]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/kmod.c
kmod: correct documentation of return status of request_module
[karo-tx-linux.git] / kernel / kmod.c
1 /*
2         kmod, the new module loader (replaces kerneld)
3         Kirk Petersen
4
5         Reorganized not to be a daemon by Adam Richter, with guidance
6         from Greg Zornetzer.
7
8         Modified to avoid chroot and file sharing problems.
9         Mikael Pettersson
10
11         Limit the concurrent number of kmod modprobes to catch loops from
12         "modprobe needs a service that is in a module".
13         Keith Owens <kaos@ocs.com.au> December 1999
14
15         Unblock all signals when we exec a usermode process.
16         Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18         call_usermodehelper wait flag, and remove exec_usermodehelper.
19         Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <linux/rwsem.h>
40 #include <linux/ptrace.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43
44 #include <trace/events/module.h>
45
46 extern int max_threads;
47
48 static struct workqueue_struct *khelper_wq;
49
50 #define CAP_BSET        (void *)1
51 #define CAP_PI          (void *)2
52
53 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
54 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
55 static DEFINE_SPINLOCK(umh_sysctl_lock);
56 static DECLARE_RWSEM(umhelper_sem);
57
58 #ifdef CONFIG_MODULES
59
60 /*
61         modprobe_path is set via /proc/sys.
62 */
63 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
64
65 static void free_modprobe_argv(struct subprocess_info *info)
66 {
67         kfree(info->argv[3]); /* check call_modprobe() */
68         kfree(info->argv);
69 }
70
71 static int call_modprobe(char *module_name, int wait)
72 {
73         struct subprocess_info *info;
74         static char *envp[] = {
75                 "HOME=/",
76                 "TERM=linux",
77                 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
78                 NULL
79         };
80
81         char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
82         if (!argv)
83                 goto out;
84
85         module_name = kstrdup(module_name, GFP_KERNEL);
86         if (!module_name)
87                 goto free_argv;
88
89         argv[0] = modprobe_path;
90         argv[1] = "-q";
91         argv[2] = "--";
92         argv[3] = module_name;  /* check free_modprobe_argv() */
93         argv[4] = NULL;
94
95         info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
96                                          NULL, free_modprobe_argv, NULL);
97         if (!info)
98                 goto free_module_name;
99
100         return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
101
102 free_module_name:
103         kfree(module_name);
104 free_argv:
105         kfree(argv);
106 out:
107         return -ENOMEM;
108 }
109
110 /**
111  * __request_module - try to load a kernel module
112  * @wait: wait (or not) for the operation to complete
113  * @fmt: printf style format string for the name of the module
114  * @...: arguments as specified in the format string
115  *
116  * Load a module using the user mode module loader. The function returns
117  * zero on success or a negative errno code or positive exit code from
118  * "modprobe" on failure. Note that a successful module load does not mean
119  * the module did not then unload and exit on an error of its own. Callers
120  * must check that the service they requested is now available not blindly
121  * invoke it.
122  *
123  * If module auto-loading support is disabled then this function
124  * becomes a no-operation.
125  */
126 int __request_module(bool wait, const char *fmt, ...)
127 {
128         va_list args;
129         char module_name[MODULE_NAME_LEN];
130         unsigned int max_modprobes;
131         int ret;
132         static atomic_t kmod_concurrent = ATOMIC_INIT(0);
133 #define MAX_KMOD_CONCURRENT 50  /* Completely arbitrary value - KAO */
134         static int kmod_loop_msg;
135
136         /*
137          * We don't allow synchronous module loading from async.  Module
138          * init may invoke async_synchronize_full() which will end up
139          * waiting for this task which already is waiting for the module
140          * loading to complete, leading to a deadlock.
141          */
142         WARN_ON_ONCE(wait && current_is_async());
143
144         if (!modprobe_path[0])
145                 return 0;
146
147         va_start(args, fmt);
148         ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
149         va_end(args);
150         if (ret >= MODULE_NAME_LEN)
151                 return -ENAMETOOLONG;
152
153         ret = security_kernel_module_request(module_name);
154         if (ret)
155                 return ret;
156
157         /* If modprobe needs a service that is in a module, we get a recursive
158          * loop.  Limit the number of running kmod threads to max_threads/2 or
159          * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
160          * would be to run the parents of this process, counting how many times
161          * kmod was invoked.  That would mean accessing the internals of the
162          * process tables to get the command line, proc_pid_cmdline is static
163          * and it is not worth changing the proc code just to handle this case. 
164          * KAO.
165          *
166          * "trace the ppid" is simple, but will fail if someone's
167          * parent exits.  I think this is as good as it gets. --RR
168          */
169         max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
170         atomic_inc(&kmod_concurrent);
171         if (atomic_read(&kmod_concurrent) > max_modprobes) {
172                 /* We may be blaming an innocent here, but unlikely */
173                 if (kmod_loop_msg < 5) {
174                         printk(KERN_ERR
175                                "request_module: runaway loop modprobe %s\n",
176                                module_name);
177                         kmod_loop_msg++;
178                 }
179                 atomic_dec(&kmod_concurrent);
180                 return -ENOMEM;
181         }
182
183         trace_module_request(module_name, wait, _RET_IP_);
184
185         ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
186
187         atomic_dec(&kmod_concurrent);
188         return ret;
189 }
190 EXPORT_SYMBOL(__request_module);
191 #endif /* CONFIG_MODULES */
192
193 static void call_usermodehelper_freeinfo(struct subprocess_info *info)
194 {
195         if (info->cleanup)
196                 (*info->cleanup)(info);
197         kfree(info);
198 }
199
200 static void umh_complete(struct subprocess_info *sub_info)
201 {
202         struct completion *comp = xchg(&sub_info->complete, NULL);
203         /*
204          * See call_usermodehelper_exec(). If xchg() returns NULL
205          * we own sub_info, the UMH_KILLABLE caller has gone away
206          * or the caller used UMH_NO_WAIT.
207          */
208         if (comp)
209                 complete(comp);
210         else
211                 call_usermodehelper_freeinfo(sub_info);
212 }
213
214 /*
215  * This is the task which runs the usermode application
216  */
217 static int ____call_usermodehelper(void *data)
218 {
219         struct subprocess_info *sub_info = data;
220         struct cred *new;
221         int retval;
222
223         spin_lock_irq(&current->sighand->siglock);
224         flush_signal_handlers(current, 1);
225         spin_unlock_irq(&current->sighand->siglock);
226
227         /* We can run anywhere, unlike our parent keventd(). */
228         set_cpus_allowed_ptr(current, cpu_all_mask);
229
230         /*
231          * Our parent is keventd, which runs with elevated scheduling priority.
232          * Avoid propagating that into the userspace child.
233          */
234         set_user_nice(current, 0);
235
236         retval = -ENOMEM;
237         new = prepare_kernel_cred(current);
238         if (!new)
239                 goto out;
240
241         spin_lock(&umh_sysctl_lock);
242         new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
243         new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
244                                              new->cap_inheritable);
245         spin_unlock(&umh_sysctl_lock);
246
247         if (sub_info->init) {
248                 retval = sub_info->init(sub_info, new);
249                 if (retval) {
250                         abort_creds(new);
251                         goto out;
252                 }
253         }
254
255         commit_creds(new);
256
257         retval = do_execve(getname_kernel(sub_info->path),
258                            (const char __user *const __user *)sub_info->argv,
259                            (const char __user *const __user *)sub_info->envp);
260 out:
261         sub_info->retval = retval;
262         /* wait_for_helper() will call umh_complete if UHM_WAIT_PROC. */
263         if (!(sub_info->wait & UMH_WAIT_PROC))
264                 umh_complete(sub_info);
265         if (!retval)
266                 return 0;
267         do_exit(0);
268 }
269
270 /* Keventd can't block, but this (a child) can. */
271 static int wait_for_helper(void *data)
272 {
273         struct subprocess_info *sub_info = data;
274         pid_t pid;
275
276         /* If SIGCLD is ignored sys_wait4 won't populate the status. */
277         kernel_sigaction(SIGCHLD, SIG_DFL);
278         pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
279         if (pid < 0) {
280                 sub_info->retval = pid;
281         } else {
282                 int ret = -ECHILD;
283                 /*
284                  * Normally it is bogus to call wait4() from in-kernel because
285                  * wait4() wants to write the exit code to a userspace address.
286                  * But wait_for_helper() always runs as keventd, and put_user()
287                  * to a kernel address works OK for kernel threads, due to their
288                  * having an mm_segment_t which spans the entire address space.
289                  *
290                  * Thus the __user pointer cast is valid here.
291                  */
292                 sys_wait4(pid, (int __user *)&ret, 0, NULL);
293
294                 /*
295                  * If ret is 0, either ____call_usermodehelper failed and the
296                  * real error code is already in sub_info->retval or
297                  * sub_info->retval is 0 anyway, so don't mess with it then.
298                  */
299                 if (ret)
300                         sub_info->retval = ret;
301         }
302
303         umh_complete(sub_info);
304         do_exit(0);
305 }
306
307 /* This is run by khelper thread  */
308 static void __call_usermodehelper(struct work_struct *work)
309 {
310         struct subprocess_info *sub_info =
311                 container_of(work, struct subprocess_info, work);
312         pid_t pid;
313
314         if (sub_info->wait & UMH_WAIT_PROC)
315                 pid = kernel_thread(wait_for_helper, sub_info,
316                                     CLONE_FS | CLONE_FILES | SIGCHLD);
317         else
318                 pid = kernel_thread(____call_usermodehelper, sub_info,
319                                     SIGCHLD);
320
321         if (pid < 0) {
322                 sub_info->retval = pid;
323                 umh_complete(sub_info);
324         }
325 }
326
327 /*
328  * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
329  * (used for preventing user land processes from being created after the user
330  * land has been frozen during a system-wide hibernation or suspend operation).
331  * Should always be manipulated under umhelper_sem acquired for write.
332  */
333 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
334
335 /* Number of helpers running */
336 static atomic_t running_helpers = ATOMIC_INIT(0);
337
338 /*
339  * Wait queue head used by usermodehelper_disable() to wait for all running
340  * helpers to finish.
341  */
342 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
343
344 /*
345  * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
346  * to become 'false'.
347  */
348 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
349
350 /*
351  * Time to wait for running_helpers to become zero before the setting of
352  * usermodehelper_disabled in usermodehelper_disable() fails
353  */
354 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
355
356 int usermodehelper_read_trylock(void)
357 {
358         DEFINE_WAIT(wait);
359         int ret = 0;
360
361         down_read(&umhelper_sem);
362         for (;;) {
363                 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
364                                 TASK_INTERRUPTIBLE);
365                 if (!usermodehelper_disabled)
366                         break;
367
368                 if (usermodehelper_disabled == UMH_DISABLED)
369                         ret = -EAGAIN;
370
371                 up_read(&umhelper_sem);
372
373                 if (ret)
374                         break;
375
376                 schedule();
377                 try_to_freeze();
378
379                 down_read(&umhelper_sem);
380         }
381         finish_wait(&usermodehelper_disabled_waitq, &wait);
382         return ret;
383 }
384 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
385
386 long usermodehelper_read_lock_wait(long timeout)
387 {
388         DEFINE_WAIT(wait);
389
390         if (timeout < 0)
391                 return -EINVAL;
392
393         down_read(&umhelper_sem);
394         for (;;) {
395                 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
396                                 TASK_UNINTERRUPTIBLE);
397                 if (!usermodehelper_disabled)
398                         break;
399
400                 up_read(&umhelper_sem);
401
402                 timeout = schedule_timeout(timeout);
403                 if (!timeout)
404                         break;
405
406                 down_read(&umhelper_sem);
407         }
408         finish_wait(&usermodehelper_disabled_waitq, &wait);
409         return timeout;
410 }
411 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
412
413 void usermodehelper_read_unlock(void)
414 {
415         up_read(&umhelper_sem);
416 }
417 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
418
419 /**
420  * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
421  * @depth: New value to assign to usermodehelper_disabled.
422  *
423  * Change the value of usermodehelper_disabled (under umhelper_sem locked for
424  * writing) and wakeup tasks waiting for it to change.
425  */
426 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
427 {
428         down_write(&umhelper_sem);
429         usermodehelper_disabled = depth;
430         wake_up(&usermodehelper_disabled_waitq);
431         up_write(&umhelper_sem);
432 }
433
434 /**
435  * __usermodehelper_disable - Prevent new helpers from being started.
436  * @depth: New value to assign to usermodehelper_disabled.
437  *
438  * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
439  */
440 int __usermodehelper_disable(enum umh_disable_depth depth)
441 {
442         long retval;
443
444         if (!depth)
445                 return -EINVAL;
446
447         down_write(&umhelper_sem);
448         usermodehelper_disabled = depth;
449         up_write(&umhelper_sem);
450
451         /*
452          * From now on call_usermodehelper_exec() won't start any new
453          * helpers, so it is sufficient if running_helpers turns out to
454          * be zero at one point (it may be increased later, but that
455          * doesn't matter).
456          */
457         retval = wait_event_timeout(running_helpers_waitq,
458                                         atomic_read(&running_helpers) == 0,
459                                         RUNNING_HELPERS_TIMEOUT);
460         if (retval)
461                 return 0;
462
463         __usermodehelper_set_disable_depth(UMH_ENABLED);
464         return -EAGAIN;
465 }
466
467 static void helper_lock(void)
468 {
469         atomic_inc(&running_helpers);
470         smp_mb__after_atomic();
471 }
472
473 static void helper_unlock(void)
474 {
475         if (atomic_dec_and_test(&running_helpers))
476                 wake_up(&running_helpers_waitq);
477 }
478
479 /**
480  * call_usermodehelper_setup - prepare to call a usermode helper
481  * @path: path to usermode executable
482  * @argv: arg vector for process
483  * @envp: environment for process
484  * @gfp_mask: gfp mask for memory allocation
485  * @cleanup: a cleanup function
486  * @init: an init function
487  * @data: arbitrary context sensitive data
488  *
489  * Returns either %NULL on allocation failure, or a subprocess_info
490  * structure.  This should be passed to call_usermodehelper_exec to
491  * exec the process and free the structure.
492  *
493  * The init function is used to customize the helper process prior to
494  * exec.  A non-zero return code causes the process to error out, exit,
495  * and return the failure to the calling process
496  *
497  * The cleanup function is just before ethe subprocess_info is about to
498  * be freed.  This can be used for freeing the argv and envp.  The
499  * Function must be runnable in either a process context or the
500  * context in which call_usermodehelper_exec is called.
501  */
502 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
503                 char **envp, gfp_t gfp_mask,
504                 int (*init)(struct subprocess_info *info, struct cred *new),
505                 void (*cleanup)(struct subprocess_info *info),
506                 void *data)
507 {
508         struct subprocess_info *sub_info;
509         sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
510         if (!sub_info)
511                 goto out;
512
513         INIT_WORK(&sub_info->work, __call_usermodehelper);
514         sub_info->path = path;
515         sub_info->argv = argv;
516         sub_info->envp = envp;
517
518         sub_info->cleanup = cleanup;
519         sub_info->init = init;
520         sub_info->data = data;
521   out:
522         return sub_info;
523 }
524 EXPORT_SYMBOL(call_usermodehelper_setup);
525
526 /**
527  * call_usermodehelper_exec - start a usermode application
528  * @sub_info: information about the subprocessa
529  * @wait: wait for the application to finish and return status.
530  *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
531  *        when the program couldn't be exec'ed. This makes it safe to call
532  *        from interrupt context.
533  *
534  * Runs a user-space application.  The application is started
535  * asynchronously if wait is not set, and runs as a child of keventd.
536  * (ie. it runs with full root capabilities).
537  */
538 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
539 {
540         DECLARE_COMPLETION_ONSTACK(done);
541         int retval = 0;
542
543         if (!sub_info->path) {
544                 call_usermodehelper_freeinfo(sub_info);
545                 return -EINVAL;
546         }
547         helper_lock();
548         if (!khelper_wq || usermodehelper_disabled) {
549                 retval = -EBUSY;
550                 goto out;
551         }
552         /*
553          * Set the completion pointer only if there is a waiter.
554          * This makes it possible to use umh_complete to free
555          * the data structure in case of UMH_NO_WAIT.
556          */
557         sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
558         sub_info->wait = wait;
559
560         queue_work(khelper_wq, &sub_info->work);
561         if (wait == UMH_NO_WAIT)        /* task has freed sub_info */
562                 goto unlock;
563
564         if (wait & UMH_KILLABLE) {
565                 retval = wait_for_completion_killable(&done);
566                 if (!retval)
567                         goto wait_done;
568
569                 /* umh_complete() will see NULL and free sub_info */
570                 if (xchg(&sub_info->complete, NULL))
571                         goto unlock;
572                 /* fallthrough, umh_complete() was already called */
573         }
574
575         wait_for_completion(&done);
576 wait_done:
577         retval = sub_info->retval;
578 out:
579         call_usermodehelper_freeinfo(sub_info);
580 unlock:
581         helper_unlock();
582         return retval;
583 }
584 EXPORT_SYMBOL(call_usermodehelper_exec);
585
586 /**
587  * call_usermodehelper() - prepare and start a usermode application
588  * @path: path to usermode executable
589  * @argv: arg vector for process
590  * @envp: environment for process
591  * @wait: wait for the application to finish and return status.
592  *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
593  *        when the program couldn't be exec'ed. This makes it safe to call
594  *        from interrupt context.
595  *
596  * This function is the equivalent to use call_usermodehelper_setup() and
597  * call_usermodehelper_exec().
598  */
599 int call_usermodehelper(char *path, char **argv, char **envp, int wait)
600 {
601         struct subprocess_info *info;
602         gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
603
604         info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
605                                          NULL, NULL, NULL);
606         if (info == NULL)
607                 return -ENOMEM;
608
609         return call_usermodehelper_exec(info, wait);
610 }
611 EXPORT_SYMBOL(call_usermodehelper);
612
613 static int proc_cap_handler(struct ctl_table *table, int write,
614                          void __user *buffer, size_t *lenp, loff_t *ppos)
615 {
616         struct ctl_table t;
617         unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
618         kernel_cap_t new_cap;
619         int err, i;
620
621         if (write && (!capable(CAP_SETPCAP) ||
622                       !capable(CAP_SYS_MODULE)))
623                 return -EPERM;
624
625         /*
626          * convert from the global kernel_cap_t to the ulong array to print to
627          * userspace if this is a read.
628          */
629         spin_lock(&umh_sysctl_lock);
630         for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)  {
631                 if (table->data == CAP_BSET)
632                         cap_array[i] = usermodehelper_bset.cap[i];
633                 else if (table->data == CAP_PI)
634                         cap_array[i] = usermodehelper_inheritable.cap[i];
635                 else
636                         BUG();
637         }
638         spin_unlock(&umh_sysctl_lock);
639
640         t = *table;
641         t.data = &cap_array;
642
643         /*
644          * actually read or write and array of ulongs from userspace.  Remember
645          * these are least significant 32 bits first
646          */
647         err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
648         if (err < 0)
649                 return err;
650
651         /*
652          * convert from the sysctl array of ulongs to the kernel_cap_t
653          * internal representation
654          */
655         for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
656                 new_cap.cap[i] = cap_array[i];
657
658         /*
659          * Drop everything not in the new_cap (but don't add things)
660          */
661         spin_lock(&umh_sysctl_lock);
662         if (write) {
663                 if (table->data == CAP_BSET)
664                         usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
665                 if (table->data == CAP_PI)
666                         usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
667         }
668         spin_unlock(&umh_sysctl_lock);
669
670         return 0;
671 }
672
673 struct ctl_table usermodehelper_table[] = {
674         {
675                 .procname       = "bset",
676                 .data           = CAP_BSET,
677                 .maxlen         = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
678                 .mode           = 0600,
679                 .proc_handler   = proc_cap_handler,
680         },
681         {
682                 .procname       = "inheritable",
683                 .data           = CAP_PI,
684                 .maxlen         = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
685                 .mode           = 0600,
686                 .proc_handler   = proc_cap_handler,
687         },
688         { }
689 };
690
691 void __init usermodehelper_init(void)
692 {
693         khelper_wq = create_singlethread_workqueue("khelper");
694         BUG_ON(!khelper_wq);
695 }