]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/kexec_file.c
Merge tag 'fbdev-v4.13' of git://github.com/bzolnier/linux
[karo-tx-linux.git] / kernel / kexec_file.c
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/syscalls.h>
26 #include <linux/vmalloc.h>
27 #include "kexec_internal.h"
28
29 /*
30  * Declare these symbols weak so that if architecture provides a purgatory,
31  * these will be overridden.
32  */
33 char __weak kexec_purgatory[0];
34 size_t __weak kexec_purgatory_size = 0;
35
36 static int kexec_calculate_store_digests(struct kimage *image);
37
38 /* Architectures can provide this probe function */
39 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
40                                          unsigned long buf_len)
41 {
42         return -ENOEXEC;
43 }
44
45 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
46 {
47         return ERR_PTR(-ENOEXEC);
48 }
49
50 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
51 {
52         return -EINVAL;
53 }
54
55 #ifdef CONFIG_KEXEC_VERIFY_SIG
56 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
57                                         unsigned long buf_len)
58 {
59         return -EKEYREJECTED;
60 }
61 #endif
62
63 /* Apply relocations of type RELA */
64 int __weak
65 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
66                                  unsigned int relsec)
67 {
68         pr_err("RELA relocation unsupported.\n");
69         return -ENOEXEC;
70 }
71
72 /* Apply relocations of type REL */
73 int __weak
74 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
75                              unsigned int relsec)
76 {
77         pr_err("REL relocation unsupported.\n");
78         return -ENOEXEC;
79 }
80
81 /*
82  * Free up memory used by kernel, initrd, and command line. This is temporary
83  * memory allocation which is not needed any more after these buffers have
84  * been loaded into separate segments and have been copied elsewhere.
85  */
86 void kimage_file_post_load_cleanup(struct kimage *image)
87 {
88         struct purgatory_info *pi = &image->purgatory_info;
89
90         vfree(image->kernel_buf);
91         image->kernel_buf = NULL;
92
93         vfree(image->initrd_buf);
94         image->initrd_buf = NULL;
95
96         kfree(image->cmdline_buf);
97         image->cmdline_buf = NULL;
98
99         vfree(pi->purgatory_buf);
100         pi->purgatory_buf = NULL;
101
102         vfree(pi->sechdrs);
103         pi->sechdrs = NULL;
104
105         /* See if architecture has anything to cleanup post load */
106         arch_kimage_file_post_load_cleanup(image);
107
108         /*
109          * Above call should have called into bootloader to free up
110          * any data stored in kimage->image_loader_data. It should
111          * be ok now to free it up.
112          */
113         kfree(image->image_loader_data);
114         image->image_loader_data = NULL;
115 }
116
117 /*
118  * In file mode list of segments is prepared by kernel. Copy relevant
119  * data from user space, do error checking, prepare segment list
120  */
121 static int
122 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
123                              const char __user *cmdline_ptr,
124                              unsigned long cmdline_len, unsigned flags)
125 {
126         int ret = 0;
127         void *ldata;
128         loff_t size;
129
130         ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
131                                        &size, INT_MAX, READING_KEXEC_IMAGE);
132         if (ret)
133                 return ret;
134         image->kernel_buf_len = size;
135
136         /* IMA needs to pass the measurement list to the next kernel. */
137         ima_add_kexec_buffer(image);
138
139         /* Call arch image probe handlers */
140         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
141                                             image->kernel_buf_len);
142         if (ret)
143                 goto out;
144
145 #ifdef CONFIG_KEXEC_VERIFY_SIG
146         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
147                                            image->kernel_buf_len);
148         if (ret) {
149                 pr_debug("kernel signature verification failed.\n");
150                 goto out;
151         }
152         pr_debug("kernel signature verification successful.\n");
153 #endif
154         /* It is possible that there no initramfs is being loaded */
155         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
156                 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
157                                                &size, INT_MAX,
158                                                READING_KEXEC_INITRAMFS);
159                 if (ret)
160                         goto out;
161                 image->initrd_buf_len = size;
162         }
163
164         if (cmdline_len) {
165                 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
166                 if (IS_ERR(image->cmdline_buf)) {
167                         ret = PTR_ERR(image->cmdline_buf);
168                         image->cmdline_buf = NULL;
169                         goto out;
170                 }
171
172                 image->cmdline_buf_len = cmdline_len;
173
174                 /* command line should be a string with last byte null */
175                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
176                         ret = -EINVAL;
177                         goto out;
178                 }
179         }
180
181         /* Call arch image load handlers */
182         ldata = arch_kexec_kernel_image_load(image);
183
184         if (IS_ERR(ldata)) {
185                 ret = PTR_ERR(ldata);
186                 goto out;
187         }
188
189         image->image_loader_data = ldata;
190 out:
191         /* In case of error, free up all allocated memory in this function */
192         if (ret)
193                 kimage_file_post_load_cleanup(image);
194         return ret;
195 }
196
197 static int
198 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
199                        int initrd_fd, const char __user *cmdline_ptr,
200                        unsigned long cmdline_len, unsigned long flags)
201 {
202         int ret;
203         struct kimage *image;
204         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
205
206         image = do_kimage_alloc_init();
207         if (!image)
208                 return -ENOMEM;
209
210         image->file_mode = 1;
211
212         if (kexec_on_panic) {
213                 /* Enable special crash kernel control page alloc policy. */
214                 image->control_page = crashk_res.start;
215                 image->type = KEXEC_TYPE_CRASH;
216         }
217
218         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
219                                            cmdline_ptr, cmdline_len, flags);
220         if (ret)
221                 goto out_free_image;
222
223         ret = sanity_check_segment_list(image);
224         if (ret)
225                 goto out_free_post_load_bufs;
226
227         ret = -ENOMEM;
228         image->control_code_page = kimage_alloc_control_pages(image,
229                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
230         if (!image->control_code_page) {
231                 pr_err("Could not allocate control_code_buffer\n");
232                 goto out_free_post_load_bufs;
233         }
234
235         if (!kexec_on_panic) {
236                 image->swap_page = kimage_alloc_control_pages(image, 0);
237                 if (!image->swap_page) {
238                         pr_err("Could not allocate swap buffer\n");
239                         goto out_free_control_pages;
240                 }
241         }
242
243         *rimage = image;
244         return 0;
245 out_free_control_pages:
246         kimage_free_page_list(&image->control_pages);
247 out_free_post_load_bufs:
248         kimage_file_post_load_cleanup(image);
249 out_free_image:
250         kfree(image);
251         return ret;
252 }
253
254 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
255                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
256                 unsigned long, flags)
257 {
258         int ret = 0, i;
259         struct kimage **dest_image, *image;
260
261         /* We only trust the superuser with rebooting the system. */
262         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
263                 return -EPERM;
264
265         /* Make sure we have a legal set of flags */
266         if (flags != (flags & KEXEC_FILE_FLAGS))
267                 return -EINVAL;
268
269         image = NULL;
270
271         if (!mutex_trylock(&kexec_mutex))
272                 return -EBUSY;
273
274         dest_image = &kexec_image;
275         if (flags & KEXEC_FILE_ON_CRASH) {
276                 dest_image = &kexec_crash_image;
277                 if (kexec_crash_image)
278                         arch_kexec_unprotect_crashkres();
279         }
280
281         if (flags & KEXEC_FILE_UNLOAD)
282                 goto exchange;
283
284         /*
285          * In case of crash, new kernel gets loaded in reserved region. It is
286          * same memory where old crash kernel might be loaded. Free any
287          * current crash dump kernel before we corrupt it.
288          */
289         if (flags & KEXEC_FILE_ON_CRASH)
290                 kimage_free(xchg(&kexec_crash_image, NULL));
291
292         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
293                                      cmdline_len, flags);
294         if (ret)
295                 goto out;
296
297         ret = machine_kexec_prepare(image);
298         if (ret)
299                 goto out;
300
301         ret = kexec_calculate_store_digests(image);
302         if (ret)
303                 goto out;
304
305         for (i = 0; i < image->nr_segments; i++) {
306                 struct kexec_segment *ksegment;
307
308                 ksegment = &image->segment[i];
309                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
310                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
311                          ksegment->memsz);
312
313                 ret = kimage_load_segment(image, &image->segment[i]);
314                 if (ret)
315                         goto out;
316         }
317
318         kimage_terminate(image);
319
320         /*
321          * Free up any temporary buffers allocated which are not needed
322          * after image has been loaded
323          */
324         kimage_file_post_load_cleanup(image);
325 exchange:
326         image = xchg(dest_image, image);
327 out:
328         if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
329                 arch_kexec_protect_crashkres();
330
331         mutex_unlock(&kexec_mutex);
332         kimage_free(image);
333         return ret;
334 }
335
336 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
337                                     struct kexec_buf *kbuf)
338 {
339         struct kimage *image = kbuf->image;
340         unsigned long temp_start, temp_end;
341
342         temp_end = min(end, kbuf->buf_max);
343         temp_start = temp_end - kbuf->memsz;
344
345         do {
346                 /* align down start */
347                 temp_start = temp_start & (~(kbuf->buf_align - 1));
348
349                 if (temp_start < start || temp_start < kbuf->buf_min)
350                         return 0;
351
352                 temp_end = temp_start + kbuf->memsz - 1;
353
354                 /*
355                  * Make sure this does not conflict with any of existing
356                  * segments
357                  */
358                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
359                         temp_start = temp_start - PAGE_SIZE;
360                         continue;
361                 }
362
363                 /* We found a suitable memory range */
364                 break;
365         } while (1);
366
367         /* If we are here, we found a suitable memory range */
368         kbuf->mem = temp_start;
369
370         /* Success, stop navigating through remaining System RAM ranges */
371         return 1;
372 }
373
374 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
375                                      struct kexec_buf *kbuf)
376 {
377         struct kimage *image = kbuf->image;
378         unsigned long temp_start, temp_end;
379
380         temp_start = max(start, kbuf->buf_min);
381
382         do {
383                 temp_start = ALIGN(temp_start, kbuf->buf_align);
384                 temp_end = temp_start + kbuf->memsz - 1;
385
386                 if (temp_end > end || temp_end > kbuf->buf_max)
387                         return 0;
388                 /*
389                  * Make sure this does not conflict with any of existing
390                  * segments
391                  */
392                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
393                         temp_start = temp_start + PAGE_SIZE;
394                         continue;
395                 }
396
397                 /* We found a suitable memory range */
398                 break;
399         } while (1);
400
401         /* If we are here, we found a suitable memory range */
402         kbuf->mem = temp_start;
403
404         /* Success, stop navigating through remaining System RAM ranges */
405         return 1;
406 }
407
408 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
409 {
410         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
411         unsigned long sz = end - start + 1;
412
413         /* Returning 0 will take to next memory range */
414         if (sz < kbuf->memsz)
415                 return 0;
416
417         if (end < kbuf->buf_min || start > kbuf->buf_max)
418                 return 0;
419
420         /*
421          * Allocate memory top down with-in ram range. Otherwise bottom up
422          * allocation.
423          */
424         if (kbuf->top_down)
425                 return locate_mem_hole_top_down(start, end, kbuf);
426         return locate_mem_hole_bottom_up(start, end, kbuf);
427 }
428
429 /**
430  * arch_kexec_walk_mem - call func(data) on free memory regions
431  * @kbuf:       Context info for the search. Also passed to @func.
432  * @func:       Function to call for each memory region.
433  *
434  * Return: The memory walk will stop when func returns a non-zero value
435  * and that value will be returned. If all free regions are visited without
436  * func returning non-zero, then zero will be returned.
437  */
438 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
439                                int (*func)(u64, u64, void *))
440 {
441         if (kbuf->image->type == KEXEC_TYPE_CRASH)
442                 return walk_iomem_res_desc(crashk_res.desc,
443                                            IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
444                                            crashk_res.start, crashk_res.end,
445                                            kbuf, func);
446         else
447                 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
448 }
449
450 /**
451  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
452  * @kbuf:       Parameters for the memory search.
453  *
454  * On success, kbuf->mem will have the start address of the memory region found.
455  *
456  * Return: 0 on success, negative errno on error.
457  */
458 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
459 {
460         int ret;
461
462         ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
463
464         return ret == 1 ? 0 : -EADDRNOTAVAIL;
465 }
466
467 /**
468  * kexec_add_buffer - place a buffer in a kexec segment
469  * @kbuf:       Buffer contents and memory parameters.
470  *
471  * This function assumes that kexec_mutex is held.
472  * On successful return, @kbuf->mem will have the physical address of
473  * the buffer in memory.
474  *
475  * Return: 0 on success, negative errno on error.
476  */
477 int kexec_add_buffer(struct kexec_buf *kbuf)
478 {
479
480         struct kexec_segment *ksegment;
481         int ret;
482
483         /* Currently adding segment this way is allowed only in file mode */
484         if (!kbuf->image->file_mode)
485                 return -EINVAL;
486
487         if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
488                 return -EINVAL;
489
490         /*
491          * Make sure we are not trying to add buffer after allocating
492          * control pages. All segments need to be placed first before
493          * any control pages are allocated. As control page allocation
494          * logic goes through list of segments to make sure there are
495          * no destination overlaps.
496          */
497         if (!list_empty(&kbuf->image->control_pages)) {
498                 WARN_ON(1);
499                 return -EINVAL;
500         }
501
502         /* Ensure minimum alignment needed for segments. */
503         kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
504         kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
505
506         /* Walk the RAM ranges and allocate a suitable range for the buffer */
507         ret = kexec_locate_mem_hole(kbuf);
508         if (ret)
509                 return ret;
510
511         /* Found a suitable memory range */
512         ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
513         ksegment->kbuf = kbuf->buffer;
514         ksegment->bufsz = kbuf->bufsz;
515         ksegment->mem = kbuf->mem;
516         ksegment->memsz = kbuf->memsz;
517         kbuf->image->nr_segments++;
518         return 0;
519 }
520
521 /* Calculate and store the digest of segments */
522 static int kexec_calculate_store_digests(struct kimage *image)
523 {
524         struct crypto_shash *tfm;
525         struct shash_desc *desc;
526         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
527         size_t desc_size, nullsz;
528         char *digest;
529         void *zero_buf;
530         struct kexec_sha_region *sha_regions;
531         struct purgatory_info *pi = &image->purgatory_info;
532
533         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
534         zero_buf_sz = PAGE_SIZE;
535
536         tfm = crypto_alloc_shash("sha256", 0, 0);
537         if (IS_ERR(tfm)) {
538                 ret = PTR_ERR(tfm);
539                 goto out;
540         }
541
542         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
543         desc = kzalloc(desc_size, GFP_KERNEL);
544         if (!desc) {
545                 ret = -ENOMEM;
546                 goto out_free_tfm;
547         }
548
549         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
550         sha_regions = vzalloc(sha_region_sz);
551         if (!sha_regions)
552                 goto out_free_desc;
553
554         desc->tfm   = tfm;
555         desc->flags = 0;
556
557         ret = crypto_shash_init(desc);
558         if (ret < 0)
559                 goto out_free_sha_regions;
560
561         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
562         if (!digest) {
563                 ret = -ENOMEM;
564                 goto out_free_sha_regions;
565         }
566
567         for (j = i = 0; i < image->nr_segments; i++) {
568                 struct kexec_segment *ksegment;
569
570                 ksegment = &image->segment[i];
571                 /*
572                  * Skip purgatory as it will be modified once we put digest
573                  * info in purgatory.
574                  */
575                 if (ksegment->kbuf == pi->purgatory_buf)
576                         continue;
577
578                 ret = crypto_shash_update(desc, ksegment->kbuf,
579                                           ksegment->bufsz);
580                 if (ret)
581                         break;
582
583                 /*
584                  * Assume rest of the buffer is filled with zero and
585                  * update digest accordingly.
586                  */
587                 nullsz = ksegment->memsz - ksegment->bufsz;
588                 while (nullsz) {
589                         unsigned long bytes = nullsz;
590
591                         if (bytes > zero_buf_sz)
592                                 bytes = zero_buf_sz;
593                         ret = crypto_shash_update(desc, zero_buf, bytes);
594                         if (ret)
595                                 break;
596                         nullsz -= bytes;
597                 }
598
599                 if (ret)
600                         break;
601
602                 sha_regions[j].start = ksegment->mem;
603                 sha_regions[j].len = ksegment->memsz;
604                 j++;
605         }
606
607         if (!ret) {
608                 ret = crypto_shash_final(desc, digest);
609                 if (ret)
610                         goto out_free_digest;
611                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
612                                                      sha_regions, sha_region_sz, 0);
613                 if (ret)
614                         goto out_free_digest;
615
616                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
617                                                      digest, SHA256_DIGEST_SIZE, 0);
618                 if (ret)
619                         goto out_free_digest;
620         }
621
622 out_free_digest:
623         kfree(digest);
624 out_free_sha_regions:
625         vfree(sha_regions);
626 out_free_desc:
627         kfree(desc);
628 out_free_tfm:
629         kfree(tfm);
630 out:
631         return ret;
632 }
633
634 /* Actually load purgatory. Lot of code taken from kexec-tools */
635 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
636                                   unsigned long max, int top_down)
637 {
638         struct purgatory_info *pi = &image->purgatory_info;
639         unsigned long align, bss_align, bss_sz, bss_pad;
640         unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
641         unsigned char *buf_addr, *src;
642         int i, ret = 0, entry_sidx = -1;
643         const Elf_Shdr *sechdrs_c;
644         Elf_Shdr *sechdrs = NULL;
645         struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
646                                   .buf_min = min, .buf_max = max,
647                                   .top_down = top_down };
648
649         /*
650          * sechdrs_c points to section headers in purgatory and are read
651          * only. No modifications allowed.
652          */
653         sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
654
655         /*
656          * We can not modify sechdrs_c[] and its fields. It is read only.
657          * Copy it over to a local copy where one can store some temporary
658          * data and free it at the end. We need to modify ->sh_addr and
659          * ->sh_offset fields to keep track of permanent and temporary
660          * locations of sections.
661          */
662         sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
663         if (!sechdrs)
664                 return -ENOMEM;
665
666         memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
667
668         /*
669          * We seem to have multiple copies of sections. First copy is which
670          * is embedded in kernel in read only section. Some of these sections
671          * will be copied to a temporary buffer and relocated. And these
672          * sections will finally be copied to their final destination at
673          * segment load time.
674          *
675          * Use ->sh_offset to reflect section address in memory. It will
676          * point to original read only copy if section is not allocatable.
677          * Otherwise it will point to temporary copy which will be relocated.
678          *
679          * Use ->sh_addr to contain final address of the section where it
680          * will go during execution time.
681          */
682         for (i = 0; i < pi->ehdr->e_shnum; i++) {
683                 if (sechdrs[i].sh_type == SHT_NOBITS)
684                         continue;
685
686                 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
687                                                 sechdrs[i].sh_offset;
688         }
689
690         /*
691          * Identify entry point section and make entry relative to section
692          * start.
693          */
694         entry = pi->ehdr->e_entry;
695         for (i = 0; i < pi->ehdr->e_shnum; i++) {
696                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
697                         continue;
698
699                 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
700                         continue;
701
702                 /* Make entry section relative */
703                 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
704                     ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
705                      pi->ehdr->e_entry)) {
706                         entry_sidx = i;
707                         entry -= sechdrs[i].sh_addr;
708                         break;
709                 }
710         }
711
712         /* Determine how much memory is needed to load relocatable object. */
713         bss_align = 1;
714         bss_sz = 0;
715
716         for (i = 0; i < pi->ehdr->e_shnum; i++) {
717                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
718                         continue;
719
720                 align = sechdrs[i].sh_addralign;
721                 if (sechdrs[i].sh_type != SHT_NOBITS) {
722                         if (kbuf.buf_align < align)
723                                 kbuf.buf_align = align;
724                         kbuf.bufsz = ALIGN(kbuf.bufsz, align);
725                         kbuf.bufsz += sechdrs[i].sh_size;
726                 } else {
727                         /* bss section */
728                         if (bss_align < align)
729                                 bss_align = align;
730                         bss_sz = ALIGN(bss_sz, align);
731                         bss_sz += sechdrs[i].sh_size;
732                 }
733         }
734
735         /* Determine the bss padding required to align bss properly */
736         bss_pad = 0;
737         if (kbuf.bufsz & (bss_align - 1))
738                 bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
739
740         kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
741
742         /* Allocate buffer for purgatory */
743         kbuf.buffer = vzalloc(kbuf.bufsz);
744         if (!kbuf.buffer) {
745                 ret = -ENOMEM;
746                 goto out;
747         }
748
749         if (kbuf.buf_align < bss_align)
750                 kbuf.buf_align = bss_align;
751
752         /* Add buffer to segment list */
753         ret = kexec_add_buffer(&kbuf);
754         if (ret)
755                 goto out;
756         pi->purgatory_load_addr = kbuf.mem;
757
758         /* Load SHF_ALLOC sections */
759         buf_addr = kbuf.buffer;
760         load_addr = curr_load_addr = pi->purgatory_load_addr;
761         bss_addr = load_addr + kbuf.bufsz + bss_pad;
762
763         for (i = 0; i < pi->ehdr->e_shnum; i++) {
764                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
765                         continue;
766
767                 align = sechdrs[i].sh_addralign;
768                 if (sechdrs[i].sh_type != SHT_NOBITS) {
769                         curr_load_addr = ALIGN(curr_load_addr, align);
770                         offset = curr_load_addr - load_addr;
771                         /* We already modifed ->sh_offset to keep src addr */
772                         src = (char *) sechdrs[i].sh_offset;
773                         memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
774
775                         /* Store load address and source address of section */
776                         sechdrs[i].sh_addr = curr_load_addr;
777
778                         /*
779                          * This section got copied to temporary buffer. Update
780                          * ->sh_offset accordingly.
781                          */
782                         sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
783
784                         /* Advance to the next address */
785                         curr_load_addr += sechdrs[i].sh_size;
786                 } else {
787                         bss_addr = ALIGN(bss_addr, align);
788                         sechdrs[i].sh_addr = bss_addr;
789                         bss_addr += sechdrs[i].sh_size;
790                 }
791         }
792
793         /* Update entry point based on load address of text section */
794         if (entry_sidx >= 0)
795                 entry += sechdrs[entry_sidx].sh_addr;
796
797         /* Make kernel jump to purgatory after shutdown */
798         image->start = entry;
799
800         /* Used later to get/set symbol values */
801         pi->sechdrs = sechdrs;
802
803         /*
804          * Used later to identify which section is purgatory and skip it
805          * from checksumming.
806          */
807         pi->purgatory_buf = kbuf.buffer;
808         return ret;
809 out:
810         vfree(sechdrs);
811         vfree(kbuf.buffer);
812         return ret;
813 }
814
815 static int kexec_apply_relocations(struct kimage *image)
816 {
817         int i, ret;
818         struct purgatory_info *pi = &image->purgatory_info;
819         Elf_Shdr *sechdrs = pi->sechdrs;
820
821         /* Apply relocations */
822         for (i = 0; i < pi->ehdr->e_shnum; i++) {
823                 Elf_Shdr *section, *symtab;
824
825                 if (sechdrs[i].sh_type != SHT_RELA &&
826                     sechdrs[i].sh_type != SHT_REL)
827                         continue;
828
829                 /*
830                  * For section of type SHT_RELA/SHT_REL,
831                  * ->sh_link contains section header index of associated
832                  * symbol table. And ->sh_info contains section header
833                  * index of section to which relocations apply.
834                  */
835                 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
836                     sechdrs[i].sh_link >= pi->ehdr->e_shnum)
837                         return -ENOEXEC;
838
839                 section = &sechdrs[sechdrs[i].sh_info];
840                 symtab = &sechdrs[sechdrs[i].sh_link];
841
842                 if (!(section->sh_flags & SHF_ALLOC))
843                         continue;
844
845                 /*
846                  * symtab->sh_link contain section header index of associated
847                  * string table.
848                  */
849                 if (symtab->sh_link >= pi->ehdr->e_shnum)
850                         /* Invalid section number? */
851                         continue;
852
853                 /*
854                  * Respective architecture needs to provide support for applying
855                  * relocations of type SHT_RELA/SHT_REL.
856                  */
857                 if (sechdrs[i].sh_type == SHT_RELA)
858                         ret = arch_kexec_apply_relocations_add(pi->ehdr,
859                                                                sechdrs, i);
860                 else if (sechdrs[i].sh_type == SHT_REL)
861                         ret = arch_kexec_apply_relocations(pi->ehdr,
862                                                            sechdrs, i);
863                 if (ret)
864                         return ret;
865         }
866
867         return 0;
868 }
869
870 /* Load relocatable purgatory object and relocate it appropriately */
871 int kexec_load_purgatory(struct kimage *image, unsigned long min,
872                          unsigned long max, int top_down,
873                          unsigned long *load_addr)
874 {
875         struct purgatory_info *pi = &image->purgatory_info;
876         int ret;
877
878         if (kexec_purgatory_size <= 0)
879                 return -EINVAL;
880
881         if (kexec_purgatory_size < sizeof(Elf_Ehdr))
882                 return -ENOEXEC;
883
884         pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
885
886         if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
887             || pi->ehdr->e_type != ET_REL
888             || !elf_check_arch(pi->ehdr)
889             || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
890                 return -ENOEXEC;
891
892         if (pi->ehdr->e_shoff >= kexec_purgatory_size
893             || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
894             kexec_purgatory_size - pi->ehdr->e_shoff))
895                 return -ENOEXEC;
896
897         ret = __kexec_load_purgatory(image, min, max, top_down);
898         if (ret)
899                 return ret;
900
901         ret = kexec_apply_relocations(image);
902         if (ret)
903                 goto out;
904
905         *load_addr = pi->purgatory_load_addr;
906         return 0;
907 out:
908         vfree(pi->sechdrs);
909         pi->sechdrs = NULL;
910
911         vfree(pi->purgatory_buf);
912         pi->purgatory_buf = NULL;
913         return ret;
914 }
915
916 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
917                                             const char *name)
918 {
919         Elf_Sym *syms;
920         Elf_Shdr *sechdrs;
921         Elf_Ehdr *ehdr;
922         int i, k;
923         const char *strtab;
924
925         if (!pi->sechdrs || !pi->ehdr)
926                 return NULL;
927
928         sechdrs = pi->sechdrs;
929         ehdr = pi->ehdr;
930
931         for (i = 0; i < ehdr->e_shnum; i++) {
932                 if (sechdrs[i].sh_type != SHT_SYMTAB)
933                         continue;
934
935                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
936                         /* Invalid strtab section number */
937                         continue;
938                 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
939                 syms = (Elf_Sym *)sechdrs[i].sh_offset;
940
941                 /* Go through symbols for a match */
942                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
943                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
944                                 continue;
945
946                         if (strcmp(strtab + syms[k].st_name, name) != 0)
947                                 continue;
948
949                         if (syms[k].st_shndx == SHN_UNDEF ||
950                             syms[k].st_shndx >= ehdr->e_shnum) {
951                                 pr_debug("Symbol: %s has bad section index %d.\n",
952                                                 name, syms[k].st_shndx);
953                                 return NULL;
954                         }
955
956                         /* Found the symbol we are looking for */
957                         return &syms[k];
958                 }
959         }
960
961         return NULL;
962 }
963
964 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
965 {
966         struct purgatory_info *pi = &image->purgatory_info;
967         Elf_Sym *sym;
968         Elf_Shdr *sechdr;
969
970         sym = kexec_purgatory_find_symbol(pi, name);
971         if (!sym)
972                 return ERR_PTR(-EINVAL);
973
974         sechdr = &pi->sechdrs[sym->st_shndx];
975
976         /*
977          * Returns the address where symbol will finally be loaded after
978          * kexec_load_segment()
979          */
980         return (void *)(sechdr->sh_addr + sym->st_value);
981 }
982
983 /*
984  * Get or set value of a symbol. If "get_value" is true, symbol value is
985  * returned in buf otherwise symbol value is set based on value in buf.
986  */
987 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
988                                    void *buf, unsigned int size, bool get_value)
989 {
990         Elf_Sym *sym;
991         Elf_Shdr *sechdrs;
992         struct purgatory_info *pi = &image->purgatory_info;
993         char *sym_buf;
994
995         sym = kexec_purgatory_find_symbol(pi, name);
996         if (!sym)
997                 return -EINVAL;
998
999         if (sym->st_size != size) {
1000                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1001                        name, (unsigned long)sym->st_size, size);
1002                 return -EINVAL;
1003         }
1004
1005         sechdrs = pi->sechdrs;
1006
1007         if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1008                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1009                        get_value ? "get" : "set");
1010                 return -EINVAL;
1011         }
1012
1013         sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1014                                         sym->st_value;
1015
1016         if (get_value)
1017                 memcpy((void *)buf, sym_buf, size);
1018         else
1019                 memcpy((void *)sym_buf, buf, size);
1020
1021         return 0;
1022 }