]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/trace/ring_buffer.c
Merge tag 'driver-core-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26
27 #include <asm/local.h>
28
29 static void update_pages_handler(struct work_struct *work);
30
31 /*
32  * The ring buffer header is special. We must manually up keep it.
33  */
34 int ring_buffer_print_entry_header(struct trace_seq *s)
35 {
36         trace_seq_puts(s, "# compressed entry header\n");
37         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
38         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
39         trace_seq_puts(s, "\tarray       :   32 bits\n");
40         trace_seq_putc(s, '\n');
41         trace_seq_printf(s, "\tpadding     : type == %d\n",
42                          RINGBUF_TYPE_PADDING);
43         trace_seq_printf(s, "\ttime_extend : type == %d\n",
44                          RINGBUF_TYPE_TIME_EXTEND);
45         trace_seq_printf(s, "\tdata max type_len  == %d\n",
46                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
47
48         return !trace_seq_has_overflowed(s);
49 }
50
51 /*
52  * The ring buffer is made up of a list of pages. A separate list of pages is
53  * allocated for each CPU. A writer may only write to a buffer that is
54  * associated with the CPU it is currently executing on.  A reader may read
55  * from any per cpu buffer.
56  *
57  * The reader is special. For each per cpu buffer, the reader has its own
58  * reader page. When a reader has read the entire reader page, this reader
59  * page is swapped with another page in the ring buffer.
60  *
61  * Now, as long as the writer is off the reader page, the reader can do what
62  * ever it wants with that page. The writer will never write to that page
63  * again (as long as it is out of the ring buffer).
64  *
65  * Here's some silly ASCII art.
66  *
67  *   +------+
68  *   |reader|          RING BUFFER
69  *   |page  |
70  *   +------+        +---+   +---+   +---+
71  *                   |   |-->|   |-->|   |
72  *                   +---+   +---+   +---+
73  *                     ^               |
74  *                     |               |
75  *                     +---------------+
76  *
77  *
78  *   +------+
79  *   |reader|          RING BUFFER
80  *   |page  |------------------v
81  *   +------+        +---+   +---+   +---+
82  *                   |   |-->|   |-->|   |
83  *                   +---+   +---+   +---+
84  *                     ^               |
85  *                     |               |
86  *                     +---------------+
87  *
88  *
89  *   +------+
90  *   |reader|          RING BUFFER
91  *   |page  |------------------v
92  *   +------+        +---+   +---+   +---+
93  *      ^            |   |-->|   |-->|   |
94  *      |            +---+   +---+   +---+
95  *      |                              |
96  *      |                              |
97  *      +------------------------------+
98  *
99  *
100  *   +------+
101  *   |buffer|          RING BUFFER
102  *   |page  |------------------v
103  *   +------+        +---+   +---+   +---+
104  *      ^            |   |   |   |-->|   |
105  *      |   New      +---+   +---+   +---+
106  *      |  Reader------^               |
107  *      |   page                       |
108  *      +------------------------------+
109  *
110  *
111  * After we make this swap, the reader can hand this page off to the splice
112  * code and be done with it. It can even allocate a new page if it needs to
113  * and swap that into the ring buffer.
114  *
115  * We will be using cmpxchg soon to make all this lockless.
116  *
117  */
118
119 /* Used for individual buffers (after the counter) */
120 #define RB_BUFFER_OFF           (1 << 20)
121
122 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
123
124 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
125 #define RB_ALIGNMENT            4U
126 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
127 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
128
129 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
130 # define RB_FORCE_8BYTE_ALIGNMENT       0
131 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
132 #else
133 # define RB_FORCE_8BYTE_ALIGNMENT       1
134 # define RB_ARCH_ALIGNMENT              8U
135 #endif
136
137 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
138
139 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
140 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
141
142 enum {
143         RB_LEN_TIME_EXTEND = 8,
144         RB_LEN_TIME_STAMP = 16,
145 };
146
147 #define skip_time_extend(event) \
148         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
149
150 static inline int rb_null_event(struct ring_buffer_event *event)
151 {
152         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
153 }
154
155 static void rb_event_set_padding(struct ring_buffer_event *event)
156 {
157         /* padding has a NULL time_delta */
158         event->type_len = RINGBUF_TYPE_PADDING;
159         event->time_delta = 0;
160 }
161
162 static unsigned
163 rb_event_data_length(struct ring_buffer_event *event)
164 {
165         unsigned length;
166
167         if (event->type_len)
168                 length = event->type_len * RB_ALIGNMENT;
169         else
170                 length = event->array[0];
171         return length + RB_EVNT_HDR_SIZE;
172 }
173
174 /*
175  * Return the length of the given event. Will return
176  * the length of the time extend if the event is a
177  * time extend.
178  */
179 static inline unsigned
180 rb_event_length(struct ring_buffer_event *event)
181 {
182         switch (event->type_len) {
183         case RINGBUF_TYPE_PADDING:
184                 if (rb_null_event(event))
185                         /* undefined */
186                         return -1;
187                 return  event->array[0] + RB_EVNT_HDR_SIZE;
188
189         case RINGBUF_TYPE_TIME_EXTEND:
190                 return RB_LEN_TIME_EXTEND;
191
192         case RINGBUF_TYPE_TIME_STAMP:
193                 return RB_LEN_TIME_STAMP;
194
195         case RINGBUF_TYPE_DATA:
196                 return rb_event_data_length(event);
197         default:
198                 BUG();
199         }
200         /* not hit */
201         return 0;
202 }
203
204 /*
205  * Return total length of time extend and data,
206  *   or just the event length for all other events.
207  */
208 static inline unsigned
209 rb_event_ts_length(struct ring_buffer_event *event)
210 {
211         unsigned len = 0;
212
213         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
214                 /* time extends include the data event after it */
215                 len = RB_LEN_TIME_EXTEND;
216                 event = skip_time_extend(event);
217         }
218         return len + rb_event_length(event);
219 }
220
221 /**
222  * ring_buffer_event_length - return the length of the event
223  * @event: the event to get the length of
224  *
225  * Returns the size of the data load of a data event.
226  * If the event is something other than a data event, it
227  * returns the size of the event itself. With the exception
228  * of a TIME EXTEND, where it still returns the size of the
229  * data load of the data event after it.
230  */
231 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
232 {
233         unsigned length;
234
235         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
236                 event = skip_time_extend(event);
237
238         length = rb_event_length(event);
239         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
240                 return length;
241         length -= RB_EVNT_HDR_SIZE;
242         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
243                 length -= sizeof(event->array[0]);
244         return length;
245 }
246 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
247
248 /* inline for ring buffer fast paths */
249 static __always_inline void *
250 rb_event_data(struct ring_buffer_event *event)
251 {
252         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
253                 event = skip_time_extend(event);
254         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
255         /* If length is in len field, then array[0] has the data */
256         if (event->type_len)
257                 return (void *)&event->array[0];
258         /* Otherwise length is in array[0] and array[1] has the data */
259         return (void *)&event->array[1];
260 }
261
262 /**
263  * ring_buffer_event_data - return the data of the event
264  * @event: the event to get the data from
265  */
266 void *ring_buffer_event_data(struct ring_buffer_event *event)
267 {
268         return rb_event_data(event);
269 }
270 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
271
272 #define for_each_buffer_cpu(buffer, cpu)                \
273         for_each_cpu(cpu, buffer->cpumask)
274
275 #define TS_SHIFT        27
276 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
277 #define TS_DELTA_TEST   (~TS_MASK)
278
279 /* Flag when events were overwritten */
280 #define RB_MISSED_EVENTS        (1 << 31)
281 /* Missed count stored at end */
282 #define RB_MISSED_STORED        (1 << 30)
283
284 struct buffer_data_page {
285         u64              time_stamp;    /* page time stamp */
286         local_t          commit;        /* write committed index */
287         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
288 };
289
290 /*
291  * Note, the buffer_page list must be first. The buffer pages
292  * are allocated in cache lines, which means that each buffer
293  * page will be at the beginning of a cache line, and thus
294  * the least significant bits will be zero. We use this to
295  * add flags in the list struct pointers, to make the ring buffer
296  * lockless.
297  */
298 struct buffer_page {
299         struct list_head list;          /* list of buffer pages */
300         local_t          write;         /* index for next write */
301         unsigned         read;          /* index for next read */
302         local_t          entries;       /* entries on this page */
303         unsigned long    real_end;      /* real end of data */
304         struct buffer_data_page *page;  /* Actual data page */
305 };
306
307 /*
308  * The buffer page counters, write and entries, must be reset
309  * atomically when crossing page boundaries. To synchronize this
310  * update, two counters are inserted into the number. One is
311  * the actual counter for the write position or count on the page.
312  *
313  * The other is a counter of updaters. Before an update happens
314  * the update partition of the counter is incremented. This will
315  * allow the updater to update the counter atomically.
316  *
317  * The counter is 20 bits, and the state data is 12.
318  */
319 #define RB_WRITE_MASK           0xfffff
320 #define RB_WRITE_INTCNT         (1 << 20)
321
322 static void rb_init_page(struct buffer_data_page *bpage)
323 {
324         local_set(&bpage->commit, 0);
325 }
326
327 /**
328  * ring_buffer_page_len - the size of data on the page.
329  * @page: The page to read
330  *
331  * Returns the amount of data on the page, including buffer page header.
332  */
333 size_t ring_buffer_page_len(void *page)
334 {
335         return local_read(&((struct buffer_data_page *)page)->commit)
336                 + BUF_PAGE_HDR_SIZE;
337 }
338
339 /*
340  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
341  * this issue out.
342  */
343 static void free_buffer_page(struct buffer_page *bpage)
344 {
345         free_page((unsigned long)bpage->page);
346         kfree(bpage);
347 }
348
349 /*
350  * We need to fit the time_stamp delta into 27 bits.
351  */
352 static inline int test_time_stamp(u64 delta)
353 {
354         if (delta & TS_DELTA_TEST)
355                 return 1;
356         return 0;
357 }
358
359 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
360
361 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
362 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
363
364 int ring_buffer_print_page_header(struct trace_seq *s)
365 {
366         struct buffer_data_page field;
367
368         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
369                          "offset:0;\tsize:%u;\tsigned:%u;\n",
370                          (unsigned int)sizeof(field.time_stamp),
371                          (unsigned int)is_signed_type(u64));
372
373         trace_seq_printf(s, "\tfield: local_t commit;\t"
374                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
375                          (unsigned int)offsetof(typeof(field), commit),
376                          (unsigned int)sizeof(field.commit),
377                          (unsigned int)is_signed_type(long));
378
379         trace_seq_printf(s, "\tfield: int overwrite;\t"
380                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
381                          (unsigned int)offsetof(typeof(field), commit),
382                          1,
383                          (unsigned int)is_signed_type(long));
384
385         trace_seq_printf(s, "\tfield: char data;\t"
386                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
387                          (unsigned int)offsetof(typeof(field), data),
388                          (unsigned int)BUF_PAGE_SIZE,
389                          (unsigned int)is_signed_type(char));
390
391         return !trace_seq_has_overflowed(s);
392 }
393
394 struct rb_irq_work {
395         struct irq_work                 work;
396         wait_queue_head_t               waiters;
397         wait_queue_head_t               full_waiters;
398         bool                            waiters_pending;
399         bool                            full_waiters_pending;
400         bool                            wakeup_full;
401 };
402
403 /*
404  * Structure to hold event state and handle nested events.
405  */
406 struct rb_event_info {
407         u64                     ts;
408         u64                     delta;
409         unsigned long           length;
410         struct buffer_page      *tail_page;
411         int                     add_timestamp;
412 };
413
414 /*
415  * Used for which event context the event is in.
416  *  NMI     = 0
417  *  IRQ     = 1
418  *  SOFTIRQ = 2
419  *  NORMAL  = 3
420  *
421  * See trace_recursive_lock() comment below for more details.
422  */
423 enum {
424         RB_CTX_NMI,
425         RB_CTX_IRQ,
426         RB_CTX_SOFTIRQ,
427         RB_CTX_NORMAL,
428         RB_CTX_MAX
429 };
430
431 /*
432  * head_page == tail_page && head == tail then buffer is empty.
433  */
434 struct ring_buffer_per_cpu {
435         int                             cpu;
436         atomic_t                        record_disabled;
437         struct ring_buffer              *buffer;
438         raw_spinlock_t                  reader_lock;    /* serialize readers */
439         arch_spinlock_t                 lock;
440         struct lock_class_key           lock_key;
441         struct buffer_data_page         *free_page;
442         unsigned long                   nr_pages;
443         unsigned int                    current_context;
444         struct list_head                *pages;
445         struct buffer_page              *head_page;     /* read from head */
446         struct buffer_page              *tail_page;     /* write to tail */
447         struct buffer_page              *commit_page;   /* committed pages */
448         struct buffer_page              *reader_page;
449         unsigned long                   lost_events;
450         unsigned long                   last_overrun;
451         local_t                         entries_bytes;
452         local_t                         entries;
453         local_t                         overrun;
454         local_t                         commit_overrun;
455         local_t                         dropped_events;
456         local_t                         committing;
457         local_t                         commits;
458         unsigned long                   read;
459         unsigned long                   read_bytes;
460         u64                             write_stamp;
461         u64                             read_stamp;
462         /* ring buffer pages to update, > 0 to add, < 0 to remove */
463         long                            nr_pages_to_update;
464         struct list_head                new_pages; /* new pages to add */
465         struct work_struct              update_pages_work;
466         struct completion               update_done;
467
468         struct rb_irq_work              irq_work;
469 };
470
471 struct ring_buffer {
472         unsigned                        flags;
473         int                             cpus;
474         atomic_t                        record_disabled;
475         atomic_t                        resize_disabled;
476         cpumask_var_t                   cpumask;
477
478         struct lock_class_key           *reader_lock_key;
479
480         struct mutex                    mutex;
481
482         struct ring_buffer_per_cpu      **buffers;
483
484         struct hlist_node               node;
485         u64                             (*clock)(void);
486
487         struct rb_irq_work              irq_work;
488 };
489
490 struct ring_buffer_iter {
491         struct ring_buffer_per_cpu      *cpu_buffer;
492         unsigned long                   head;
493         struct buffer_page              *head_page;
494         struct buffer_page              *cache_reader_page;
495         unsigned long                   cache_read;
496         u64                             read_stamp;
497 };
498
499 /*
500  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501  *
502  * Schedules a delayed work to wake up any task that is blocked on the
503  * ring buffer waiters queue.
504  */
505 static void rb_wake_up_waiters(struct irq_work *work)
506 {
507         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508
509         wake_up_all(&rbwork->waiters);
510         if (rbwork->wakeup_full) {
511                 rbwork->wakeup_full = false;
512                 wake_up_all(&rbwork->full_waiters);
513         }
514 }
515
516 /**
517  * ring_buffer_wait - wait for input to the ring buffer
518  * @buffer: buffer to wait on
519  * @cpu: the cpu buffer to wait on
520  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
521  *
522  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523  * as data is added to any of the @buffer's cpu buffers. Otherwise
524  * it will wait for data to be added to a specific cpu buffer.
525  */
526 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
527 {
528         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
529         DEFINE_WAIT(wait);
530         struct rb_irq_work *work;
531         int ret = 0;
532
533         /*
534          * Depending on what the caller is waiting for, either any
535          * data in any cpu buffer, or a specific buffer, put the
536          * caller on the appropriate wait queue.
537          */
538         if (cpu == RING_BUFFER_ALL_CPUS) {
539                 work = &buffer->irq_work;
540                 /* Full only makes sense on per cpu reads */
541                 full = false;
542         } else {
543                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
544                         return -ENODEV;
545                 cpu_buffer = buffer->buffers[cpu];
546                 work = &cpu_buffer->irq_work;
547         }
548
549
550         while (true) {
551                 if (full)
552                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553                 else
554                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
555
556                 /*
557                  * The events can happen in critical sections where
558                  * checking a work queue can cause deadlocks.
559                  * After adding a task to the queue, this flag is set
560                  * only to notify events to try to wake up the queue
561                  * using irq_work.
562                  *
563                  * We don't clear it even if the buffer is no longer
564                  * empty. The flag only causes the next event to run
565                  * irq_work to do the work queue wake up. The worse
566                  * that can happen if we race with !trace_empty() is that
567                  * an event will cause an irq_work to try to wake up
568                  * an empty queue.
569                  *
570                  * There's no reason to protect this flag either, as
571                  * the work queue and irq_work logic will do the necessary
572                  * synchronization for the wake ups. The only thing
573                  * that is necessary is that the wake up happens after
574                  * a task has been queued. It's OK for spurious wake ups.
575                  */
576                 if (full)
577                         work->full_waiters_pending = true;
578                 else
579                         work->waiters_pending = true;
580
581                 if (signal_pending(current)) {
582                         ret = -EINTR;
583                         break;
584                 }
585
586                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587                         break;
588
589                 if (cpu != RING_BUFFER_ALL_CPUS &&
590                     !ring_buffer_empty_cpu(buffer, cpu)) {
591                         unsigned long flags;
592                         bool pagebusy;
593
594                         if (!full)
595                                 break;
596
597                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600
601                         if (!pagebusy)
602                                 break;
603                 }
604
605                 schedule();
606         }
607
608         if (full)
609                 finish_wait(&work->full_waiters, &wait);
610         else
611                 finish_wait(&work->waiters, &wait);
612
613         return ret;
614 }
615
616 /**
617  * ring_buffer_poll_wait - poll on buffer input
618  * @buffer: buffer to wait on
619  * @cpu: the cpu buffer to wait on
620  * @filp: the file descriptor
621  * @poll_table: The poll descriptor
622  *
623  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624  * as data is added to any of the @buffer's cpu buffers. Otherwise
625  * it will wait for data to be added to a specific cpu buffer.
626  *
627  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628  * zero otherwise.
629  */
630 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631                           struct file *filp, poll_table *poll_table)
632 {
633         struct ring_buffer_per_cpu *cpu_buffer;
634         struct rb_irq_work *work;
635
636         if (cpu == RING_BUFFER_ALL_CPUS)
637                 work = &buffer->irq_work;
638         else {
639                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
640                         return -EINVAL;
641
642                 cpu_buffer = buffer->buffers[cpu];
643                 work = &cpu_buffer->irq_work;
644         }
645
646         poll_wait(filp, &work->waiters, poll_table);
647         work->waiters_pending = true;
648         /*
649          * There's a tight race between setting the waiters_pending and
650          * checking if the ring buffer is empty.  Once the waiters_pending bit
651          * is set, the next event will wake the task up, but we can get stuck
652          * if there's only a single event in.
653          *
654          * FIXME: Ideally, we need a memory barrier on the writer side as well,
655          * but adding a memory barrier to all events will cause too much of a
656          * performance hit in the fast path.  We only need a memory barrier when
657          * the buffer goes from empty to having content.  But as this race is
658          * extremely small, and it's not a problem if another event comes in, we
659          * will fix it later.
660          */
661         smp_mb();
662
663         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665                 return POLLIN | POLLRDNORM;
666         return 0;
667 }
668
669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
670 #define RB_WARN_ON(b, cond)                                             \
671         ({                                                              \
672                 int _____ret = unlikely(cond);                          \
673                 if (_____ret) {                                         \
674                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675                                 struct ring_buffer_per_cpu *__b =       \
676                                         (void *)b;                      \
677                                 atomic_inc(&__b->buffer->record_disabled); \
678                         } else                                          \
679                                 atomic_inc(&b->record_disabled);        \
680                         WARN_ON(1);                                     \
681                 }                                                       \
682                 _____ret;                                               \
683         })
684
685 /* Up this if you want to test the TIME_EXTENTS and normalization */
686 #define DEBUG_SHIFT 0
687
688 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
689 {
690         /* shift to debug/test normalization and TIME_EXTENTS */
691         return buffer->clock() << DEBUG_SHIFT;
692 }
693
694 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695 {
696         u64 time;
697
698         preempt_disable_notrace();
699         time = rb_time_stamp(buffer);
700         preempt_enable_no_resched_notrace();
701
702         return time;
703 }
704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705
706 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707                                       int cpu, u64 *ts)
708 {
709         /* Just stupid testing the normalize function and deltas */
710         *ts >>= DEBUG_SHIFT;
711 }
712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713
714 /*
715  * Making the ring buffer lockless makes things tricky.
716  * Although writes only happen on the CPU that they are on,
717  * and they only need to worry about interrupts. Reads can
718  * happen on any CPU.
719  *
720  * The reader page is always off the ring buffer, but when the
721  * reader finishes with a page, it needs to swap its page with
722  * a new one from the buffer. The reader needs to take from
723  * the head (writes go to the tail). But if a writer is in overwrite
724  * mode and wraps, it must push the head page forward.
725  *
726  * Here lies the problem.
727  *
728  * The reader must be careful to replace only the head page, and
729  * not another one. As described at the top of the file in the
730  * ASCII art, the reader sets its old page to point to the next
731  * page after head. It then sets the page after head to point to
732  * the old reader page. But if the writer moves the head page
733  * during this operation, the reader could end up with the tail.
734  *
735  * We use cmpxchg to help prevent this race. We also do something
736  * special with the page before head. We set the LSB to 1.
737  *
738  * When the writer must push the page forward, it will clear the
739  * bit that points to the head page, move the head, and then set
740  * the bit that points to the new head page.
741  *
742  * We also don't want an interrupt coming in and moving the head
743  * page on another writer. Thus we use the second LSB to catch
744  * that too. Thus:
745  *
746  * head->list->prev->next        bit 1          bit 0
747  *                              -------        -------
748  * Normal page                     0              0
749  * Points to head page             0              1
750  * New head page                   1              0
751  *
752  * Note we can not trust the prev pointer of the head page, because:
753  *
754  * +----+       +-----+        +-----+
755  * |    |------>|  T  |---X--->|  N  |
756  * |    |<------|     |        |     |
757  * +----+       +-----+        +-----+
758  *   ^                           ^ |
759  *   |          +-----+          | |
760  *   +----------|  R  |----------+ |
761  *              |     |<-----------+
762  *              +-----+
763  *
764  * Key:  ---X-->  HEAD flag set in pointer
765  *         T      Tail page
766  *         R      Reader page
767  *         N      Next page
768  *
769  * (see __rb_reserve_next() to see where this happens)
770  *
771  *  What the above shows is that the reader just swapped out
772  *  the reader page with a page in the buffer, but before it
773  *  could make the new header point back to the new page added
774  *  it was preempted by a writer. The writer moved forward onto
775  *  the new page added by the reader and is about to move forward
776  *  again.
777  *
778  *  You can see, it is legitimate for the previous pointer of
779  *  the head (or any page) not to point back to itself. But only
780  *  temporarially.
781  */
782
783 #define RB_PAGE_NORMAL          0UL
784 #define RB_PAGE_HEAD            1UL
785 #define RB_PAGE_UPDATE          2UL
786
787
788 #define RB_FLAG_MASK            3UL
789
790 /* PAGE_MOVED is not part of the mask */
791 #define RB_PAGE_MOVED           4UL
792
793 /*
794  * rb_list_head - remove any bit
795  */
796 static struct list_head *rb_list_head(struct list_head *list)
797 {
798         unsigned long val = (unsigned long)list;
799
800         return (struct list_head *)(val & ~RB_FLAG_MASK);
801 }
802
803 /*
804  * rb_is_head_page - test if the given page is the head page
805  *
806  * Because the reader may move the head_page pointer, we can
807  * not trust what the head page is (it may be pointing to
808  * the reader page). But if the next page is a header page,
809  * its flags will be non zero.
810  */
811 static inline int
812 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813                 struct buffer_page *page, struct list_head *list)
814 {
815         unsigned long val;
816
817         val = (unsigned long)list->next;
818
819         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820                 return RB_PAGE_MOVED;
821
822         return val & RB_FLAG_MASK;
823 }
824
825 /*
826  * rb_is_reader_page
827  *
828  * The unique thing about the reader page, is that, if the
829  * writer is ever on it, the previous pointer never points
830  * back to the reader page.
831  */
832 static bool rb_is_reader_page(struct buffer_page *page)
833 {
834         struct list_head *list = page->list.prev;
835
836         return rb_list_head(list->next) != &page->list;
837 }
838
839 /*
840  * rb_set_list_to_head - set a list_head to be pointing to head.
841  */
842 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843                                 struct list_head *list)
844 {
845         unsigned long *ptr;
846
847         ptr = (unsigned long *)&list->next;
848         *ptr |= RB_PAGE_HEAD;
849         *ptr &= ~RB_PAGE_UPDATE;
850 }
851
852 /*
853  * rb_head_page_activate - sets up head page
854  */
855 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856 {
857         struct buffer_page *head;
858
859         head = cpu_buffer->head_page;
860         if (!head)
861                 return;
862
863         /*
864          * Set the previous list pointer to have the HEAD flag.
865          */
866         rb_set_list_to_head(cpu_buffer, head->list.prev);
867 }
868
869 static void rb_list_head_clear(struct list_head *list)
870 {
871         unsigned long *ptr = (unsigned long *)&list->next;
872
873         *ptr &= ~RB_FLAG_MASK;
874 }
875
876 /*
877  * rb_head_page_dactivate - clears head page ptr (for free list)
878  */
879 static void
880 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881 {
882         struct list_head *hd;
883
884         /* Go through the whole list and clear any pointers found. */
885         rb_list_head_clear(cpu_buffer->pages);
886
887         list_for_each(hd, cpu_buffer->pages)
888                 rb_list_head_clear(hd);
889 }
890
891 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892                             struct buffer_page *head,
893                             struct buffer_page *prev,
894                             int old_flag, int new_flag)
895 {
896         struct list_head *list;
897         unsigned long val = (unsigned long)&head->list;
898         unsigned long ret;
899
900         list = &prev->list;
901
902         val &= ~RB_FLAG_MASK;
903
904         ret = cmpxchg((unsigned long *)&list->next,
905                       val | old_flag, val | new_flag);
906
907         /* check if the reader took the page */
908         if ((ret & ~RB_FLAG_MASK) != val)
909                 return RB_PAGE_MOVED;
910
911         return ret & RB_FLAG_MASK;
912 }
913
914 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915                                    struct buffer_page *head,
916                                    struct buffer_page *prev,
917                                    int old_flag)
918 {
919         return rb_head_page_set(cpu_buffer, head, prev,
920                                 old_flag, RB_PAGE_UPDATE);
921 }
922
923 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924                                  struct buffer_page *head,
925                                  struct buffer_page *prev,
926                                  int old_flag)
927 {
928         return rb_head_page_set(cpu_buffer, head, prev,
929                                 old_flag, RB_PAGE_HEAD);
930 }
931
932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933                                    struct buffer_page *head,
934                                    struct buffer_page *prev,
935                                    int old_flag)
936 {
937         return rb_head_page_set(cpu_buffer, head, prev,
938                                 old_flag, RB_PAGE_NORMAL);
939 }
940
941 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942                                struct buffer_page **bpage)
943 {
944         struct list_head *p = rb_list_head((*bpage)->list.next);
945
946         *bpage = list_entry(p, struct buffer_page, list);
947 }
948
949 static struct buffer_page *
950 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951 {
952         struct buffer_page *head;
953         struct buffer_page *page;
954         struct list_head *list;
955         int i;
956
957         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958                 return NULL;
959
960         /* sanity check */
961         list = cpu_buffer->pages;
962         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963                 return NULL;
964
965         page = head = cpu_buffer->head_page;
966         /*
967          * It is possible that the writer moves the header behind
968          * where we started, and we miss in one loop.
969          * A second loop should grab the header, but we'll do
970          * three loops just because I'm paranoid.
971          */
972         for (i = 0; i < 3; i++) {
973                 do {
974                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975                                 cpu_buffer->head_page = page;
976                                 return page;
977                         }
978                         rb_inc_page(cpu_buffer, &page);
979                 } while (page != head);
980         }
981
982         RB_WARN_ON(cpu_buffer, 1);
983
984         return NULL;
985 }
986
987 static int rb_head_page_replace(struct buffer_page *old,
988                                 struct buffer_page *new)
989 {
990         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991         unsigned long val;
992         unsigned long ret;
993
994         val = *ptr & ~RB_FLAG_MASK;
995         val |= RB_PAGE_HEAD;
996
997         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
998
999         return ret == val;
1000 }
1001
1002 /*
1003  * rb_tail_page_update - move the tail page forward
1004  */
1005 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1006                                struct buffer_page *tail_page,
1007                                struct buffer_page *next_page)
1008 {
1009         unsigned long old_entries;
1010         unsigned long old_write;
1011
1012         /*
1013          * The tail page now needs to be moved forward.
1014          *
1015          * We need to reset the tail page, but without messing
1016          * with possible erasing of data brought in by interrupts
1017          * that have moved the tail page and are currently on it.
1018          *
1019          * We add a counter to the write field to denote this.
1020          */
1021         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1022         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1023
1024         /*
1025          * Just make sure we have seen our old_write and synchronize
1026          * with any interrupts that come in.
1027          */
1028         barrier();
1029
1030         /*
1031          * If the tail page is still the same as what we think
1032          * it is, then it is up to us to update the tail
1033          * pointer.
1034          */
1035         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1036                 /* Zero the write counter */
1037                 unsigned long val = old_write & ~RB_WRITE_MASK;
1038                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1039
1040                 /*
1041                  * This will only succeed if an interrupt did
1042                  * not come in and change it. In which case, we
1043                  * do not want to modify it.
1044                  *
1045                  * We add (void) to let the compiler know that we do not care
1046                  * about the return value of these functions. We use the
1047                  * cmpxchg to only update if an interrupt did not already
1048                  * do it for us. If the cmpxchg fails, we don't care.
1049                  */
1050                 (void)local_cmpxchg(&next_page->write, old_write, val);
1051                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1052
1053                 /*
1054                  * No need to worry about races with clearing out the commit.
1055                  * it only can increment when a commit takes place. But that
1056                  * only happens in the outer most nested commit.
1057                  */
1058                 local_set(&next_page->page->commit, 0);
1059
1060                 /* Again, either we update tail_page or an interrupt does */
1061                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1062         }
1063 }
1064
1065 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1066                           struct buffer_page *bpage)
1067 {
1068         unsigned long val = (unsigned long)bpage;
1069
1070         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1071                 return 1;
1072
1073         return 0;
1074 }
1075
1076 /**
1077  * rb_check_list - make sure a pointer to a list has the last bits zero
1078  */
1079 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1080                          struct list_head *list)
1081 {
1082         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1083                 return 1;
1084         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1085                 return 1;
1086         return 0;
1087 }
1088
1089 /**
1090  * rb_check_pages - integrity check of buffer pages
1091  * @cpu_buffer: CPU buffer with pages to test
1092  *
1093  * As a safety measure we check to make sure the data pages have not
1094  * been corrupted.
1095  */
1096 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1097 {
1098         struct list_head *head = cpu_buffer->pages;
1099         struct buffer_page *bpage, *tmp;
1100
1101         /* Reset the head page if it exists */
1102         if (cpu_buffer->head_page)
1103                 rb_set_head_page(cpu_buffer);
1104
1105         rb_head_page_deactivate(cpu_buffer);
1106
1107         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1108                 return -1;
1109         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1110                 return -1;
1111
1112         if (rb_check_list(cpu_buffer, head))
1113                 return -1;
1114
1115         list_for_each_entry_safe(bpage, tmp, head, list) {
1116                 if (RB_WARN_ON(cpu_buffer,
1117                                bpage->list.next->prev != &bpage->list))
1118                         return -1;
1119                 if (RB_WARN_ON(cpu_buffer,
1120                                bpage->list.prev->next != &bpage->list))
1121                         return -1;
1122                 if (rb_check_list(cpu_buffer, &bpage->list))
1123                         return -1;
1124         }
1125
1126         rb_head_page_activate(cpu_buffer);
1127
1128         return 0;
1129 }
1130
1131 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1132 {
1133         struct buffer_page *bpage, *tmp;
1134         long i;
1135
1136         for (i = 0; i < nr_pages; i++) {
1137                 struct page *page;
1138                 /*
1139                  * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1140                  * gracefully without invoking oom-killer and the system is not
1141                  * destabilized.
1142                  */
1143                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1144                                     GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1145                                     cpu_to_node(cpu));
1146                 if (!bpage)
1147                         goto free_pages;
1148
1149                 list_add(&bpage->list, pages);
1150
1151                 page = alloc_pages_node(cpu_to_node(cpu),
1152                                         GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1153                 if (!page)
1154                         goto free_pages;
1155                 bpage->page = page_address(page);
1156                 rb_init_page(bpage->page);
1157         }
1158
1159         return 0;
1160
1161 free_pages:
1162         list_for_each_entry_safe(bpage, tmp, pages, list) {
1163                 list_del_init(&bpage->list);
1164                 free_buffer_page(bpage);
1165         }
1166
1167         return -ENOMEM;
1168 }
1169
1170 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1171                              unsigned long nr_pages)
1172 {
1173         LIST_HEAD(pages);
1174
1175         WARN_ON(!nr_pages);
1176
1177         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1178                 return -ENOMEM;
1179
1180         /*
1181          * The ring buffer page list is a circular list that does not
1182          * start and end with a list head. All page list items point to
1183          * other pages.
1184          */
1185         cpu_buffer->pages = pages.next;
1186         list_del(&pages);
1187
1188         cpu_buffer->nr_pages = nr_pages;
1189
1190         rb_check_pages(cpu_buffer);
1191
1192         return 0;
1193 }
1194
1195 static struct ring_buffer_per_cpu *
1196 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1197 {
1198         struct ring_buffer_per_cpu *cpu_buffer;
1199         struct buffer_page *bpage;
1200         struct page *page;
1201         int ret;
1202
1203         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1204                                   GFP_KERNEL, cpu_to_node(cpu));
1205         if (!cpu_buffer)
1206                 return NULL;
1207
1208         cpu_buffer->cpu = cpu;
1209         cpu_buffer->buffer = buffer;
1210         raw_spin_lock_init(&cpu_buffer->reader_lock);
1211         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1212         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1213         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1214         init_completion(&cpu_buffer->update_done);
1215         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1216         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1217         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1218
1219         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1220                             GFP_KERNEL, cpu_to_node(cpu));
1221         if (!bpage)
1222                 goto fail_free_buffer;
1223
1224         rb_check_bpage(cpu_buffer, bpage);
1225
1226         cpu_buffer->reader_page = bpage;
1227         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1228         if (!page)
1229                 goto fail_free_reader;
1230         bpage->page = page_address(page);
1231         rb_init_page(bpage->page);
1232
1233         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1234         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1235
1236         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1237         if (ret < 0)
1238                 goto fail_free_reader;
1239
1240         cpu_buffer->head_page
1241                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1242         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1243
1244         rb_head_page_activate(cpu_buffer);
1245
1246         return cpu_buffer;
1247
1248  fail_free_reader:
1249         free_buffer_page(cpu_buffer->reader_page);
1250
1251  fail_free_buffer:
1252         kfree(cpu_buffer);
1253         return NULL;
1254 }
1255
1256 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1257 {
1258         struct list_head *head = cpu_buffer->pages;
1259         struct buffer_page *bpage, *tmp;
1260
1261         free_buffer_page(cpu_buffer->reader_page);
1262
1263         rb_head_page_deactivate(cpu_buffer);
1264
1265         if (head) {
1266                 list_for_each_entry_safe(bpage, tmp, head, list) {
1267                         list_del_init(&bpage->list);
1268                         free_buffer_page(bpage);
1269                 }
1270                 bpage = list_entry(head, struct buffer_page, list);
1271                 free_buffer_page(bpage);
1272         }
1273
1274         kfree(cpu_buffer);
1275 }
1276
1277 /**
1278  * __ring_buffer_alloc - allocate a new ring_buffer
1279  * @size: the size in bytes per cpu that is needed.
1280  * @flags: attributes to set for the ring buffer.
1281  *
1282  * Currently the only flag that is available is the RB_FL_OVERWRITE
1283  * flag. This flag means that the buffer will overwrite old data
1284  * when the buffer wraps. If this flag is not set, the buffer will
1285  * drop data when the tail hits the head.
1286  */
1287 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1288                                         struct lock_class_key *key)
1289 {
1290         struct ring_buffer *buffer;
1291         long nr_pages;
1292         int bsize;
1293         int cpu;
1294         int ret;
1295
1296         /* keep it in its own cache line */
1297         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1298                          GFP_KERNEL);
1299         if (!buffer)
1300                 return NULL;
1301
1302         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1303                 goto fail_free_buffer;
1304
1305         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1306         buffer->flags = flags;
1307         buffer->clock = trace_clock_local;
1308         buffer->reader_lock_key = key;
1309
1310         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1311         init_waitqueue_head(&buffer->irq_work.waiters);
1312
1313         /* need at least two pages */
1314         if (nr_pages < 2)
1315                 nr_pages = 2;
1316
1317         buffer->cpus = nr_cpu_ids;
1318
1319         bsize = sizeof(void *) * nr_cpu_ids;
1320         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1321                                   GFP_KERNEL);
1322         if (!buffer->buffers)
1323                 goto fail_free_cpumask;
1324
1325         cpu = raw_smp_processor_id();
1326         cpumask_set_cpu(cpu, buffer->cpumask);
1327         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1328         if (!buffer->buffers[cpu])
1329                 goto fail_free_buffers;
1330
1331         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1332         if (ret < 0)
1333                 goto fail_free_buffers;
1334
1335         mutex_init(&buffer->mutex);
1336
1337         return buffer;
1338
1339  fail_free_buffers:
1340         for_each_buffer_cpu(buffer, cpu) {
1341                 if (buffer->buffers[cpu])
1342                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1343         }
1344         kfree(buffer->buffers);
1345
1346  fail_free_cpumask:
1347         free_cpumask_var(buffer->cpumask);
1348
1349  fail_free_buffer:
1350         kfree(buffer);
1351         return NULL;
1352 }
1353 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1354
1355 /**
1356  * ring_buffer_free - free a ring buffer.
1357  * @buffer: the buffer to free.
1358  */
1359 void
1360 ring_buffer_free(struct ring_buffer *buffer)
1361 {
1362         int cpu;
1363
1364         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1365
1366         for_each_buffer_cpu(buffer, cpu)
1367                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1368
1369         kfree(buffer->buffers);
1370         free_cpumask_var(buffer->cpumask);
1371
1372         kfree(buffer);
1373 }
1374 EXPORT_SYMBOL_GPL(ring_buffer_free);
1375
1376 void ring_buffer_set_clock(struct ring_buffer *buffer,
1377                            u64 (*clock)(void))
1378 {
1379         buffer->clock = clock;
1380 }
1381
1382 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1383
1384 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1385 {
1386         return local_read(&bpage->entries) & RB_WRITE_MASK;
1387 }
1388
1389 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1390 {
1391         return local_read(&bpage->write) & RB_WRITE_MASK;
1392 }
1393
1394 static int
1395 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1396 {
1397         struct list_head *tail_page, *to_remove, *next_page;
1398         struct buffer_page *to_remove_page, *tmp_iter_page;
1399         struct buffer_page *last_page, *first_page;
1400         unsigned long nr_removed;
1401         unsigned long head_bit;
1402         int page_entries;
1403
1404         head_bit = 0;
1405
1406         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1407         atomic_inc(&cpu_buffer->record_disabled);
1408         /*
1409          * We don't race with the readers since we have acquired the reader
1410          * lock. We also don't race with writers after disabling recording.
1411          * This makes it easy to figure out the first and the last page to be
1412          * removed from the list. We unlink all the pages in between including
1413          * the first and last pages. This is done in a busy loop so that we
1414          * lose the least number of traces.
1415          * The pages are freed after we restart recording and unlock readers.
1416          */
1417         tail_page = &cpu_buffer->tail_page->list;
1418
1419         /*
1420          * tail page might be on reader page, we remove the next page
1421          * from the ring buffer
1422          */
1423         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1424                 tail_page = rb_list_head(tail_page->next);
1425         to_remove = tail_page;
1426
1427         /* start of pages to remove */
1428         first_page = list_entry(rb_list_head(to_remove->next),
1429                                 struct buffer_page, list);
1430
1431         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1432                 to_remove = rb_list_head(to_remove)->next;
1433                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1434         }
1435
1436         next_page = rb_list_head(to_remove)->next;
1437
1438         /*
1439          * Now we remove all pages between tail_page and next_page.
1440          * Make sure that we have head_bit value preserved for the
1441          * next page
1442          */
1443         tail_page->next = (struct list_head *)((unsigned long)next_page |
1444                                                 head_bit);
1445         next_page = rb_list_head(next_page);
1446         next_page->prev = tail_page;
1447
1448         /* make sure pages points to a valid page in the ring buffer */
1449         cpu_buffer->pages = next_page;
1450
1451         /* update head page */
1452         if (head_bit)
1453                 cpu_buffer->head_page = list_entry(next_page,
1454                                                 struct buffer_page, list);
1455
1456         /*
1457          * change read pointer to make sure any read iterators reset
1458          * themselves
1459          */
1460         cpu_buffer->read = 0;
1461
1462         /* pages are removed, resume tracing and then free the pages */
1463         atomic_dec(&cpu_buffer->record_disabled);
1464         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1465
1466         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1467
1468         /* last buffer page to remove */
1469         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1470                                 list);
1471         tmp_iter_page = first_page;
1472
1473         do {
1474                 to_remove_page = tmp_iter_page;
1475                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1476
1477                 /* update the counters */
1478                 page_entries = rb_page_entries(to_remove_page);
1479                 if (page_entries) {
1480                         /*
1481                          * If something was added to this page, it was full
1482                          * since it is not the tail page. So we deduct the
1483                          * bytes consumed in ring buffer from here.
1484                          * Increment overrun to account for the lost events.
1485                          */
1486                         local_add(page_entries, &cpu_buffer->overrun);
1487                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1488                 }
1489
1490                 /*
1491                  * We have already removed references to this list item, just
1492                  * free up the buffer_page and its page
1493                  */
1494                 free_buffer_page(to_remove_page);
1495                 nr_removed--;
1496
1497         } while (to_remove_page != last_page);
1498
1499         RB_WARN_ON(cpu_buffer, nr_removed);
1500
1501         return nr_removed == 0;
1502 }
1503
1504 static int
1505 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1506 {
1507         struct list_head *pages = &cpu_buffer->new_pages;
1508         int retries, success;
1509
1510         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1511         /*
1512          * We are holding the reader lock, so the reader page won't be swapped
1513          * in the ring buffer. Now we are racing with the writer trying to
1514          * move head page and the tail page.
1515          * We are going to adapt the reader page update process where:
1516          * 1. We first splice the start and end of list of new pages between
1517          *    the head page and its previous page.
1518          * 2. We cmpxchg the prev_page->next to point from head page to the
1519          *    start of new pages list.
1520          * 3. Finally, we update the head->prev to the end of new list.
1521          *
1522          * We will try this process 10 times, to make sure that we don't keep
1523          * spinning.
1524          */
1525         retries = 10;
1526         success = 0;
1527         while (retries--) {
1528                 struct list_head *head_page, *prev_page, *r;
1529                 struct list_head *last_page, *first_page;
1530                 struct list_head *head_page_with_bit;
1531
1532                 head_page = &rb_set_head_page(cpu_buffer)->list;
1533                 if (!head_page)
1534                         break;
1535                 prev_page = head_page->prev;
1536
1537                 first_page = pages->next;
1538                 last_page  = pages->prev;
1539
1540                 head_page_with_bit = (struct list_head *)
1541                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1542
1543                 last_page->next = head_page_with_bit;
1544                 first_page->prev = prev_page;
1545
1546                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1547
1548                 if (r == head_page_with_bit) {
1549                         /*
1550                          * yay, we replaced the page pointer to our new list,
1551                          * now, we just have to update to head page's prev
1552                          * pointer to point to end of list
1553                          */
1554                         head_page->prev = last_page;
1555                         success = 1;
1556                         break;
1557                 }
1558         }
1559
1560         if (success)
1561                 INIT_LIST_HEAD(pages);
1562         /*
1563          * If we weren't successful in adding in new pages, warn and stop
1564          * tracing
1565          */
1566         RB_WARN_ON(cpu_buffer, !success);
1567         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1568
1569         /* free pages if they weren't inserted */
1570         if (!success) {
1571                 struct buffer_page *bpage, *tmp;
1572                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1573                                          list) {
1574                         list_del_init(&bpage->list);
1575                         free_buffer_page(bpage);
1576                 }
1577         }
1578         return success;
1579 }
1580
1581 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1582 {
1583         int success;
1584
1585         if (cpu_buffer->nr_pages_to_update > 0)
1586                 success = rb_insert_pages(cpu_buffer);
1587         else
1588                 success = rb_remove_pages(cpu_buffer,
1589                                         -cpu_buffer->nr_pages_to_update);
1590
1591         if (success)
1592                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1593 }
1594
1595 static void update_pages_handler(struct work_struct *work)
1596 {
1597         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1598                         struct ring_buffer_per_cpu, update_pages_work);
1599         rb_update_pages(cpu_buffer);
1600         complete(&cpu_buffer->update_done);
1601 }
1602
1603 /**
1604  * ring_buffer_resize - resize the ring buffer
1605  * @buffer: the buffer to resize.
1606  * @size: the new size.
1607  * @cpu_id: the cpu buffer to resize
1608  *
1609  * Minimum size is 2 * BUF_PAGE_SIZE.
1610  *
1611  * Returns 0 on success and < 0 on failure.
1612  */
1613 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1614                         int cpu_id)
1615 {
1616         struct ring_buffer_per_cpu *cpu_buffer;
1617         unsigned long nr_pages;
1618         int cpu, err = 0;
1619
1620         /*
1621          * Always succeed at resizing a non-existent buffer:
1622          */
1623         if (!buffer)
1624                 return size;
1625
1626         /* Make sure the requested buffer exists */
1627         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1628             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1629                 return size;
1630
1631         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1632
1633         /* we need a minimum of two pages */
1634         if (nr_pages < 2)
1635                 nr_pages = 2;
1636
1637         size = nr_pages * BUF_PAGE_SIZE;
1638
1639         /*
1640          * Don't succeed if resizing is disabled, as a reader might be
1641          * manipulating the ring buffer and is expecting a sane state while
1642          * this is true.
1643          */
1644         if (atomic_read(&buffer->resize_disabled))
1645                 return -EBUSY;
1646
1647         /* prevent another thread from changing buffer sizes */
1648         mutex_lock(&buffer->mutex);
1649
1650         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1651                 /* calculate the pages to update */
1652                 for_each_buffer_cpu(buffer, cpu) {
1653                         cpu_buffer = buffer->buffers[cpu];
1654
1655                         cpu_buffer->nr_pages_to_update = nr_pages -
1656                                                         cpu_buffer->nr_pages;
1657                         /*
1658                          * nothing more to do for removing pages or no update
1659                          */
1660                         if (cpu_buffer->nr_pages_to_update <= 0)
1661                                 continue;
1662                         /*
1663                          * to add pages, make sure all new pages can be
1664                          * allocated without receiving ENOMEM
1665                          */
1666                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1667                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1668                                                 &cpu_buffer->new_pages, cpu)) {
1669                                 /* not enough memory for new pages */
1670                                 err = -ENOMEM;
1671                                 goto out_err;
1672                         }
1673                 }
1674
1675                 get_online_cpus();
1676                 /*
1677                  * Fire off all the required work handlers
1678                  * We can't schedule on offline CPUs, but it's not necessary
1679                  * since we can change their buffer sizes without any race.
1680                  */
1681                 for_each_buffer_cpu(buffer, cpu) {
1682                         cpu_buffer = buffer->buffers[cpu];
1683                         if (!cpu_buffer->nr_pages_to_update)
1684                                 continue;
1685
1686                         /* Can't run something on an offline CPU. */
1687                         if (!cpu_online(cpu)) {
1688                                 rb_update_pages(cpu_buffer);
1689                                 cpu_buffer->nr_pages_to_update = 0;
1690                         } else {
1691                                 schedule_work_on(cpu,
1692                                                 &cpu_buffer->update_pages_work);
1693                         }
1694                 }
1695
1696                 /* wait for all the updates to complete */
1697                 for_each_buffer_cpu(buffer, cpu) {
1698                         cpu_buffer = buffer->buffers[cpu];
1699                         if (!cpu_buffer->nr_pages_to_update)
1700                                 continue;
1701
1702                         if (cpu_online(cpu))
1703                                 wait_for_completion(&cpu_buffer->update_done);
1704                         cpu_buffer->nr_pages_to_update = 0;
1705                 }
1706
1707                 put_online_cpus();
1708         } else {
1709                 /* Make sure this CPU has been intitialized */
1710                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1711                         goto out;
1712
1713                 cpu_buffer = buffer->buffers[cpu_id];
1714
1715                 if (nr_pages == cpu_buffer->nr_pages)
1716                         goto out;
1717
1718                 cpu_buffer->nr_pages_to_update = nr_pages -
1719                                                 cpu_buffer->nr_pages;
1720
1721                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1722                 if (cpu_buffer->nr_pages_to_update > 0 &&
1723                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1724                                             &cpu_buffer->new_pages, cpu_id)) {
1725                         err = -ENOMEM;
1726                         goto out_err;
1727                 }
1728
1729                 get_online_cpus();
1730
1731                 /* Can't run something on an offline CPU. */
1732                 if (!cpu_online(cpu_id))
1733                         rb_update_pages(cpu_buffer);
1734                 else {
1735                         schedule_work_on(cpu_id,
1736                                          &cpu_buffer->update_pages_work);
1737                         wait_for_completion(&cpu_buffer->update_done);
1738                 }
1739
1740                 cpu_buffer->nr_pages_to_update = 0;
1741                 put_online_cpus();
1742         }
1743
1744  out:
1745         /*
1746          * The ring buffer resize can happen with the ring buffer
1747          * enabled, so that the update disturbs the tracing as little
1748          * as possible. But if the buffer is disabled, we do not need
1749          * to worry about that, and we can take the time to verify
1750          * that the buffer is not corrupt.
1751          */
1752         if (atomic_read(&buffer->record_disabled)) {
1753                 atomic_inc(&buffer->record_disabled);
1754                 /*
1755                  * Even though the buffer was disabled, we must make sure
1756                  * that it is truly disabled before calling rb_check_pages.
1757                  * There could have been a race between checking
1758                  * record_disable and incrementing it.
1759                  */
1760                 synchronize_sched();
1761                 for_each_buffer_cpu(buffer, cpu) {
1762                         cpu_buffer = buffer->buffers[cpu];
1763                         rb_check_pages(cpu_buffer);
1764                 }
1765                 atomic_dec(&buffer->record_disabled);
1766         }
1767
1768         mutex_unlock(&buffer->mutex);
1769         return size;
1770
1771  out_err:
1772         for_each_buffer_cpu(buffer, cpu) {
1773                 struct buffer_page *bpage, *tmp;
1774
1775                 cpu_buffer = buffer->buffers[cpu];
1776                 cpu_buffer->nr_pages_to_update = 0;
1777
1778                 if (list_empty(&cpu_buffer->new_pages))
1779                         continue;
1780
1781                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1782                                         list) {
1783                         list_del_init(&bpage->list);
1784                         free_buffer_page(bpage);
1785                 }
1786         }
1787         mutex_unlock(&buffer->mutex);
1788         return err;
1789 }
1790 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1791
1792 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1793 {
1794         mutex_lock(&buffer->mutex);
1795         if (val)
1796                 buffer->flags |= RB_FL_OVERWRITE;
1797         else
1798                 buffer->flags &= ~RB_FL_OVERWRITE;
1799         mutex_unlock(&buffer->mutex);
1800 }
1801 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1802
1803 static __always_inline void *
1804 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1805 {
1806         return bpage->data + index;
1807 }
1808
1809 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1810 {
1811         return bpage->page->data + index;
1812 }
1813
1814 static __always_inline struct ring_buffer_event *
1815 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1816 {
1817         return __rb_page_index(cpu_buffer->reader_page,
1818                                cpu_buffer->reader_page->read);
1819 }
1820
1821 static __always_inline struct ring_buffer_event *
1822 rb_iter_head_event(struct ring_buffer_iter *iter)
1823 {
1824         return __rb_page_index(iter->head_page, iter->head);
1825 }
1826
1827 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1828 {
1829         return local_read(&bpage->page->commit);
1830 }
1831
1832 /* Size is determined by what has been committed */
1833 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1834 {
1835         return rb_page_commit(bpage);
1836 }
1837
1838 static __always_inline unsigned
1839 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1840 {
1841         return rb_page_commit(cpu_buffer->commit_page);
1842 }
1843
1844 static __always_inline unsigned
1845 rb_event_index(struct ring_buffer_event *event)
1846 {
1847         unsigned long addr = (unsigned long)event;
1848
1849         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1850 }
1851
1852 static void rb_inc_iter(struct ring_buffer_iter *iter)
1853 {
1854         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1855
1856         /*
1857          * The iterator could be on the reader page (it starts there).
1858          * But the head could have moved, since the reader was
1859          * found. Check for this case and assign the iterator
1860          * to the head page instead of next.
1861          */
1862         if (iter->head_page == cpu_buffer->reader_page)
1863                 iter->head_page = rb_set_head_page(cpu_buffer);
1864         else
1865                 rb_inc_page(cpu_buffer, &iter->head_page);
1866
1867         iter->read_stamp = iter->head_page->page->time_stamp;
1868         iter->head = 0;
1869 }
1870
1871 /*
1872  * rb_handle_head_page - writer hit the head page
1873  *
1874  * Returns: +1 to retry page
1875  *           0 to continue
1876  *          -1 on error
1877  */
1878 static int
1879 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1880                     struct buffer_page *tail_page,
1881                     struct buffer_page *next_page)
1882 {
1883         struct buffer_page *new_head;
1884         int entries;
1885         int type;
1886         int ret;
1887
1888         entries = rb_page_entries(next_page);
1889
1890         /*
1891          * The hard part is here. We need to move the head
1892          * forward, and protect against both readers on
1893          * other CPUs and writers coming in via interrupts.
1894          */
1895         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1896                                        RB_PAGE_HEAD);
1897
1898         /*
1899          * type can be one of four:
1900          *  NORMAL - an interrupt already moved it for us
1901          *  HEAD   - we are the first to get here.
1902          *  UPDATE - we are the interrupt interrupting
1903          *           a current move.
1904          *  MOVED  - a reader on another CPU moved the next
1905          *           pointer to its reader page. Give up
1906          *           and try again.
1907          */
1908
1909         switch (type) {
1910         case RB_PAGE_HEAD:
1911                 /*
1912                  * We changed the head to UPDATE, thus
1913                  * it is our responsibility to update
1914                  * the counters.
1915                  */
1916                 local_add(entries, &cpu_buffer->overrun);
1917                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1918
1919                 /*
1920                  * The entries will be zeroed out when we move the
1921                  * tail page.
1922                  */
1923
1924                 /* still more to do */
1925                 break;
1926
1927         case RB_PAGE_UPDATE:
1928                 /*
1929                  * This is an interrupt that interrupt the
1930                  * previous update. Still more to do.
1931                  */
1932                 break;
1933         case RB_PAGE_NORMAL:
1934                 /*
1935                  * An interrupt came in before the update
1936                  * and processed this for us.
1937                  * Nothing left to do.
1938                  */
1939                 return 1;
1940         case RB_PAGE_MOVED:
1941                 /*
1942                  * The reader is on another CPU and just did
1943                  * a swap with our next_page.
1944                  * Try again.
1945                  */
1946                 return 1;
1947         default:
1948                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1949                 return -1;
1950         }
1951
1952         /*
1953          * Now that we are here, the old head pointer is
1954          * set to UPDATE. This will keep the reader from
1955          * swapping the head page with the reader page.
1956          * The reader (on another CPU) will spin till
1957          * we are finished.
1958          *
1959          * We just need to protect against interrupts
1960          * doing the job. We will set the next pointer
1961          * to HEAD. After that, we set the old pointer
1962          * to NORMAL, but only if it was HEAD before.
1963          * otherwise we are an interrupt, and only
1964          * want the outer most commit to reset it.
1965          */
1966         new_head = next_page;
1967         rb_inc_page(cpu_buffer, &new_head);
1968
1969         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1970                                     RB_PAGE_NORMAL);
1971
1972         /*
1973          * Valid returns are:
1974          *  HEAD   - an interrupt came in and already set it.
1975          *  NORMAL - One of two things:
1976          *            1) We really set it.
1977          *            2) A bunch of interrupts came in and moved
1978          *               the page forward again.
1979          */
1980         switch (ret) {
1981         case RB_PAGE_HEAD:
1982         case RB_PAGE_NORMAL:
1983                 /* OK */
1984                 break;
1985         default:
1986                 RB_WARN_ON(cpu_buffer, 1);
1987                 return -1;
1988         }
1989
1990         /*
1991          * It is possible that an interrupt came in,
1992          * set the head up, then more interrupts came in
1993          * and moved it again. When we get back here,
1994          * the page would have been set to NORMAL but we
1995          * just set it back to HEAD.
1996          *
1997          * How do you detect this? Well, if that happened
1998          * the tail page would have moved.
1999          */
2000         if (ret == RB_PAGE_NORMAL) {
2001                 struct buffer_page *buffer_tail_page;
2002
2003                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2004                 /*
2005                  * If the tail had moved passed next, then we need
2006                  * to reset the pointer.
2007                  */
2008                 if (buffer_tail_page != tail_page &&
2009                     buffer_tail_page != next_page)
2010                         rb_head_page_set_normal(cpu_buffer, new_head,
2011                                                 next_page,
2012                                                 RB_PAGE_HEAD);
2013         }
2014
2015         /*
2016          * If this was the outer most commit (the one that
2017          * changed the original pointer from HEAD to UPDATE),
2018          * then it is up to us to reset it to NORMAL.
2019          */
2020         if (type == RB_PAGE_HEAD) {
2021                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2022                                               tail_page,
2023                                               RB_PAGE_UPDATE);
2024                 if (RB_WARN_ON(cpu_buffer,
2025                                ret != RB_PAGE_UPDATE))
2026                         return -1;
2027         }
2028
2029         return 0;
2030 }
2031
2032 static inline void
2033 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2034               unsigned long tail, struct rb_event_info *info)
2035 {
2036         struct buffer_page *tail_page = info->tail_page;
2037         struct ring_buffer_event *event;
2038         unsigned long length = info->length;
2039
2040         /*
2041          * Only the event that crossed the page boundary
2042          * must fill the old tail_page with padding.
2043          */
2044         if (tail >= BUF_PAGE_SIZE) {
2045                 /*
2046                  * If the page was filled, then we still need
2047                  * to update the real_end. Reset it to zero
2048                  * and the reader will ignore it.
2049                  */
2050                 if (tail == BUF_PAGE_SIZE)
2051                         tail_page->real_end = 0;
2052
2053                 local_sub(length, &tail_page->write);
2054                 return;
2055         }
2056
2057         event = __rb_page_index(tail_page, tail);
2058         kmemcheck_annotate_bitfield(event, bitfield);
2059
2060         /* account for padding bytes */
2061         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2062
2063         /*
2064          * Save the original length to the meta data.
2065          * This will be used by the reader to add lost event
2066          * counter.
2067          */
2068         tail_page->real_end = tail;
2069
2070         /*
2071          * If this event is bigger than the minimum size, then
2072          * we need to be careful that we don't subtract the
2073          * write counter enough to allow another writer to slip
2074          * in on this page.
2075          * We put in a discarded commit instead, to make sure
2076          * that this space is not used again.
2077          *
2078          * If we are less than the minimum size, we don't need to
2079          * worry about it.
2080          */
2081         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2082                 /* No room for any events */
2083
2084                 /* Mark the rest of the page with padding */
2085                 rb_event_set_padding(event);
2086
2087                 /* Set the write back to the previous setting */
2088                 local_sub(length, &tail_page->write);
2089                 return;
2090         }
2091
2092         /* Put in a discarded event */
2093         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2094         event->type_len = RINGBUF_TYPE_PADDING;
2095         /* time delta must be non zero */
2096         event->time_delta = 1;
2097
2098         /* Set write to end of buffer */
2099         length = (tail + length) - BUF_PAGE_SIZE;
2100         local_sub(length, &tail_page->write);
2101 }
2102
2103 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2104
2105 /*
2106  * This is the slow path, force gcc not to inline it.
2107  */
2108 static noinline struct ring_buffer_event *
2109 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2110              unsigned long tail, struct rb_event_info *info)
2111 {
2112         struct buffer_page *tail_page = info->tail_page;
2113         struct buffer_page *commit_page = cpu_buffer->commit_page;
2114         struct ring_buffer *buffer = cpu_buffer->buffer;
2115         struct buffer_page *next_page;
2116         int ret;
2117
2118         next_page = tail_page;
2119
2120         rb_inc_page(cpu_buffer, &next_page);
2121
2122         /*
2123          * If for some reason, we had an interrupt storm that made
2124          * it all the way around the buffer, bail, and warn
2125          * about it.
2126          */
2127         if (unlikely(next_page == commit_page)) {
2128                 local_inc(&cpu_buffer->commit_overrun);
2129                 goto out_reset;
2130         }
2131
2132         /*
2133          * This is where the fun begins!
2134          *
2135          * We are fighting against races between a reader that
2136          * could be on another CPU trying to swap its reader
2137          * page with the buffer head.
2138          *
2139          * We are also fighting against interrupts coming in and
2140          * moving the head or tail on us as well.
2141          *
2142          * If the next page is the head page then we have filled
2143          * the buffer, unless the commit page is still on the
2144          * reader page.
2145          */
2146         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2147
2148                 /*
2149                  * If the commit is not on the reader page, then
2150                  * move the header page.
2151                  */
2152                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2153                         /*
2154                          * If we are not in overwrite mode,
2155                          * this is easy, just stop here.
2156                          */
2157                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2158                                 local_inc(&cpu_buffer->dropped_events);
2159                                 goto out_reset;
2160                         }
2161
2162                         ret = rb_handle_head_page(cpu_buffer,
2163                                                   tail_page,
2164                                                   next_page);
2165                         if (ret < 0)
2166                                 goto out_reset;
2167                         if (ret)
2168                                 goto out_again;
2169                 } else {
2170                         /*
2171                          * We need to be careful here too. The
2172                          * commit page could still be on the reader
2173                          * page. We could have a small buffer, and
2174                          * have filled up the buffer with events
2175                          * from interrupts and such, and wrapped.
2176                          *
2177                          * Note, if the tail page is also the on the
2178                          * reader_page, we let it move out.
2179                          */
2180                         if (unlikely((cpu_buffer->commit_page !=
2181                                       cpu_buffer->tail_page) &&
2182                                      (cpu_buffer->commit_page ==
2183                                       cpu_buffer->reader_page))) {
2184                                 local_inc(&cpu_buffer->commit_overrun);
2185                                 goto out_reset;
2186                         }
2187                 }
2188         }
2189
2190         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2191
2192  out_again:
2193
2194         rb_reset_tail(cpu_buffer, tail, info);
2195
2196         /* Commit what we have for now. */
2197         rb_end_commit(cpu_buffer);
2198         /* rb_end_commit() decs committing */
2199         local_inc(&cpu_buffer->committing);
2200
2201         /* fail and let the caller try again */
2202         return ERR_PTR(-EAGAIN);
2203
2204  out_reset:
2205         /* reset write */
2206         rb_reset_tail(cpu_buffer, tail, info);
2207
2208         return NULL;
2209 }
2210
2211 /* Slow path, do not inline */
2212 static noinline struct ring_buffer_event *
2213 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2214 {
2215         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2216
2217         /* Not the first event on the page? */
2218         if (rb_event_index(event)) {
2219                 event->time_delta = delta & TS_MASK;
2220                 event->array[0] = delta >> TS_SHIFT;
2221         } else {
2222                 /* nope, just zero it */
2223                 event->time_delta = 0;
2224                 event->array[0] = 0;
2225         }
2226
2227         return skip_time_extend(event);
2228 }
2229
2230 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2231                                      struct ring_buffer_event *event);
2232
2233 /**
2234  * rb_update_event - update event type and data
2235  * @event: the event to update
2236  * @type: the type of event
2237  * @length: the size of the event field in the ring buffer
2238  *
2239  * Update the type and data fields of the event. The length
2240  * is the actual size that is written to the ring buffer,
2241  * and with this, we can determine what to place into the
2242  * data field.
2243  */
2244 static void
2245 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2246                 struct ring_buffer_event *event,
2247                 struct rb_event_info *info)
2248 {
2249         unsigned length = info->length;
2250         u64 delta = info->delta;
2251
2252         /* Only a commit updates the timestamp */
2253         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2254                 delta = 0;
2255
2256         /*
2257          * If we need to add a timestamp, then we
2258          * add it to the start of the resevered space.
2259          */
2260         if (unlikely(info->add_timestamp)) {
2261                 event = rb_add_time_stamp(event, delta);
2262                 length -= RB_LEN_TIME_EXTEND;
2263                 delta = 0;
2264         }
2265
2266         event->time_delta = delta;
2267         length -= RB_EVNT_HDR_SIZE;
2268         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2269                 event->type_len = 0;
2270                 event->array[0] = length;
2271         } else
2272                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2273 }
2274
2275 static unsigned rb_calculate_event_length(unsigned length)
2276 {
2277         struct ring_buffer_event event; /* Used only for sizeof array */
2278
2279         /* zero length can cause confusions */
2280         if (!length)
2281                 length++;
2282
2283         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2284                 length += sizeof(event.array[0]);
2285
2286         length += RB_EVNT_HDR_SIZE;
2287         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2288
2289         /*
2290          * In case the time delta is larger than the 27 bits for it
2291          * in the header, we need to add a timestamp. If another
2292          * event comes in when trying to discard this one to increase
2293          * the length, then the timestamp will be added in the allocated
2294          * space of this event. If length is bigger than the size needed
2295          * for the TIME_EXTEND, then padding has to be used. The events
2296          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2297          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2298          * As length is a multiple of 4, we only need to worry if it
2299          * is 12 (RB_LEN_TIME_EXTEND + 4).
2300          */
2301         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2302                 length += RB_ALIGNMENT;
2303
2304         return length;
2305 }
2306
2307 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2308 static inline bool sched_clock_stable(void)
2309 {
2310         return true;
2311 }
2312 #endif
2313
2314 static inline int
2315 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2316                   struct ring_buffer_event *event)
2317 {
2318         unsigned long new_index, old_index;
2319         struct buffer_page *bpage;
2320         unsigned long index;
2321         unsigned long addr;
2322
2323         new_index = rb_event_index(event);
2324         old_index = new_index + rb_event_ts_length(event);
2325         addr = (unsigned long)event;
2326         addr &= PAGE_MASK;
2327
2328         bpage = READ_ONCE(cpu_buffer->tail_page);
2329
2330         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2331                 unsigned long write_mask =
2332                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2333                 unsigned long event_length = rb_event_length(event);
2334                 /*
2335                  * This is on the tail page. It is possible that
2336                  * a write could come in and move the tail page
2337                  * and write to the next page. That is fine
2338                  * because we just shorten what is on this page.
2339                  */
2340                 old_index += write_mask;
2341                 new_index += write_mask;
2342                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2343                 if (index == old_index) {
2344                         /* update counters */
2345                         local_sub(event_length, &cpu_buffer->entries_bytes);
2346                         return 1;
2347                 }
2348         }
2349
2350         /* could not discard */
2351         return 0;
2352 }
2353
2354 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2355 {
2356         local_inc(&cpu_buffer->committing);
2357         local_inc(&cpu_buffer->commits);
2358 }
2359
2360 static __always_inline void
2361 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2362 {
2363         unsigned long max_count;
2364
2365         /*
2366          * We only race with interrupts and NMIs on this CPU.
2367          * If we own the commit event, then we can commit
2368          * all others that interrupted us, since the interruptions
2369          * are in stack format (they finish before they come
2370          * back to us). This allows us to do a simple loop to
2371          * assign the commit to the tail.
2372          */
2373  again:
2374         max_count = cpu_buffer->nr_pages * 100;
2375
2376         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2377                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2378                         return;
2379                 if (RB_WARN_ON(cpu_buffer,
2380                                rb_is_reader_page(cpu_buffer->tail_page)))
2381                         return;
2382                 local_set(&cpu_buffer->commit_page->page->commit,
2383                           rb_page_write(cpu_buffer->commit_page));
2384                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2385                 /* Only update the write stamp if the page has an event */
2386                 if (rb_page_write(cpu_buffer->commit_page))
2387                         cpu_buffer->write_stamp =
2388                                 cpu_buffer->commit_page->page->time_stamp;
2389                 /* add barrier to keep gcc from optimizing too much */
2390                 barrier();
2391         }
2392         while (rb_commit_index(cpu_buffer) !=
2393                rb_page_write(cpu_buffer->commit_page)) {
2394
2395                 local_set(&cpu_buffer->commit_page->page->commit,
2396                           rb_page_write(cpu_buffer->commit_page));
2397                 RB_WARN_ON(cpu_buffer,
2398                            local_read(&cpu_buffer->commit_page->page->commit) &
2399                            ~RB_WRITE_MASK);
2400                 barrier();
2401         }
2402
2403         /* again, keep gcc from optimizing */
2404         barrier();
2405
2406         /*
2407          * If an interrupt came in just after the first while loop
2408          * and pushed the tail page forward, we will be left with
2409          * a dangling commit that will never go forward.
2410          */
2411         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2412                 goto again;
2413 }
2414
2415 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2416 {
2417         unsigned long commits;
2418
2419         if (RB_WARN_ON(cpu_buffer,
2420                        !local_read(&cpu_buffer->committing)))
2421                 return;
2422
2423  again:
2424         commits = local_read(&cpu_buffer->commits);
2425         /* synchronize with interrupts */
2426         barrier();
2427         if (local_read(&cpu_buffer->committing) == 1)
2428                 rb_set_commit_to_write(cpu_buffer);
2429
2430         local_dec(&cpu_buffer->committing);
2431
2432         /* synchronize with interrupts */
2433         barrier();
2434
2435         /*
2436          * Need to account for interrupts coming in between the
2437          * updating of the commit page and the clearing of the
2438          * committing counter.
2439          */
2440         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2441             !local_read(&cpu_buffer->committing)) {
2442                 local_inc(&cpu_buffer->committing);
2443                 goto again;
2444         }
2445 }
2446
2447 static inline void rb_event_discard(struct ring_buffer_event *event)
2448 {
2449         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2450                 event = skip_time_extend(event);
2451
2452         /* array[0] holds the actual length for the discarded event */
2453         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2454         event->type_len = RINGBUF_TYPE_PADDING;
2455         /* time delta must be non zero */
2456         if (!event->time_delta)
2457                 event->time_delta = 1;
2458 }
2459
2460 static __always_inline bool
2461 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2462                    struct ring_buffer_event *event)
2463 {
2464         unsigned long addr = (unsigned long)event;
2465         unsigned long index;
2466
2467         index = rb_event_index(event);
2468         addr &= PAGE_MASK;
2469
2470         return cpu_buffer->commit_page->page == (void *)addr &&
2471                 rb_commit_index(cpu_buffer) == index;
2472 }
2473
2474 static __always_inline void
2475 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2476                       struct ring_buffer_event *event)
2477 {
2478         u64 delta;
2479
2480         /*
2481          * The event first in the commit queue updates the
2482          * time stamp.
2483          */
2484         if (rb_event_is_commit(cpu_buffer, event)) {
2485                 /*
2486                  * A commit event that is first on a page
2487                  * updates the write timestamp with the page stamp
2488                  */
2489                 if (!rb_event_index(event))
2490                         cpu_buffer->write_stamp =
2491                                 cpu_buffer->commit_page->page->time_stamp;
2492                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2493                         delta = event->array[0];
2494                         delta <<= TS_SHIFT;
2495                         delta += event->time_delta;
2496                         cpu_buffer->write_stamp += delta;
2497                 } else
2498                         cpu_buffer->write_stamp += event->time_delta;
2499         }
2500 }
2501
2502 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2503                       struct ring_buffer_event *event)
2504 {
2505         local_inc(&cpu_buffer->entries);
2506         rb_update_write_stamp(cpu_buffer, event);
2507         rb_end_commit(cpu_buffer);
2508 }
2509
2510 static __always_inline void
2511 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2512 {
2513         bool pagebusy;
2514
2515         if (buffer->irq_work.waiters_pending) {
2516                 buffer->irq_work.waiters_pending = false;
2517                 /* irq_work_queue() supplies it's own memory barriers */
2518                 irq_work_queue(&buffer->irq_work.work);
2519         }
2520
2521         if (cpu_buffer->irq_work.waiters_pending) {
2522                 cpu_buffer->irq_work.waiters_pending = false;
2523                 /* irq_work_queue() supplies it's own memory barriers */
2524                 irq_work_queue(&cpu_buffer->irq_work.work);
2525         }
2526
2527         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2528
2529         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2530                 cpu_buffer->irq_work.wakeup_full = true;
2531                 cpu_buffer->irq_work.full_waiters_pending = false;
2532                 /* irq_work_queue() supplies it's own memory barriers */
2533                 irq_work_queue(&cpu_buffer->irq_work.work);
2534         }
2535 }
2536
2537 /*
2538  * The lock and unlock are done within a preempt disable section.
2539  * The current_context per_cpu variable can only be modified
2540  * by the current task between lock and unlock. But it can
2541  * be modified more than once via an interrupt. To pass this
2542  * information from the lock to the unlock without having to
2543  * access the 'in_interrupt()' functions again (which do show
2544  * a bit of overhead in something as critical as function tracing,
2545  * we use a bitmask trick.
2546  *
2547  *  bit 0 =  NMI context
2548  *  bit 1 =  IRQ context
2549  *  bit 2 =  SoftIRQ context
2550  *  bit 3 =  normal context.
2551  *
2552  * This works because this is the order of contexts that can
2553  * preempt other contexts. A SoftIRQ never preempts an IRQ
2554  * context.
2555  *
2556  * When the context is determined, the corresponding bit is
2557  * checked and set (if it was set, then a recursion of that context
2558  * happened).
2559  *
2560  * On unlock, we need to clear this bit. To do so, just subtract
2561  * 1 from the current_context and AND it to itself.
2562  *
2563  * (binary)
2564  *  101 - 1 = 100
2565  *  101 & 100 = 100 (clearing bit zero)
2566  *
2567  *  1010 - 1 = 1001
2568  *  1010 & 1001 = 1000 (clearing bit 1)
2569  *
2570  * The least significant bit can be cleared this way, and it
2571  * just so happens that it is the same bit corresponding to
2572  * the current context.
2573  */
2574
2575 static __always_inline int
2576 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2577 {
2578         unsigned int val = cpu_buffer->current_context;
2579         int bit;
2580
2581         if (in_interrupt()) {
2582                 if (in_nmi())
2583                         bit = RB_CTX_NMI;
2584                 else if (in_irq())
2585                         bit = RB_CTX_IRQ;
2586                 else
2587                         bit = RB_CTX_SOFTIRQ;
2588         } else
2589                 bit = RB_CTX_NORMAL;
2590
2591         if (unlikely(val & (1 << bit)))
2592                 return 1;
2593
2594         val |= (1 << bit);
2595         cpu_buffer->current_context = val;
2596
2597         return 0;
2598 }
2599
2600 static __always_inline void
2601 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2602 {
2603         cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2604 }
2605
2606 /**
2607  * ring_buffer_unlock_commit - commit a reserved
2608  * @buffer: The buffer to commit to
2609  * @event: The event pointer to commit.
2610  *
2611  * This commits the data to the ring buffer, and releases any locks held.
2612  *
2613  * Must be paired with ring_buffer_lock_reserve.
2614  */
2615 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2616                               struct ring_buffer_event *event)
2617 {
2618         struct ring_buffer_per_cpu *cpu_buffer;
2619         int cpu = raw_smp_processor_id();
2620
2621         cpu_buffer = buffer->buffers[cpu];
2622
2623         rb_commit(cpu_buffer, event);
2624
2625         rb_wakeups(buffer, cpu_buffer);
2626
2627         trace_recursive_unlock(cpu_buffer);
2628
2629         preempt_enable_notrace();
2630
2631         return 0;
2632 }
2633 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2634
2635 static noinline void
2636 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2637                     struct rb_event_info *info)
2638 {
2639         WARN_ONCE(info->delta > (1ULL << 59),
2640                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2641                   (unsigned long long)info->delta,
2642                   (unsigned long long)info->ts,
2643                   (unsigned long long)cpu_buffer->write_stamp,
2644                   sched_clock_stable() ? "" :
2645                   "If you just came from a suspend/resume,\n"
2646                   "please switch to the trace global clock:\n"
2647                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2648         info->add_timestamp = 1;
2649 }
2650
2651 static struct ring_buffer_event *
2652 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2653                   struct rb_event_info *info)
2654 {
2655         struct ring_buffer_event *event;
2656         struct buffer_page *tail_page;
2657         unsigned long tail, write;
2658
2659         /*
2660          * If the time delta since the last event is too big to
2661          * hold in the time field of the event, then we append a
2662          * TIME EXTEND event ahead of the data event.
2663          */
2664         if (unlikely(info->add_timestamp))
2665                 info->length += RB_LEN_TIME_EXTEND;
2666
2667         /* Don't let the compiler play games with cpu_buffer->tail_page */
2668         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2669         write = local_add_return(info->length, &tail_page->write);
2670
2671         /* set write to only the index of the write */
2672         write &= RB_WRITE_MASK;
2673         tail = write - info->length;
2674
2675         /*
2676          * If this is the first commit on the page, then it has the same
2677          * timestamp as the page itself.
2678          */
2679         if (!tail)
2680                 info->delta = 0;
2681
2682         /* See if we shot pass the end of this buffer page */
2683         if (unlikely(write > BUF_PAGE_SIZE))
2684                 return rb_move_tail(cpu_buffer, tail, info);
2685
2686         /* We reserved something on the buffer */
2687
2688         event = __rb_page_index(tail_page, tail);
2689         kmemcheck_annotate_bitfield(event, bitfield);
2690         rb_update_event(cpu_buffer, event, info);
2691
2692         local_inc(&tail_page->entries);
2693
2694         /*
2695          * If this is the first commit on the page, then update
2696          * its timestamp.
2697          */
2698         if (!tail)
2699                 tail_page->page->time_stamp = info->ts;
2700
2701         /* account for these added bytes */
2702         local_add(info->length, &cpu_buffer->entries_bytes);
2703
2704         return event;
2705 }
2706
2707 static __always_inline struct ring_buffer_event *
2708 rb_reserve_next_event(struct ring_buffer *buffer,
2709                       struct ring_buffer_per_cpu *cpu_buffer,
2710                       unsigned long length)
2711 {
2712         struct ring_buffer_event *event;
2713         struct rb_event_info info;
2714         int nr_loops = 0;
2715         u64 diff;
2716
2717         rb_start_commit(cpu_buffer);
2718
2719 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2720         /*
2721          * Due to the ability to swap a cpu buffer from a buffer
2722          * it is possible it was swapped before we committed.
2723          * (committing stops a swap). We check for it here and
2724          * if it happened, we have to fail the write.
2725          */
2726         barrier();
2727         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2728                 local_dec(&cpu_buffer->committing);
2729                 local_dec(&cpu_buffer->commits);
2730                 return NULL;
2731         }
2732 #endif
2733
2734         info.length = rb_calculate_event_length(length);
2735  again:
2736         info.add_timestamp = 0;
2737         info.delta = 0;
2738
2739         /*
2740          * We allow for interrupts to reenter here and do a trace.
2741          * If one does, it will cause this original code to loop
2742          * back here. Even with heavy interrupts happening, this
2743          * should only happen a few times in a row. If this happens
2744          * 1000 times in a row, there must be either an interrupt
2745          * storm or we have something buggy.
2746          * Bail!
2747          */
2748         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2749                 goto out_fail;
2750
2751         info.ts = rb_time_stamp(cpu_buffer->buffer);
2752         diff = info.ts - cpu_buffer->write_stamp;
2753
2754         /* make sure this diff is calculated here */
2755         barrier();
2756
2757         /* Did the write stamp get updated already? */
2758         if (likely(info.ts >= cpu_buffer->write_stamp)) {
2759                 info.delta = diff;
2760                 if (unlikely(test_time_stamp(info.delta)))
2761                         rb_handle_timestamp(cpu_buffer, &info);
2762         }
2763
2764         event = __rb_reserve_next(cpu_buffer, &info);
2765
2766         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2767                 if (info.add_timestamp)
2768                         info.length -= RB_LEN_TIME_EXTEND;
2769                 goto again;
2770         }
2771
2772         if (!event)
2773                 goto out_fail;
2774
2775         return event;
2776
2777  out_fail:
2778         rb_end_commit(cpu_buffer);
2779         return NULL;
2780 }
2781
2782 /**
2783  * ring_buffer_lock_reserve - reserve a part of the buffer
2784  * @buffer: the ring buffer to reserve from
2785  * @length: the length of the data to reserve (excluding event header)
2786  *
2787  * Returns a reseverd event on the ring buffer to copy directly to.
2788  * The user of this interface will need to get the body to write into
2789  * and can use the ring_buffer_event_data() interface.
2790  *
2791  * The length is the length of the data needed, not the event length
2792  * which also includes the event header.
2793  *
2794  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2795  * If NULL is returned, then nothing has been allocated or locked.
2796  */
2797 struct ring_buffer_event *
2798 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2799 {
2800         struct ring_buffer_per_cpu *cpu_buffer;
2801         struct ring_buffer_event *event;
2802         int cpu;
2803
2804         /* If we are tracing schedule, we don't want to recurse */
2805         preempt_disable_notrace();
2806
2807         if (unlikely(atomic_read(&buffer->record_disabled)))
2808                 goto out;
2809
2810         cpu = raw_smp_processor_id();
2811
2812         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2813                 goto out;
2814
2815         cpu_buffer = buffer->buffers[cpu];
2816
2817         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2818                 goto out;
2819
2820         if (unlikely(length > BUF_MAX_DATA_SIZE))
2821                 goto out;
2822
2823         if (unlikely(trace_recursive_lock(cpu_buffer)))
2824                 goto out;
2825
2826         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2827         if (!event)
2828                 goto out_unlock;
2829
2830         return event;
2831
2832  out_unlock:
2833         trace_recursive_unlock(cpu_buffer);
2834  out:
2835         preempt_enable_notrace();
2836         return NULL;
2837 }
2838 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2839
2840 /*
2841  * Decrement the entries to the page that an event is on.
2842  * The event does not even need to exist, only the pointer
2843  * to the page it is on. This may only be called before the commit
2844  * takes place.
2845  */
2846 static inline void
2847 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2848                    struct ring_buffer_event *event)
2849 {
2850         unsigned long addr = (unsigned long)event;
2851         struct buffer_page *bpage = cpu_buffer->commit_page;
2852         struct buffer_page *start;
2853
2854         addr &= PAGE_MASK;
2855
2856         /* Do the likely case first */
2857         if (likely(bpage->page == (void *)addr)) {
2858                 local_dec(&bpage->entries);
2859                 return;
2860         }
2861
2862         /*
2863          * Because the commit page may be on the reader page we
2864          * start with the next page and check the end loop there.
2865          */
2866         rb_inc_page(cpu_buffer, &bpage);
2867         start = bpage;
2868         do {
2869                 if (bpage->page == (void *)addr) {
2870                         local_dec(&bpage->entries);
2871                         return;
2872                 }
2873                 rb_inc_page(cpu_buffer, &bpage);
2874         } while (bpage != start);
2875
2876         /* commit not part of this buffer?? */
2877         RB_WARN_ON(cpu_buffer, 1);
2878 }
2879
2880 /**
2881  * ring_buffer_commit_discard - discard an event that has not been committed
2882  * @buffer: the ring buffer
2883  * @event: non committed event to discard
2884  *
2885  * Sometimes an event that is in the ring buffer needs to be ignored.
2886  * This function lets the user discard an event in the ring buffer
2887  * and then that event will not be read later.
2888  *
2889  * This function only works if it is called before the the item has been
2890  * committed. It will try to free the event from the ring buffer
2891  * if another event has not been added behind it.
2892  *
2893  * If another event has been added behind it, it will set the event
2894  * up as discarded, and perform the commit.
2895  *
2896  * If this function is called, do not call ring_buffer_unlock_commit on
2897  * the event.
2898  */
2899 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2900                                 struct ring_buffer_event *event)
2901 {
2902         struct ring_buffer_per_cpu *cpu_buffer;
2903         int cpu;
2904
2905         /* The event is discarded regardless */
2906         rb_event_discard(event);
2907
2908         cpu = smp_processor_id();
2909         cpu_buffer = buffer->buffers[cpu];
2910
2911         /*
2912          * This must only be called if the event has not been
2913          * committed yet. Thus we can assume that preemption
2914          * is still disabled.
2915          */
2916         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2917
2918         rb_decrement_entry(cpu_buffer, event);
2919         if (rb_try_to_discard(cpu_buffer, event))
2920                 goto out;
2921
2922         /*
2923          * The commit is still visible by the reader, so we
2924          * must still update the timestamp.
2925          */
2926         rb_update_write_stamp(cpu_buffer, event);
2927  out:
2928         rb_end_commit(cpu_buffer);
2929
2930         trace_recursive_unlock(cpu_buffer);
2931
2932         preempt_enable_notrace();
2933
2934 }
2935 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2936
2937 /**
2938  * ring_buffer_write - write data to the buffer without reserving
2939  * @buffer: The ring buffer to write to.
2940  * @length: The length of the data being written (excluding the event header)
2941  * @data: The data to write to the buffer.
2942  *
2943  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2944  * one function. If you already have the data to write to the buffer, it
2945  * may be easier to simply call this function.
2946  *
2947  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2948  * and not the length of the event which would hold the header.
2949  */
2950 int ring_buffer_write(struct ring_buffer *buffer,
2951                       unsigned long length,
2952                       void *data)
2953 {
2954         struct ring_buffer_per_cpu *cpu_buffer;
2955         struct ring_buffer_event *event;
2956         void *body;
2957         int ret = -EBUSY;
2958         int cpu;
2959
2960         preempt_disable_notrace();
2961
2962         if (atomic_read(&buffer->record_disabled))
2963                 goto out;
2964
2965         cpu = raw_smp_processor_id();
2966
2967         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2968                 goto out;
2969
2970         cpu_buffer = buffer->buffers[cpu];
2971
2972         if (atomic_read(&cpu_buffer->record_disabled))
2973                 goto out;
2974
2975         if (length > BUF_MAX_DATA_SIZE)
2976                 goto out;
2977
2978         if (unlikely(trace_recursive_lock(cpu_buffer)))
2979                 goto out;
2980
2981         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2982         if (!event)
2983                 goto out_unlock;
2984
2985         body = rb_event_data(event);
2986
2987         memcpy(body, data, length);
2988
2989         rb_commit(cpu_buffer, event);
2990
2991         rb_wakeups(buffer, cpu_buffer);
2992
2993         ret = 0;
2994
2995  out_unlock:
2996         trace_recursive_unlock(cpu_buffer);
2997
2998  out:
2999         preempt_enable_notrace();
3000
3001         return ret;
3002 }
3003 EXPORT_SYMBOL_GPL(ring_buffer_write);
3004
3005 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3006 {
3007         struct buffer_page *reader = cpu_buffer->reader_page;
3008         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3009         struct buffer_page *commit = cpu_buffer->commit_page;
3010
3011         /* In case of error, head will be NULL */
3012         if (unlikely(!head))
3013                 return true;
3014
3015         return reader->read == rb_page_commit(reader) &&
3016                 (commit == reader ||
3017                  (commit == head &&
3018                   head->read == rb_page_commit(commit)));
3019 }
3020
3021 /**
3022  * ring_buffer_record_disable - stop all writes into the buffer
3023  * @buffer: The ring buffer to stop writes to.
3024  *
3025  * This prevents all writes to the buffer. Any attempt to write
3026  * to the buffer after this will fail and return NULL.
3027  *
3028  * The caller should call synchronize_sched() after this.
3029  */
3030 void ring_buffer_record_disable(struct ring_buffer *buffer)
3031 {
3032         atomic_inc(&buffer->record_disabled);
3033 }
3034 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3035
3036 /**
3037  * ring_buffer_record_enable - enable writes to the buffer
3038  * @buffer: The ring buffer to enable writes
3039  *
3040  * Note, multiple disables will need the same number of enables
3041  * to truly enable the writing (much like preempt_disable).
3042  */
3043 void ring_buffer_record_enable(struct ring_buffer *buffer)
3044 {
3045         atomic_dec(&buffer->record_disabled);
3046 }
3047 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3048
3049 /**
3050  * ring_buffer_record_off - stop all writes into the buffer
3051  * @buffer: The ring buffer to stop writes to.
3052  *
3053  * This prevents all writes to the buffer. Any attempt to write
3054  * to the buffer after this will fail and return NULL.
3055  *
3056  * This is different than ring_buffer_record_disable() as
3057  * it works like an on/off switch, where as the disable() version
3058  * must be paired with a enable().
3059  */
3060 void ring_buffer_record_off(struct ring_buffer *buffer)
3061 {
3062         unsigned int rd;
3063         unsigned int new_rd;
3064
3065         do {
3066                 rd = atomic_read(&buffer->record_disabled);
3067                 new_rd = rd | RB_BUFFER_OFF;
3068         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3069 }
3070 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3071
3072 /**
3073  * ring_buffer_record_on - restart writes into the buffer
3074  * @buffer: The ring buffer to start writes to.
3075  *
3076  * This enables all writes to the buffer that was disabled by
3077  * ring_buffer_record_off().
3078  *
3079  * This is different than ring_buffer_record_enable() as
3080  * it works like an on/off switch, where as the enable() version
3081  * must be paired with a disable().
3082  */
3083 void ring_buffer_record_on(struct ring_buffer *buffer)
3084 {
3085         unsigned int rd;
3086         unsigned int new_rd;
3087
3088         do {
3089                 rd = atomic_read(&buffer->record_disabled);
3090                 new_rd = rd & ~RB_BUFFER_OFF;
3091         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3092 }
3093 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3094
3095 /**
3096  * ring_buffer_record_is_on - return true if the ring buffer can write
3097  * @buffer: The ring buffer to see if write is enabled
3098  *
3099  * Returns true if the ring buffer is in a state that it accepts writes.
3100  */
3101 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3102 {
3103         return !atomic_read(&buffer->record_disabled);
3104 }
3105
3106 /**
3107  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3108  * @buffer: The ring buffer to stop writes to.
3109  * @cpu: The CPU buffer to stop
3110  *
3111  * This prevents all writes to the buffer. Any attempt to write
3112  * to the buffer after this will fail and return NULL.
3113  *
3114  * The caller should call synchronize_sched() after this.
3115  */
3116 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3117 {
3118         struct ring_buffer_per_cpu *cpu_buffer;
3119
3120         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3121                 return;
3122
3123         cpu_buffer = buffer->buffers[cpu];
3124         atomic_inc(&cpu_buffer->record_disabled);
3125 }
3126 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3127
3128 /**
3129  * ring_buffer_record_enable_cpu - enable writes to the buffer
3130  * @buffer: The ring buffer to enable writes
3131  * @cpu: The CPU to enable.
3132  *
3133  * Note, multiple disables will need the same number of enables
3134  * to truly enable the writing (much like preempt_disable).
3135  */
3136 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3137 {
3138         struct ring_buffer_per_cpu *cpu_buffer;
3139
3140         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3141                 return;
3142
3143         cpu_buffer = buffer->buffers[cpu];
3144         atomic_dec(&cpu_buffer->record_disabled);
3145 }
3146 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3147
3148 /*
3149  * The total entries in the ring buffer is the running counter
3150  * of entries entered into the ring buffer, minus the sum of
3151  * the entries read from the ring buffer and the number of
3152  * entries that were overwritten.
3153  */
3154 static inline unsigned long
3155 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3156 {
3157         return local_read(&cpu_buffer->entries) -
3158                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3159 }
3160
3161 /**
3162  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3163  * @buffer: The ring buffer
3164  * @cpu: The per CPU buffer to read from.
3165  */
3166 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3167 {
3168         unsigned long flags;
3169         struct ring_buffer_per_cpu *cpu_buffer;
3170         struct buffer_page *bpage;
3171         u64 ret = 0;
3172
3173         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3174                 return 0;
3175
3176         cpu_buffer = buffer->buffers[cpu];
3177         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3178         /*
3179          * if the tail is on reader_page, oldest time stamp is on the reader
3180          * page
3181          */
3182         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3183                 bpage = cpu_buffer->reader_page;
3184         else
3185                 bpage = rb_set_head_page(cpu_buffer);
3186         if (bpage)
3187                 ret = bpage->page->time_stamp;
3188         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3189
3190         return ret;
3191 }
3192 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3193
3194 /**
3195  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3196  * @buffer: The ring buffer
3197  * @cpu: The per CPU buffer to read from.
3198  */
3199 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3200 {
3201         struct ring_buffer_per_cpu *cpu_buffer;
3202         unsigned long ret;
3203
3204         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3205                 return 0;
3206
3207         cpu_buffer = buffer->buffers[cpu];
3208         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3209
3210         return ret;
3211 }
3212 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3213
3214 /**
3215  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3216  * @buffer: The ring buffer
3217  * @cpu: The per CPU buffer to get the entries from.
3218  */
3219 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3220 {
3221         struct ring_buffer_per_cpu *cpu_buffer;
3222
3223         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3224                 return 0;
3225
3226         cpu_buffer = buffer->buffers[cpu];
3227
3228         return rb_num_of_entries(cpu_buffer);
3229 }
3230 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3231
3232 /**
3233  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3234  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3235  * @buffer: The ring buffer
3236  * @cpu: The per CPU buffer to get the number of overruns from
3237  */
3238 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3239 {
3240         struct ring_buffer_per_cpu *cpu_buffer;
3241         unsigned long ret;
3242
3243         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3244                 return 0;
3245
3246         cpu_buffer = buffer->buffers[cpu];
3247         ret = local_read(&cpu_buffer->overrun);
3248
3249         return ret;
3250 }
3251 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3252
3253 /**
3254  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3255  * commits failing due to the buffer wrapping around while there are uncommitted
3256  * events, such as during an interrupt storm.
3257  * @buffer: The ring buffer
3258  * @cpu: The per CPU buffer to get the number of overruns from
3259  */
3260 unsigned long
3261 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3262 {
3263         struct ring_buffer_per_cpu *cpu_buffer;
3264         unsigned long ret;
3265
3266         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3267                 return 0;
3268
3269         cpu_buffer = buffer->buffers[cpu];
3270         ret = local_read(&cpu_buffer->commit_overrun);
3271
3272         return ret;
3273 }
3274 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3275
3276 /**
3277  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3278  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3279  * @buffer: The ring buffer
3280  * @cpu: The per CPU buffer to get the number of overruns from
3281  */
3282 unsigned long
3283 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3284 {
3285         struct ring_buffer_per_cpu *cpu_buffer;
3286         unsigned long ret;
3287
3288         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3289                 return 0;
3290
3291         cpu_buffer = buffer->buffers[cpu];
3292         ret = local_read(&cpu_buffer->dropped_events);
3293
3294         return ret;
3295 }
3296 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3297
3298 /**
3299  * ring_buffer_read_events_cpu - get the number of events successfully read
3300  * @buffer: The ring buffer
3301  * @cpu: The per CPU buffer to get the number of events read
3302  */
3303 unsigned long
3304 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3305 {
3306         struct ring_buffer_per_cpu *cpu_buffer;
3307
3308         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3309                 return 0;
3310
3311         cpu_buffer = buffer->buffers[cpu];
3312         return cpu_buffer->read;
3313 }
3314 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3315
3316 /**
3317  * ring_buffer_entries - get the number of entries in a buffer
3318  * @buffer: The ring buffer
3319  *
3320  * Returns the total number of entries in the ring buffer
3321  * (all CPU entries)
3322  */
3323 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3324 {
3325         struct ring_buffer_per_cpu *cpu_buffer;
3326         unsigned long entries = 0;
3327         int cpu;
3328
3329         /* if you care about this being correct, lock the buffer */
3330         for_each_buffer_cpu(buffer, cpu) {
3331                 cpu_buffer = buffer->buffers[cpu];
3332                 entries += rb_num_of_entries(cpu_buffer);
3333         }
3334
3335         return entries;
3336 }
3337 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3338
3339 /**
3340  * ring_buffer_overruns - get the number of overruns in buffer
3341  * @buffer: The ring buffer
3342  *
3343  * Returns the total number of overruns in the ring buffer
3344  * (all CPU entries)
3345  */
3346 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3347 {
3348         struct ring_buffer_per_cpu *cpu_buffer;
3349         unsigned long overruns = 0;
3350         int cpu;
3351
3352         /* if you care about this being correct, lock the buffer */
3353         for_each_buffer_cpu(buffer, cpu) {
3354                 cpu_buffer = buffer->buffers[cpu];
3355                 overruns += local_read(&cpu_buffer->overrun);
3356         }
3357
3358         return overruns;
3359 }
3360 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3361
3362 static void rb_iter_reset(struct ring_buffer_iter *iter)
3363 {
3364         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3365
3366         /* Iterator usage is expected to have record disabled */
3367         iter->head_page = cpu_buffer->reader_page;
3368         iter->head = cpu_buffer->reader_page->read;
3369
3370         iter->cache_reader_page = iter->head_page;
3371         iter->cache_read = cpu_buffer->read;
3372
3373         if (iter->head)
3374                 iter->read_stamp = cpu_buffer->read_stamp;
3375         else
3376                 iter->read_stamp = iter->head_page->page->time_stamp;
3377 }
3378
3379 /**
3380  * ring_buffer_iter_reset - reset an iterator
3381  * @iter: The iterator to reset
3382  *
3383  * Resets the iterator, so that it will start from the beginning
3384  * again.
3385  */
3386 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3387 {
3388         struct ring_buffer_per_cpu *cpu_buffer;
3389         unsigned long flags;
3390
3391         if (!iter)
3392                 return;
3393
3394         cpu_buffer = iter->cpu_buffer;
3395
3396         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3397         rb_iter_reset(iter);
3398         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3399 }
3400 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3401
3402 /**
3403  * ring_buffer_iter_empty - check if an iterator has no more to read
3404  * @iter: The iterator to check
3405  */
3406 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3407 {
3408         struct ring_buffer_per_cpu *cpu_buffer;
3409         struct buffer_page *reader;
3410         struct buffer_page *head_page;
3411         struct buffer_page *commit_page;
3412         unsigned commit;
3413
3414         cpu_buffer = iter->cpu_buffer;
3415
3416         /* Remember, trace recording is off when iterator is in use */
3417         reader = cpu_buffer->reader_page;
3418         head_page = cpu_buffer->head_page;
3419         commit_page = cpu_buffer->commit_page;
3420         commit = rb_page_commit(commit_page);
3421
3422         return ((iter->head_page == commit_page && iter->head == commit) ||
3423                 (iter->head_page == reader && commit_page == head_page &&
3424                  head_page->read == commit &&
3425                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
3426 }
3427 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3428
3429 static void
3430 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3431                      struct ring_buffer_event *event)
3432 {
3433         u64 delta;
3434
3435         switch (event->type_len) {
3436         case RINGBUF_TYPE_PADDING:
3437                 return;
3438
3439         case RINGBUF_TYPE_TIME_EXTEND:
3440                 delta = event->array[0];
3441                 delta <<= TS_SHIFT;
3442                 delta += event->time_delta;
3443                 cpu_buffer->read_stamp += delta;
3444                 return;
3445
3446         case RINGBUF_TYPE_TIME_STAMP:
3447                 /* FIXME: not implemented */
3448                 return;
3449
3450         case RINGBUF_TYPE_DATA:
3451                 cpu_buffer->read_stamp += event->time_delta;
3452                 return;
3453
3454         default:
3455                 BUG();
3456         }
3457         return;
3458 }
3459
3460 static void
3461 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3462                           struct ring_buffer_event *event)
3463 {
3464         u64 delta;
3465
3466         switch (event->type_len) {
3467         case RINGBUF_TYPE_PADDING:
3468                 return;
3469
3470         case RINGBUF_TYPE_TIME_EXTEND:
3471                 delta = event->array[0];
3472                 delta <<= TS_SHIFT;
3473                 delta += event->time_delta;
3474                 iter->read_stamp += delta;
3475                 return;
3476
3477         case RINGBUF_TYPE_TIME_STAMP:
3478                 /* FIXME: not implemented */
3479                 return;
3480
3481         case RINGBUF_TYPE_DATA:
3482                 iter->read_stamp += event->time_delta;
3483                 return;
3484
3485         default:
3486                 BUG();
3487         }
3488         return;
3489 }
3490
3491 static struct buffer_page *
3492 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3493 {
3494         struct buffer_page *reader = NULL;
3495         unsigned long overwrite;
3496         unsigned long flags;
3497         int nr_loops = 0;
3498         int ret;
3499
3500         local_irq_save(flags);
3501         arch_spin_lock(&cpu_buffer->lock);
3502
3503  again:
3504         /*
3505          * This should normally only loop twice. But because the
3506          * start of the reader inserts an empty page, it causes
3507          * a case where we will loop three times. There should be no
3508          * reason to loop four times (that I know of).
3509          */
3510         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3511                 reader = NULL;
3512                 goto out;
3513         }
3514
3515         reader = cpu_buffer->reader_page;
3516
3517         /* If there's more to read, return this page */
3518         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3519                 goto out;
3520
3521         /* Never should we have an index greater than the size */
3522         if (RB_WARN_ON(cpu_buffer,
3523                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3524                 goto out;
3525
3526         /* check if we caught up to the tail */
3527         reader = NULL;
3528         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3529                 goto out;
3530
3531         /* Don't bother swapping if the ring buffer is empty */
3532         if (rb_num_of_entries(cpu_buffer) == 0)
3533                 goto out;
3534
3535         /*
3536          * Reset the reader page to size zero.
3537          */
3538         local_set(&cpu_buffer->reader_page->write, 0);
3539         local_set(&cpu_buffer->reader_page->entries, 0);
3540         local_set(&cpu_buffer->reader_page->page->commit, 0);
3541         cpu_buffer->reader_page->real_end = 0;
3542
3543  spin:
3544         /*
3545          * Splice the empty reader page into the list around the head.
3546          */
3547         reader = rb_set_head_page(cpu_buffer);
3548         if (!reader)
3549                 goto out;
3550         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3551         cpu_buffer->reader_page->list.prev = reader->list.prev;
3552
3553         /*
3554          * cpu_buffer->pages just needs to point to the buffer, it
3555          *  has no specific buffer page to point to. Lets move it out
3556          *  of our way so we don't accidentally swap it.
3557          */
3558         cpu_buffer->pages = reader->list.prev;
3559
3560         /* The reader page will be pointing to the new head */
3561         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3562
3563         /*
3564          * We want to make sure we read the overruns after we set up our
3565          * pointers to the next object. The writer side does a
3566          * cmpxchg to cross pages which acts as the mb on the writer
3567          * side. Note, the reader will constantly fail the swap
3568          * while the writer is updating the pointers, so this
3569          * guarantees that the overwrite recorded here is the one we
3570          * want to compare with the last_overrun.
3571          */
3572         smp_mb();
3573         overwrite = local_read(&(cpu_buffer->overrun));
3574
3575         /*
3576          * Here's the tricky part.
3577          *
3578          * We need to move the pointer past the header page.
3579          * But we can only do that if a writer is not currently
3580          * moving it. The page before the header page has the
3581          * flag bit '1' set if it is pointing to the page we want.
3582          * but if the writer is in the process of moving it
3583          * than it will be '2' or already moved '0'.
3584          */
3585
3586         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3587
3588         /*
3589          * If we did not convert it, then we must try again.
3590          */
3591         if (!ret)
3592                 goto spin;
3593
3594         /*
3595          * Yeah! We succeeded in replacing the page.
3596          *
3597          * Now make the new head point back to the reader page.
3598          */
3599         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3600         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3601
3602         /* Finally update the reader page to the new head */
3603         cpu_buffer->reader_page = reader;
3604         cpu_buffer->reader_page->read = 0;
3605
3606         if (overwrite != cpu_buffer->last_overrun) {
3607                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3608                 cpu_buffer->last_overrun = overwrite;
3609         }
3610
3611         goto again;
3612
3613  out:
3614         /* Update the read_stamp on the first event */
3615         if (reader && reader->read == 0)
3616                 cpu_buffer->read_stamp = reader->page->time_stamp;
3617
3618         arch_spin_unlock(&cpu_buffer->lock);
3619         local_irq_restore(flags);
3620
3621         return reader;
3622 }
3623
3624 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3625 {
3626         struct ring_buffer_event *event;
3627         struct buffer_page *reader;
3628         unsigned length;
3629
3630         reader = rb_get_reader_page(cpu_buffer);
3631
3632         /* This function should not be called when buffer is empty */
3633         if (RB_WARN_ON(cpu_buffer, !reader))
3634                 return;
3635
3636         event = rb_reader_event(cpu_buffer);
3637
3638         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3639                 cpu_buffer->read++;
3640
3641         rb_update_read_stamp(cpu_buffer, event);
3642
3643         length = rb_event_length(event);
3644         cpu_buffer->reader_page->read += length;
3645 }
3646
3647 static void rb_advance_iter(struct ring_buffer_iter *iter)
3648 {
3649         struct ring_buffer_per_cpu *cpu_buffer;
3650         struct ring_buffer_event *event;
3651         unsigned length;
3652
3653         cpu_buffer = iter->cpu_buffer;
3654
3655         /*
3656          * Check if we are at the end of the buffer.
3657          */
3658         if (iter->head >= rb_page_size(iter->head_page)) {
3659                 /* discarded commits can make the page empty */
3660                 if (iter->head_page == cpu_buffer->commit_page)
3661                         return;
3662                 rb_inc_iter(iter);
3663                 return;
3664         }
3665
3666         event = rb_iter_head_event(iter);
3667
3668         length = rb_event_length(event);
3669
3670         /*
3671          * This should not be called to advance the header if we are
3672          * at the tail of the buffer.
3673          */
3674         if (RB_WARN_ON(cpu_buffer,
3675                        (iter->head_page == cpu_buffer->commit_page) &&
3676                        (iter->head + length > rb_commit_index(cpu_buffer))))
3677                 return;
3678
3679         rb_update_iter_read_stamp(iter, event);
3680
3681         iter->head += length;
3682
3683         /* check for end of page padding */
3684         if ((iter->head >= rb_page_size(iter->head_page)) &&
3685             (iter->head_page != cpu_buffer->commit_page))
3686                 rb_inc_iter(iter);
3687 }
3688
3689 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3690 {
3691         return cpu_buffer->lost_events;
3692 }
3693
3694 static struct ring_buffer_event *
3695 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3696                unsigned long *lost_events)
3697 {
3698         struct ring_buffer_event *event;
3699         struct buffer_page *reader;
3700         int nr_loops = 0;
3701
3702  again:
3703         /*
3704          * We repeat when a time extend is encountered.
3705          * Since the time extend is always attached to a data event,
3706          * we should never loop more than once.
3707          * (We never hit the following condition more than twice).
3708          */
3709         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3710                 return NULL;
3711
3712         reader = rb_get_reader_page(cpu_buffer);
3713         if (!reader)
3714                 return NULL;
3715
3716         event = rb_reader_event(cpu_buffer);
3717
3718         switch (event->type_len) {
3719         case RINGBUF_TYPE_PADDING:
3720                 if (rb_null_event(event))
3721                         RB_WARN_ON(cpu_buffer, 1);
3722                 /*
3723                  * Because the writer could be discarding every
3724                  * event it creates (which would probably be bad)
3725                  * if we were to go back to "again" then we may never
3726                  * catch up, and will trigger the warn on, or lock
3727                  * the box. Return the padding, and we will release
3728                  * the current locks, and try again.
3729                  */
3730                 return event;
3731
3732         case RINGBUF_TYPE_TIME_EXTEND:
3733                 /* Internal data, OK to advance */
3734                 rb_advance_reader(cpu_buffer);
3735                 goto again;
3736
3737         case RINGBUF_TYPE_TIME_STAMP:
3738                 /* FIXME: not implemented */
3739                 rb_advance_reader(cpu_buffer);
3740                 goto again;
3741
3742         case RINGBUF_TYPE_DATA:
3743                 if (ts) {
3744                         *ts = cpu_buffer->read_stamp + event->time_delta;
3745                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3746                                                          cpu_buffer->cpu, ts);
3747                 }
3748                 if (lost_events)
3749                         *lost_events = rb_lost_events(cpu_buffer);
3750                 return event;
3751
3752         default:
3753                 BUG();
3754         }
3755
3756         return NULL;
3757 }
3758 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3759
3760 static struct ring_buffer_event *
3761 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3762 {
3763         struct ring_buffer *buffer;
3764         struct ring_buffer_per_cpu *cpu_buffer;
3765         struct ring_buffer_event *event;
3766         int nr_loops = 0;
3767
3768         cpu_buffer = iter->cpu_buffer;
3769         buffer = cpu_buffer->buffer;
3770
3771         /*
3772          * Check if someone performed a consuming read to
3773          * the buffer. A consuming read invalidates the iterator
3774          * and we need to reset the iterator in this case.
3775          */
3776         if (unlikely(iter->cache_read != cpu_buffer->read ||
3777                      iter->cache_reader_page != cpu_buffer->reader_page))
3778                 rb_iter_reset(iter);
3779
3780  again:
3781         if (ring_buffer_iter_empty(iter))
3782                 return NULL;
3783
3784         /*
3785          * We repeat when a time extend is encountered or we hit
3786          * the end of the page. Since the time extend is always attached
3787          * to a data event, we should never loop more than three times.
3788          * Once for going to next page, once on time extend, and
3789          * finally once to get the event.
3790          * (We never hit the following condition more than thrice).
3791          */
3792         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3793                 return NULL;
3794
3795         if (rb_per_cpu_empty(cpu_buffer))
3796                 return NULL;
3797
3798         if (iter->head >= rb_page_size(iter->head_page)) {
3799                 rb_inc_iter(iter);
3800                 goto again;
3801         }
3802
3803         event = rb_iter_head_event(iter);
3804
3805         switch (event->type_len) {
3806         case RINGBUF_TYPE_PADDING:
3807                 if (rb_null_event(event)) {
3808                         rb_inc_iter(iter);
3809                         goto again;
3810                 }
3811                 rb_advance_iter(iter);
3812                 return event;
3813
3814         case RINGBUF_TYPE_TIME_EXTEND:
3815                 /* Internal data, OK to advance */
3816                 rb_advance_iter(iter);
3817                 goto again;
3818
3819         case RINGBUF_TYPE_TIME_STAMP:
3820                 /* FIXME: not implemented */
3821                 rb_advance_iter(iter);
3822                 goto again;
3823
3824         case RINGBUF_TYPE_DATA:
3825                 if (ts) {
3826                         *ts = iter->read_stamp + event->time_delta;
3827                         ring_buffer_normalize_time_stamp(buffer,
3828                                                          cpu_buffer->cpu, ts);
3829                 }
3830                 return event;
3831
3832         default:
3833                 BUG();
3834         }
3835
3836         return NULL;
3837 }
3838 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3839
3840 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3841 {
3842         if (likely(!in_nmi())) {
3843                 raw_spin_lock(&cpu_buffer->reader_lock);
3844                 return true;
3845         }
3846
3847         /*
3848          * If an NMI die dumps out the content of the ring buffer
3849          * trylock must be used to prevent a deadlock if the NMI
3850          * preempted a task that holds the ring buffer locks. If
3851          * we get the lock then all is fine, if not, then continue
3852          * to do the read, but this can corrupt the ring buffer,
3853          * so it must be permanently disabled from future writes.
3854          * Reading from NMI is a oneshot deal.
3855          */
3856         if (raw_spin_trylock(&cpu_buffer->reader_lock))
3857                 return true;
3858
3859         /* Continue without locking, but disable the ring buffer */
3860         atomic_inc(&cpu_buffer->record_disabled);
3861         return false;
3862 }
3863
3864 static inline void
3865 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3866 {
3867         if (likely(locked))
3868                 raw_spin_unlock(&cpu_buffer->reader_lock);
3869         return;
3870 }
3871
3872 /**
3873  * ring_buffer_peek - peek at the next event to be read
3874  * @buffer: The ring buffer to read
3875  * @cpu: The cpu to peak at
3876  * @ts: The timestamp counter of this event.
3877  * @lost_events: a variable to store if events were lost (may be NULL)
3878  *
3879  * This will return the event that will be read next, but does
3880  * not consume the data.
3881  */
3882 struct ring_buffer_event *
3883 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3884                  unsigned long *lost_events)
3885 {
3886         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3887         struct ring_buffer_event *event;
3888         unsigned long flags;
3889         bool dolock;
3890
3891         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3892                 return NULL;
3893
3894  again:
3895         local_irq_save(flags);
3896         dolock = rb_reader_lock(cpu_buffer);
3897         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3898         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3899                 rb_advance_reader(cpu_buffer);
3900         rb_reader_unlock(cpu_buffer, dolock);
3901         local_irq_restore(flags);
3902
3903         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3904                 goto again;
3905
3906         return event;
3907 }
3908
3909 /**
3910  * ring_buffer_iter_peek - peek at the next event to be read
3911  * @iter: The ring buffer iterator
3912  * @ts: The timestamp counter of this event.
3913  *
3914  * This will return the event that will be read next, but does
3915  * not increment the iterator.
3916  */
3917 struct ring_buffer_event *
3918 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3919 {
3920         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3921         struct ring_buffer_event *event;
3922         unsigned long flags;
3923
3924  again:
3925         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3926         event = rb_iter_peek(iter, ts);
3927         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3928
3929         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3930                 goto again;
3931
3932         return event;
3933 }
3934
3935 /**
3936  * ring_buffer_consume - return an event and consume it
3937  * @buffer: The ring buffer to get the next event from
3938  * @cpu: the cpu to read the buffer from
3939  * @ts: a variable to store the timestamp (may be NULL)
3940  * @lost_events: a variable to store if events were lost (may be NULL)
3941  *
3942  * Returns the next event in the ring buffer, and that event is consumed.
3943  * Meaning, that sequential reads will keep returning a different event,
3944  * and eventually empty the ring buffer if the producer is slower.
3945  */
3946 struct ring_buffer_event *
3947 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3948                     unsigned long *lost_events)
3949 {
3950         struct ring_buffer_per_cpu *cpu_buffer;
3951         struct ring_buffer_event *event = NULL;
3952         unsigned long flags;
3953         bool dolock;
3954
3955  again:
3956         /* might be called in atomic */
3957         preempt_disable();
3958
3959         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3960                 goto out;
3961
3962         cpu_buffer = buffer->buffers[cpu];
3963         local_irq_save(flags);
3964         dolock = rb_reader_lock(cpu_buffer);
3965
3966         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3967         if (event) {
3968                 cpu_buffer->lost_events = 0;
3969                 rb_advance_reader(cpu_buffer);
3970         }
3971
3972         rb_reader_unlock(cpu_buffer, dolock);
3973         local_irq_restore(flags);
3974
3975  out:
3976         preempt_enable();
3977
3978         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3979                 goto again;
3980
3981         return event;
3982 }
3983 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3984
3985 /**
3986  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3987  * @buffer: The ring buffer to read from
3988  * @cpu: The cpu buffer to iterate over
3989  *
3990  * This performs the initial preparations necessary to iterate
3991  * through the buffer.  Memory is allocated, buffer recording
3992  * is disabled, and the iterator pointer is returned to the caller.
3993  *
3994  * Disabling buffer recordng prevents the reading from being
3995  * corrupted. This is not a consuming read, so a producer is not
3996  * expected.
3997  *
3998  * After a sequence of ring_buffer_read_prepare calls, the user is
3999  * expected to make at least one call to ring_buffer_read_prepare_sync.
4000  * Afterwards, ring_buffer_read_start is invoked to get things going
4001  * for real.
4002  *
4003  * This overall must be paired with ring_buffer_read_finish.
4004  */
4005 struct ring_buffer_iter *
4006 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4007 {
4008         struct ring_buffer_per_cpu *cpu_buffer;
4009         struct ring_buffer_iter *iter;
4010
4011         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4012                 return NULL;
4013
4014         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4015         if (!iter)
4016                 return NULL;
4017
4018         cpu_buffer = buffer->buffers[cpu];
4019
4020         iter->cpu_buffer = cpu_buffer;
4021
4022         atomic_inc(&buffer->resize_disabled);
4023         atomic_inc(&cpu_buffer->record_disabled);
4024
4025         return iter;
4026 }
4027 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4028
4029 /**
4030  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4031  *
4032  * All previously invoked ring_buffer_read_prepare calls to prepare
4033  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4034  * calls on those iterators are allowed.
4035  */
4036 void
4037 ring_buffer_read_prepare_sync(void)
4038 {
4039         synchronize_sched();
4040 }
4041 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4042
4043 /**
4044  * ring_buffer_read_start - start a non consuming read of the buffer
4045  * @iter: The iterator returned by ring_buffer_read_prepare
4046  *
4047  * This finalizes the startup of an iteration through the buffer.
4048  * The iterator comes from a call to ring_buffer_read_prepare and
4049  * an intervening ring_buffer_read_prepare_sync must have been
4050  * performed.
4051  *
4052  * Must be paired with ring_buffer_read_finish.
4053  */
4054 void
4055 ring_buffer_read_start(struct ring_buffer_iter *iter)
4056 {
4057         struct ring_buffer_per_cpu *cpu_buffer;
4058         unsigned long flags;
4059
4060         if (!iter)
4061                 return;
4062
4063         cpu_buffer = iter->cpu_buffer;
4064
4065         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4066         arch_spin_lock(&cpu_buffer->lock);
4067         rb_iter_reset(iter);
4068         arch_spin_unlock(&cpu_buffer->lock);
4069         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4070 }
4071 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4072
4073 /**
4074  * ring_buffer_read_finish - finish reading the iterator of the buffer
4075  * @iter: The iterator retrieved by ring_buffer_start
4076  *
4077  * This re-enables the recording to the buffer, and frees the
4078  * iterator.
4079  */
4080 void
4081 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4082 {
4083         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4084         unsigned long flags;
4085
4086         /*
4087          * Ring buffer is disabled from recording, here's a good place
4088          * to check the integrity of the ring buffer.
4089          * Must prevent readers from trying to read, as the check
4090          * clears the HEAD page and readers require it.
4091          */
4092         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4093         rb_check_pages(cpu_buffer);
4094         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4095
4096         atomic_dec(&cpu_buffer->record_disabled);
4097         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4098         kfree(iter);
4099 }
4100 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4101
4102 /**
4103  * ring_buffer_read - read the next item in the ring buffer by the iterator
4104  * @iter: The ring buffer iterator
4105  * @ts: The time stamp of the event read.
4106  *
4107  * This reads the next event in the ring buffer and increments the iterator.
4108  */
4109 struct ring_buffer_event *
4110 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4111 {
4112         struct ring_buffer_event *event;
4113         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4114         unsigned long flags;
4115
4116         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4117  again:
4118         event = rb_iter_peek(iter, ts);
4119         if (!event)
4120                 goto out;
4121
4122         if (event->type_len == RINGBUF_TYPE_PADDING)
4123                 goto again;
4124
4125         rb_advance_iter(iter);
4126  out:
4127         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4128
4129         return event;
4130 }
4131 EXPORT_SYMBOL_GPL(ring_buffer_read);
4132
4133 /**
4134  * ring_buffer_size - return the size of the ring buffer (in bytes)
4135  * @buffer: The ring buffer.
4136  */
4137 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4138 {
4139         /*
4140          * Earlier, this method returned
4141          *      BUF_PAGE_SIZE * buffer->nr_pages
4142          * Since the nr_pages field is now removed, we have converted this to
4143          * return the per cpu buffer value.
4144          */
4145         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4146                 return 0;
4147
4148         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4149 }
4150 EXPORT_SYMBOL_GPL(ring_buffer_size);
4151
4152 static void
4153 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4154 {
4155         rb_head_page_deactivate(cpu_buffer);
4156
4157         cpu_buffer->head_page
4158                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4159         local_set(&cpu_buffer->head_page->write, 0);
4160         local_set(&cpu_buffer->head_page->entries, 0);
4161         local_set(&cpu_buffer->head_page->page->commit, 0);
4162
4163         cpu_buffer->head_page->read = 0;
4164
4165         cpu_buffer->tail_page = cpu_buffer->head_page;
4166         cpu_buffer->commit_page = cpu_buffer->head_page;
4167
4168         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4169         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4170         local_set(&cpu_buffer->reader_page->write, 0);
4171         local_set(&cpu_buffer->reader_page->entries, 0);
4172         local_set(&cpu_buffer->reader_page->page->commit, 0);
4173         cpu_buffer->reader_page->read = 0;
4174
4175         local_set(&cpu_buffer->entries_bytes, 0);
4176         local_set(&cpu_buffer->overrun, 0);
4177         local_set(&cpu_buffer->commit_overrun, 0);
4178         local_set(&cpu_buffer->dropped_events, 0);
4179         local_set(&cpu_buffer->entries, 0);
4180         local_set(&cpu_buffer->committing, 0);
4181         local_set(&cpu_buffer->commits, 0);
4182         cpu_buffer->read = 0;
4183         cpu_buffer->read_bytes = 0;
4184
4185         cpu_buffer->write_stamp = 0;
4186         cpu_buffer->read_stamp = 0;
4187
4188         cpu_buffer->lost_events = 0;
4189         cpu_buffer->last_overrun = 0;
4190
4191         rb_head_page_activate(cpu_buffer);
4192 }
4193
4194 /**
4195  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4196  * @buffer: The ring buffer to reset a per cpu buffer of
4197  * @cpu: The CPU buffer to be reset
4198  */
4199 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4200 {
4201         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4202         unsigned long flags;
4203
4204         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4205                 return;
4206
4207         atomic_inc(&buffer->resize_disabled);
4208         atomic_inc(&cpu_buffer->record_disabled);
4209
4210         /* Make sure all commits have finished */
4211         synchronize_sched();
4212
4213         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4214
4215         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4216                 goto out;
4217
4218         arch_spin_lock(&cpu_buffer->lock);
4219
4220         rb_reset_cpu(cpu_buffer);
4221
4222         arch_spin_unlock(&cpu_buffer->lock);
4223
4224  out:
4225         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4226
4227         atomic_dec(&cpu_buffer->record_disabled);
4228         atomic_dec(&buffer->resize_disabled);
4229 }
4230 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4231
4232 /**
4233  * ring_buffer_reset - reset a ring buffer
4234  * @buffer: The ring buffer to reset all cpu buffers
4235  */
4236 void ring_buffer_reset(struct ring_buffer *buffer)
4237 {
4238         int cpu;
4239
4240         for_each_buffer_cpu(buffer, cpu)
4241                 ring_buffer_reset_cpu(buffer, cpu);
4242 }
4243 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4244
4245 /**
4246  * rind_buffer_empty - is the ring buffer empty?
4247  * @buffer: The ring buffer to test
4248  */
4249 bool ring_buffer_empty(struct ring_buffer *buffer)
4250 {
4251         struct ring_buffer_per_cpu *cpu_buffer;
4252         unsigned long flags;
4253         bool dolock;
4254         int cpu;
4255         int ret;
4256
4257         /* yes this is racy, but if you don't like the race, lock the buffer */
4258         for_each_buffer_cpu(buffer, cpu) {
4259                 cpu_buffer = buffer->buffers[cpu];
4260                 local_irq_save(flags);
4261                 dolock = rb_reader_lock(cpu_buffer);
4262                 ret = rb_per_cpu_empty(cpu_buffer);
4263                 rb_reader_unlock(cpu_buffer, dolock);
4264                 local_irq_restore(flags);
4265
4266                 if (!ret)
4267                         return false;
4268         }
4269
4270         return true;
4271 }
4272 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4273
4274 /**
4275  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4276  * @buffer: The ring buffer
4277  * @cpu: The CPU buffer to test
4278  */
4279 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4280 {
4281         struct ring_buffer_per_cpu *cpu_buffer;
4282         unsigned long flags;
4283         bool dolock;
4284         int ret;
4285
4286         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4287                 return true;
4288
4289         cpu_buffer = buffer->buffers[cpu];
4290         local_irq_save(flags);
4291         dolock = rb_reader_lock(cpu_buffer);
4292         ret = rb_per_cpu_empty(cpu_buffer);
4293         rb_reader_unlock(cpu_buffer, dolock);
4294         local_irq_restore(flags);
4295
4296         return ret;
4297 }
4298 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4299
4300 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4301 /**
4302  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4303  * @buffer_a: One buffer to swap with
4304  * @buffer_b: The other buffer to swap with
4305  *
4306  * This function is useful for tracers that want to take a "snapshot"
4307  * of a CPU buffer and has another back up buffer lying around.
4308  * it is expected that the tracer handles the cpu buffer not being
4309  * used at the moment.
4310  */
4311 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4312                          struct ring_buffer *buffer_b, int cpu)
4313 {
4314         struct ring_buffer_per_cpu *cpu_buffer_a;
4315         struct ring_buffer_per_cpu *cpu_buffer_b;
4316         int ret = -EINVAL;
4317
4318         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4319             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4320                 goto out;
4321
4322         cpu_buffer_a = buffer_a->buffers[cpu];
4323         cpu_buffer_b = buffer_b->buffers[cpu];
4324
4325         /* At least make sure the two buffers are somewhat the same */
4326         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4327                 goto out;
4328
4329         ret = -EAGAIN;
4330
4331         if (atomic_read(&buffer_a->record_disabled))
4332                 goto out;
4333
4334         if (atomic_read(&buffer_b->record_disabled))
4335                 goto out;
4336
4337         if (atomic_read(&cpu_buffer_a->record_disabled))
4338                 goto out;
4339
4340         if (atomic_read(&cpu_buffer_b->record_disabled))
4341                 goto out;
4342
4343         /*
4344          * We can't do a synchronize_sched here because this
4345          * function can be called in atomic context.
4346          * Normally this will be called from the same CPU as cpu.
4347          * If not it's up to the caller to protect this.
4348          */
4349         atomic_inc(&cpu_buffer_a->record_disabled);
4350         atomic_inc(&cpu_buffer_b->record_disabled);
4351
4352         ret = -EBUSY;
4353         if (local_read(&cpu_buffer_a->committing))
4354                 goto out_dec;
4355         if (local_read(&cpu_buffer_b->committing))
4356                 goto out_dec;
4357
4358         buffer_a->buffers[cpu] = cpu_buffer_b;
4359         buffer_b->buffers[cpu] = cpu_buffer_a;
4360
4361         cpu_buffer_b->buffer = buffer_a;
4362         cpu_buffer_a->buffer = buffer_b;
4363
4364         ret = 0;
4365
4366 out_dec:
4367         atomic_dec(&cpu_buffer_a->record_disabled);
4368         atomic_dec(&cpu_buffer_b->record_disabled);
4369 out:
4370         return ret;
4371 }
4372 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4373 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4374
4375 /**
4376  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4377  * @buffer: the buffer to allocate for.
4378  * @cpu: the cpu buffer to allocate.
4379  *
4380  * This function is used in conjunction with ring_buffer_read_page.
4381  * When reading a full page from the ring buffer, these functions
4382  * can be used to speed up the process. The calling function should
4383  * allocate a few pages first with this function. Then when it
4384  * needs to get pages from the ring buffer, it passes the result
4385  * of this function into ring_buffer_read_page, which will swap
4386  * the page that was allocated, with the read page of the buffer.
4387  *
4388  * Returns:
4389  *  The page allocated, or NULL on error.
4390  */
4391 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4392 {
4393         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4394         struct buffer_data_page *bpage = NULL;
4395         unsigned long flags;
4396         struct page *page;
4397
4398         local_irq_save(flags);
4399         arch_spin_lock(&cpu_buffer->lock);
4400
4401         if (cpu_buffer->free_page) {
4402                 bpage = cpu_buffer->free_page;
4403                 cpu_buffer->free_page = NULL;
4404         }
4405
4406         arch_spin_unlock(&cpu_buffer->lock);
4407         local_irq_restore(flags);
4408
4409         if (bpage)
4410                 goto out;
4411
4412         page = alloc_pages_node(cpu_to_node(cpu),
4413                                 GFP_KERNEL | __GFP_NORETRY, 0);
4414         if (!page)
4415                 return NULL;
4416
4417         bpage = page_address(page);
4418
4419  out:
4420         rb_init_page(bpage);
4421
4422         return bpage;
4423 }
4424 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4425
4426 /**
4427  * ring_buffer_free_read_page - free an allocated read page
4428  * @buffer: the buffer the page was allocate for
4429  * @cpu: the cpu buffer the page came from
4430  * @data: the page to free
4431  *
4432  * Free a page allocated from ring_buffer_alloc_read_page.
4433  */
4434 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4435 {
4436         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4437         struct buffer_data_page *bpage = data;
4438         unsigned long flags;
4439
4440         local_irq_save(flags);
4441         arch_spin_lock(&cpu_buffer->lock);
4442
4443         if (!cpu_buffer->free_page) {
4444                 cpu_buffer->free_page = bpage;
4445                 bpage = NULL;
4446         }
4447
4448         arch_spin_unlock(&cpu_buffer->lock);
4449         local_irq_restore(flags);
4450
4451         free_page((unsigned long)bpage);
4452 }
4453 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4454
4455 /**
4456  * ring_buffer_read_page - extract a page from the ring buffer
4457  * @buffer: buffer to extract from
4458  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4459  * @len: amount to extract
4460  * @cpu: the cpu of the buffer to extract
4461  * @full: should the extraction only happen when the page is full.
4462  *
4463  * This function will pull out a page from the ring buffer and consume it.
4464  * @data_page must be the address of the variable that was returned
4465  * from ring_buffer_alloc_read_page. This is because the page might be used
4466  * to swap with a page in the ring buffer.
4467  *
4468  * for example:
4469  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4470  *      if (!rpage)
4471  *              return error;
4472  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4473  *      if (ret >= 0)
4474  *              process_page(rpage, ret);
4475  *
4476  * When @full is set, the function will not return true unless
4477  * the writer is off the reader page.
4478  *
4479  * Note: it is up to the calling functions to handle sleeps and wakeups.
4480  *  The ring buffer can be used anywhere in the kernel and can not
4481  *  blindly call wake_up. The layer that uses the ring buffer must be
4482  *  responsible for that.
4483  *
4484  * Returns:
4485  *  >=0 if data has been transferred, returns the offset of consumed data.
4486  *  <0 if no data has been transferred.
4487  */
4488 int ring_buffer_read_page(struct ring_buffer *buffer,
4489                           void **data_page, size_t len, int cpu, int full)
4490 {
4491         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4492         struct ring_buffer_event *event;
4493         struct buffer_data_page *bpage;
4494         struct buffer_page *reader;
4495         unsigned long missed_events;
4496         unsigned long flags;
4497         unsigned int commit;
4498         unsigned int read;
4499         u64 save_timestamp;
4500         int ret = -1;
4501
4502         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4503                 goto out;
4504
4505         /*
4506          * If len is not big enough to hold the page header, then
4507          * we can not copy anything.
4508          */
4509         if (len <= BUF_PAGE_HDR_SIZE)
4510                 goto out;
4511
4512         len -= BUF_PAGE_HDR_SIZE;
4513
4514         if (!data_page)
4515                 goto out;
4516
4517         bpage = *data_page;
4518         if (!bpage)
4519                 goto out;
4520
4521         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4522
4523         reader = rb_get_reader_page(cpu_buffer);
4524         if (!reader)
4525                 goto out_unlock;
4526
4527         event = rb_reader_event(cpu_buffer);
4528
4529         read = reader->read;
4530         commit = rb_page_commit(reader);
4531
4532         /* Check if any events were dropped */
4533         missed_events = cpu_buffer->lost_events;
4534
4535         /*
4536          * If this page has been partially read or
4537          * if len is not big enough to read the rest of the page or
4538          * a writer is still on the page, then
4539          * we must copy the data from the page to the buffer.
4540          * Otherwise, we can simply swap the page with the one passed in.
4541          */
4542         if (read || (len < (commit - read)) ||
4543             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4544                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4545                 unsigned int rpos = read;
4546                 unsigned int pos = 0;
4547                 unsigned int size;
4548
4549                 if (full)
4550                         goto out_unlock;
4551
4552                 if (len > (commit - read))
4553                         len = (commit - read);
4554
4555                 /* Always keep the time extend and data together */
4556                 size = rb_event_ts_length(event);
4557
4558                 if (len < size)
4559                         goto out_unlock;
4560
4561                 /* save the current timestamp, since the user will need it */
4562                 save_timestamp = cpu_buffer->read_stamp;
4563
4564                 /* Need to copy one event at a time */
4565                 do {
4566                         /* We need the size of one event, because
4567                          * rb_advance_reader only advances by one event,
4568                          * whereas rb_event_ts_length may include the size of
4569                          * one or two events.
4570                          * We have already ensured there's enough space if this
4571                          * is a time extend. */
4572                         size = rb_event_length(event);
4573                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4574
4575                         len -= size;
4576
4577                         rb_advance_reader(cpu_buffer);
4578                         rpos = reader->read;
4579                         pos += size;
4580
4581                         if (rpos >= commit)
4582                                 break;
4583
4584                         event = rb_reader_event(cpu_buffer);
4585                         /* Always keep the time extend and data together */
4586                         size = rb_event_ts_length(event);
4587                 } while (len >= size);
4588
4589                 /* update bpage */
4590                 local_set(&bpage->commit, pos);
4591                 bpage->time_stamp = save_timestamp;
4592
4593                 /* we copied everything to the beginning */
4594                 read = 0;
4595         } else {
4596                 /* update the entry counter */
4597                 cpu_buffer->read += rb_page_entries(reader);
4598                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4599
4600                 /* swap the pages */
4601                 rb_init_page(bpage);
4602                 bpage = reader->page;
4603                 reader->page = *data_page;
4604                 local_set(&reader->write, 0);
4605                 local_set(&reader->entries, 0);
4606                 reader->read = 0;
4607                 *data_page = bpage;
4608
4609                 /*
4610                  * Use the real_end for the data size,
4611                  * This gives us a chance to store the lost events
4612                  * on the page.
4613                  */
4614                 if (reader->real_end)
4615                         local_set(&bpage->commit, reader->real_end);
4616         }
4617         ret = read;
4618
4619         cpu_buffer->lost_events = 0;
4620
4621         commit = local_read(&bpage->commit);
4622         /*
4623          * Set a flag in the commit field if we lost events
4624          */
4625         if (missed_events) {
4626                 /* If there is room at the end of the page to save the
4627                  * missed events, then record it there.
4628                  */
4629                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4630                         memcpy(&bpage->data[commit], &missed_events,
4631                                sizeof(missed_events));
4632                         local_add(RB_MISSED_STORED, &bpage->commit);
4633                         commit += sizeof(missed_events);
4634                 }
4635                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4636         }
4637
4638         /*
4639          * This page may be off to user land. Zero it out here.
4640          */
4641         if (commit < BUF_PAGE_SIZE)
4642                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4643
4644  out_unlock:
4645         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4646
4647  out:
4648         return ret;
4649 }
4650 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4651
4652 /*
4653  * We only allocate new buffers, never free them if the CPU goes down.
4654  * If we were to free the buffer, then the user would lose any trace that was in
4655  * the buffer.
4656  */
4657 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4658 {
4659         struct ring_buffer *buffer;
4660         long nr_pages_same;
4661         int cpu_i;
4662         unsigned long nr_pages;
4663
4664         buffer = container_of(node, struct ring_buffer, node);
4665         if (cpumask_test_cpu(cpu, buffer->cpumask))
4666                 return 0;
4667
4668         nr_pages = 0;
4669         nr_pages_same = 1;
4670         /* check if all cpu sizes are same */
4671         for_each_buffer_cpu(buffer, cpu_i) {
4672                 /* fill in the size from first enabled cpu */
4673                 if (nr_pages == 0)
4674                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
4675                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4676                         nr_pages_same = 0;
4677                         break;
4678                 }
4679         }
4680         /* allocate minimum pages, user can later expand it */
4681         if (!nr_pages_same)
4682                 nr_pages = 2;
4683         buffer->buffers[cpu] =
4684                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4685         if (!buffer->buffers[cpu]) {
4686                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4687                      cpu);
4688                 return -ENOMEM;
4689         }
4690         smp_wmb();
4691         cpumask_set_cpu(cpu, buffer->cpumask);
4692         return 0;
4693 }
4694
4695 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4696 /*
4697  * This is a basic integrity check of the ring buffer.
4698  * Late in the boot cycle this test will run when configured in.
4699  * It will kick off a thread per CPU that will go into a loop
4700  * writing to the per cpu ring buffer various sizes of data.
4701  * Some of the data will be large items, some small.
4702  *
4703  * Another thread is created that goes into a spin, sending out
4704  * IPIs to the other CPUs to also write into the ring buffer.
4705  * this is to test the nesting ability of the buffer.
4706  *
4707  * Basic stats are recorded and reported. If something in the
4708  * ring buffer should happen that's not expected, a big warning
4709  * is displayed and all ring buffers are disabled.
4710  */
4711 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4712
4713 struct rb_test_data {
4714         struct ring_buffer      *buffer;
4715         unsigned long           events;
4716         unsigned long           bytes_written;
4717         unsigned long           bytes_alloc;
4718         unsigned long           bytes_dropped;
4719         unsigned long           events_nested;
4720         unsigned long           bytes_written_nested;
4721         unsigned long           bytes_alloc_nested;
4722         unsigned long           bytes_dropped_nested;
4723         int                     min_size_nested;
4724         int                     max_size_nested;
4725         int                     max_size;
4726         int                     min_size;
4727         int                     cpu;
4728         int                     cnt;
4729 };
4730
4731 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4732
4733 /* 1 meg per cpu */
4734 #define RB_TEST_BUFFER_SIZE     1048576
4735
4736 static char rb_string[] __initdata =
4737         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4738         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4739         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4740
4741 static bool rb_test_started __initdata;
4742
4743 struct rb_item {
4744         int size;
4745         char str[];
4746 };
4747
4748 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4749 {
4750         struct ring_buffer_event *event;
4751         struct rb_item *item;
4752         bool started;
4753         int event_len;
4754         int size;
4755         int len;
4756         int cnt;
4757
4758         /* Have nested writes different that what is written */
4759         cnt = data->cnt + (nested ? 27 : 0);
4760
4761         /* Multiply cnt by ~e, to make some unique increment */
4762         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4763
4764         len = size + sizeof(struct rb_item);
4765
4766         started = rb_test_started;
4767         /* read rb_test_started before checking buffer enabled */
4768         smp_rmb();
4769
4770         event = ring_buffer_lock_reserve(data->buffer, len);
4771         if (!event) {
4772                 /* Ignore dropped events before test starts. */
4773                 if (started) {
4774                         if (nested)
4775                                 data->bytes_dropped += len;
4776                         else
4777                                 data->bytes_dropped_nested += len;
4778                 }
4779                 return len;
4780         }
4781
4782         event_len = ring_buffer_event_length(event);
4783
4784         if (RB_WARN_ON(data->buffer, event_len < len))
4785                 goto out;
4786
4787         item = ring_buffer_event_data(event);
4788         item->size = size;
4789         memcpy(item->str, rb_string, size);
4790
4791         if (nested) {
4792                 data->bytes_alloc_nested += event_len;
4793                 data->bytes_written_nested += len;
4794                 data->events_nested++;
4795                 if (!data->min_size_nested || len < data->min_size_nested)
4796                         data->min_size_nested = len;
4797                 if (len > data->max_size_nested)
4798                         data->max_size_nested = len;
4799         } else {
4800                 data->bytes_alloc += event_len;
4801                 data->bytes_written += len;
4802                 data->events++;
4803                 if (!data->min_size || len < data->min_size)
4804                         data->max_size = len;
4805                 if (len > data->max_size)
4806                         data->max_size = len;
4807         }
4808
4809  out:
4810         ring_buffer_unlock_commit(data->buffer, event);
4811
4812         return 0;
4813 }
4814
4815 static __init int rb_test(void *arg)
4816 {
4817         struct rb_test_data *data = arg;
4818
4819         while (!kthread_should_stop()) {
4820                 rb_write_something(data, false);
4821                 data->cnt++;
4822
4823                 set_current_state(TASK_INTERRUPTIBLE);
4824                 /* Now sleep between a min of 100-300us and a max of 1ms */
4825                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4826         }
4827
4828         return 0;
4829 }
4830
4831 static __init void rb_ipi(void *ignore)
4832 {
4833         struct rb_test_data *data;
4834         int cpu = smp_processor_id();
4835
4836         data = &rb_data[cpu];
4837         rb_write_something(data, true);
4838 }
4839
4840 static __init int rb_hammer_test(void *arg)
4841 {
4842         while (!kthread_should_stop()) {
4843
4844                 /* Send an IPI to all cpus to write data! */
4845                 smp_call_function(rb_ipi, NULL, 1);
4846                 /* No sleep, but for non preempt, let others run */
4847                 schedule();
4848         }
4849
4850         return 0;
4851 }
4852
4853 static __init int test_ringbuffer(void)
4854 {
4855         struct task_struct *rb_hammer;
4856         struct ring_buffer *buffer;
4857         int cpu;
4858         int ret = 0;
4859
4860         pr_info("Running ring buffer tests...\n");
4861
4862         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4863         if (WARN_ON(!buffer))
4864                 return 0;
4865
4866         /* Disable buffer so that threads can't write to it yet */
4867         ring_buffer_record_off(buffer);
4868
4869         for_each_online_cpu(cpu) {
4870                 rb_data[cpu].buffer = buffer;
4871                 rb_data[cpu].cpu = cpu;
4872                 rb_data[cpu].cnt = cpu;
4873                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4874                                                  "rbtester/%d", cpu);
4875                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4876                         pr_cont("FAILED\n");
4877                         ret = PTR_ERR(rb_threads[cpu]);
4878                         goto out_free;
4879                 }
4880
4881                 kthread_bind(rb_threads[cpu], cpu);
4882                 wake_up_process(rb_threads[cpu]);
4883         }
4884
4885         /* Now create the rb hammer! */
4886         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4887         if (WARN_ON(IS_ERR(rb_hammer))) {
4888                 pr_cont("FAILED\n");
4889                 ret = PTR_ERR(rb_hammer);
4890                 goto out_free;
4891         }
4892
4893         ring_buffer_record_on(buffer);
4894         /*
4895          * Show buffer is enabled before setting rb_test_started.
4896          * Yes there's a small race window where events could be
4897          * dropped and the thread wont catch it. But when a ring
4898          * buffer gets enabled, there will always be some kind of
4899          * delay before other CPUs see it. Thus, we don't care about
4900          * those dropped events. We care about events dropped after
4901          * the threads see that the buffer is active.
4902          */
4903         smp_wmb();
4904         rb_test_started = true;
4905
4906         set_current_state(TASK_INTERRUPTIBLE);
4907         /* Just run for 10 seconds */;
4908         schedule_timeout(10 * HZ);
4909
4910         kthread_stop(rb_hammer);
4911
4912  out_free:
4913         for_each_online_cpu(cpu) {
4914                 if (!rb_threads[cpu])
4915                         break;
4916                 kthread_stop(rb_threads[cpu]);
4917         }
4918         if (ret) {
4919                 ring_buffer_free(buffer);
4920                 return ret;
4921         }
4922
4923         /* Report! */
4924         pr_info("finished\n");
4925         for_each_online_cpu(cpu) {
4926                 struct ring_buffer_event *event;
4927                 struct rb_test_data *data = &rb_data[cpu];
4928                 struct rb_item *item;
4929                 unsigned long total_events;
4930                 unsigned long total_dropped;
4931                 unsigned long total_written;
4932                 unsigned long total_alloc;
4933                 unsigned long total_read = 0;
4934                 unsigned long total_size = 0;
4935                 unsigned long total_len = 0;
4936                 unsigned long total_lost = 0;
4937                 unsigned long lost;
4938                 int big_event_size;
4939                 int small_event_size;
4940
4941                 ret = -1;
4942
4943                 total_events = data->events + data->events_nested;
4944                 total_written = data->bytes_written + data->bytes_written_nested;
4945                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4946                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4947
4948                 big_event_size = data->max_size + data->max_size_nested;
4949                 small_event_size = data->min_size + data->min_size_nested;
4950
4951                 pr_info("CPU %d:\n", cpu);
4952                 pr_info("              events:    %ld\n", total_events);
4953                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4954                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4955                 pr_info("       written bytes:    %ld\n", total_written);
4956                 pr_info("       biggest event:    %d\n", big_event_size);
4957                 pr_info("      smallest event:    %d\n", small_event_size);
4958
4959                 if (RB_WARN_ON(buffer, total_dropped))
4960                         break;
4961
4962                 ret = 0;
4963
4964                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4965                         total_lost += lost;
4966                         item = ring_buffer_event_data(event);
4967                         total_len += ring_buffer_event_length(event);
4968                         total_size += item->size + sizeof(struct rb_item);
4969                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4970                                 pr_info("FAILED!\n");
4971                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4972                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4973                                 RB_WARN_ON(buffer, 1);
4974                                 ret = -1;
4975                                 break;
4976                         }
4977                         total_read++;
4978                 }
4979                 if (ret)
4980                         break;
4981
4982                 ret = -1;
4983
4984                 pr_info("         read events:   %ld\n", total_read);
4985                 pr_info("         lost events:   %ld\n", total_lost);
4986                 pr_info("        total events:   %ld\n", total_lost + total_read);
4987                 pr_info("  recorded len bytes:   %ld\n", total_len);
4988                 pr_info(" recorded size bytes:   %ld\n", total_size);
4989                 if (total_lost)
4990                         pr_info(" With dropped events, record len and size may not match\n"
4991                                 " alloced and written from above\n");
4992                 if (!total_lost) {
4993                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4994                                        total_size != total_written))
4995                                 break;
4996                 }
4997                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4998                         break;
4999
5000                 ret = 0;
5001         }
5002         if (!ret)
5003                 pr_info("Ring buffer PASSED!\n");
5004
5005         ring_buffer_free(buffer);
5006         return 0;
5007 }
5008
5009 late_initcall(test_ringbuffer);
5010 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */