]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - lib/idr.c
tipc: remove premature ESTABLISH FSM event at link synchronization
[karo-tx-linux.git] / lib / idr.c
1 #include <linux/bitmap.h>
2 #include <linux/export.h>
3 #include <linux/idr.h>
4 #include <linux/slab.h>
5 #include <linux/spinlock.h>
6
7 DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
8 static DEFINE_SPINLOCK(simple_ida_lock);
9
10 /**
11  * idr_alloc - allocate an id
12  * @idr: idr handle
13  * @ptr: pointer to be associated with the new id
14  * @start: the minimum id (inclusive)
15  * @end: the maximum id (exclusive)
16  * @gfp: memory allocation flags
17  *
18  * Allocates an unused ID in the range [start, end).  Returns -ENOSPC
19  * if there are no unused IDs in that range.
20  *
21  * Note that @end is treated as max when <= 0.  This is to always allow
22  * using @start + N as @end as long as N is inside integer range.
23  *
24  * Simultaneous modifications to the @idr are not allowed and should be
25  * prevented by the user, usually with a lock.  idr_alloc() may be called
26  * concurrently with read-only accesses to the @idr, such as idr_find() and
27  * idr_for_each_entry().
28  */
29 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
30 {
31         void __rcu **slot;
32         struct radix_tree_iter iter;
33
34         if (WARN_ON_ONCE(start < 0))
35                 return -EINVAL;
36         if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
37                 return -EINVAL;
38
39         radix_tree_iter_init(&iter, start);
40         slot = idr_get_free(&idr->idr_rt, &iter, gfp, end);
41         if (IS_ERR(slot))
42                 return PTR_ERR(slot);
43
44         radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
45         radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
46         return iter.index;
47 }
48 EXPORT_SYMBOL_GPL(idr_alloc);
49
50 /**
51  * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
52  * @idr: idr handle
53  * @ptr: pointer to be associated with the new id
54  * @start: the minimum id (inclusive)
55  * @end: the maximum id (exclusive)
56  * @gfp: memory allocation flags
57  *
58  * Allocates an ID larger than the last ID allocated if one is available.
59  * If not, it will attempt to allocate the smallest ID that is larger or
60  * equal to @start.
61  */
62 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
63 {
64         int id, curr = idr->idr_next;
65
66         if (curr < start)
67                 curr = start;
68
69         id = idr_alloc(idr, ptr, curr, end, gfp);
70         if ((id == -ENOSPC) && (curr > start))
71                 id = idr_alloc(idr, ptr, start, curr, gfp);
72
73         if (id >= 0)
74                 idr->idr_next = id + 1U;
75
76         return id;
77 }
78 EXPORT_SYMBOL(idr_alloc_cyclic);
79
80 /**
81  * idr_for_each - iterate through all stored pointers
82  * @idr: idr handle
83  * @fn: function to be called for each pointer
84  * @data: data passed to callback function
85  *
86  * The callback function will be called for each entry in @idr, passing
87  * the id, the pointer and the data pointer passed to this function.
88  *
89  * If @fn returns anything other than %0, the iteration stops and that
90  * value is returned from this function.
91  *
92  * idr_for_each() can be called concurrently with idr_alloc() and
93  * idr_remove() if protected by RCU.  Newly added entries may not be
94  * seen and deleted entries may be seen, but adding and removing entries
95  * will not cause other entries to be skipped, nor spurious ones to be seen.
96  */
97 int idr_for_each(const struct idr *idr,
98                 int (*fn)(int id, void *p, void *data), void *data)
99 {
100         struct radix_tree_iter iter;
101         void __rcu **slot;
102
103         radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
104                 int ret = fn(iter.index, rcu_dereference_raw(*slot), data);
105                 if (ret)
106                         return ret;
107         }
108
109         return 0;
110 }
111 EXPORT_SYMBOL(idr_for_each);
112
113 /**
114  * idr_get_next - Find next populated entry
115  * @idr: idr handle
116  * @nextid: Pointer to lowest possible ID to return
117  *
118  * Returns the next populated entry in the tree with an ID greater than
119  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
120  * to the ID of the found value.  To use in a loop, the value pointed to by
121  * nextid must be incremented by the user.
122  */
123 void *idr_get_next(struct idr *idr, int *nextid)
124 {
125         struct radix_tree_iter iter;
126         void __rcu **slot;
127
128         slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
129         if (!slot)
130                 return NULL;
131
132         *nextid = iter.index;
133         return rcu_dereference_raw(*slot);
134 }
135 EXPORT_SYMBOL(idr_get_next);
136
137 /**
138  * idr_replace - replace pointer for given id
139  * @idr: idr handle
140  * @ptr: New pointer to associate with the ID
141  * @id: Lookup key
142  *
143  * Replace the pointer registered with an ID and return the old value.
144  * This function can be called under the RCU read lock concurrently with
145  * idr_alloc() and idr_remove() (as long as the ID being removed is not
146  * the one being replaced!).
147  *
148  * Returns: 0 on success.  %-ENOENT indicates that @id was not found.
149  * %-EINVAL indicates that @id or @ptr were not valid.
150  */
151 void *idr_replace(struct idr *idr, void *ptr, int id)
152 {
153         struct radix_tree_node *node;
154         void __rcu **slot = NULL;
155         void *entry;
156
157         if (WARN_ON_ONCE(id < 0))
158                 return ERR_PTR(-EINVAL);
159         if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
160                 return ERR_PTR(-EINVAL);
161
162         entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
163         if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
164                 return ERR_PTR(-ENOENT);
165
166         __radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL, NULL);
167
168         return entry;
169 }
170 EXPORT_SYMBOL(idr_replace);
171
172 /**
173  * DOC: IDA description
174  *
175  * The IDA is an ID allocator which does not provide the ability to
176  * associate an ID with a pointer.  As such, it only needs to store one
177  * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
178  * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
179  * then initialise it using ida_init()).  To allocate a new ID, call
180  * ida_simple_get().  To free an ID, call ida_simple_remove().
181  *
182  * If you have more complex locking requirements, use a loop around
183  * ida_pre_get() and ida_get_new() to allocate a new ID.  Then use
184  * ida_remove() to free an ID.  You must make sure that ida_get_new() and
185  * ida_remove() cannot be called at the same time as each other for the
186  * same IDA.
187  *
188  * You can also use ida_get_new_above() if you need an ID to be allocated
189  * above a particular number.  ida_destroy() can be used to dispose of an
190  * IDA without needing to free the individual IDs in it.  You can use
191  * ida_is_empty() to find out whether the IDA has any IDs currently allocated.
192  *
193  * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
194  * limitation, it should be quite straightforward to raise the maximum.
195  */
196
197 /*
198  * Developer's notes:
199  *
200  * The IDA uses the functionality provided by the IDR & radix tree to store
201  * bitmaps in each entry.  The IDR_FREE tag means there is at least one bit
202  * free, unlike the IDR where it means at least one entry is free.
203  *
204  * I considered telling the radix tree that each slot is an order-10 node
205  * and storing the bit numbers in the radix tree, but the radix tree can't
206  * allow a single multiorder entry at index 0, which would significantly
207  * increase memory consumption for the IDA.  So instead we divide the index
208  * by the number of bits in the leaf bitmap before doing a radix tree lookup.
209  *
210  * As an optimisation, if there are only a few low bits set in any given
211  * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
212  * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
213  * directly in the entry.  By being really tricksy, we could store
214  * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
215  * for 0-3 allocated IDs.
216  *
217  * We allow the radix tree 'exceptional' count to get out of date.  Nothing
218  * in the IDA nor the radix tree code checks it.  If it becomes important
219  * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
220  * calls to radix_tree_iter_replace() which will correct the exceptional
221  * count.
222  *
223  * The IDA always requires a lock to alloc/free.  If we add a 'test_bit'
224  * equivalent, it will still need locking.  Going to RCU lookup would require
225  * using RCU to free bitmaps, and that's not trivial without embedding an
226  * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
227  * bitmap, which is excessive.
228  */
229
230 #define IDA_MAX (0x80000000U / IDA_BITMAP_BITS)
231
232 /**
233  * ida_get_new_above - allocate new ID above or equal to a start id
234  * @ida: ida handle
235  * @start: id to start search at
236  * @id: pointer to the allocated handle
237  *
238  * Allocate new ID above or equal to @start.  It should be called
239  * with any required locks to ensure that concurrent calls to
240  * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed.
241  * Consider using ida_simple_get() if you do not have complex locking
242  * requirements.
243  *
244  * If memory is required, it will return %-EAGAIN, you should unlock
245  * and go back to the ida_pre_get() call.  If the ida is full, it will
246  * return %-ENOSPC.  On success, it will return 0.
247  *
248  * @id returns a value in the range @start ... %0x7fffffff.
249  */
250 int ida_get_new_above(struct ida *ida, int start, int *id)
251 {
252         struct radix_tree_root *root = &ida->ida_rt;
253         void __rcu **slot;
254         struct radix_tree_iter iter;
255         struct ida_bitmap *bitmap;
256         unsigned long index;
257         unsigned bit, ebit;
258         int new;
259
260         index = start / IDA_BITMAP_BITS;
261         bit = start % IDA_BITMAP_BITS;
262         ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
263
264         slot = radix_tree_iter_init(&iter, index);
265         for (;;) {
266                 if (slot)
267                         slot = radix_tree_next_slot(slot, &iter,
268                                                 RADIX_TREE_ITER_TAGGED);
269                 if (!slot) {
270                         slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
271                         if (IS_ERR(slot)) {
272                                 if (slot == ERR_PTR(-ENOMEM))
273                                         return -EAGAIN;
274                                 return PTR_ERR(slot);
275                         }
276                 }
277                 if (iter.index > index) {
278                         bit = 0;
279                         ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
280                 }
281                 new = iter.index * IDA_BITMAP_BITS;
282                 bitmap = rcu_dereference_raw(*slot);
283                 if (radix_tree_exception(bitmap)) {
284                         unsigned long tmp = (unsigned long)bitmap;
285                         ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
286                         if (ebit < BITS_PER_LONG) {
287                                 tmp |= 1UL << ebit;
288                                 rcu_assign_pointer(*slot, (void *)tmp);
289                                 *id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT;
290                                 return 0;
291                         }
292                         bitmap = this_cpu_xchg(ida_bitmap, NULL);
293                         if (!bitmap)
294                                 return -EAGAIN;
295                         memset(bitmap, 0, sizeof(*bitmap));
296                         bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
297                         rcu_assign_pointer(*slot, bitmap);
298                 }
299
300                 if (bitmap) {
301                         bit = find_next_zero_bit(bitmap->bitmap,
302                                                         IDA_BITMAP_BITS, bit);
303                         new += bit;
304                         if (new < 0)
305                                 return -ENOSPC;
306                         if (bit == IDA_BITMAP_BITS)
307                                 continue;
308
309                         __set_bit(bit, bitmap->bitmap);
310                         if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
311                                 radix_tree_iter_tag_clear(root, &iter,
312                                                                 IDR_FREE);
313                 } else {
314                         new += bit;
315                         if (new < 0)
316                                 return -ENOSPC;
317                         if (ebit < BITS_PER_LONG) {
318                                 bitmap = (void *)((1UL << ebit) |
319                                                 RADIX_TREE_EXCEPTIONAL_ENTRY);
320                                 radix_tree_iter_replace(root, &iter, slot,
321                                                 bitmap);
322                                 *id = new;
323                                 return 0;
324                         }
325                         bitmap = this_cpu_xchg(ida_bitmap, NULL);
326                         if (!bitmap)
327                                 return -EAGAIN;
328                         memset(bitmap, 0, sizeof(*bitmap));
329                         __set_bit(bit, bitmap->bitmap);
330                         radix_tree_iter_replace(root, &iter, slot, bitmap);
331                 }
332
333                 *id = new;
334                 return 0;
335         }
336 }
337 EXPORT_SYMBOL(ida_get_new_above);
338
339 /**
340  * ida_remove - Free the given ID
341  * @ida: ida handle
342  * @id: ID to free
343  *
344  * This function should not be called at the same time as ida_get_new_above().
345  */
346 void ida_remove(struct ida *ida, int id)
347 {
348         unsigned long index = id / IDA_BITMAP_BITS;
349         unsigned offset = id % IDA_BITMAP_BITS;
350         struct ida_bitmap *bitmap;
351         unsigned long *btmp;
352         struct radix_tree_iter iter;
353         void __rcu **slot;
354
355         slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
356         if (!slot)
357                 goto err;
358
359         bitmap = rcu_dereference_raw(*slot);
360         if (radix_tree_exception(bitmap)) {
361                 btmp = (unsigned long *)slot;
362                 offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
363                 if (offset >= BITS_PER_LONG)
364                         goto err;
365         } else {
366                 btmp = bitmap->bitmap;
367         }
368         if (!test_bit(offset, btmp))
369                 goto err;
370
371         __clear_bit(offset, btmp);
372         radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
373         if (radix_tree_exception(bitmap)) {
374                 if (rcu_dereference_raw(*slot) ==
375                                         (void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
376                         radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
377         } else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
378                 kfree(bitmap);
379                 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
380         }
381         return;
382  err:
383         WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
384 }
385 EXPORT_SYMBOL(ida_remove);
386
387 /**
388  * ida_destroy - Free the contents of an ida
389  * @ida: ida handle
390  *
391  * Calling this function releases all resources associated with an IDA.  When
392  * this call returns, the IDA is empty and can be reused or freed.  The caller
393  * should not allow ida_remove() or ida_get_new_above() to be called at the
394  * same time.
395  */
396 void ida_destroy(struct ida *ida)
397 {
398         struct radix_tree_iter iter;
399         void __rcu **slot;
400
401         radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
402                 struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
403                 if (!radix_tree_exception(bitmap))
404                         kfree(bitmap);
405                 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
406         }
407 }
408 EXPORT_SYMBOL(ida_destroy);
409
410 /**
411  * ida_simple_get - get a new id.
412  * @ida: the (initialized) ida.
413  * @start: the minimum id (inclusive, < 0x8000000)
414  * @end: the maximum id (exclusive, < 0x8000000 or 0)
415  * @gfp_mask: memory allocation flags
416  *
417  * Allocates an id in the range start <= id < end, or returns -ENOSPC.
418  * On memory allocation failure, returns -ENOMEM.
419  *
420  * Compared to ida_get_new_above() this function does its own locking, and
421  * should be used unless there are special requirements.
422  *
423  * Use ida_simple_remove() to get rid of an id.
424  */
425 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
426                    gfp_t gfp_mask)
427 {
428         int ret, id;
429         unsigned int max;
430         unsigned long flags;
431
432         BUG_ON((int)start < 0);
433         BUG_ON((int)end < 0);
434
435         if (end == 0)
436                 max = 0x80000000;
437         else {
438                 BUG_ON(end < start);
439                 max = end - 1;
440         }
441
442 again:
443         if (!ida_pre_get(ida, gfp_mask))
444                 return -ENOMEM;
445
446         spin_lock_irqsave(&simple_ida_lock, flags);
447         ret = ida_get_new_above(ida, start, &id);
448         if (!ret) {
449                 if (id > max) {
450                         ida_remove(ida, id);
451                         ret = -ENOSPC;
452                 } else {
453                         ret = id;
454                 }
455         }
456         spin_unlock_irqrestore(&simple_ida_lock, flags);
457
458         if (unlikely(ret == -EAGAIN))
459                 goto again;
460
461         return ret;
462 }
463 EXPORT_SYMBOL(ida_simple_get);
464
465 /**
466  * ida_simple_remove - remove an allocated id.
467  * @ida: the (initialized) ida.
468  * @id: the id returned by ida_simple_get.
469  *
470  * Use to release an id allocated with ida_simple_get().
471  *
472  * Compared to ida_remove() this function does its own locking, and should be
473  * used unless there are special requirements.
474  */
475 void ida_simple_remove(struct ida *ida, unsigned int id)
476 {
477         unsigned long flags;
478
479         BUG_ON((int)id < 0);
480         spin_lock_irqsave(&simple_ida_lock, flags);
481         ida_remove(ida, id);
482         spin_unlock_irqrestore(&simple_ida_lock, flags);
483 }
484 EXPORT_SYMBOL(ida_simple_remove);