]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/kexec_file.c
Merge remote-tracking branch 'remotes/stable/linux-4.4.y' into karo-tx6-mainline
[karo-tx-linux.git] / kernel / kexec_file.c
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <crypto/hash.h>
22 #include <crypto/sha.h>
23 #include <linux/syscalls.h>
24 #include <linux/vmalloc.h>
25 #include "kexec_internal.h"
26
27 /*
28  * Declare these symbols weak so that if architecture provides a purgatory,
29  * these will be overridden.
30  */
31 char __weak kexec_purgatory[0];
32 size_t __weak kexec_purgatory_size = 0;
33
34 static int kexec_calculate_store_digests(struct kimage *image);
35
36 static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
37 {
38         struct fd f = fdget(fd);
39         int ret;
40         struct kstat stat;
41         loff_t pos;
42         ssize_t bytes = 0;
43
44         if (!f.file)
45                 return -EBADF;
46
47         ret = vfs_getattr(&f.file->f_path, &stat);
48         if (ret)
49                 goto out;
50
51         if (stat.size > INT_MAX) {
52                 ret = -EFBIG;
53                 goto out;
54         }
55
56         /* Don't hand 0 to vmalloc, it whines. */
57         if (stat.size == 0) {
58                 ret = -EINVAL;
59                 goto out;
60         }
61
62         *buf = vmalloc(stat.size);
63         if (!*buf) {
64                 ret = -ENOMEM;
65                 goto out;
66         }
67
68         pos = 0;
69         while (pos < stat.size) {
70                 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
71                                     stat.size - pos);
72                 if (bytes < 0) {
73                         vfree(*buf);
74                         ret = bytes;
75                         goto out;
76                 }
77
78                 if (bytes == 0)
79                         break;
80                 pos += bytes;
81         }
82
83         if (pos != stat.size) {
84                 ret = -EBADF;
85                 vfree(*buf);
86                 goto out;
87         }
88
89         *buf_len = pos;
90 out:
91         fdput(f);
92         return ret;
93 }
94
95 /* Architectures can provide this probe function */
96 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
97                                          unsigned long buf_len)
98 {
99         return -ENOEXEC;
100 }
101
102 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
103 {
104         return ERR_PTR(-ENOEXEC);
105 }
106
107 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
108 {
109         return -EINVAL;
110 }
111
112 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
113                                         unsigned long buf_len)
114 {
115         return -EKEYREJECTED;
116 }
117
118 /* Apply relocations of type RELA */
119 int __weak
120 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
121                                  unsigned int relsec)
122 {
123         pr_err("RELA relocation unsupported.\n");
124         return -ENOEXEC;
125 }
126
127 /* Apply relocations of type REL */
128 int __weak
129 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
130                              unsigned int relsec)
131 {
132         pr_err("REL relocation unsupported.\n");
133         return -ENOEXEC;
134 }
135
136 /*
137  * Free up memory used by kernel, initrd, and command line. This is temporary
138  * memory allocation which is not needed any more after these buffers have
139  * been loaded into separate segments and have been copied elsewhere.
140  */
141 void kimage_file_post_load_cleanup(struct kimage *image)
142 {
143         struct purgatory_info *pi = &image->purgatory_info;
144
145         vfree(image->kernel_buf);
146         image->kernel_buf = NULL;
147
148         vfree(image->initrd_buf);
149         image->initrd_buf = NULL;
150
151         kfree(image->cmdline_buf);
152         image->cmdline_buf = NULL;
153
154         vfree(pi->purgatory_buf);
155         pi->purgatory_buf = NULL;
156
157         vfree(pi->sechdrs);
158         pi->sechdrs = NULL;
159
160         /* See if architecture has anything to cleanup post load */
161         arch_kimage_file_post_load_cleanup(image);
162
163         /*
164          * Above call should have called into bootloader to free up
165          * any data stored in kimage->image_loader_data. It should
166          * be ok now to free it up.
167          */
168         kfree(image->image_loader_data);
169         image->image_loader_data = NULL;
170 }
171
172 /*
173  * In file mode list of segments is prepared by kernel. Copy relevant
174  * data from user space, do error checking, prepare segment list
175  */
176 static int
177 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
178                              const char __user *cmdline_ptr,
179                              unsigned long cmdline_len, unsigned flags)
180 {
181         int ret = 0;
182         void *ldata;
183
184         ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
185                                 &image->kernel_buf_len);
186         if (ret)
187                 return ret;
188
189         /* Call arch image probe handlers */
190         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
191                                             image->kernel_buf_len);
192
193         if (ret)
194                 goto out;
195
196 #ifdef CONFIG_KEXEC_VERIFY_SIG
197         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
198                                            image->kernel_buf_len);
199         if (ret) {
200                 pr_debug("kernel signature verification failed.\n");
201                 goto out;
202         }
203         pr_debug("kernel signature verification successful.\n");
204 #endif
205         /* It is possible that there no initramfs is being loaded */
206         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
207                 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
208                                         &image->initrd_buf_len);
209                 if (ret)
210                         goto out;
211         }
212
213         if (cmdline_len) {
214                 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
215                 if (!image->cmdline_buf) {
216                         ret = -ENOMEM;
217                         goto out;
218                 }
219
220                 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
221                                      cmdline_len);
222                 if (ret) {
223                         ret = -EFAULT;
224                         goto out;
225                 }
226
227                 image->cmdline_buf_len = cmdline_len;
228
229                 /* command line should be a string with last byte null */
230                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
231                         ret = -EINVAL;
232                         goto out;
233                 }
234         }
235
236         /* Call arch image load handlers */
237         ldata = arch_kexec_kernel_image_load(image);
238
239         if (IS_ERR(ldata)) {
240                 ret = PTR_ERR(ldata);
241                 goto out;
242         }
243
244         image->image_loader_data = ldata;
245 out:
246         /* In case of error, free up all allocated memory in this function */
247         if (ret)
248                 kimage_file_post_load_cleanup(image);
249         return ret;
250 }
251
252 static int
253 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
254                        int initrd_fd, const char __user *cmdline_ptr,
255                        unsigned long cmdline_len, unsigned long flags)
256 {
257         int ret;
258         struct kimage *image;
259         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
260
261         image = do_kimage_alloc_init();
262         if (!image)
263                 return -ENOMEM;
264
265         image->file_mode = 1;
266
267         if (kexec_on_panic) {
268                 /* Enable special crash kernel control page alloc policy. */
269                 image->control_page = crashk_res.start;
270                 image->type = KEXEC_TYPE_CRASH;
271         }
272
273         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
274                                            cmdline_ptr, cmdline_len, flags);
275         if (ret)
276                 goto out_free_image;
277
278         ret = sanity_check_segment_list(image);
279         if (ret)
280                 goto out_free_post_load_bufs;
281
282         ret = -ENOMEM;
283         image->control_code_page = kimage_alloc_control_pages(image,
284                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
285         if (!image->control_code_page) {
286                 pr_err("Could not allocate control_code_buffer\n");
287                 goto out_free_post_load_bufs;
288         }
289
290         if (!kexec_on_panic) {
291                 image->swap_page = kimage_alloc_control_pages(image, 0);
292                 if (!image->swap_page) {
293                         pr_err("Could not allocate swap buffer\n");
294                         goto out_free_control_pages;
295                 }
296         }
297
298         *rimage = image;
299         return 0;
300 out_free_control_pages:
301         kimage_free_page_list(&image->control_pages);
302 out_free_post_load_bufs:
303         kimage_file_post_load_cleanup(image);
304 out_free_image:
305         kfree(image);
306         return ret;
307 }
308
309 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
310                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
311                 unsigned long, flags)
312 {
313         int ret = 0, i;
314         struct kimage **dest_image, *image;
315
316         /* We only trust the superuser with rebooting the system. */
317         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
318                 return -EPERM;
319
320         /* Make sure we have a legal set of flags */
321         if (flags != (flags & KEXEC_FILE_FLAGS))
322                 return -EINVAL;
323
324         image = NULL;
325
326         if (!mutex_trylock(&kexec_mutex))
327                 return -EBUSY;
328
329         dest_image = &kexec_image;
330         if (flags & KEXEC_FILE_ON_CRASH)
331                 dest_image = &kexec_crash_image;
332
333         if (flags & KEXEC_FILE_UNLOAD)
334                 goto exchange;
335
336         /*
337          * In case of crash, new kernel gets loaded in reserved region. It is
338          * same memory where old crash kernel might be loaded. Free any
339          * current crash dump kernel before we corrupt it.
340          */
341         if (flags & KEXEC_FILE_ON_CRASH)
342                 kimage_free(xchg(&kexec_crash_image, NULL));
343
344         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
345                                      cmdline_len, flags);
346         if (ret)
347                 goto out;
348
349         ret = machine_kexec_prepare(image);
350         if (ret)
351                 goto out;
352
353         ret = kexec_calculate_store_digests(image);
354         if (ret)
355                 goto out;
356
357         for (i = 0; i < image->nr_segments; i++) {
358                 struct kexec_segment *ksegment;
359
360                 ksegment = &image->segment[i];
361                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
362                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
363                          ksegment->memsz);
364
365                 ret = kimage_load_segment(image, &image->segment[i]);
366                 if (ret)
367                         goto out;
368         }
369
370         kimage_terminate(image);
371
372         /*
373          * Free up any temporary buffers allocated which are not needed
374          * after image has been loaded
375          */
376         kimage_file_post_load_cleanup(image);
377 exchange:
378         image = xchg(dest_image, image);
379 out:
380         mutex_unlock(&kexec_mutex);
381         kimage_free(image);
382         return ret;
383 }
384
385 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
386                                     struct kexec_buf *kbuf)
387 {
388         struct kimage *image = kbuf->image;
389         unsigned long temp_start, temp_end;
390
391         temp_end = min(end, kbuf->buf_max);
392         temp_start = temp_end - kbuf->memsz;
393
394         do {
395                 /* align down start */
396                 temp_start = temp_start & (~(kbuf->buf_align - 1));
397
398                 if (temp_start < start || temp_start < kbuf->buf_min)
399                         return 0;
400
401                 temp_end = temp_start + kbuf->memsz - 1;
402
403                 /*
404                  * Make sure this does not conflict with any of existing
405                  * segments
406                  */
407                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
408                         temp_start = temp_start - PAGE_SIZE;
409                         continue;
410                 }
411
412                 /* We found a suitable memory range */
413                 break;
414         } while (1);
415
416         /* If we are here, we found a suitable memory range */
417         kbuf->mem = temp_start;
418
419         /* Success, stop navigating through remaining System RAM ranges */
420         return 1;
421 }
422
423 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
424                                      struct kexec_buf *kbuf)
425 {
426         struct kimage *image = kbuf->image;
427         unsigned long temp_start, temp_end;
428
429         temp_start = max(start, kbuf->buf_min);
430
431         do {
432                 temp_start = ALIGN(temp_start, kbuf->buf_align);
433                 temp_end = temp_start + kbuf->memsz - 1;
434
435                 if (temp_end > end || temp_end > kbuf->buf_max)
436                         return 0;
437                 /*
438                  * Make sure this does not conflict with any of existing
439                  * segments
440                  */
441                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
442                         temp_start = temp_start + PAGE_SIZE;
443                         continue;
444                 }
445
446                 /* We found a suitable memory range */
447                 break;
448         } while (1);
449
450         /* If we are here, we found a suitable memory range */
451         kbuf->mem = temp_start;
452
453         /* Success, stop navigating through remaining System RAM ranges */
454         return 1;
455 }
456
457 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
458 {
459         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
460         unsigned long sz = end - start + 1;
461
462         /* Returning 0 will take to next memory range */
463         if (sz < kbuf->memsz)
464                 return 0;
465
466         if (end < kbuf->buf_min || start > kbuf->buf_max)
467                 return 0;
468
469         /*
470          * Allocate memory top down with-in ram range. Otherwise bottom up
471          * allocation.
472          */
473         if (kbuf->top_down)
474                 return locate_mem_hole_top_down(start, end, kbuf);
475         return locate_mem_hole_bottom_up(start, end, kbuf);
476 }
477
478 /*
479  * Helper function for placing a buffer in a kexec segment. This assumes
480  * that kexec_mutex is held.
481  */
482 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
483                      unsigned long memsz, unsigned long buf_align,
484                      unsigned long buf_min, unsigned long buf_max,
485                      bool top_down, unsigned long *load_addr)
486 {
487
488         struct kexec_segment *ksegment;
489         struct kexec_buf buf, *kbuf;
490         int ret;
491
492         /* Currently adding segment this way is allowed only in file mode */
493         if (!image->file_mode)
494                 return -EINVAL;
495
496         if (image->nr_segments >= KEXEC_SEGMENT_MAX)
497                 return -EINVAL;
498
499         /*
500          * Make sure we are not trying to add buffer after allocating
501          * control pages. All segments need to be placed first before
502          * any control pages are allocated. As control page allocation
503          * logic goes through list of segments to make sure there are
504          * no destination overlaps.
505          */
506         if (!list_empty(&image->control_pages)) {
507                 WARN_ON(1);
508                 return -EINVAL;
509         }
510
511         memset(&buf, 0, sizeof(struct kexec_buf));
512         kbuf = &buf;
513         kbuf->image = image;
514         kbuf->buffer = buffer;
515         kbuf->bufsz = bufsz;
516
517         kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
518         kbuf->buf_align = max(buf_align, PAGE_SIZE);
519         kbuf->buf_min = buf_min;
520         kbuf->buf_max = buf_max;
521         kbuf->top_down = top_down;
522
523         /* Walk the RAM ranges and allocate a suitable range for the buffer */
524         if (image->type == KEXEC_TYPE_CRASH)
525                 ret = walk_iomem_res("Crash kernel",
526                                      IORESOURCE_MEM | IORESOURCE_BUSY,
527                                      crashk_res.start, crashk_res.end, kbuf,
528                                      locate_mem_hole_callback);
529         else
530                 ret = walk_system_ram_res(0, -1, kbuf,
531                                           locate_mem_hole_callback);
532         if (ret != 1) {
533                 /* A suitable memory range could not be found for buffer */
534                 return -EADDRNOTAVAIL;
535         }
536
537         /* Found a suitable memory range */
538         ksegment = &image->segment[image->nr_segments];
539         ksegment->kbuf = kbuf->buffer;
540         ksegment->bufsz = kbuf->bufsz;
541         ksegment->mem = kbuf->mem;
542         ksegment->memsz = kbuf->memsz;
543         image->nr_segments++;
544         *load_addr = ksegment->mem;
545         return 0;
546 }
547
548 /* Calculate and store the digest of segments */
549 static int kexec_calculate_store_digests(struct kimage *image)
550 {
551         struct crypto_shash *tfm;
552         struct shash_desc *desc;
553         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
554         size_t desc_size, nullsz;
555         char *digest;
556         void *zero_buf;
557         struct kexec_sha_region *sha_regions;
558         struct purgatory_info *pi = &image->purgatory_info;
559
560         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
561         zero_buf_sz = PAGE_SIZE;
562
563         tfm = crypto_alloc_shash("sha256", 0, 0);
564         if (IS_ERR(tfm)) {
565                 ret = PTR_ERR(tfm);
566                 goto out;
567         }
568
569         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
570         desc = kzalloc(desc_size, GFP_KERNEL);
571         if (!desc) {
572                 ret = -ENOMEM;
573                 goto out_free_tfm;
574         }
575
576         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
577         sha_regions = vzalloc(sha_region_sz);
578         if (!sha_regions)
579                 goto out_free_desc;
580
581         desc->tfm   = tfm;
582         desc->flags = 0;
583
584         ret = crypto_shash_init(desc);
585         if (ret < 0)
586                 goto out_free_sha_regions;
587
588         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
589         if (!digest) {
590                 ret = -ENOMEM;
591                 goto out_free_sha_regions;
592         }
593
594         for (j = i = 0; i < image->nr_segments; i++) {
595                 struct kexec_segment *ksegment;
596
597                 ksegment = &image->segment[i];
598                 /*
599                  * Skip purgatory as it will be modified once we put digest
600                  * info in purgatory.
601                  */
602                 if (ksegment->kbuf == pi->purgatory_buf)
603                         continue;
604
605                 ret = crypto_shash_update(desc, ksegment->kbuf,
606                                           ksegment->bufsz);
607                 if (ret)
608                         break;
609
610                 /*
611                  * Assume rest of the buffer is filled with zero and
612                  * update digest accordingly.
613                  */
614                 nullsz = ksegment->memsz - ksegment->bufsz;
615                 while (nullsz) {
616                         unsigned long bytes = nullsz;
617
618                         if (bytes > zero_buf_sz)
619                                 bytes = zero_buf_sz;
620                         ret = crypto_shash_update(desc, zero_buf, bytes);
621                         if (ret)
622                                 break;
623                         nullsz -= bytes;
624                 }
625
626                 if (ret)
627                         break;
628
629                 sha_regions[j].start = ksegment->mem;
630                 sha_regions[j].len = ksegment->memsz;
631                 j++;
632         }
633
634         if (!ret) {
635                 ret = crypto_shash_final(desc, digest);
636                 if (ret)
637                         goto out_free_digest;
638                 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
639                                                 sha_regions, sha_region_sz, 0);
640                 if (ret)
641                         goto out_free_digest;
642
643                 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
644                                                 digest, SHA256_DIGEST_SIZE, 0);
645                 if (ret)
646                         goto out_free_digest;
647         }
648
649 out_free_digest:
650         kfree(digest);
651 out_free_sha_regions:
652         vfree(sha_regions);
653 out_free_desc:
654         kfree(desc);
655 out_free_tfm:
656         kfree(tfm);
657 out:
658         return ret;
659 }
660
661 /* Actually load purgatory. Lot of code taken from kexec-tools */
662 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
663                                   unsigned long max, int top_down)
664 {
665         struct purgatory_info *pi = &image->purgatory_info;
666         unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
667         unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
668         unsigned char *buf_addr, *src;
669         int i, ret = 0, entry_sidx = -1;
670         const Elf_Shdr *sechdrs_c;
671         Elf_Shdr *sechdrs = NULL;
672         void *purgatory_buf = NULL;
673
674         /*
675          * sechdrs_c points to section headers in purgatory and are read
676          * only. No modifications allowed.
677          */
678         sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
679
680         /*
681          * We can not modify sechdrs_c[] and its fields. It is read only.
682          * Copy it over to a local copy where one can store some temporary
683          * data and free it at the end. We need to modify ->sh_addr and
684          * ->sh_offset fields to keep track of permanent and temporary
685          * locations of sections.
686          */
687         sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
688         if (!sechdrs)
689                 return -ENOMEM;
690
691         memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
692
693         /*
694          * We seem to have multiple copies of sections. First copy is which
695          * is embedded in kernel in read only section. Some of these sections
696          * will be copied to a temporary buffer and relocated. And these
697          * sections will finally be copied to their final destination at
698          * segment load time.
699          *
700          * Use ->sh_offset to reflect section address in memory. It will
701          * point to original read only copy if section is not allocatable.
702          * Otherwise it will point to temporary copy which will be relocated.
703          *
704          * Use ->sh_addr to contain final address of the section where it
705          * will go during execution time.
706          */
707         for (i = 0; i < pi->ehdr->e_shnum; i++) {
708                 if (sechdrs[i].sh_type == SHT_NOBITS)
709                         continue;
710
711                 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
712                                                 sechdrs[i].sh_offset;
713         }
714
715         /*
716          * Identify entry point section and make entry relative to section
717          * start.
718          */
719         entry = pi->ehdr->e_entry;
720         for (i = 0; i < pi->ehdr->e_shnum; i++) {
721                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
722                         continue;
723
724                 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
725                         continue;
726
727                 /* Make entry section relative */
728                 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
729                     ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
730                      pi->ehdr->e_entry)) {
731                         entry_sidx = i;
732                         entry -= sechdrs[i].sh_addr;
733                         break;
734                 }
735         }
736
737         /* Determine how much memory is needed to load relocatable object. */
738         buf_align = 1;
739         bss_align = 1;
740         buf_sz = 0;
741         bss_sz = 0;
742
743         for (i = 0; i < pi->ehdr->e_shnum; i++) {
744                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
745                         continue;
746
747                 align = sechdrs[i].sh_addralign;
748                 if (sechdrs[i].sh_type != SHT_NOBITS) {
749                         if (buf_align < align)
750                                 buf_align = align;
751                         buf_sz = ALIGN(buf_sz, align);
752                         buf_sz += sechdrs[i].sh_size;
753                 } else {
754                         /* bss section */
755                         if (bss_align < align)
756                                 bss_align = align;
757                         bss_sz = ALIGN(bss_sz, align);
758                         bss_sz += sechdrs[i].sh_size;
759                 }
760         }
761
762         /* Determine the bss padding required to align bss properly */
763         bss_pad = 0;
764         if (buf_sz & (bss_align - 1))
765                 bss_pad = bss_align - (buf_sz & (bss_align - 1));
766
767         memsz = buf_sz + bss_pad + bss_sz;
768
769         /* Allocate buffer for purgatory */
770         purgatory_buf = vzalloc(buf_sz);
771         if (!purgatory_buf) {
772                 ret = -ENOMEM;
773                 goto out;
774         }
775
776         if (buf_align < bss_align)
777                 buf_align = bss_align;
778
779         /* Add buffer to segment list */
780         ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
781                                 buf_align, min, max, top_down,
782                                 &pi->purgatory_load_addr);
783         if (ret)
784                 goto out;
785
786         /* Load SHF_ALLOC sections */
787         buf_addr = purgatory_buf;
788         load_addr = curr_load_addr = pi->purgatory_load_addr;
789         bss_addr = load_addr + buf_sz + bss_pad;
790
791         for (i = 0; i < pi->ehdr->e_shnum; i++) {
792                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
793                         continue;
794
795                 align = sechdrs[i].sh_addralign;
796                 if (sechdrs[i].sh_type != SHT_NOBITS) {
797                         curr_load_addr = ALIGN(curr_load_addr, align);
798                         offset = curr_load_addr - load_addr;
799                         /* We already modifed ->sh_offset to keep src addr */
800                         src = (char *) sechdrs[i].sh_offset;
801                         memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
802
803                         /* Store load address and source address of section */
804                         sechdrs[i].sh_addr = curr_load_addr;
805
806                         /*
807                          * This section got copied to temporary buffer. Update
808                          * ->sh_offset accordingly.
809                          */
810                         sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
811
812                         /* Advance to the next address */
813                         curr_load_addr += sechdrs[i].sh_size;
814                 } else {
815                         bss_addr = ALIGN(bss_addr, align);
816                         sechdrs[i].sh_addr = bss_addr;
817                         bss_addr += sechdrs[i].sh_size;
818                 }
819         }
820
821         /* Update entry point based on load address of text section */
822         if (entry_sidx >= 0)
823                 entry += sechdrs[entry_sidx].sh_addr;
824
825         /* Make kernel jump to purgatory after shutdown */
826         image->start = entry;
827
828         /* Used later to get/set symbol values */
829         pi->sechdrs = sechdrs;
830
831         /*
832          * Used later to identify which section is purgatory and skip it
833          * from checksumming.
834          */
835         pi->purgatory_buf = purgatory_buf;
836         return ret;
837 out:
838         vfree(sechdrs);
839         vfree(purgatory_buf);
840         return ret;
841 }
842
843 static int kexec_apply_relocations(struct kimage *image)
844 {
845         int i, ret;
846         struct purgatory_info *pi = &image->purgatory_info;
847         Elf_Shdr *sechdrs = pi->sechdrs;
848
849         /* Apply relocations */
850         for (i = 0; i < pi->ehdr->e_shnum; i++) {
851                 Elf_Shdr *section, *symtab;
852
853                 if (sechdrs[i].sh_type != SHT_RELA &&
854                     sechdrs[i].sh_type != SHT_REL)
855                         continue;
856
857                 /*
858                  * For section of type SHT_RELA/SHT_REL,
859                  * ->sh_link contains section header index of associated
860                  * symbol table. And ->sh_info contains section header
861                  * index of section to which relocations apply.
862                  */
863                 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
864                     sechdrs[i].sh_link >= pi->ehdr->e_shnum)
865                         return -ENOEXEC;
866
867                 section = &sechdrs[sechdrs[i].sh_info];
868                 symtab = &sechdrs[sechdrs[i].sh_link];
869
870                 if (!(section->sh_flags & SHF_ALLOC))
871                         continue;
872
873                 /*
874                  * symtab->sh_link contain section header index of associated
875                  * string table.
876                  */
877                 if (symtab->sh_link >= pi->ehdr->e_shnum)
878                         /* Invalid section number? */
879                         continue;
880
881                 /*
882                  * Respective architecture needs to provide support for applying
883                  * relocations of type SHT_RELA/SHT_REL.
884                  */
885                 if (sechdrs[i].sh_type == SHT_RELA)
886                         ret = arch_kexec_apply_relocations_add(pi->ehdr,
887                                                                sechdrs, i);
888                 else if (sechdrs[i].sh_type == SHT_REL)
889                         ret = arch_kexec_apply_relocations(pi->ehdr,
890                                                            sechdrs, i);
891                 if (ret)
892                         return ret;
893         }
894
895         return 0;
896 }
897
898 /* Load relocatable purgatory object and relocate it appropriately */
899 int kexec_load_purgatory(struct kimage *image, unsigned long min,
900                          unsigned long max, int top_down,
901                          unsigned long *load_addr)
902 {
903         struct purgatory_info *pi = &image->purgatory_info;
904         int ret;
905
906         if (kexec_purgatory_size <= 0)
907                 return -EINVAL;
908
909         if (kexec_purgatory_size < sizeof(Elf_Ehdr))
910                 return -ENOEXEC;
911
912         pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
913
914         if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
915             || pi->ehdr->e_type != ET_REL
916             || !elf_check_arch(pi->ehdr)
917             || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
918                 return -ENOEXEC;
919
920         if (pi->ehdr->e_shoff >= kexec_purgatory_size
921             || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
922             kexec_purgatory_size - pi->ehdr->e_shoff))
923                 return -ENOEXEC;
924
925         ret = __kexec_load_purgatory(image, min, max, top_down);
926         if (ret)
927                 return ret;
928
929         ret = kexec_apply_relocations(image);
930         if (ret)
931                 goto out;
932
933         *load_addr = pi->purgatory_load_addr;
934         return 0;
935 out:
936         vfree(pi->sechdrs);
937         vfree(pi->purgatory_buf);
938         return ret;
939 }
940
941 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
942                                             const char *name)
943 {
944         Elf_Sym *syms;
945         Elf_Shdr *sechdrs;
946         Elf_Ehdr *ehdr;
947         int i, k;
948         const char *strtab;
949
950         if (!pi->sechdrs || !pi->ehdr)
951                 return NULL;
952
953         sechdrs = pi->sechdrs;
954         ehdr = pi->ehdr;
955
956         for (i = 0; i < ehdr->e_shnum; i++) {
957                 if (sechdrs[i].sh_type != SHT_SYMTAB)
958                         continue;
959
960                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
961                         /* Invalid strtab section number */
962                         continue;
963                 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
964                 syms = (Elf_Sym *)sechdrs[i].sh_offset;
965
966                 /* Go through symbols for a match */
967                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
968                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
969                                 continue;
970
971                         if (strcmp(strtab + syms[k].st_name, name) != 0)
972                                 continue;
973
974                         if (syms[k].st_shndx == SHN_UNDEF ||
975                             syms[k].st_shndx >= ehdr->e_shnum) {
976                                 pr_debug("Symbol: %s has bad section index %d.\n",
977                                                 name, syms[k].st_shndx);
978                                 return NULL;
979                         }
980
981                         /* Found the symbol we are looking for */
982                         return &syms[k];
983                 }
984         }
985
986         return NULL;
987 }
988
989 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
990 {
991         struct purgatory_info *pi = &image->purgatory_info;
992         Elf_Sym *sym;
993         Elf_Shdr *sechdr;
994
995         sym = kexec_purgatory_find_symbol(pi, name);
996         if (!sym)
997                 return ERR_PTR(-EINVAL);
998
999         sechdr = &pi->sechdrs[sym->st_shndx];
1000
1001         /*
1002          * Returns the address where symbol will finally be loaded after
1003          * kexec_load_segment()
1004          */
1005         return (void *)(sechdr->sh_addr + sym->st_value);
1006 }
1007
1008 /*
1009  * Get or set value of a symbol. If "get_value" is true, symbol value is
1010  * returned in buf otherwise symbol value is set based on value in buf.
1011  */
1012 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1013                                    void *buf, unsigned int size, bool get_value)
1014 {
1015         Elf_Sym *sym;
1016         Elf_Shdr *sechdrs;
1017         struct purgatory_info *pi = &image->purgatory_info;
1018         char *sym_buf;
1019
1020         sym = kexec_purgatory_find_symbol(pi, name);
1021         if (!sym)
1022                 return -EINVAL;
1023
1024         if (sym->st_size != size) {
1025                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1026                        name, (unsigned long)sym->st_size, size);
1027                 return -EINVAL;
1028         }
1029
1030         sechdrs = pi->sechdrs;
1031
1032         if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1033                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1034                        get_value ? "get" : "set");
1035                 return -EINVAL;
1036         }
1037
1038         sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1039                                         sym->st_value;
1040
1041         if (get_value)
1042                 memcpy((void *)buf, sym_buf, size);
1043         else
1044                 memcpy((void *)sym_buf, buf, size);
1045
1046         return 0;
1047 }