_mutex);
10695         if (is_orphaned_event(parent_event) ||
10696             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10697                 mutex_unlock(&parent_event->child_mutex);
10698                 free_event(child_event);
10699                 return NULL;
10700         }
10701
10702         get_ctx(child_ctx);
10703
10704         /*
10705          * Make the child state follow the state of the parent event,
10706          * not its attr.disabled bit.  We hold the parent's mutex,
10707          * so we won't race with perf_event_{en, dis}able_family.
10708          */
10709         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10710                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10711         else
10712                 child_event->state = PERF_EVENT_STATE_OFF;
10713
10714         if (parent_event->attr.freq) {
10715                 u64 sample_period = parent_event->hw.sample_period;
10716                 struct hw_perf_event *hwc = &child_event->hw;
10717
10718                 hwc->sample_period = sample_period;
10719                 hwc->last_period   = sample_period;
10720
10721                 local64_set(&hwc->period_left, sample_period);
10722         }
10723
10724         child_event->ctx = child_ctx;
10725         child_event->overflow_handler = parent_event->overflow_handler;
10726         child_event->overflow_handler_context
10727                 = parent_event->overflow_handler_context;
10728
10729         /*
10730          * Precalculate sample_data sizes
10731          */
10732         perf_event__header_size(child_event);
10733         perf_event__id_header_size(child_event);
10734
10735         /*
10736          * Link it up in the child's context:
10737          */
10738         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10739         add_event_to_ctx(child_event, child_ctx);
10740         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10741
10742         /*
10743          * Link this into the parent event's child list
10744          */
10745         list_add_tail(&child_event->child_list, &parent_event->child_list);
10746         mutex_unlock(&parent_event->child_mutex);
10747
10748         return child_event;
10749 }
10750
10751 /*
10752  * Inherits an event group.
10753  *
10754  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10755  * This matches with perf_event_release_kernel() removing all child events.
10756  *
10757  * Returns:
10758  *  - 0 on success
10759  *  - <0 on error
10760  */
10761 static int inherit_group(struct perf_event *parent_event,
10762               struct task_struct *parent,
10763               struct perf_event_context *parent_ctx,
10764               struct task_struct *child,
10765               struct perf_event_context *child_ctx)
10766 {
10767         struct perf_event *leader;
10768         struct perf_event *sub;
10769         struct perf_event *child_ctr;
10770
10771         leader = inherit_event(parent_event, parent, parent_ctx,
10772                                  child, NULL, child_ctx);
10773         if (IS_ERR(leader))
10774                 return PTR_ERR(leader);
10775         /*
10776          * @leader can be NULL here because of is_orphaned_event(). In this
10777          * case inherit_event() will create individual events, similar to what
10778          * perf_group_detach() would do anyway.
10779          */
10780         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10781                 child_ctr = inherit_event(sub, parent, parent_ctx,
10782                                             child, leader, child_ctx);
10783                 if (IS_ERR(child_ctr))
10784                         return PTR_ERR(child_ctr);
10785         }
10786         return 0;
10787 }
10788
10789 /*
10790  * Creates the child task context and tries to inherit the event-group.
10791  *
10792  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10793  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10794  * consistent with perf_event_release_kernel() removing all child events.
10795  *
10796  * Returns:
10797  *  - 0 on success
10798  *  - <0 on error
10799  */
10800 static int
10801 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10802                    struct perf_event_context *parent_ctx,
10803                    struct task_struct *child, int ctxn,
10804                    int *inherited_all)
10805 {
10806         int ret;
10807         struct perf_event_context *child_ctx;
10808
10809         if (!event->attr.inherit) {
10810                 *inherited_all = 0;
10811                 return 0;
10812         }
10813
10814         child_ctx = child->perf_event_ctxp[ctxn];
10815         if (!child_ctx) {
10816                 /*
10817                  * This is executed from the parent task context, so
10818                  * inherit events that have been marked for cloning.
10819                  * First allocate and initialize a context for the
10820                  * child.
10821                  */
10822                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10823                 if (!child_ctx)
10824                         return -ENOMEM;
10825
10826                 child->perf_event_ctxp[ctxn] = child_ctx;
10827         }
10828
10829         ret = inherit_group(event, parent, parent_ctx,
10830                             child, child_ctx);
10831
10832         if (ret)
10833                 *inherited_all = 0;
10834
10835         return ret;
10836 }
10837
10838 /*
10839  * Initialize the perf_event context in task_struct
10840  */
10841 static int perf_event_init_context(struct task_struct *child, int ctxn)
10842 {
10843         struct perf_event_context *child_ctx, *parent_ctx;
10844         struct perf_event_context *cloned_ctx;
10845         struct perf_event *event;
10846         struct task_struct *parent = current;
10847         int inherited_all = 1;
10848         unsigned long flags;
10849         int ret = 0;
10850
10851         if (likely(!parent->perf_event_ctxp[ctxn]))
10852                 return 0;
10853
10854         /*
10855          * If the parent's context is a clone, pin it so it won't get
10856          * swapped under us.
10857          */
10858         parent_ctx = perf_pin_task_context(parent, ctxn);
10859         if (!parent_ctx)
10860                 return 0;
10861
10862         /*
10863          * No need to check if parent_ctx != NULL here; since we saw
10864          * it non-NULL earlier, the only reason for it to become NULL
10865          * is if we exit, and since we're currently in the middle of
10866          * a fork we can't be exiting at the same time.
10867          */
10868
10869         /*
10870          * Lock the parent list. No need to lock the child - not PID
10871          * hashed yet and not running, so nobody can access it.
10872          */
10873         mutex_lock(&parent_ctx->mutex);
10874
10875         /*
10876          * We dont have to disable NMIs - we are only looking at
10877          * the list, not manipulating it:
10878          */
10879         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10880                 ret = inherit_task_group(event, parent, parent_ctx,
10881                                          child, ctxn, &inherited_all);
10882                 if (ret)
10883                         goto out_unlock;
10884         }
10885
10886         /*
10887          * We can't hold ctx->lock when iterating the ->flexible_group list due
10888          * to allocations, but we need to prevent rotation because
10889          * rotate_ctx() will change the list from interrupt context.
10890          */
10891         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10892         parent_ctx->rotate_disable = 1;
10893         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10894
10895         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10896                 ret = inherit_task_group(event, parent, parent_ctx,
10897                                          child, ctxn, &inherited_all);
10898                 if (ret)
10899                         goto out_unlock;
10900         }
10901
10902         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10903         parent_ctx->rotate_disable = 0;
10904
10905         child_ctx = child->perf_event_ctxp[ctxn];
10906
10907         if (child_ctx && inherited_all) {
10908                 /*
10909                  * Mark the child context as a clone of the parent
10910                  * context, or of whatever the parent is a clone of.
10911                  *
10912                  * Note that if the parent is a clone, the holding of
10913                  * parent_ctx->lock avoids it from being uncloned.
10914                  */
10915                 cloned_ctx = parent_ctx->parent_ctx;
10916                 if (cloned_ctx) {
10917                         child_ctx->parent_ctx = cloned_ctx;
10918                         child_ctx->parent_gen = parent_ctx->parent_gen;
10919                 } else {
10920                         child_ctx->parent_ctx = parent_ctx;
10921                         child_ctx->parent_gen = parent_ctx->generation;
10922                 }
10923                 get_ctx(child_ctx->parent_ctx);
10924         }
10925
10926         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10927 out_unlock:
10928         mutex_unlock(&parent_ctx->mutex);
10929
10930         perf_unpin_context(parent_ctx);
10931         put_ctx(parent_ctx);
10932
10933         return ret;
10934 }
10935
10936 /*
10937  * Initialize the perf_event context in task_struct
10938  */
10939 int perf_event_init_task(struct task_struct *child)
10940 {
10941         int ctxn, ret;
10942
10943         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10944         mutex_init(&child->perf_event_mutex);
10945         INIT_LIST_HEAD(&child->perf_event_list);
10946
10947         for_each_task_context_nr(ctxn) {
10948                 ret = perf_event_init_context(child, ctxn);
10949                 if (ret) {
10950                         perf_event_free_task(child);
10951                         return ret;
10952                 }
10953         }
10954
10955         return 0;
10956 }
10957
10958 static void __init perf_event_init_all_cpus(void)
10959 {
10960         struct swevent_htable *swhash;
10961         int cpu;
10962
10963         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10964
10965         for_each_possible_cpu(cpu) {
10966                 swhash = &per_cpu(swevent_htable, cpu);
10967                 mutex_init(&swhash->hlist_mutex);
10968                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10969
10970                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10971                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10972
10973 #ifdef CONFIG_CGROUP_PERF
10974                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10975 #endif
10976                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10977         }
10978 }
10979
10980 void perf_swevent_init_cpu(unsigned int cpu)
10981 {
10982         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10983
10984         mutex_lock(&swhash->hlist_mutex);
10985         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10986                 struct swevent_hlist *hlist;
10987
10988                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10989                 WARN_ON(!hlist);
10990                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10991         }
10992         mutex_unlock(&swhash->hlist_mutex);
10993 }
10994
10995 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10996 static void __perf_event_exit_context(void *__info)
10997 {
10998         struct perf_event_context *ctx = __info;
10999         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11000         struct perf_event *event;
11001
11002         raw_spin_lock(&ctx->lock);
11003         list_for_each_entry(event, &ctx->event_list, event_entry)
11004                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11005         raw_spin_unlock(&ctx->lock);
11006 }
11007
11008 static void perf_event_exit_cpu_context(int cpu)
11009 {
11010         struct perf_cpu_context *cpuctx;
11011         struct perf_event_context *ctx;
11012         struct pmu *pmu;
11013
11014         mutex_lock(&pmus_lock);
11015         list_for_each_entry(pmu, &pmus, entry) {
11016                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11017                 ctx = &cpuctx->ctx;
11018
11019                 mutex_lock(&ctx->mutex);
11020                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11021                 cpuctx->online = 0;
11022                 mutex_unlock(&ctx->mutex);
11023         }
11024         cpumask_clear_cpu(cpu, perf_online_mask);
11025         mutex_unlock(&pmus_lock);
11026 }
11027 #else
11028
11029 static void perf_event_exit_cpu_context(int cpu) { }
11030
11031 #endif
11032
11033 int perf_event_init_cpu(unsigned int cpu)
11034 {
11035         struct perf_cpu_context *cpuctx;
11036         struct perf_event_context *ctx;
11037         struct pmu *pmu;
11038
11039         perf_swevent_init_cpu(cpu);
11040
11041         mutex_lock(&pmus_lock);
11042         cpumask_set_cpu(cpu, perf_online_mask);
11043         list_for_each_entry(pmu, &pmus, entry) {
11044                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11045                 ctx = &cpuctx->ctx;
11046
11047                 mutex_lock(&ctx->mutex);
11048                 cpuctx->online = 1;
11049                 mutex_unlock(&ctx->mutex);
11050         }
11051         mutex_unlock(&pmus_lock);
11052
11053         return 0;
11054 }
11055
11056 int perf_event_exit_cpu(unsigned int cpu)
11057 {
11058         perf_event_exit_cpu_context(cpu);
11059         return 0;
11060 }
11061
11062 static int
11063 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11064 {
11065         int cpu;
11066
11067         for_each_online_cpu(cpu)
11068                 perf_event_exit_cpu(cpu);
11069
11070         return NOTIFY_OK;
11071 }
11072
11073 /*
11074  * Run the perf reboot notifier at the very last possible moment so that
11075  * the generic watchdog code runs as long as possible.
11076  */
11077 static struct notifier_block perf_reboot_notifier = {
11078         .notifier_call = perf_reboot,
11079         .priority = INT_MIN,
11080 };
11081
11082 void __init perf_event_init(void)
11083 {
11084         int ret;
11085
11086         idr_init(&pmu_idr);
11087
11088         perf_event_init_all_cpus();
11089         init_srcu_struct(&pmus_srcu);
11090         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11091         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11092         perf_pmu_register(&perf_task_clock, NULL, -1);
11093         perf_tp_register();
11094         perf_event_init_cpu(smp_processor_id());
11095         register_reboot_notifier(&perf_reboot_notifier);
11096
11097         ret = init_hw_breakpoint();
11098         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11099
11100         /*
11101          * Build time assertion that we keep the data_head at the intended
11102          * location.  IOW, validation we got the __reserved[] size right.
11103          */
11104         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11105                      != 1024);
11106 }
11107
11108 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11109                               char *page)
11110 {
11111         struct perf_pmu_events_attr *pmu_attr =
11112                 container_of(attr, struct perf_pmu_events_attr, attr);
11113
11114         if (pmu_attr->event_str)
11115                 return sprintf(page, "%s\n", pmu_attr->event_str);
11116
11117         return 0;
11118 }
11119 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11120
11121 static int __init perf_event_sysfs_init(void)
11122 {
11123         struct pmu *pmu;
11124         int ret;
11125
11126         mutex_lock(&pmus_lock);
11127
11128         ret = bus_register(&pmu_bus);
11129         if (ret)
11130                 goto unlock;
11131
11132         list_for_each_entry(pmu, &pmus, entry) {
11133                 if (!pmu->name || pmu->type < 0)
11134                         continue;
11135
11136                 ret = pmu_dev_alloc(pmu);
11137                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11138         }
11139         pmu_bus_running = 1;
11140         ret = 0;
11141
11142 unlock:
11143         mutex_unlock(&pmus_lock);
11144
11145         return ret;
11146 }
11147 device_initcall(perf_event_sysfs_init);
11148
11149 #ifdef CONFIG_CGROUP_PERF
11150 static struct cgroup_subsys_state *
11151 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11152 {
11153         struct perf_cgroup *jc;
11154
11155         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11156         if (!jc)
11157                 return ERR_PTR(-ENOMEM);
11158
11159         jc->info = alloc_percpu(struct perf_cgroup_info);
11160         if (!jc->info) {
11161                 kfree(jc);
11162                 return ERR_PTR(-ENOMEM);
11163         }
11164
11165         return &jc->css;
11166 }
11167
11168 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11169 {
11170         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11171
11172         free_percpu(jc->info);
11173         kfree(jc);
11174 }
11175
11176 static int __perf_cgroup_move(void *info)
11177 {
11178         struct task_struct *task = info;
11179         rcu_read_lock();
11180         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11181         rcu_read_unlock();
11182         return 0;
11183 }
11184
11185 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11186 {
11187         struct task_struct *task;
11188         struct cgroup_subsys_state *css;
11189
11190         cgroup_taskset_for_each(task, css, tset)
11191                 task_function_call(task, __perf_cgroup_move, task);
11192 }
11193
11194 struct cgroup_subsys perf_event_cgrp_subsys = {
11195         .css_alloc      = perf_cgroup_css_alloc,
11196         .css_free       = perf_cgroup_css_free,
11197         .attach         = perf_cgroup_attach,
11198         /*
11199          * Implicitly enable on dfl hierarchy so that perf events can
11200          * always be filtered by cgroup2 path as long as perf_event
11201          * controller is not mounted on a legacy hierarchy.
11202          */
11203         .implicit_on_dfl = true,
11204 };
11205 #endif /* CONFIG_CGROUP_PERF */