]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/futex.c
ipc/msg.c: use freezable blocking call
[karo-tx-linux.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67 #include <linux/fault-inject.h>
68
69 #include <asm/futex.h>
70
71 #include "locking/rtmutex_common.h"
72
73 /*
74  * READ this before attempting to hack on futexes!
75  *
76  * Basic futex operation and ordering guarantees
77  * =============================================
78  *
79  * The waiter reads the futex value in user space and calls
80  * futex_wait(). This function computes the hash bucket and acquires
81  * the hash bucket lock. After that it reads the futex user space value
82  * again and verifies that the data has not changed. If it has not changed
83  * it enqueues itself into the hash bucket, releases the hash bucket lock
84  * and schedules.
85  *
86  * The waker side modifies the user space value of the futex and calls
87  * futex_wake(). This function computes the hash bucket and acquires the
88  * hash bucket lock. Then it looks for waiters on that futex in the hash
89  * bucket and wakes them.
90  *
91  * In futex wake up scenarios where no tasks are blocked on a futex, taking
92  * the hb spinlock can be avoided and simply return. In order for this
93  * optimization to work, ordering guarantees must exist so that the waiter
94  * being added to the list is acknowledged when the list is concurrently being
95  * checked by the waker, avoiding scenarios like the following:
96  *
97  * CPU 0                               CPU 1
98  * val = *futex;
99  * sys_futex(WAIT, futex, val);
100  *   futex_wait(futex, val);
101  *   uval = *futex;
102  *                                     *futex = newval;
103  *                                     sys_futex(WAKE, futex);
104  *                                       futex_wake(futex);
105  *                                       if (queue_empty())
106  *                                         return;
107  *   if (uval == val)
108  *      lock(hash_bucket(futex));
109  *      queue();
110  *     unlock(hash_bucket(futex));
111  *     schedule();
112  *
113  * This would cause the waiter on CPU 0 to wait forever because it
114  * missed the transition of the user space value from val to newval
115  * and the waker did not find the waiter in the hash bucket queue.
116  *
117  * The correct serialization ensures that a waiter either observes
118  * the changed user space value before blocking or is woken by a
119  * concurrent waker:
120  *
121  * CPU 0                                 CPU 1
122  * val = *futex;
123  * sys_futex(WAIT, futex, val);
124  *   futex_wait(futex, val);
125  *
126  *   waiters++; (a)
127  *   mb(); (A) <-- paired with -.
128  *                              |
129  *   lock(hash_bucket(futex));  |
130  *                              |
131  *   uval = *futex;             |
132  *                              |        *futex = newval;
133  *                              |        sys_futex(WAKE, futex);
134  *                              |          futex_wake(futex);
135  *                              |
136  *                              `------->  mb(); (B)
137  *   if (uval == val)
138  *     queue();
139  *     unlock(hash_bucket(futex));
140  *     schedule();                         if (waiters)
141  *                                           lock(hash_bucket(futex));
142  *   else                                    wake_waiters(futex);
143  *     waiters--; (b)                        unlock(hash_bucket(futex));
144  *
145  * Where (A) orders the waiters increment and the futex value read through
146  * atomic operations (see hb_waiters_inc) and where (B) orders the write
147  * to futex and the waiters read -- this is done by the barriers for both
148  * shared and private futexes in get_futex_key_refs().
149  *
150  * This yields the following case (where X:=waiters, Y:=futex):
151  *
152  *      X = Y = 0
153  *
154  *      w[X]=1          w[Y]=1
155  *      MB              MB
156  *      r[Y]=y          r[X]=x
157  *
158  * Which guarantees that x==0 && y==0 is impossible; which translates back into
159  * the guarantee that we cannot both miss the futex variable change and the
160  * enqueue.
161  *
162  * Note that a new waiter is accounted for in (a) even when it is possible that
163  * the wait call can return error, in which case we backtrack from it in (b).
164  * Refer to the comment in queue_lock().
165  *
166  * Similarly, in order to account for waiters being requeued on another
167  * address we always increment the waiters for the destination bucket before
168  * acquiring the lock. It then decrements them again  after releasing it -
169  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170  * will do the additional required waiter count housekeeping. This is done for
171  * double_lock_hb() and double_unlock_hb(), respectively.
172  */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179  * Futex flags used to encode options to functions and preserve them across
180  * restarts.
181  */
182 #define FLAGS_SHARED            0x01
183 #define FLAGS_CLOCKRT           0x02
184 #define FLAGS_HAS_TIMEOUT       0x04
185
186 /*
187  * Priority Inheritance state:
188  */
189 struct futex_pi_state {
190         /*
191          * list of 'owned' pi_state instances - these have to be
192          * cleaned up in do_exit() if the task exits prematurely:
193          */
194         struct list_head list;
195
196         /*
197          * The PI object:
198          */
199         struct rt_mutex pi_mutex;
200
201         struct task_struct *owner;
202         atomic_t refcount;
203
204         union futex_key key;
205 };
206
207 /**
208  * struct futex_q - The hashed futex queue entry, one per waiting task
209  * @list:               priority-sorted list of tasks waiting on this futex
210  * @task:               the task waiting on the futex
211  * @lock_ptr:           the hash bucket lock
212  * @key:                the key the futex is hashed on
213  * @pi_state:           optional priority inheritance state
214  * @rt_waiter:          rt_waiter storage for use with requeue_pi
215  * @requeue_pi_key:     the requeue_pi target futex key
216  * @bitset:             bitset for the optional bitmasked wakeup
217  *
218  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219  * we can wake only the relevant ones (hashed queues may be shared).
220  *
221  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223  * The order of wakeup is always to make the first condition true, then
224  * the second.
225  *
226  * PI futexes are typically woken before they are removed from the hash list via
227  * the rt_mutex code. See unqueue_me_pi().
228  */
229 struct futex_q {
230         struct plist_node list;
231
232         struct task_struct *task;
233         spinlock_t *lock_ptr;
234         union futex_key key;
235         struct futex_pi_state *pi_state;
236         struct rt_mutex_waiter *rt_waiter;
237         union futex_key *requeue_pi_key;
238         u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242         /* list gets initialized in queue_me()*/
243         .key = FUTEX_KEY_INIT,
244         .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248  * Hash buckets are shared by all the futex_keys that hash to the same
249  * location.  Each key may have multiple futex_q structures, one for each task
250  * waiting on a futex.
251  */
252 struct futex_hash_bucket {
253         atomic_t waiters;
254         spinlock_t lock;
255         struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 static unsigned long __read_mostly futex_hashsize;
259
260 static struct futex_hash_bucket *futex_queues;
261
262 /*
263  * Fault injections for futexes.
264  */
265 #ifdef CONFIG_FAIL_FUTEX
266
267 static struct {
268         struct fault_attr attr;
269
270         u32 ignore_private;
271 } fail_futex = {
272         .attr = FAULT_ATTR_INITIALIZER,
273         .ignore_private = 0,
274 };
275
276 static int __init setup_fail_futex(char *str)
277 {
278         return setup_fault_attr(&fail_futex.attr, str);
279 }
280 __setup("fail_futex=", setup_fail_futex);
281
282 static bool should_fail_futex(bool fshared)
283 {
284         if (fail_futex.ignore_private && !fshared)
285                 return false;
286
287         return should_fail(&fail_futex.attr, 1);
288 }
289
290 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
291
292 static int __init fail_futex_debugfs(void)
293 {
294         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
295         struct dentry *dir;
296
297         dir = fault_create_debugfs_attr("fail_futex", NULL,
298                                         &fail_futex.attr);
299         if (IS_ERR(dir))
300                 return PTR_ERR(dir);
301
302         if (!debugfs_create_bool("ignore-private", mode, dir,
303                                  &fail_futex.ignore_private)) {
304                 debugfs_remove_recursive(dir);
305                 return -ENOMEM;
306         }
307
308         return 0;
309 }
310
311 late_initcall(fail_futex_debugfs);
312
313 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
314
315 #else
316 static inline bool should_fail_futex(bool fshared)
317 {
318         return false;
319 }
320 #endif /* CONFIG_FAIL_FUTEX */
321
322 static inline void futex_get_mm(union futex_key *key)
323 {
324         atomic_inc(&key->private.mm->mm_count);
325         /*
326          * Ensure futex_get_mm() implies a full barrier such that
327          * get_futex_key() implies a full barrier. This is relied upon
328          * as full barrier (B), see the ordering comment above.
329          */
330         smp_mb__after_atomic();
331 }
332
333 /*
334  * Reflects a new waiter being added to the waitqueue.
335  */
336 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
337 {
338 #ifdef CONFIG_SMP
339         atomic_inc(&hb->waiters);
340         /*
341          * Full barrier (A), see the ordering comment above.
342          */
343         smp_mb__after_atomic();
344 #endif
345 }
346
347 /*
348  * Reflects a waiter being removed from the waitqueue by wakeup
349  * paths.
350  */
351 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
352 {
353 #ifdef CONFIG_SMP
354         atomic_dec(&hb->waiters);
355 #endif
356 }
357
358 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
359 {
360 #ifdef CONFIG_SMP
361         return atomic_read(&hb->waiters);
362 #else
363         return 1;
364 #endif
365 }
366
367 /*
368  * We hash on the keys returned from get_futex_key (see below).
369  */
370 static struct futex_hash_bucket *hash_futex(union futex_key *key)
371 {
372         u32 hash = jhash2((u32*)&key->both.word,
373                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
374                           key->both.offset);
375         return &futex_queues[hash & (futex_hashsize - 1)];
376 }
377
378 /*
379  * Return 1 if two futex_keys are equal, 0 otherwise.
380  */
381 static inline int match_futex(union futex_key *key1, union futex_key *key2)
382 {
383         return (key1 && key2
384                 && key1->both.word == key2->both.word
385                 && key1->both.ptr == key2->both.ptr
386                 && key1->both.offset == key2->both.offset);
387 }
388
389 /*
390  * Take a reference to the resource addressed by a key.
391  * Can be called while holding spinlocks.
392  *
393  */
394 static void get_futex_key_refs(union futex_key *key)
395 {
396         if (!key->both.ptr)
397                 return;
398
399         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
400         case FUT_OFF_INODE:
401                 ihold(key->shared.inode); /* implies MB (B) */
402                 break;
403         case FUT_OFF_MMSHARED:
404                 futex_get_mm(key); /* implies MB (B) */
405                 break;
406         default:
407                 /*
408                  * Private futexes do not hold reference on an inode or
409                  * mm, therefore the only purpose of calling get_futex_key_refs
410                  * is because we need the barrier for the lockless waiter check.
411                  */
412                 smp_mb(); /* explicit MB (B) */
413         }
414 }
415
416 /*
417  * Drop a reference to the resource addressed by a key.
418  * The hash bucket spinlock must not be held. This is
419  * a no-op for private futexes, see comment in the get
420  * counterpart.
421  */
422 static void drop_futex_key_refs(union futex_key *key)
423 {
424         if (!key->both.ptr) {
425                 /* If we're here then we tried to put a key we failed to get */
426                 WARN_ON_ONCE(1);
427                 return;
428         }
429
430         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
431         case FUT_OFF_INODE:
432                 iput(key->shared.inode);
433                 break;
434         case FUT_OFF_MMSHARED:
435                 mmdrop(key->private.mm);
436                 break;
437         }
438 }
439
440 /**
441  * get_futex_key() - Get parameters which are the keys for a futex
442  * @uaddr:      virtual address of the futex
443  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
444  * @key:        address where result is stored.
445  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
446  *              VERIFY_WRITE)
447  *
448  * Return: a negative error code or 0
449  *
450  * The key words are stored in *key on success.
451  *
452  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
453  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
454  * We can usually work out the index without swapping in the page.
455  *
456  * lock_page() might sleep, the caller should not hold a spinlock.
457  */
458 static int
459 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
460 {
461         unsigned long address = (unsigned long)uaddr;
462         struct mm_struct *mm = current->mm;
463         struct page *page;
464         int err, ro = 0;
465
466         /*
467          * The futex address must be "naturally" aligned.
468          */
469         key->both.offset = address % PAGE_SIZE;
470         if (unlikely((address % sizeof(u32)) != 0))
471                 return -EINVAL;
472         address -= key->both.offset;
473
474         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
475                 return -EFAULT;
476
477         if (unlikely(should_fail_futex(fshared)))
478                 return -EFAULT;
479
480         /*
481          * PROCESS_PRIVATE futexes are fast.
482          * As the mm cannot disappear under us and the 'key' only needs
483          * virtual address, we dont even have to find the underlying vma.
484          * Note : We do have to check 'uaddr' is a valid user address,
485          *        but access_ok() should be faster than find_vma()
486          */
487         if (!fshared) {
488                 key->private.mm = mm;
489                 key->private.address = address;
490                 get_futex_key_refs(key);  /* implies MB (B) */
491                 return 0;
492         }
493
494 again:
495         /* Ignore any VERIFY_READ mapping (futex common case) */
496         if (unlikely(should_fail_futex(fshared)))
497                 return -EFAULT;
498
499         err = get_user_pages_fast(address, 1, 1, &page);
500         /*
501          * If write access is not required (eg. FUTEX_WAIT), try
502          * and get read-only access.
503          */
504         if (err == -EFAULT && rw == VERIFY_READ) {
505                 err = get_user_pages_fast(address, 1, 0, &page);
506                 ro = 1;
507         }
508         if (err < 0)
509                 return err;
510         else
511                 err = 0;
512
513         lock_page(page);
514         /*
515          * If page->mapping is NULL, then it cannot be a PageAnon
516          * page; but it might be the ZERO_PAGE or in the gate area or
517          * in a special mapping (all cases which we are happy to fail);
518          * or it may have been a good file page when get_user_pages_fast
519          * found it, but truncated or holepunched or subjected to
520          * invalidate_complete_page2 before we got the page lock (also
521          * cases which we are happy to fail).  And we hold a reference,
522          * so refcount care in invalidate_complete_page's remove_mapping
523          * prevents drop_caches from setting mapping to NULL beneath us.
524          *
525          * The case we do have to guard against is when memory pressure made
526          * shmem_writepage move it from filecache to swapcache beneath us:
527          * an unlikely race, but we do need to retry for page->mapping.
528          */
529         if (!page->mapping) {
530                 int shmem_swizzled = PageSwapCache(page);
531                 unlock_page(page);
532                 put_page(page);
533                 if (shmem_swizzled)
534                         goto again;
535                 return -EFAULT;
536         }
537
538         /*
539          * Private mappings are handled in a simple way.
540          *
541          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
542          * it's a read-only handle, it's expected that futexes attach to
543          * the object not the particular process.
544          */
545         if (PageAnon(page)) {
546                 /*
547                  * A RO anonymous page will never change and thus doesn't make
548                  * sense for futex operations.
549                  */
550                 if (unlikely(should_fail_futex(fshared)) || ro) {
551                         err = -EFAULT;
552                         goto out;
553                 }
554
555                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
556                 key->private.mm = mm;
557                 key->private.address = address;
558         } else {
559                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
560                 key->shared.inode = page->mapping->host;
561                 key->shared.pgoff = basepage_index(page);
562         }
563
564         get_futex_key_refs(key); /* implies MB (B) */
565
566 out:
567         unlock_page(page);
568         put_page(page);
569         return err;
570 }
571
572 static inline void put_futex_key(union futex_key *key)
573 {
574         drop_futex_key_refs(key);
575 }
576
577 /**
578  * fault_in_user_writeable() - Fault in user address and verify RW access
579  * @uaddr:      pointer to faulting user space address
580  *
581  * Slow path to fixup the fault we just took in the atomic write
582  * access to @uaddr.
583  *
584  * We have no generic implementation of a non-destructive write to the
585  * user address. We know that we faulted in the atomic pagefault
586  * disabled section so we can as well avoid the #PF overhead by
587  * calling get_user_pages() right away.
588  */
589 static int fault_in_user_writeable(u32 __user *uaddr)
590 {
591         struct mm_struct *mm = current->mm;
592         int ret;
593
594         down_read(&mm->mmap_sem);
595         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
596                                FAULT_FLAG_WRITE);
597         up_read(&mm->mmap_sem);
598
599         return ret < 0 ? ret : 0;
600 }
601
602 /**
603  * futex_top_waiter() - Return the highest priority waiter on a futex
604  * @hb:         the hash bucket the futex_q's reside in
605  * @key:        the futex key (to distinguish it from other futex futex_q's)
606  *
607  * Must be called with the hb lock held.
608  */
609 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
610                                         union futex_key *key)
611 {
612         struct futex_q *this;
613
614         plist_for_each_entry(this, &hb->chain, list) {
615                 if (match_futex(&this->key, key))
616                         return this;
617         }
618         return NULL;
619 }
620
621 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
622                                       u32 uval, u32 newval)
623 {
624         int ret;
625
626         pagefault_disable();
627         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
628         pagefault_enable();
629
630         return ret;
631 }
632
633 static int get_futex_value_locked(u32 *dest, u32 __user *from)
634 {
635         int ret;
636
637         pagefault_disable();
638         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
639         pagefault_enable();
640
641         return ret ? -EFAULT : 0;
642 }
643
644
645 /*
646  * PI code:
647  */
648 static int refill_pi_state_cache(void)
649 {
650         struct futex_pi_state *pi_state;
651
652         if (likely(current->pi_state_cache))
653                 return 0;
654
655         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
656
657         if (!pi_state)
658                 return -ENOMEM;
659
660         INIT_LIST_HEAD(&pi_state->list);
661         /* pi_mutex gets initialized later */
662         pi_state->owner = NULL;
663         atomic_set(&pi_state->refcount, 1);
664         pi_state->key = FUTEX_KEY_INIT;
665
666         current->pi_state_cache = pi_state;
667
668         return 0;
669 }
670
671 static struct futex_pi_state * alloc_pi_state(void)
672 {
673         struct futex_pi_state *pi_state = current->pi_state_cache;
674
675         WARN_ON(!pi_state);
676         current->pi_state_cache = NULL;
677
678         return pi_state;
679 }
680
681 /*
682  * Must be called with the hb lock held.
683  */
684 static void free_pi_state(struct futex_pi_state *pi_state)
685 {
686         if (!pi_state)
687                 return;
688
689         if (!atomic_dec_and_test(&pi_state->refcount))
690                 return;
691
692         /*
693          * If pi_state->owner is NULL, the owner is most probably dying
694          * and has cleaned up the pi_state already
695          */
696         if (pi_state->owner) {
697                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
698                 list_del_init(&pi_state->list);
699                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
700
701                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
702         }
703
704         if (current->pi_state_cache)
705                 kfree(pi_state);
706         else {
707                 /*
708                  * pi_state->list is already empty.
709                  * clear pi_state->owner.
710                  * refcount is at 0 - put it back to 1.
711                  */
712                 pi_state->owner = NULL;
713                 atomic_set(&pi_state->refcount, 1);
714                 current->pi_state_cache = pi_state;
715         }
716 }
717
718 /*
719  * Look up the task based on what TID userspace gave us.
720  * We dont trust it.
721  */
722 static struct task_struct * futex_find_get_task(pid_t pid)
723 {
724         struct task_struct *p;
725
726         rcu_read_lock();
727         p = find_task_by_vpid(pid);
728         if (p)
729                 get_task_struct(p);
730
731         rcu_read_unlock();
732
733         return p;
734 }
735
736 /*
737  * This task is holding PI mutexes at exit time => bad.
738  * Kernel cleans up PI-state, but userspace is likely hosed.
739  * (Robust-futex cleanup is separate and might save the day for userspace.)
740  */
741 void exit_pi_state_list(struct task_struct *curr)
742 {
743         struct list_head *next, *head = &curr->pi_state_list;
744         struct futex_pi_state *pi_state;
745         struct futex_hash_bucket *hb;
746         union futex_key key = FUTEX_KEY_INIT;
747
748         if (!futex_cmpxchg_enabled)
749                 return;
750         /*
751          * We are a ZOMBIE and nobody can enqueue itself on
752          * pi_state_list anymore, but we have to be careful
753          * versus waiters unqueueing themselves:
754          */
755         raw_spin_lock_irq(&curr->pi_lock);
756         while (!list_empty(head)) {
757
758                 next = head->next;
759                 pi_state = list_entry(next, struct futex_pi_state, list);
760                 key = pi_state->key;
761                 hb = hash_futex(&key);
762                 raw_spin_unlock_irq(&curr->pi_lock);
763
764                 spin_lock(&hb->lock);
765
766                 raw_spin_lock_irq(&curr->pi_lock);
767                 /*
768                  * We dropped the pi-lock, so re-check whether this
769                  * task still owns the PI-state:
770                  */
771                 if (head->next != next) {
772                         spin_unlock(&hb->lock);
773                         continue;
774                 }
775
776                 WARN_ON(pi_state->owner != curr);
777                 WARN_ON(list_empty(&pi_state->list));
778                 list_del_init(&pi_state->list);
779                 pi_state->owner = NULL;
780                 raw_spin_unlock_irq(&curr->pi_lock);
781
782                 rt_mutex_unlock(&pi_state->pi_mutex);
783
784                 spin_unlock(&hb->lock);
785
786                 raw_spin_lock_irq(&curr->pi_lock);
787         }
788         raw_spin_unlock_irq(&curr->pi_lock);
789 }
790
791 /*
792  * We need to check the following states:
793  *
794  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
795  *
796  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
797  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
798  *
799  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
800  *
801  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
802  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
803  *
804  * [6]  Found  | Found    | task      | 0         | 1      | Valid
805  *
806  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
807  *
808  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
809  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
810  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
811  *
812  * [1]  Indicates that the kernel can acquire the futex atomically. We
813  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
814  *
815  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
816  *      thread is found then it indicates that the owner TID has died.
817  *
818  * [3]  Invalid. The waiter is queued on a non PI futex
819  *
820  * [4]  Valid state after exit_robust_list(), which sets the user space
821  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
822  *
823  * [5]  The user space value got manipulated between exit_robust_list()
824  *      and exit_pi_state_list()
825  *
826  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
827  *      the pi_state but cannot access the user space value.
828  *
829  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
830  *
831  * [8]  Owner and user space value match
832  *
833  * [9]  There is no transient state which sets the user space TID to 0
834  *      except exit_robust_list(), but this is indicated by the
835  *      FUTEX_OWNER_DIED bit. See [4]
836  *
837  * [10] There is no transient state which leaves owner and user space
838  *      TID out of sync.
839  */
840
841 /*
842  * Validate that the existing waiter has a pi_state and sanity check
843  * the pi_state against the user space value. If correct, attach to
844  * it.
845  */
846 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
847                               struct futex_pi_state **ps)
848 {
849         pid_t pid = uval & FUTEX_TID_MASK;
850
851         /*
852          * Userspace might have messed up non-PI and PI futexes [3]
853          */
854         if (unlikely(!pi_state))
855                 return -EINVAL;
856
857         WARN_ON(!atomic_read(&pi_state->refcount));
858
859         /*
860          * Handle the owner died case:
861          */
862         if (uval & FUTEX_OWNER_DIED) {
863                 /*
864                  * exit_pi_state_list sets owner to NULL and wakes the
865                  * topmost waiter. The task which acquires the
866                  * pi_state->rt_mutex will fixup owner.
867                  */
868                 if (!pi_state->owner) {
869                         /*
870                          * No pi state owner, but the user space TID
871                          * is not 0. Inconsistent state. [5]
872                          */
873                         if (pid)
874                                 return -EINVAL;
875                         /*
876                          * Take a ref on the state and return success. [4]
877                          */
878                         goto out_state;
879                 }
880
881                 /*
882                  * If TID is 0, then either the dying owner has not
883                  * yet executed exit_pi_state_list() or some waiter
884                  * acquired the rtmutex in the pi state, but did not
885                  * yet fixup the TID in user space.
886                  *
887                  * Take a ref on the state and return success. [6]
888                  */
889                 if (!pid)
890                         goto out_state;
891         } else {
892                 /*
893                  * If the owner died bit is not set, then the pi_state
894                  * must have an owner. [7]
895                  */
896                 if (!pi_state->owner)
897                         return -EINVAL;
898         }
899
900         /*
901          * Bail out if user space manipulated the futex value. If pi
902          * state exists then the owner TID must be the same as the
903          * user space TID. [9/10]
904          */
905         if (pid != task_pid_vnr(pi_state->owner))
906                 return -EINVAL;
907 out_state:
908         atomic_inc(&pi_state->refcount);
909         *ps = pi_state;
910         return 0;
911 }
912
913 /*
914  * Lookup the task for the TID provided from user space and attach to
915  * it after doing proper sanity checks.
916  */
917 static int attach_to_pi_owner(u32 uval, union futex_key *key,
918                               struct futex_pi_state **ps)
919 {
920         pid_t pid = uval & FUTEX_TID_MASK;
921         struct futex_pi_state *pi_state;
922         struct task_struct *p;
923
924         /*
925          * We are the first waiter - try to look up the real owner and attach
926          * the new pi_state to it, but bail out when TID = 0 [1]
927          */
928         if (!pid)
929                 return -ESRCH;
930         p = futex_find_get_task(pid);
931         if (!p)
932                 return -ESRCH;
933
934         if (unlikely(p->flags & PF_KTHREAD)) {
935                 put_task_struct(p);
936                 return -EPERM;
937         }
938
939         /*
940          * We need to look at the task state flags to figure out,
941          * whether the task is exiting. To protect against the do_exit
942          * change of the task flags, we do this protected by
943          * p->pi_lock:
944          */
945         raw_spin_lock_irq(&p->pi_lock);
946         if (unlikely(p->flags & PF_EXITING)) {
947                 /*
948                  * The task is on the way out. When PF_EXITPIDONE is
949                  * set, we know that the task has finished the
950                  * cleanup:
951                  */
952                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
953
954                 raw_spin_unlock_irq(&p->pi_lock);
955                 put_task_struct(p);
956                 return ret;
957         }
958
959         /*
960          * No existing pi state. First waiter. [2]
961          */
962         pi_state = alloc_pi_state();
963
964         /*
965          * Initialize the pi_mutex in locked state and make @p
966          * the owner of it:
967          */
968         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
969
970         /* Store the key for possible exit cleanups: */
971         pi_state->key = *key;
972
973         WARN_ON(!list_empty(&pi_state->list));
974         list_add(&pi_state->list, &p->pi_state_list);
975         pi_state->owner = p;
976         raw_spin_unlock_irq(&p->pi_lock);
977
978         put_task_struct(p);
979
980         *ps = pi_state;
981
982         return 0;
983 }
984
985 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
986                            union futex_key *key, struct futex_pi_state **ps)
987 {
988         struct futex_q *match = futex_top_waiter(hb, key);
989
990         /*
991          * If there is a waiter on that futex, validate it and
992          * attach to the pi_state when the validation succeeds.
993          */
994         if (match)
995                 return attach_to_pi_state(uval, match->pi_state, ps);
996
997         /*
998          * We are the first waiter - try to look up the owner based on
999          * @uval and attach to it.
1000          */
1001         return attach_to_pi_owner(uval, key, ps);
1002 }
1003
1004 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1005 {
1006         u32 uninitialized_var(curval);
1007
1008         if (unlikely(should_fail_futex(true)))
1009                 return -EFAULT;
1010
1011         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1012                 return -EFAULT;
1013
1014         /*If user space value changed, let the caller retry */
1015         return curval != uval ? -EAGAIN : 0;
1016 }
1017
1018 /**
1019  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1020  * @uaddr:              the pi futex user address
1021  * @hb:                 the pi futex hash bucket
1022  * @key:                the futex key associated with uaddr and hb
1023  * @ps:                 the pi_state pointer where we store the result of the
1024  *                      lookup
1025  * @task:               the task to perform the atomic lock work for.  This will
1026  *                      be "current" except in the case of requeue pi.
1027  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1028  *
1029  * Return:
1030  *  0 - ready to wait;
1031  *  1 - acquired the lock;
1032  * <0 - error
1033  *
1034  * The hb->lock and futex_key refs shall be held by the caller.
1035  */
1036 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1037                                 union futex_key *key,
1038                                 struct futex_pi_state **ps,
1039                                 struct task_struct *task, int set_waiters)
1040 {
1041         u32 uval, newval, vpid = task_pid_vnr(task);
1042         struct futex_q *match;
1043         int ret;
1044
1045         /*
1046          * Read the user space value first so we can validate a few
1047          * things before proceeding further.
1048          */
1049         if (get_futex_value_locked(&uval, uaddr))
1050                 return -EFAULT;
1051
1052         if (unlikely(should_fail_futex(true)))
1053                 return -EFAULT;
1054
1055         /*
1056          * Detect deadlocks.
1057          */
1058         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1059                 return -EDEADLK;
1060
1061         if ((unlikely(should_fail_futex(true))))
1062                 return -EDEADLK;
1063
1064         /*
1065          * Lookup existing state first. If it exists, try to attach to
1066          * its pi_state.
1067          */
1068         match = futex_top_waiter(hb, key);
1069         if (match)
1070                 return attach_to_pi_state(uval, match->pi_state, ps);
1071
1072         /*
1073          * No waiter and user TID is 0. We are here because the
1074          * waiters or the owner died bit is set or called from
1075          * requeue_cmp_pi or for whatever reason something took the
1076          * syscall.
1077          */
1078         if (!(uval & FUTEX_TID_MASK)) {
1079                 /*
1080                  * We take over the futex. No other waiters and the user space
1081                  * TID is 0. We preserve the owner died bit.
1082                  */
1083                 newval = uval & FUTEX_OWNER_DIED;
1084                 newval |= vpid;
1085
1086                 /* The futex requeue_pi code can enforce the waiters bit */
1087                 if (set_waiters)
1088                         newval |= FUTEX_WAITERS;
1089
1090                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1091                 /* If the take over worked, return 1 */
1092                 return ret < 0 ? ret : 1;
1093         }
1094
1095         /*
1096          * First waiter. Set the waiters bit before attaching ourself to
1097          * the owner. If owner tries to unlock, it will be forced into
1098          * the kernel and blocked on hb->lock.
1099          */
1100         newval = uval | FUTEX_WAITERS;
1101         ret = lock_pi_update_atomic(uaddr, uval, newval);
1102         if (ret)
1103                 return ret;
1104         /*
1105          * If the update of the user space value succeeded, we try to
1106          * attach to the owner. If that fails, no harm done, we only
1107          * set the FUTEX_WAITERS bit in the user space variable.
1108          */
1109         return attach_to_pi_owner(uval, key, ps);
1110 }
1111
1112 /**
1113  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1114  * @q:  The futex_q to unqueue
1115  *
1116  * The q->lock_ptr must not be NULL and must be held by the caller.
1117  */
1118 static void __unqueue_futex(struct futex_q *q)
1119 {
1120         struct futex_hash_bucket *hb;
1121
1122         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1123             || WARN_ON(plist_node_empty(&q->list)))
1124                 return;
1125
1126         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1127         plist_del(&q->list, &hb->chain);
1128         hb_waiters_dec(hb);
1129 }
1130
1131 /*
1132  * The hash bucket lock must be held when this is called.
1133  * Afterwards, the futex_q must not be accessed. Callers
1134  * must ensure to later call wake_up_q() for the actual
1135  * wakeups to occur.
1136  */
1137 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1138 {
1139         struct task_struct *p = q->task;
1140
1141         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1142                 return;
1143
1144         /*
1145          * Queue the task for later wakeup for after we've released
1146          * the hb->lock. wake_q_add() grabs reference to p.
1147          */
1148         wake_q_add(wake_q, p);
1149         __unqueue_futex(q);
1150         /*
1151          * The waiting task can free the futex_q as soon as
1152          * q->lock_ptr = NULL is written, without taking any locks. A
1153          * memory barrier is required here to prevent the following
1154          * store to lock_ptr from getting ahead of the plist_del.
1155          */
1156         smp_wmb();
1157         q->lock_ptr = NULL;
1158 }
1159
1160 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1161                          struct futex_hash_bucket *hb)
1162 {
1163         struct task_struct *new_owner;
1164         struct futex_pi_state *pi_state = this->pi_state;
1165         u32 uninitialized_var(curval), newval;
1166         WAKE_Q(wake_q);
1167         bool deboost;
1168         int ret = 0;
1169
1170         if (!pi_state)
1171                 return -EINVAL;
1172
1173         /*
1174          * If current does not own the pi_state then the futex is
1175          * inconsistent and user space fiddled with the futex value.
1176          */
1177         if (pi_state->owner != current)
1178                 return -EINVAL;
1179
1180         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1181         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1182
1183         /*
1184          * It is possible that the next waiter (the one that brought
1185          * this owner to the kernel) timed out and is no longer
1186          * waiting on the lock.
1187          */
1188         if (!new_owner)
1189                 new_owner = this->task;
1190
1191         /*
1192          * We pass it to the next owner. The WAITERS bit is always
1193          * kept enabled while there is PI state around. We cleanup the
1194          * owner died bit, because we are the owner.
1195          */
1196         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1197
1198         if (unlikely(should_fail_futex(true)))
1199                 ret = -EFAULT;
1200
1201         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1202                 ret = -EFAULT;
1203         else if (curval != uval)
1204                 ret = -EINVAL;
1205         if (ret) {
1206                 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1207                 return ret;
1208         }
1209
1210         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1211         WARN_ON(list_empty(&pi_state->list));
1212         list_del_init(&pi_state->list);
1213         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1214
1215         raw_spin_lock_irq(&new_owner->pi_lock);
1216         WARN_ON(!list_empty(&pi_state->list));
1217         list_add(&pi_state->list, &new_owner->pi_state_list);
1218         pi_state->owner = new_owner;
1219         raw_spin_unlock_irq(&new_owner->pi_lock);
1220
1221         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1222
1223         deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1224
1225         /*
1226          * First unlock HB so the waiter does not spin on it once he got woken
1227          * up. Second wake up the waiter before the priority is adjusted. If we
1228          * deboost first (and lose our higher priority), then the task might get
1229          * scheduled away before the wake up can take place.
1230          */
1231         spin_unlock(&hb->lock);
1232         wake_up_q(&wake_q);
1233         if (deboost)
1234                 rt_mutex_adjust_prio(current);
1235
1236         return 0;
1237 }
1238
1239 /*
1240  * Express the locking dependencies for lockdep:
1241  */
1242 static inline void
1243 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1244 {
1245         if (hb1 <= hb2) {
1246                 spin_lock(&hb1->lock);
1247                 if (hb1 < hb2)
1248                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1249         } else { /* hb1 > hb2 */
1250                 spin_lock(&hb2->lock);
1251                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1252         }
1253 }
1254
1255 static inline void
1256 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1257 {
1258         spin_unlock(&hb1->lock);
1259         if (hb1 != hb2)
1260                 spin_unlock(&hb2->lock);
1261 }
1262
1263 /*
1264  * Wake up waiters matching bitset queued on this futex (uaddr).
1265  */
1266 static int
1267 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1268 {
1269         struct futex_hash_bucket *hb;
1270         struct futex_q *this, *next;
1271         union futex_key key = FUTEX_KEY_INIT;
1272         int ret;
1273         WAKE_Q(wake_q);
1274
1275         if (!bitset)
1276                 return -EINVAL;
1277
1278         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1279         if (unlikely(ret != 0))
1280                 goto out;
1281
1282         hb = hash_futex(&key);
1283
1284         /* Make sure we really have tasks to wakeup */
1285         if (!hb_waiters_pending(hb))
1286                 goto out_put_key;
1287
1288         spin_lock(&hb->lock);
1289
1290         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1291                 if (match_futex (&this->key, &key)) {
1292                         if (this->pi_state || this->rt_waiter) {
1293                                 ret = -EINVAL;
1294                                 break;
1295                         }
1296
1297                         /* Check if one of the bits is set in both bitsets */
1298                         if (!(this->bitset & bitset))
1299                                 continue;
1300
1301                         mark_wake_futex(&wake_q, this);
1302                         if (++ret >= nr_wake)
1303                                 break;
1304                 }
1305         }
1306
1307         spin_unlock(&hb->lock);
1308         wake_up_q(&wake_q);
1309 out_put_key:
1310         put_futex_key(&key);
1311 out:
1312         return ret;
1313 }
1314
1315 /*
1316  * Wake up all waiters hashed on the physical page that is mapped
1317  * to this virtual address:
1318  */
1319 static int
1320 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1321               int nr_wake, int nr_wake2, int op)
1322 {
1323         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1324         struct futex_hash_bucket *hb1, *hb2;
1325         struct futex_q *this, *next;
1326         int ret, op_ret;
1327         WAKE_Q(wake_q);
1328
1329 retry:
1330         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1331         if (unlikely(ret != 0))
1332                 goto out;
1333         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1334         if (unlikely(ret != 0))
1335                 goto out_put_key1;
1336
1337         hb1 = hash_futex(&key1);
1338         hb2 = hash_futex(&key2);
1339
1340 retry_private:
1341         double_lock_hb(hb1, hb2);
1342         op_ret = futex_atomic_op_inuser(op, uaddr2);
1343         if (unlikely(op_ret < 0)) {
1344
1345                 double_unlock_hb(hb1, hb2);
1346
1347 #ifndef CONFIG_MMU
1348                 /*
1349                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1350                  * but we might get them from range checking
1351                  */
1352                 ret = op_ret;
1353                 goto out_put_keys;
1354 #endif
1355
1356                 if (unlikely(op_ret != -EFAULT)) {
1357                         ret = op_ret;
1358                         goto out_put_keys;
1359                 }
1360
1361                 ret = fault_in_user_writeable(uaddr2);
1362                 if (ret)
1363                         goto out_put_keys;
1364
1365                 if (!(flags & FLAGS_SHARED))
1366                         goto retry_private;
1367
1368                 put_futex_key(&key2);
1369                 put_futex_key(&key1);
1370                 goto retry;
1371         }
1372
1373         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1374                 if (match_futex (&this->key, &key1)) {
1375                         if (this->pi_state || this->rt_waiter) {
1376                                 ret = -EINVAL;
1377                                 goto out_unlock;
1378                         }
1379                         mark_wake_futex(&wake_q, this);
1380                         if (++ret >= nr_wake)
1381                                 break;
1382                 }
1383         }
1384
1385         if (op_ret > 0) {
1386                 op_ret = 0;
1387                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1388                         if (match_futex (&this->key, &key2)) {
1389                                 if (this->pi_state || this->rt_waiter) {
1390                                         ret = -EINVAL;
1391                                         goto out_unlock;
1392                                 }
1393                                 mark_wake_futex(&wake_q, this);
1394                                 if (++op_ret >= nr_wake2)
1395                                         break;
1396                         }
1397                 }
1398                 ret += op_ret;
1399         }
1400
1401 out_unlock:
1402         double_unlock_hb(hb1, hb2);
1403         wake_up_q(&wake_q);
1404 out_put_keys:
1405         put_futex_key(&key2);
1406 out_put_key1:
1407         put_futex_key(&key1);
1408 out:
1409         return ret;
1410 }
1411
1412 /**
1413  * requeue_futex() - Requeue a futex_q from one hb to another
1414  * @q:          the futex_q to requeue
1415  * @hb1:        the source hash_bucket
1416  * @hb2:        the target hash_bucket
1417  * @key2:       the new key for the requeued futex_q
1418  */
1419 static inline
1420 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1421                    struct futex_hash_bucket *hb2, union futex_key *key2)
1422 {
1423
1424         /*
1425          * If key1 and key2 hash to the same bucket, no need to
1426          * requeue.
1427          */
1428         if (likely(&hb1->chain != &hb2->chain)) {
1429                 plist_del(&q->list, &hb1->chain);
1430                 hb_waiters_dec(hb1);
1431                 plist_add(&q->list, &hb2->chain);
1432                 hb_waiters_inc(hb2);
1433                 q->lock_ptr = &hb2->lock;
1434         }
1435         get_futex_key_refs(key2);
1436         q->key = *key2;
1437 }
1438
1439 /**
1440  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1441  * @q:          the futex_q
1442  * @key:        the key of the requeue target futex
1443  * @hb:         the hash_bucket of the requeue target futex
1444  *
1445  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1446  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1447  * to the requeue target futex so the waiter can detect the wakeup on the right
1448  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1449  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1450  * to protect access to the pi_state to fixup the owner later.  Must be called
1451  * with both q->lock_ptr and hb->lock held.
1452  */
1453 static inline
1454 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1455                            struct futex_hash_bucket *hb)
1456 {
1457         get_futex_key_refs(key);
1458         q->key = *key;
1459
1460         __unqueue_futex(q);
1461
1462         WARN_ON(!q->rt_waiter);
1463         q->rt_waiter = NULL;
1464
1465         q->lock_ptr = &hb->lock;
1466
1467         wake_up_state(q->task, TASK_NORMAL);
1468 }
1469
1470 /**
1471  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1472  * @pifutex:            the user address of the to futex
1473  * @hb1:                the from futex hash bucket, must be locked by the caller
1474  * @hb2:                the to futex hash bucket, must be locked by the caller
1475  * @key1:               the from futex key
1476  * @key2:               the to futex key
1477  * @ps:                 address to store the pi_state pointer
1478  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1479  *
1480  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1481  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1482  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1483  * hb1 and hb2 must be held by the caller.
1484  *
1485  * Return:
1486  *  0 - failed to acquire the lock atomically;
1487  * >0 - acquired the lock, return value is vpid of the top_waiter
1488  * <0 - error
1489  */
1490 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1491                                  struct futex_hash_bucket *hb1,
1492                                  struct futex_hash_bucket *hb2,
1493                                  union futex_key *key1, union futex_key *key2,
1494                                  struct futex_pi_state **ps, int set_waiters)
1495 {
1496         struct futex_q *top_waiter = NULL;
1497         u32 curval;
1498         int ret, vpid;
1499
1500         if (get_futex_value_locked(&curval, pifutex))
1501                 return -EFAULT;
1502
1503         if (unlikely(should_fail_futex(true)))
1504                 return -EFAULT;
1505
1506         /*
1507          * Find the top_waiter and determine if there are additional waiters.
1508          * If the caller intends to requeue more than 1 waiter to pifutex,
1509          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1510          * as we have means to handle the possible fault.  If not, don't set
1511          * the bit unecessarily as it will force the subsequent unlock to enter
1512          * the kernel.
1513          */
1514         top_waiter = futex_top_waiter(hb1, key1);
1515
1516         /* There are no waiters, nothing for us to do. */
1517         if (!top_waiter)
1518                 return 0;
1519
1520         /* Ensure we requeue to the expected futex. */
1521         if (!match_futex(top_waiter->requeue_pi_key, key2))
1522                 return -EINVAL;
1523
1524         /*
1525          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1526          * the contended case or if set_waiters is 1.  The pi_state is returned
1527          * in ps in contended cases.
1528          */
1529         vpid = task_pid_vnr(top_waiter->task);
1530         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1531                                    set_waiters);
1532         if (ret == 1) {
1533                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1534                 return vpid;
1535         }
1536         return ret;
1537 }
1538
1539 /**
1540  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1541  * @uaddr1:     source futex user address
1542  * @flags:      futex flags (FLAGS_SHARED, etc.)
1543  * @uaddr2:     target futex user address
1544  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1545  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1546  * @cmpval:     @uaddr1 expected value (or %NULL)
1547  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1548  *              pi futex (pi to pi requeue is not supported)
1549  *
1550  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1551  * uaddr2 atomically on behalf of the top waiter.
1552  *
1553  * Return:
1554  * >=0 - on success, the number of tasks requeued or woken;
1555  *  <0 - on error
1556  */
1557 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1558                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1559                          u32 *cmpval, int requeue_pi)
1560 {
1561         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1562         int drop_count = 0, task_count = 0, ret;
1563         struct futex_pi_state *pi_state = NULL;
1564         struct futex_hash_bucket *hb1, *hb2;
1565         struct futex_q *this, *next;
1566         WAKE_Q(wake_q);
1567
1568         if (requeue_pi) {
1569                 /*
1570                  * Requeue PI only works on two distinct uaddrs. This
1571                  * check is only valid for private futexes. See below.
1572                  */
1573                 if (uaddr1 == uaddr2)
1574                         return -EINVAL;
1575
1576                 /*
1577                  * requeue_pi requires a pi_state, try to allocate it now
1578                  * without any locks in case it fails.
1579                  */
1580                 if (refill_pi_state_cache())
1581                         return -ENOMEM;
1582                 /*
1583                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1584                  * + nr_requeue, since it acquires the rt_mutex prior to
1585                  * returning to userspace, so as to not leave the rt_mutex with
1586                  * waiters and no owner.  However, second and third wake-ups
1587                  * cannot be predicted as they involve race conditions with the
1588                  * first wake and a fault while looking up the pi_state.  Both
1589                  * pthread_cond_signal() and pthread_cond_broadcast() should
1590                  * use nr_wake=1.
1591                  */
1592                 if (nr_wake != 1)
1593                         return -EINVAL;
1594         }
1595
1596 retry:
1597         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1598         if (unlikely(ret != 0))
1599                 goto out;
1600         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1601                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1602         if (unlikely(ret != 0))
1603                 goto out_put_key1;
1604
1605         /*
1606          * The check above which compares uaddrs is not sufficient for
1607          * shared futexes. We need to compare the keys:
1608          */
1609         if (requeue_pi && match_futex(&key1, &key2)) {
1610                 ret = -EINVAL;
1611                 goto out_put_keys;
1612         }
1613
1614         hb1 = hash_futex(&key1);
1615         hb2 = hash_futex(&key2);
1616
1617 retry_private:
1618         hb_waiters_inc(hb2);
1619         double_lock_hb(hb1, hb2);
1620
1621         if (likely(cmpval != NULL)) {
1622                 u32 curval;
1623
1624                 ret = get_futex_value_locked(&curval, uaddr1);
1625
1626                 if (unlikely(ret)) {
1627                         double_unlock_hb(hb1, hb2);
1628                         hb_waiters_dec(hb2);
1629
1630                         ret = get_user(curval, uaddr1);
1631                         if (ret)
1632                                 goto out_put_keys;
1633
1634                         if (!(flags & FLAGS_SHARED))
1635                                 goto retry_private;
1636
1637                         put_futex_key(&key2);
1638                         put_futex_key(&key1);
1639                         goto retry;
1640                 }
1641                 if (curval != *cmpval) {
1642                         ret = -EAGAIN;
1643                         goto out_unlock;
1644                 }
1645         }
1646
1647         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1648                 /*
1649                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1650                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1651                  * bit.  We force this here where we are able to easily handle
1652                  * faults rather in the requeue loop below.
1653                  */
1654                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1655                                                  &key2, &pi_state, nr_requeue);
1656
1657                 /*
1658                  * At this point the top_waiter has either taken uaddr2 or is
1659                  * waiting on it.  If the former, then the pi_state will not
1660                  * exist yet, look it up one more time to ensure we have a
1661                  * reference to it. If the lock was taken, ret contains the
1662                  * vpid of the top waiter task.
1663                  */
1664                 if (ret > 0) {
1665                         WARN_ON(pi_state);
1666                         drop_count++;
1667                         task_count++;
1668                         /*
1669                          * If we acquired the lock, then the user
1670                          * space value of uaddr2 should be vpid. It
1671                          * cannot be changed by the top waiter as it
1672                          * is blocked on hb2 lock if it tries to do
1673                          * so. If something fiddled with it behind our
1674                          * back the pi state lookup might unearth
1675                          * it. So we rather use the known value than
1676                          * rereading and handing potential crap to
1677                          * lookup_pi_state.
1678                          */
1679                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1680                 }
1681
1682                 switch (ret) {
1683                 case 0:
1684                         break;
1685                 case -EFAULT:
1686                         free_pi_state(pi_state);
1687                         pi_state = NULL;
1688                         double_unlock_hb(hb1, hb2);
1689                         hb_waiters_dec(hb2);
1690                         put_futex_key(&key2);
1691                         put_futex_key(&key1);
1692                         ret = fault_in_user_writeable(uaddr2);
1693                         if (!ret)
1694                                 goto retry;
1695                         goto out;
1696                 case -EAGAIN:
1697                         /*
1698                          * Two reasons for this:
1699                          * - Owner is exiting and we just wait for the
1700                          *   exit to complete.
1701                          * - The user space value changed.
1702                          */
1703                         free_pi_state(pi_state);
1704                         pi_state = NULL;
1705                         double_unlock_hb(hb1, hb2);
1706                         hb_waiters_dec(hb2);
1707                         put_futex_key(&key2);
1708                         put_futex_key(&key1);
1709                         cond_resched();
1710                         goto retry;
1711                 default:
1712                         goto out_unlock;
1713                 }
1714         }
1715
1716         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1717                 if (task_count - nr_wake >= nr_requeue)
1718                         break;
1719
1720                 if (!match_futex(&this->key, &key1))
1721                         continue;
1722
1723                 /*
1724                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1725                  * be paired with each other and no other futex ops.
1726                  *
1727                  * We should never be requeueing a futex_q with a pi_state,
1728                  * which is awaiting a futex_unlock_pi().
1729                  */
1730                 if ((requeue_pi && !this->rt_waiter) ||
1731                     (!requeue_pi && this->rt_waiter) ||
1732                     this->pi_state) {
1733                         ret = -EINVAL;
1734                         break;
1735                 }
1736
1737                 /*
1738                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1739                  * lock, we already woke the top_waiter.  If not, it will be
1740                  * woken by futex_unlock_pi().
1741                  */
1742                 if (++task_count <= nr_wake && !requeue_pi) {
1743                         mark_wake_futex(&wake_q, this);
1744                         continue;
1745                 }
1746
1747                 /* Ensure we requeue to the expected futex for requeue_pi. */
1748                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1749                         ret = -EINVAL;
1750                         break;
1751                 }
1752
1753                 /*
1754                  * Requeue nr_requeue waiters and possibly one more in the case
1755                  * of requeue_pi if we couldn't acquire the lock atomically.
1756                  */
1757                 if (requeue_pi) {
1758                         /* Prepare the waiter to take the rt_mutex. */
1759                         atomic_inc(&pi_state->refcount);
1760                         this->pi_state = pi_state;
1761                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1762                                                         this->rt_waiter,
1763                                                         this->task);
1764                         if (ret == 1) {
1765                                 /* We got the lock. */
1766                                 requeue_pi_wake_futex(this, &key2, hb2);
1767                                 drop_count++;
1768                                 continue;
1769                         } else if (ret) {
1770                                 /* -EDEADLK */
1771                                 this->pi_state = NULL;
1772                                 free_pi_state(pi_state);
1773                                 goto out_unlock;
1774                         }
1775                 }
1776                 requeue_futex(this, hb1, hb2, &key2);
1777                 drop_count++;
1778         }
1779
1780 out_unlock:
1781         free_pi_state(pi_state);
1782         double_unlock_hb(hb1, hb2);
1783         wake_up_q(&wake_q);
1784         hb_waiters_dec(hb2);
1785
1786         /*
1787          * drop_futex_key_refs() must be called outside the spinlocks. During
1788          * the requeue we moved futex_q's from the hash bucket at key1 to the
1789          * one at key2 and updated their key pointer.  We no longer need to
1790          * hold the references to key1.
1791          */
1792         while (--drop_count >= 0)
1793                 drop_futex_key_refs(&key1);
1794
1795 out_put_keys:
1796         put_futex_key(&key2);
1797 out_put_key1:
1798         put_futex_key(&key1);
1799 out:
1800         return ret ? ret : task_count;
1801 }
1802
1803 /* The key must be already stored in q->key. */
1804 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1805         __acquires(&hb->lock)
1806 {
1807         struct futex_hash_bucket *hb;
1808
1809         hb = hash_futex(&q->key);
1810
1811         /*
1812          * Increment the counter before taking the lock so that
1813          * a potential waker won't miss a to-be-slept task that is
1814          * waiting for the spinlock. This is safe as all queue_lock()
1815          * users end up calling queue_me(). Similarly, for housekeeping,
1816          * decrement the counter at queue_unlock() when some error has
1817          * occurred and we don't end up adding the task to the list.
1818          */
1819         hb_waiters_inc(hb);
1820
1821         q->lock_ptr = &hb->lock;
1822
1823         spin_lock(&hb->lock); /* implies MB (A) */
1824         return hb;
1825 }
1826
1827 static inline void
1828 queue_unlock(struct futex_hash_bucket *hb)
1829         __releases(&hb->lock)
1830 {
1831         spin_unlock(&hb->lock);
1832         hb_waiters_dec(hb);
1833 }
1834
1835 /**
1836  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1837  * @q:  The futex_q to enqueue
1838  * @hb: The destination hash bucket
1839  *
1840  * The hb->lock must be held by the caller, and is released here. A call to
1841  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1842  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1843  * or nothing if the unqueue is done as part of the wake process and the unqueue
1844  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1845  * an example).
1846  */
1847 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1848         __releases(&hb->lock)
1849 {
1850         int prio;
1851
1852         /*
1853          * The priority used to register this element is
1854          * - either the real thread-priority for the real-time threads
1855          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1856          * - or MAX_RT_PRIO for non-RT threads.
1857          * Thus, all RT-threads are woken first in priority order, and
1858          * the others are woken last, in FIFO order.
1859          */
1860         prio = min(current->normal_prio, MAX_RT_PRIO);
1861
1862         plist_node_init(&q->list, prio);
1863         plist_add(&q->list, &hb->chain);
1864         q->task = current;
1865         spin_unlock(&hb->lock);
1866 }
1867
1868 /**
1869  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1870  * @q:  The futex_q to unqueue
1871  *
1872  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1873  * be paired with exactly one earlier call to queue_me().
1874  *
1875  * Return:
1876  *   1 - if the futex_q was still queued (and we removed unqueued it);
1877  *   0 - if the futex_q was already removed by the waking thread
1878  */
1879 static int unqueue_me(struct futex_q *q)
1880 {
1881         spinlock_t *lock_ptr;
1882         int ret = 0;
1883
1884         /* In the common case we don't take the spinlock, which is nice. */
1885 retry:
1886         lock_ptr = q->lock_ptr;
1887         barrier();
1888         if (lock_ptr != NULL) {
1889                 spin_lock(lock_ptr);
1890                 /*
1891                  * q->lock_ptr can change between reading it and
1892                  * spin_lock(), causing us to take the wrong lock.  This
1893                  * corrects the race condition.
1894                  *
1895                  * Reasoning goes like this: if we have the wrong lock,
1896                  * q->lock_ptr must have changed (maybe several times)
1897                  * between reading it and the spin_lock().  It can
1898                  * change again after the spin_lock() but only if it was
1899                  * already changed before the spin_lock().  It cannot,
1900                  * however, change back to the original value.  Therefore
1901                  * we can detect whether we acquired the correct lock.
1902                  */
1903                 if (unlikely(lock_ptr != q->lock_ptr)) {
1904                         spin_unlock(lock_ptr);
1905                         goto retry;
1906                 }
1907                 __unqueue_futex(q);
1908
1909                 BUG_ON(q->pi_state);
1910
1911                 spin_unlock(lock_ptr);
1912                 ret = 1;
1913         }
1914
1915         drop_futex_key_refs(&q->key);
1916         return ret;
1917 }
1918
1919 /*
1920  * PI futexes can not be requeued and must remove themself from the
1921  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1922  * and dropped here.
1923  */
1924 static void unqueue_me_pi(struct futex_q *q)
1925         __releases(q->lock_ptr)
1926 {
1927         __unqueue_futex(q);
1928
1929         BUG_ON(!q->pi_state);
1930         free_pi_state(q->pi_state);
1931         q->pi_state = NULL;
1932
1933         spin_unlock(q->lock_ptr);
1934 }
1935
1936 /*
1937  * Fixup the pi_state owner with the new owner.
1938  *
1939  * Must be called with hash bucket lock held and mm->sem held for non
1940  * private futexes.
1941  */
1942 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1943                                 struct task_struct *newowner)
1944 {
1945         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1946         struct futex_pi_state *pi_state = q->pi_state;
1947         struct task_struct *oldowner = pi_state->owner;
1948         u32 uval, uninitialized_var(curval), newval;
1949         int ret;
1950
1951         /* Owner died? */
1952         if (!pi_state->owner)
1953                 newtid |= FUTEX_OWNER_DIED;
1954
1955         /*
1956          * We are here either because we stole the rtmutex from the
1957          * previous highest priority waiter or we are the highest priority
1958          * waiter but failed to get the rtmutex the first time.
1959          * We have to replace the newowner TID in the user space variable.
1960          * This must be atomic as we have to preserve the owner died bit here.
1961          *
1962          * Note: We write the user space value _before_ changing the pi_state
1963          * because we can fault here. Imagine swapped out pages or a fork
1964          * that marked all the anonymous memory readonly for cow.
1965          *
1966          * Modifying pi_state _before_ the user space value would
1967          * leave the pi_state in an inconsistent state when we fault
1968          * here, because we need to drop the hash bucket lock to
1969          * handle the fault. This might be observed in the PID check
1970          * in lookup_pi_state.
1971          */
1972 retry:
1973         if (get_futex_value_locked(&uval, uaddr))
1974                 goto handle_fault;
1975
1976         while (1) {
1977                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1978
1979                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1980                         goto handle_fault;
1981                 if (curval == uval)
1982                         break;
1983                 uval = curval;
1984         }
1985
1986         /*
1987          * We fixed up user space. Now we need to fix the pi_state
1988          * itself.
1989          */
1990         if (pi_state->owner != NULL) {
1991                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1992                 WARN_ON(list_empty(&pi_state->list));
1993                 list_del_init(&pi_state->list);
1994                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1995         }
1996
1997         pi_state->owner = newowner;
1998
1999         raw_spin_lock_irq(&newowner->pi_lock);
2000         WARN_ON(!list_empty(&pi_state->list));
2001         list_add(&pi_state->list, &newowner->pi_state_list);
2002         raw_spin_unlock_irq(&newowner->pi_lock);
2003         return 0;
2004
2005         /*
2006          * To handle the page fault we need to drop the hash bucket
2007          * lock here. That gives the other task (either the highest priority
2008          * waiter itself or the task which stole the rtmutex) the
2009          * chance to try the fixup of the pi_state. So once we are
2010          * back from handling the fault we need to check the pi_state
2011          * after reacquiring the hash bucket lock and before trying to
2012          * do another fixup. When the fixup has been done already we
2013          * simply return.
2014          */
2015 handle_fault:
2016         spin_unlock(q->lock_ptr);
2017
2018         ret = fault_in_user_writeable(uaddr);
2019
2020         spin_lock(q->lock_ptr);
2021
2022         /*
2023          * Check if someone else fixed it for us:
2024          */
2025         if (pi_state->owner != oldowner)
2026                 return 0;
2027
2028         if (ret)
2029                 return ret;
2030
2031         goto retry;
2032 }
2033
2034 static long futex_wait_restart(struct restart_block *restart);
2035
2036 /**
2037  * fixup_owner() - Post lock pi_state and corner case management
2038  * @uaddr:      user address of the futex
2039  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2040  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2041  *
2042  * After attempting to lock an rt_mutex, this function is called to cleanup
2043  * the pi_state owner as well as handle race conditions that may allow us to
2044  * acquire the lock. Must be called with the hb lock held.
2045  *
2046  * Return:
2047  *  1 - success, lock taken;
2048  *  0 - success, lock not taken;
2049  * <0 - on error (-EFAULT)
2050  */
2051 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2052 {
2053         struct task_struct *owner;
2054         int ret = 0;
2055
2056         if (locked) {
2057                 /*
2058                  * Got the lock. We might not be the anticipated owner if we
2059                  * did a lock-steal - fix up the PI-state in that case:
2060                  */
2061                 if (q->pi_state->owner != current)
2062                         ret = fixup_pi_state_owner(uaddr, q, current);
2063                 goto out;
2064         }
2065
2066         /*
2067          * Catch the rare case, where the lock was released when we were on the
2068          * way back before we locked the hash bucket.
2069          */
2070         if (q->pi_state->owner == current) {
2071                 /*
2072                  * Try to get the rt_mutex now. This might fail as some other
2073                  * task acquired the rt_mutex after we removed ourself from the
2074                  * rt_mutex waiters list.
2075                  */
2076                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2077                         locked = 1;
2078                         goto out;
2079                 }
2080
2081                 /*
2082                  * pi_state is incorrect, some other task did a lock steal and
2083                  * we returned due to timeout or signal without taking the
2084                  * rt_mutex. Too late.
2085                  */
2086                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2087                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2088                 if (!owner)
2089                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2090                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2091                 ret = fixup_pi_state_owner(uaddr, q, owner);
2092                 goto out;
2093         }
2094
2095         /*
2096          * Paranoia check. If we did not take the lock, then we should not be
2097          * the owner of the rt_mutex.
2098          */
2099         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2100                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2101                                 "pi-state %p\n", ret,
2102                                 q->pi_state->pi_mutex.owner,
2103                                 q->pi_state->owner);
2104
2105 out:
2106         return ret ? ret : locked;
2107 }
2108
2109 /**
2110  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2111  * @hb:         the futex hash bucket, must be locked by the caller
2112  * @q:          the futex_q to queue up on
2113  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2114  */
2115 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2116                                 struct hrtimer_sleeper *timeout)
2117 {
2118         /*
2119          * The task state is guaranteed to be set before another task can
2120          * wake it. set_current_state() is implemented using smp_store_mb() and
2121          * queue_me() calls spin_unlock() upon completion, both serializing
2122          * access to the hash list and forcing another memory barrier.
2123          */
2124         set_current_state(TASK_INTERRUPTIBLE);
2125         queue_me(q, hb);
2126
2127         /* Arm the timer */
2128         if (timeout)
2129                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2130
2131         /*
2132          * If we have been removed from the hash list, then another task
2133          * has tried to wake us, and we can skip the call to schedule().
2134          */
2135         if (likely(!plist_node_empty(&q->list))) {
2136                 /*
2137                  * If the timer has already expired, current will already be
2138                  * flagged for rescheduling. Only call schedule if there
2139                  * is no timeout, or if it has yet to expire.
2140                  */
2141                 if (!timeout || timeout->task)
2142                         freezable_schedule();
2143         }
2144         __set_current_state(TASK_RUNNING);
2145 }
2146
2147 /**
2148  * futex_wait_setup() - Prepare to wait on a futex
2149  * @uaddr:      the futex userspace address
2150  * @val:        the expected value
2151  * @flags:      futex flags (FLAGS_SHARED, etc.)
2152  * @q:          the associated futex_q
2153  * @hb:         storage for hash_bucket pointer to be returned to caller
2154  *
2155  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2156  * compare it with the expected value.  Handle atomic faults internally.
2157  * Return with the hb lock held and a q.key reference on success, and unlocked
2158  * with no q.key reference on failure.
2159  *
2160  * Return:
2161  *  0 - uaddr contains val and hb has been locked;
2162  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2163  */
2164 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2165                            struct futex_q *q, struct futex_hash_bucket **hb)
2166 {
2167         u32 uval;
2168         int ret;
2169
2170         /*
2171          * Access the page AFTER the hash-bucket is locked.
2172          * Order is important:
2173          *
2174          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2175          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2176          *
2177          * The basic logical guarantee of a futex is that it blocks ONLY
2178          * if cond(var) is known to be true at the time of blocking, for
2179          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2180          * would open a race condition where we could block indefinitely with
2181          * cond(var) false, which would violate the guarantee.
2182          *
2183          * On the other hand, we insert q and release the hash-bucket only
2184          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2185          * absorb a wakeup if *uaddr does not match the desired values
2186          * while the syscall executes.
2187          */
2188 retry:
2189         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2190         if (unlikely(ret != 0))
2191                 return ret;
2192
2193 retry_private:
2194         *hb = queue_lock(q);
2195
2196         ret = get_futex_value_locked(&uval, uaddr);
2197
2198         if (ret) {
2199                 queue_unlock(*hb);
2200
2201                 ret = get_user(uval, uaddr);
2202                 if (ret)
2203                         goto out;
2204
2205                 if (!(flags & FLAGS_SHARED))
2206                         goto retry_private;
2207
2208                 put_futex_key(&q->key);
2209                 goto retry;
2210         }
2211
2212         if (uval != val) {
2213                 queue_unlock(*hb);
2214                 ret = -EWOULDBLOCK;
2215         }
2216
2217 out:
2218         if (ret)
2219                 put_futex_key(&q->key);
2220         return ret;
2221 }
2222
2223 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2224                       ktime_t *abs_time, u32 bitset)
2225 {
2226         struct hrtimer_sleeper timeout, *to = NULL;
2227         struct restart_block *restart;
2228         struct futex_hash_bucket *hb;
2229         struct futex_q q = futex_q_init;
2230         int ret;
2231
2232         if (!bitset)
2233                 return -EINVAL;
2234         q.bitset = bitset;
2235
2236         if (abs_time) {
2237                 to = &timeout;
2238
2239                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2240                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2241                                       HRTIMER_MODE_ABS);
2242                 hrtimer_init_sleeper(to, current);
2243                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2244                                              current->timer_slack_ns);
2245         }
2246
2247 retry:
2248         /*
2249          * Prepare to wait on uaddr. On success, holds hb lock and increments
2250          * q.key refs.
2251          */
2252         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2253         if (ret)
2254                 goto out;
2255
2256         /* queue_me and wait for wakeup, timeout, or a signal. */
2257         futex_wait_queue_me(hb, &q, to);
2258
2259         /* If we were woken (and unqueued), we succeeded, whatever. */
2260         ret = 0;
2261         /* unqueue_me() drops q.key ref */
2262         if (!unqueue_me(&q))
2263                 goto out;
2264         ret = -ETIMEDOUT;
2265         if (to && !to->task)
2266                 goto out;
2267
2268         /*
2269          * We expect signal_pending(current), but we might be the
2270          * victim of a spurious wakeup as well.
2271          */
2272         if (!signal_pending(current))
2273                 goto retry;
2274
2275         ret = -ERESTARTSYS;
2276         if (!abs_time)
2277                 goto out;
2278
2279         restart = &current->restart_block;
2280         restart->fn = futex_wait_restart;
2281         restart->futex.uaddr = uaddr;
2282         restart->futex.val = val;
2283         restart->futex.time = abs_time->tv64;
2284         restart->futex.bitset = bitset;
2285         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2286
2287         ret = -ERESTART_RESTARTBLOCK;
2288
2289 out:
2290         if (to) {
2291                 hrtimer_cancel(&to->timer);
2292                 destroy_hrtimer_on_stack(&to->timer);
2293         }
2294         return ret;
2295 }
2296
2297
2298 static long futex_wait_restart(struct restart_block *restart)
2299 {
2300         u32 __user *uaddr = restart->futex.uaddr;
2301         ktime_t t, *tp = NULL;
2302
2303         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2304                 t.tv64 = restart->futex.time;
2305                 tp = &t;
2306         }
2307         restart->fn = do_no_restart_syscall;
2308
2309         return (long)futex_wait(uaddr, restart->futex.flags,
2310                                 restart->futex.val, tp, restart->futex.bitset);
2311 }
2312
2313
2314 /*
2315  * Userspace tried a 0 -> TID atomic transition of the futex value
2316  * and failed. The kernel side here does the whole locking operation:
2317  * if there are waiters then it will block as a consequence of relying
2318  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2319  * a 0 value of the futex too.).
2320  *
2321  * Also serves as futex trylock_pi()'ing, and due semantics.
2322  */
2323 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2324                          ktime_t *time, int trylock)
2325 {
2326         struct hrtimer_sleeper timeout, *to = NULL;
2327         struct futex_hash_bucket *hb;
2328         struct futex_q q = futex_q_init;
2329         int res, ret;
2330
2331         if (refill_pi_state_cache())
2332                 return -ENOMEM;
2333
2334         if (time) {
2335                 to = &timeout;
2336                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2337                                       HRTIMER_MODE_ABS);
2338                 hrtimer_init_sleeper(to, current);
2339                 hrtimer_set_expires(&to->timer, *time);
2340         }
2341
2342 retry:
2343         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2344         if (unlikely(ret != 0))
2345                 goto out;
2346
2347 retry_private:
2348         hb = queue_lock(&q);
2349
2350         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2351         if (unlikely(ret)) {
2352                 /*
2353                  * Atomic work succeeded and we got the lock,
2354                  * or failed. Either way, we do _not_ block.
2355                  */
2356                 switch (ret) {
2357                 case 1:
2358                         /* We got the lock. */
2359                         ret = 0;
2360                         goto out_unlock_put_key;
2361                 case -EFAULT:
2362                         goto uaddr_faulted;
2363                 case -EAGAIN:
2364                         /*
2365                          * Two reasons for this:
2366                          * - Task is exiting and we just wait for the
2367                          *   exit to complete.
2368                          * - The user space value changed.
2369                          */
2370                         queue_unlock(hb);
2371                         put_futex_key(&q.key);
2372                         cond_resched();
2373                         goto retry;
2374                 default:
2375                         goto out_unlock_put_key;
2376                 }
2377         }
2378
2379         /*
2380          * Only actually queue now that the atomic ops are done:
2381          */
2382         queue_me(&q, hb);
2383
2384         WARN_ON(!q.pi_state);
2385         /*
2386          * Block on the PI mutex:
2387          */
2388         if (!trylock) {
2389                 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2390         } else {
2391                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2392                 /* Fixup the trylock return value: */
2393                 ret = ret ? 0 : -EWOULDBLOCK;
2394         }
2395
2396         spin_lock(q.lock_ptr);
2397         /*
2398          * Fixup the pi_state owner and possibly acquire the lock if we
2399          * haven't already.
2400          */
2401         res = fixup_owner(uaddr, &q, !ret);
2402         /*
2403          * If fixup_owner() returned an error, proprogate that.  If it acquired
2404          * the lock, clear our -ETIMEDOUT or -EINTR.
2405          */
2406         if (res)
2407                 ret = (res < 0) ? res : 0;
2408
2409         /*
2410          * If fixup_owner() faulted and was unable to handle the fault, unlock
2411          * it and return the fault to userspace.
2412          */
2413         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2414                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2415
2416         /* Unqueue and drop the lock */
2417         unqueue_me_pi(&q);
2418
2419         goto out_put_key;
2420
2421 out_unlock_put_key:
2422         queue_unlock(hb);
2423
2424 out_put_key:
2425         put_futex_key(&q.key);
2426 out:
2427         if (to)
2428                 destroy_hrtimer_on_stack(&to->timer);
2429         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2430
2431 uaddr_faulted:
2432         queue_unlock(hb);
2433
2434         ret = fault_in_user_writeable(uaddr);
2435         if (ret)
2436                 goto out_put_key;
2437
2438         if (!(flags & FLAGS_SHARED))
2439                 goto retry_private;
2440
2441         put_futex_key(&q.key);
2442         goto retry;
2443 }
2444
2445 /*
2446  * Userspace attempted a TID -> 0 atomic transition, and failed.
2447  * This is the in-kernel slowpath: we look up the PI state (if any),
2448  * and do the rt-mutex unlock.
2449  */
2450 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2451 {
2452         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2453         union futex_key key = FUTEX_KEY_INIT;
2454         struct futex_hash_bucket *hb;
2455         struct futex_q *match;
2456         int ret;
2457
2458 retry:
2459         if (get_user(uval, uaddr))
2460                 return -EFAULT;
2461         /*
2462          * We release only a lock we actually own:
2463          */
2464         if ((uval & FUTEX_TID_MASK) != vpid)
2465                 return -EPERM;
2466
2467         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2468         if (ret)
2469                 return ret;
2470
2471         hb = hash_futex(&key);
2472         spin_lock(&hb->lock);
2473
2474         /*
2475          * Check waiters first. We do not trust user space values at
2476          * all and we at least want to know if user space fiddled
2477          * with the futex value instead of blindly unlocking.
2478          */
2479         match = futex_top_waiter(hb, &key);
2480         if (match) {
2481                 ret = wake_futex_pi(uaddr, uval, match, hb);
2482                 /*
2483                  * In case of success wake_futex_pi dropped the hash
2484                  * bucket lock.
2485                  */
2486                 if (!ret)
2487                         goto out_putkey;
2488                 /*
2489                  * The atomic access to the futex value generated a
2490                  * pagefault, so retry the user-access and the wakeup:
2491                  */
2492                 if (ret == -EFAULT)
2493                         goto pi_faulted;
2494                 /*
2495                  * wake_futex_pi has detected invalid state. Tell user
2496                  * space.
2497                  */
2498                 goto out_unlock;
2499         }
2500
2501         /*
2502          * We have no kernel internal state, i.e. no waiters in the
2503          * kernel. Waiters which are about to queue themselves are stuck
2504          * on hb->lock. So we can safely ignore them. We do neither
2505          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2506          * owner.
2507          */
2508         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2509                 goto pi_faulted;
2510
2511         /*
2512          * If uval has changed, let user space handle it.
2513          */
2514         ret = (curval == uval) ? 0 : -EAGAIN;
2515
2516 out_unlock:
2517         spin_unlock(&hb->lock);
2518 out_putkey:
2519         put_futex_key(&key);
2520         return ret;
2521
2522 pi_faulted:
2523         spin_unlock(&hb->lock);
2524         put_futex_key(&key);
2525
2526         ret = fault_in_user_writeable(uaddr);
2527         if (!ret)
2528                 goto retry;
2529
2530         return ret;
2531 }
2532
2533 /**
2534  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2535  * @hb:         the hash_bucket futex_q was original enqueued on
2536  * @q:          the futex_q woken while waiting to be requeued
2537  * @key2:       the futex_key of the requeue target futex
2538  * @timeout:    the timeout associated with the wait (NULL if none)
2539  *
2540  * Detect if the task was woken on the initial futex as opposed to the requeue
2541  * target futex.  If so, determine if it was a timeout or a signal that caused
2542  * the wakeup and return the appropriate error code to the caller.  Must be
2543  * called with the hb lock held.
2544  *
2545  * Return:
2546  *  0 = no early wakeup detected;
2547  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2548  */
2549 static inline
2550 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2551                                    struct futex_q *q, union futex_key *key2,
2552                                    struct hrtimer_sleeper *timeout)
2553 {
2554         int ret = 0;
2555
2556         /*
2557          * With the hb lock held, we avoid races while we process the wakeup.
2558          * We only need to hold hb (and not hb2) to ensure atomicity as the
2559          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2560          * It can't be requeued from uaddr2 to something else since we don't
2561          * support a PI aware source futex for requeue.
2562          */
2563         if (!match_futex(&q->key, key2)) {
2564                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2565                 /*
2566                  * We were woken prior to requeue by a timeout or a signal.
2567                  * Unqueue the futex_q and determine which it was.
2568                  */
2569                 plist_del(&q->list, &hb->chain);
2570                 hb_waiters_dec(hb);
2571
2572                 /* Handle spurious wakeups gracefully */
2573                 ret = -EWOULDBLOCK;
2574                 if (timeout && !timeout->task)
2575                         ret = -ETIMEDOUT;
2576                 else if (signal_pending(current))
2577                         ret = -ERESTARTNOINTR;
2578         }
2579         return ret;
2580 }
2581
2582 /**
2583  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2584  * @uaddr:      the futex we initially wait on (non-pi)
2585  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2586  *              the same type, no requeueing from private to shared, etc.
2587  * @val:        the expected value of uaddr
2588  * @abs_time:   absolute timeout
2589  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2590  * @uaddr2:     the pi futex we will take prior to returning to user-space
2591  *
2592  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2593  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2594  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2595  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2596  * without one, the pi logic would not know which task to boost/deboost, if
2597  * there was a need to.
2598  *
2599  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2600  * via the following--
2601  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2602  * 2) wakeup on uaddr2 after a requeue
2603  * 3) signal
2604  * 4) timeout
2605  *
2606  * If 3, cleanup and return -ERESTARTNOINTR.
2607  *
2608  * If 2, we may then block on trying to take the rt_mutex and return via:
2609  * 5) successful lock
2610  * 6) signal
2611  * 7) timeout
2612  * 8) other lock acquisition failure
2613  *
2614  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2615  *
2616  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2617  *
2618  * Return:
2619  *  0 - On success;
2620  * <0 - On error
2621  */
2622 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2623                                  u32 val, ktime_t *abs_time, u32 bitset,
2624                                  u32 __user *uaddr2)
2625 {
2626         struct hrtimer_sleeper timeout, *to = NULL;
2627         struct rt_mutex_waiter rt_waiter;
2628         struct rt_mutex *pi_mutex = NULL;
2629         struct futex_hash_bucket *hb;
2630         union futex_key key2 = FUTEX_KEY_INIT;
2631         struct futex_q q = futex_q_init;
2632         int res, ret;
2633
2634         if (uaddr == uaddr2)
2635                 return -EINVAL;
2636
2637         if (!bitset)
2638                 return -EINVAL;
2639
2640         if (abs_time) {
2641                 to = &timeout;
2642                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2643                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2644                                       HRTIMER_MODE_ABS);
2645                 hrtimer_init_sleeper(to, current);
2646                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2647                                              current->timer_slack_ns);
2648         }
2649
2650         /*
2651          * The waiter is allocated on our stack, manipulated by the requeue
2652          * code while we sleep on uaddr.
2653          */
2654         debug_rt_mutex_init_waiter(&rt_waiter);
2655         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2656         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2657         rt_waiter.task = NULL;
2658
2659         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2660         if (unlikely(ret != 0))
2661                 goto out;
2662
2663         q.bitset = bitset;
2664         q.rt_waiter = &rt_waiter;
2665         q.requeue_pi_key = &key2;
2666
2667         /*
2668          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2669          * count.
2670          */
2671         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2672         if (ret)
2673                 goto out_key2;
2674
2675         /*
2676          * The check above which compares uaddrs is not sufficient for
2677          * shared futexes. We need to compare the keys:
2678          */
2679         if (match_futex(&q.key, &key2)) {
2680                 queue_unlock(hb);
2681                 ret = -EINVAL;
2682                 goto out_put_keys;
2683         }
2684
2685         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2686         futex_wait_queue_me(hb, &q, to);
2687
2688         spin_lock(&hb->lock);
2689         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2690         spin_unlock(&hb->lock);
2691         if (ret)
2692                 goto out_put_keys;
2693
2694         /*
2695          * In order for us to be here, we know our q.key == key2, and since
2696          * we took the hb->lock above, we also know that futex_requeue() has
2697          * completed and we no longer have to concern ourselves with a wakeup
2698          * race with the atomic proxy lock acquisition by the requeue code. The
2699          * futex_requeue dropped our key1 reference and incremented our key2
2700          * reference count.
2701          */
2702
2703         /* Check if the requeue code acquired the second futex for us. */
2704         if (!q.rt_waiter) {
2705                 /*
2706                  * Got the lock. We might not be the anticipated owner if we
2707                  * did a lock-steal - fix up the PI-state in that case.
2708                  */
2709                 if (q.pi_state && (q.pi_state->owner != current)) {
2710                         spin_lock(q.lock_ptr);
2711                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2712                         spin_unlock(q.lock_ptr);
2713                 }
2714         } else {
2715                 /*
2716                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2717                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2718                  * the pi_state.
2719                  */
2720                 WARN_ON(!q.pi_state);
2721                 pi_mutex = &q.pi_state->pi_mutex;
2722                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2723                 debug_rt_mutex_free_waiter(&rt_waiter);
2724
2725                 spin_lock(q.lock_ptr);
2726                 /*
2727                  * Fixup the pi_state owner and possibly acquire the lock if we
2728                  * haven't already.
2729                  */
2730                 res = fixup_owner(uaddr2, &q, !ret);
2731                 /*
2732                  * If fixup_owner() returned an error, proprogate that.  If it
2733                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2734                  */
2735                 if (res)
2736                         ret = (res < 0) ? res : 0;
2737
2738                 /* Unqueue and drop the lock. */
2739                 unqueue_me_pi(&q);
2740         }
2741
2742         /*
2743          * If fixup_pi_state_owner() faulted and was unable to handle the
2744          * fault, unlock the rt_mutex and return the fault to userspace.
2745          */
2746         if (ret == -EFAULT) {
2747                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2748                         rt_mutex_unlock(pi_mutex);
2749         } else if (ret == -EINTR) {
2750                 /*
2751                  * We've already been requeued, but cannot restart by calling
2752                  * futex_lock_pi() directly. We could restart this syscall, but
2753                  * it would detect that the user space "val" changed and return
2754                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2755                  * -EWOULDBLOCK directly.
2756                  */
2757                 ret = -EWOULDBLOCK;
2758         }
2759
2760 out_put_keys:
2761         put_futex_key(&q.key);
2762 out_key2:
2763         put_futex_key(&key2);
2764
2765 out:
2766         if (to) {
2767                 hrtimer_cancel(&to->timer);
2768                 destroy_hrtimer_on_stack(&to->timer);
2769         }
2770         return ret;
2771 }
2772
2773 /*
2774  * Support for robust futexes: the kernel cleans up held futexes at
2775  * thread exit time.
2776  *
2777  * Implementation: user-space maintains a per-thread list of locks it
2778  * is holding. Upon do_exit(), the kernel carefully walks this list,
2779  * and marks all locks that are owned by this thread with the
2780  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2781  * always manipulated with the lock held, so the list is private and
2782  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2783  * field, to allow the kernel to clean up if the thread dies after
2784  * acquiring the lock, but just before it could have added itself to
2785  * the list. There can only be one such pending lock.
2786  */
2787
2788 /**
2789  * sys_set_robust_list() - Set the robust-futex list head of a task
2790  * @head:       pointer to the list-head
2791  * @len:        length of the list-head, as userspace expects
2792  */
2793 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2794                 size_t, len)
2795 {
2796         if (!futex_cmpxchg_enabled)
2797                 return -ENOSYS;
2798         /*
2799          * The kernel knows only one size for now:
2800          */
2801         if (unlikely(len != sizeof(*head)))
2802                 return -EINVAL;
2803
2804         current->robust_list = head;
2805
2806         return 0;
2807 }
2808
2809 /**
2810  * sys_get_robust_list() - Get the robust-futex list head of a task
2811  * @pid:        pid of the process [zero for current task]
2812  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2813  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2814  */
2815 SYSCALL_DEFINE3(get_robust_list, int, pid,
2816                 struct robust_list_head __user * __user *, head_ptr,
2817                 size_t __user *, len_ptr)
2818 {
2819         struct robust_list_head __user *head;
2820         unsigned long ret;
2821         struct task_struct *p;
2822
2823         if (!futex_cmpxchg_enabled)
2824                 return -ENOSYS;
2825
2826         rcu_read_lock();
2827
2828         ret = -ESRCH;
2829         if (!pid)
2830                 p = current;
2831         else {
2832                 p = find_task_by_vpid(pid);
2833                 if (!p)
2834                         goto err_unlock;
2835         }
2836
2837         ret = -EPERM;
2838         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2839                 goto err_unlock;
2840
2841         head = p->robust_list;
2842         rcu_read_unlock();
2843
2844         if (put_user(sizeof(*head), len_ptr))
2845                 return -EFAULT;
2846         return put_user(head, head_ptr);
2847
2848 err_unlock:
2849         rcu_read_unlock();
2850
2851         return ret;
2852 }
2853
2854 /*
2855  * Process a futex-list entry, check whether it's owned by the
2856  * dying task, and do notification if so:
2857  */
2858 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2859 {
2860         u32 uval, uninitialized_var(nval), mval;
2861
2862 retry:
2863         if (get_user(uval, uaddr))
2864                 return -1;
2865
2866         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2867                 /*
2868                  * Ok, this dying thread is truly holding a futex
2869                  * of interest. Set the OWNER_DIED bit atomically
2870                  * via cmpxchg, and if the value had FUTEX_WAITERS
2871                  * set, wake up a waiter (if any). (We have to do a
2872                  * futex_wake() even if OWNER_DIED is already set -
2873                  * to handle the rare but possible case of recursive
2874                  * thread-death.) The rest of the cleanup is done in
2875                  * userspace.
2876                  */
2877                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2878                 /*
2879                  * We are not holding a lock here, but we want to have
2880                  * the pagefault_disable/enable() protection because
2881                  * we want to handle the fault gracefully. If the
2882                  * access fails we try to fault in the futex with R/W
2883                  * verification via get_user_pages. get_user() above
2884                  * does not guarantee R/W access. If that fails we
2885                  * give up and leave the futex locked.
2886                  */
2887                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2888                         if (fault_in_user_writeable(uaddr))
2889                                 return -1;
2890                         goto retry;
2891                 }
2892                 if (nval != uval)
2893                         goto retry;
2894
2895                 /*
2896                  * Wake robust non-PI futexes here. The wakeup of
2897                  * PI futexes happens in exit_pi_state():
2898                  */
2899                 if (!pi && (uval & FUTEX_WAITERS))
2900                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2901         }
2902         return 0;
2903 }
2904
2905 /*
2906  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2907  */
2908 static inline int fetch_robust_entry(struct robust_list __user **entry,
2909                                      struct robust_list __user * __user *head,
2910                                      unsigned int *pi)
2911 {
2912         unsigned long uentry;
2913
2914         if (get_user(uentry, (unsigned long __user *)head))
2915                 return -EFAULT;
2916
2917         *entry = (void __user *)(uentry & ~1UL);
2918         *pi = uentry & 1;
2919
2920         return 0;
2921 }
2922
2923 /*
2924  * Walk curr->robust_list (very carefully, it's a userspace list!)
2925  * and mark any locks found there dead, and notify any waiters.
2926  *
2927  * We silently return on any sign of list-walking problem.
2928  */
2929 void exit_robust_list(struct task_struct *curr)
2930 {
2931         struct robust_list_head __user *head = curr->robust_list;
2932         struct robust_list __user *entry, *next_entry, *pending;
2933         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2934         unsigned int uninitialized_var(next_pi);
2935         unsigned long futex_offset;
2936         int rc;
2937
2938         if (!futex_cmpxchg_enabled)
2939                 return;
2940
2941         /*
2942          * Fetch the list head (which was registered earlier, via
2943          * sys_set_robust_list()):
2944          */
2945         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2946                 return;
2947         /*
2948          * Fetch the relative futex offset:
2949          */
2950         if (get_user(futex_offset, &head->futex_offset))
2951                 return;
2952         /*
2953          * Fetch any possibly pending lock-add first, and handle it
2954          * if it exists:
2955          */
2956         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2957                 return;
2958
2959         next_entry = NULL;      /* avoid warning with gcc */
2960         while (entry != &head->list) {
2961                 /*
2962                  * Fetch the next entry in the list before calling
2963                  * handle_futex_death:
2964                  */
2965                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2966                 /*
2967                  * A pending lock might already be on the list, so
2968                  * don't process it twice:
2969                  */
2970                 if (entry != pending)
2971                         if (handle_futex_death((void __user *)entry + futex_offset,
2972                                                 curr, pi))
2973                                 return;
2974                 if (rc)
2975                         return;
2976                 entry = next_entry;
2977                 pi = next_pi;
2978                 /*
2979                  * Avoid excessively long or circular lists:
2980                  */
2981                 if (!--limit)
2982                         break;
2983
2984                 cond_resched();
2985         }
2986
2987         if (pending)
2988                 handle_futex_death((void __user *)pending + futex_offset,
2989                                    curr, pip);
2990 }
2991
2992 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2993                 u32 __user *uaddr2, u32 val2, u32 val3)
2994 {
2995         int cmd = op & FUTEX_CMD_MASK;
2996         unsigned int flags = 0;
2997
2998         if (!(op & FUTEX_PRIVATE_FLAG))
2999                 flags |= FLAGS_SHARED;
3000
3001         if (op & FUTEX_CLOCK_REALTIME) {
3002                 flags |= FLAGS_CLOCKRT;
3003                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3004                         return -ENOSYS;
3005         }
3006
3007         switch (cmd) {
3008         case FUTEX_LOCK_PI:
3009         case FUTEX_UNLOCK_PI:
3010         case FUTEX_TRYLOCK_PI:
3011         case FUTEX_WAIT_REQUEUE_PI:
3012         case FUTEX_CMP_REQUEUE_PI:
3013                 if (!futex_cmpxchg_enabled)
3014                         return -ENOSYS;
3015         }
3016
3017         switch (cmd) {
3018         case FUTEX_WAIT:
3019                 val3 = FUTEX_BITSET_MATCH_ANY;
3020         case FUTEX_WAIT_BITSET:
3021                 return futex_wait(uaddr, flags, val, timeout, val3);
3022         case FUTEX_WAKE:
3023                 val3 = FUTEX_BITSET_MATCH_ANY;
3024         case FUTEX_WAKE_BITSET:
3025                 return futex_wake(uaddr, flags, val, val3);
3026         case FUTEX_REQUEUE:
3027                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3028         case FUTEX_CMP_REQUEUE:
3029                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3030         case FUTEX_WAKE_OP:
3031                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3032         case FUTEX_LOCK_PI:
3033                 return futex_lock_pi(uaddr, flags, timeout, 0);
3034         case FUTEX_UNLOCK_PI:
3035                 return futex_unlock_pi(uaddr, flags);
3036         case FUTEX_TRYLOCK_PI:
3037                 return futex_lock_pi(uaddr, flags, NULL, 1);
3038         case FUTEX_WAIT_REQUEUE_PI:
3039                 val3 = FUTEX_BITSET_MATCH_ANY;
3040                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3041                                              uaddr2);
3042         case FUTEX_CMP_REQUEUE_PI:
3043                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3044         }
3045         return -ENOSYS;
3046 }
3047
3048
3049 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3050                 struct timespec __user *, utime, u32 __user *, uaddr2,
3051                 u32, val3)
3052 {
3053         struct timespec ts;
3054         ktime_t t, *tp = NULL;
3055         u32 val2 = 0;
3056         int cmd = op & FUTEX_CMD_MASK;
3057
3058         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3059                       cmd == FUTEX_WAIT_BITSET ||
3060                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3061                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3062                         return -EFAULT;
3063                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3064                         return -EFAULT;
3065                 if (!timespec_valid(&ts))
3066                         return -EINVAL;
3067
3068                 t = timespec_to_ktime(ts);
3069                 if (cmd == FUTEX_WAIT)
3070                         t = ktime_add_safe(ktime_get(), t);
3071                 tp = &t;
3072         }
3073         /*
3074          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3075          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3076          */
3077         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3078             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3079                 val2 = (u32) (unsigned long) utime;
3080
3081         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3082 }
3083
3084 static void __init futex_detect_cmpxchg(void)
3085 {
3086 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3087         u32 curval;
3088
3089         /*
3090          * This will fail and we want it. Some arch implementations do
3091          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3092          * functionality. We want to know that before we call in any
3093          * of the complex code paths. Also we want to prevent
3094          * registration of robust lists in that case. NULL is
3095          * guaranteed to fault and we get -EFAULT on functional
3096          * implementation, the non-functional ones will return
3097          * -ENOSYS.
3098          */
3099         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3100                 futex_cmpxchg_enabled = 1;
3101 #endif
3102 }
3103
3104 static int __init futex_init(void)
3105 {
3106         unsigned int futex_shift;
3107         unsigned long i;
3108
3109 #if CONFIG_BASE_SMALL
3110         futex_hashsize = 16;
3111 #else
3112         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3113 #endif
3114
3115         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3116                                                futex_hashsize, 0,
3117                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3118                                                &futex_shift, NULL,
3119                                                futex_hashsize, futex_hashsize);
3120         futex_hashsize = 1UL << futex_shift;
3121
3122         futex_detect_cmpxchg();
3123
3124         for (i = 0; i < futex_hashsize; i++) {
3125                 atomic_set(&futex_queues[i].waiters, 0);
3126                 plist_head_init(&futex_queues[i].chain);
3127                 spin_lock_init(&futex_queues[i].lock);
3128         }
3129
3130         return 0;
3131 }
3132 __initcall(futex_init);