]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/filemap.c
Merge tag 'for-f2fs-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[karo-tx-linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem              (truncate_pagecache)
67  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock             (exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
77  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page               (access_process_vm)
81  *
82  *  ->i_mutex                   (generic_perform_write)
83  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock                   (fs/fs-writeback.c)
87  *    ->mapping->tree_lock      (__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock           (vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock               (try_to_unmap_one)
97  *    ->private_lock            (try_to_unmap_one)
98  *    ->tree_lock               (try_to_unmap_one)
99  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
101  *    ->private_lock            (page_remove_rmap->set_page_dirty)
102  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
108  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115                                   struct page *page, void **shadowp)
116 {
117         struct radix_tree_node *node;
118         void **slot;
119         int error;
120
121         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122                                     &node, &slot);
123         if (error)
124                 return error;
125         if (*slot) {
126                 void *p;
127
128                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129                 if (!radix_tree_exceptional_entry(p))
130                         return -EEXIST;
131
132                 mapping->nrexceptional--;
133                 if (!dax_mapping(mapping)) {
134                         if (shadowp)
135                                 *shadowp = p;
136                 } else {
137                         /* DAX can replace empty locked entry with a hole */
138                         WARN_ON_ONCE(p !=
139                                 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140                         /* Wakeup waiters for exceptional entry lock */
141                         dax_wake_mapping_entry_waiter(mapping, page->index, p,
142                                                       true);
143                 }
144         }
145         __radix_tree_replace(&mapping->page_tree, node, slot, page,
146                              workingset_update_node, mapping);
147         mapping->nrpages++;
148         return 0;
149 }
150
151 static void page_cache_tree_delete(struct address_space *mapping,
152                                    struct page *page, void *shadow)
153 {
154         int i, nr;
155
156         /* hugetlb pages are represented by one entry in the radix tree */
157         nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158
159         VM_BUG_ON_PAGE(!PageLocked(page), page);
160         VM_BUG_ON_PAGE(PageTail(page), page);
161         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162
163         for (i = 0; i < nr; i++) {
164                 struct radix_tree_node *node;
165                 void **slot;
166
167                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168                                     &node, &slot);
169
170                 VM_BUG_ON_PAGE(!node && nr != 1, page);
171
172                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173                 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174                                      workingset_update_node, mapping);
175         }
176
177         if (shadow) {
178                 mapping->nrexceptional += nr;
179                 /*
180                  * Make sure the nrexceptional update is committed before
181                  * the nrpages update so that final truncate racing
182                  * with reclaim does not see both counters 0 at the
183                  * same time and miss a shadow entry.
184                  */
185                 smp_wmb();
186         }
187         mapping->nrpages -= nr;
188 }
189
190 /*
191  * Delete a page from the page cache and free it. Caller has to make
192  * sure the page is locked and that nobody else uses it - or that usage
193  * is safe.  The caller must hold the mapping's tree_lock.
194  */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197         struct address_space *mapping = page->mapping;
198         int nr = hpage_nr_pages(page);
199
200         trace_mm_filemap_delete_from_page_cache(page);
201         /*
202          * if we're uptodate, flush out into the cleancache, otherwise
203          * invalidate any existing cleancache entries.  We can't leave
204          * stale data around in the cleancache once our page is gone
205          */
206         if (PageUptodate(page) && PageMappedToDisk(page))
207                 cleancache_put_page(page);
208         else
209                 cleancache_invalidate_page(mapping, page);
210
211         VM_BUG_ON_PAGE(PageTail(page), page);
212         VM_BUG_ON_PAGE(page_mapped(page), page);
213         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214                 int mapcount;
215
216                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
217                          current->comm, page_to_pfn(page));
218                 dump_page(page, "still mapped when deleted");
219                 dump_stack();
220                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222                 mapcount = page_mapcount(page);
223                 if (mapping_exiting(mapping) &&
224                     page_count(page) >= mapcount + 2) {
225                         /*
226                          * All vmas have already been torn down, so it's
227                          * a good bet that actually the page is unmapped,
228                          * and we'd prefer not to leak it: if we're wrong,
229                          * some other bad page check should catch it later.
230                          */
231                         page_mapcount_reset(page);
232                         page_ref_sub(page, mapcount);
233                 }
234         }
235
236         page_cache_tree_delete(mapping, page, shadow);
237
238         page->mapping = NULL;
239         /* Leave page->index set: truncation lookup relies upon it */
240
241         /* hugetlb pages do not participate in page cache accounting. */
242         if (!PageHuge(page))
243                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
244         if (PageSwapBacked(page)) {
245                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
246                 if (PageTransHuge(page))
247                         __dec_node_page_state(page, NR_SHMEM_THPS);
248         } else {
249                 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
250         }
251
252         /*
253          * At this point page must be either written or cleaned by truncate.
254          * Dirty page here signals a bug and loss of unwritten data.
255          *
256          * This fixes dirty accounting after removing the page entirely but
257          * leaves PageDirty set: it has no effect for truncated page and
258          * anyway will be cleared before returning page into buddy allocator.
259          */
260         if (WARN_ON_ONCE(PageDirty(page)))
261                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
262 }
263
264 /**
265  * delete_from_page_cache - delete page from page cache
266  * @page: the page which the kernel is trying to remove from page cache
267  *
268  * This must be called only on pages that have been verified to be in the page
269  * cache and locked.  It will never put the page into the free list, the caller
270  * has a reference on the page.
271  */
272 void delete_from_page_cache(struct page *page)
273 {
274         struct address_space *mapping = page_mapping(page);
275         unsigned long flags;
276         void (*freepage)(struct page *);
277
278         BUG_ON(!PageLocked(page));
279
280         freepage = mapping->a_ops->freepage;
281
282         spin_lock_irqsave(&mapping->tree_lock, flags);
283         __delete_from_page_cache(page, NULL);
284         spin_unlock_irqrestore(&mapping->tree_lock, flags);
285
286         if (freepage)
287                 freepage(page);
288
289         if (PageTransHuge(page) && !PageHuge(page)) {
290                 page_ref_sub(page, HPAGE_PMD_NR);
291                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
292         } else {
293                 put_page(page);
294         }
295 }
296 EXPORT_SYMBOL(delete_from_page_cache);
297
298 int filemap_check_errors(struct address_space *mapping)
299 {
300         int ret = 0;
301         /* Check for outstanding write errors */
302         if (test_bit(AS_ENOSPC, &mapping->flags) &&
303             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
304                 ret = -ENOSPC;
305         if (test_bit(AS_EIO, &mapping->flags) &&
306             test_and_clear_bit(AS_EIO, &mapping->flags))
307                 ret = -EIO;
308         return ret;
309 }
310 EXPORT_SYMBOL(filemap_check_errors);
311
312 static int filemap_check_and_keep_errors(struct address_space *mapping)
313 {
314         /* Check for outstanding write errors */
315         if (test_bit(AS_EIO, &mapping->flags))
316                 return -EIO;
317         if (test_bit(AS_ENOSPC, &mapping->flags))
318                 return -ENOSPC;
319         return 0;
320 }
321
322 /**
323  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
324  * @mapping:    address space structure to write
325  * @start:      offset in bytes where the range starts
326  * @end:        offset in bytes where the range ends (inclusive)
327  * @sync_mode:  enable synchronous operation
328  *
329  * Start writeback against all of a mapping's dirty pages that lie
330  * within the byte offsets <start, end> inclusive.
331  *
332  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
333  * opposed to a regular memory cleansing writeback.  The difference between
334  * these two operations is that if a dirty page/buffer is encountered, it must
335  * be waited upon, and not just skipped over.
336  */
337 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
338                                 loff_t end, int sync_mode)
339 {
340         int ret;
341         struct writeback_control wbc = {
342                 .sync_mode = sync_mode,
343                 .nr_to_write = LONG_MAX,
344                 .range_start = start,
345                 .range_end = end,
346         };
347
348         if (!mapping_cap_writeback_dirty(mapping))
349                 return 0;
350
351         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
352         ret = do_writepages(mapping, &wbc);
353         wbc_detach_inode(&wbc);
354         return ret;
355 }
356
357 static inline int __filemap_fdatawrite(struct address_space *mapping,
358         int sync_mode)
359 {
360         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
361 }
362
363 int filemap_fdatawrite(struct address_space *mapping)
364 {
365         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
366 }
367 EXPORT_SYMBOL(filemap_fdatawrite);
368
369 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
370                                 loff_t end)
371 {
372         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
373 }
374 EXPORT_SYMBOL(filemap_fdatawrite_range);
375
376 /**
377  * filemap_flush - mostly a non-blocking flush
378  * @mapping:    target address_space
379  *
380  * This is a mostly non-blocking flush.  Not suitable for data-integrity
381  * purposes - I/O may not be started against all dirty pages.
382  */
383 int filemap_flush(struct address_space *mapping)
384 {
385         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
386 }
387 EXPORT_SYMBOL(filemap_flush);
388
389 /**
390  * filemap_range_has_page - check if a page exists in range.
391  * @mapping:           address space within which to check
392  * @start_byte:        offset in bytes where the range starts
393  * @end_byte:          offset in bytes where the range ends (inclusive)
394  *
395  * Find at least one page in the range supplied, usually used to check if
396  * direct writing in this range will trigger a writeback.
397  */
398 bool filemap_range_has_page(struct address_space *mapping,
399                            loff_t start_byte, loff_t end_byte)
400 {
401         pgoff_t index = start_byte >> PAGE_SHIFT;
402         pgoff_t end = end_byte >> PAGE_SHIFT;
403         struct pagevec pvec;
404         bool ret;
405
406         if (end_byte < start_byte)
407                 return false;
408
409         if (mapping->nrpages == 0)
410                 return false;
411
412         pagevec_init(&pvec, 0);
413         if (!pagevec_lookup(&pvec, mapping, index, 1))
414                 return false;
415         ret = (pvec.pages[0]->index <= end);
416         pagevec_release(&pvec);
417         return ret;
418 }
419 EXPORT_SYMBOL(filemap_range_has_page);
420
421 static void __filemap_fdatawait_range(struct address_space *mapping,
422                                      loff_t start_byte, loff_t end_byte)
423 {
424         pgoff_t index = start_byte >> PAGE_SHIFT;
425         pgoff_t end = end_byte >> PAGE_SHIFT;
426         struct pagevec pvec;
427         int nr_pages;
428
429         if (end_byte < start_byte)
430                 return;
431
432         pagevec_init(&pvec, 0);
433         while ((index <= end) &&
434                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
435                         PAGECACHE_TAG_WRITEBACK,
436                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
437                 unsigned i;
438
439                 for (i = 0; i < nr_pages; i++) {
440                         struct page *page = pvec.pages[i];
441
442                         /* until radix tree lookup accepts end_index */
443                         if (page->index > end)
444                                 continue;
445
446                         wait_on_page_writeback(page);
447                         ClearPageError(page);
448                 }
449                 pagevec_release(&pvec);
450                 cond_resched();
451         }
452 }
453
454 /**
455  * filemap_fdatawait_range - wait for writeback to complete
456  * @mapping:            address space structure to wait for
457  * @start_byte:         offset in bytes where the range starts
458  * @end_byte:           offset in bytes where the range ends (inclusive)
459  *
460  * Walk the list of under-writeback pages of the given address space
461  * in the given range and wait for all of them.  Check error status of
462  * the address space and return it.
463  *
464  * Since the error status of the address space is cleared by this function,
465  * callers are responsible for checking the return value and handling and/or
466  * reporting the error.
467  */
468 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
469                             loff_t end_byte)
470 {
471         __filemap_fdatawait_range(mapping, start_byte, end_byte);
472         return filemap_check_errors(mapping);
473 }
474 EXPORT_SYMBOL(filemap_fdatawait_range);
475
476 /**
477  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
478  * @mapping: address space structure to wait for
479  *
480  * Walk the list of under-writeback pages of the given address space
481  * and wait for all of them.  Unlike filemap_fdatawait(), this function
482  * does not clear error status of the address space.
483  *
484  * Use this function if callers don't handle errors themselves.  Expected
485  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
486  * fsfreeze(8)
487  */
488 int filemap_fdatawait_keep_errors(struct address_space *mapping)
489 {
490         loff_t i_size = i_size_read(mapping->host);
491
492         if (i_size == 0)
493                 return 0;
494
495         __filemap_fdatawait_range(mapping, 0, i_size - 1);
496         return filemap_check_and_keep_errors(mapping);
497 }
498 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
499
500 /**
501  * filemap_fdatawait - wait for all under-writeback pages to complete
502  * @mapping: address space structure to wait for
503  *
504  * Walk the list of under-writeback pages of the given address space
505  * and wait for all of them.  Check error status of the address space
506  * and return it.
507  *
508  * Since the error status of the address space is cleared by this function,
509  * callers are responsible for checking the return value and handling and/or
510  * reporting the error.
511  */
512 int filemap_fdatawait(struct address_space *mapping)
513 {
514         loff_t i_size = i_size_read(mapping->host);
515
516         if (i_size == 0)
517                 return 0;
518
519         return filemap_fdatawait_range(mapping, 0, i_size - 1);
520 }
521 EXPORT_SYMBOL(filemap_fdatawait);
522
523 int filemap_write_and_wait(struct address_space *mapping)
524 {
525         int err = 0;
526
527         if ((!dax_mapping(mapping) && mapping->nrpages) ||
528             (dax_mapping(mapping) && mapping->nrexceptional)) {
529                 err = filemap_fdatawrite(mapping);
530                 /*
531                  * Even if the above returned error, the pages may be
532                  * written partially (e.g. -ENOSPC), so we wait for it.
533                  * But the -EIO is special case, it may indicate the worst
534                  * thing (e.g. bug) happened, so we avoid waiting for it.
535                  */
536                 if (err != -EIO) {
537                         int err2 = filemap_fdatawait(mapping);
538                         if (!err)
539                                 err = err2;
540                 } else {
541                         /* Clear any previously stored errors */
542                         filemap_check_errors(mapping);
543                 }
544         } else {
545                 err = filemap_check_errors(mapping);
546         }
547         return err;
548 }
549 EXPORT_SYMBOL(filemap_write_and_wait);
550
551 /**
552  * filemap_write_and_wait_range - write out & wait on a file range
553  * @mapping:    the address_space for the pages
554  * @lstart:     offset in bytes where the range starts
555  * @lend:       offset in bytes where the range ends (inclusive)
556  *
557  * Write out and wait upon file offsets lstart->lend, inclusive.
558  *
559  * Note that @lend is inclusive (describes the last byte to be written) so
560  * that this function can be used to write to the very end-of-file (end = -1).
561  */
562 int filemap_write_and_wait_range(struct address_space *mapping,
563                                  loff_t lstart, loff_t lend)
564 {
565         int err = 0;
566
567         if ((!dax_mapping(mapping) && mapping->nrpages) ||
568             (dax_mapping(mapping) && mapping->nrexceptional)) {
569                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
570                                                  WB_SYNC_ALL);
571                 /* See comment of filemap_write_and_wait() */
572                 if (err != -EIO) {
573                         int err2 = filemap_fdatawait_range(mapping,
574                                                 lstart, lend);
575                         if (!err)
576                                 err = err2;
577                 } else {
578                         /* Clear any previously stored errors */
579                         filemap_check_errors(mapping);
580                 }
581         } else {
582                 err = filemap_check_errors(mapping);
583         }
584         return err;
585 }
586 EXPORT_SYMBOL(filemap_write_and_wait_range);
587
588 void __filemap_set_wb_err(struct address_space *mapping, int err)
589 {
590         errseq_t eseq = __errseq_set(&mapping->wb_err, err);
591
592         trace_filemap_set_wb_err(mapping, eseq);
593 }
594 EXPORT_SYMBOL(__filemap_set_wb_err);
595
596 /**
597  * file_check_and_advance_wb_err - report wb error (if any) that was previously
598  *                                 and advance wb_err to current one
599  * @file: struct file on which the error is being reported
600  *
601  * When userland calls fsync (or something like nfsd does the equivalent), we
602  * want to report any writeback errors that occurred since the last fsync (or
603  * since the file was opened if there haven't been any).
604  *
605  * Grab the wb_err from the mapping. If it matches what we have in the file,
606  * then just quickly return 0. The file is all caught up.
607  *
608  * If it doesn't match, then take the mapping value, set the "seen" flag in
609  * it and try to swap it into place. If it works, or another task beat us
610  * to it with the new value, then update the f_wb_err and return the error
611  * portion. The error at this point must be reported via proper channels
612  * (a'la fsync, or NFS COMMIT operation, etc.).
613  *
614  * While we handle mapping->wb_err with atomic operations, the f_wb_err
615  * value is protected by the f_lock since we must ensure that it reflects
616  * the latest value swapped in for this file descriptor.
617  */
618 int file_check_and_advance_wb_err(struct file *file)
619 {
620         int err = 0;
621         errseq_t old = READ_ONCE(file->f_wb_err);
622         struct address_space *mapping = file->f_mapping;
623
624         /* Locklessly handle the common case where nothing has changed */
625         if (errseq_check(&mapping->wb_err, old)) {
626                 /* Something changed, must use slow path */
627                 spin_lock(&file->f_lock);
628                 old = file->f_wb_err;
629                 err = errseq_check_and_advance(&mapping->wb_err,
630                                                 &file->f_wb_err);
631                 trace_file_check_and_advance_wb_err(file, old);
632                 spin_unlock(&file->f_lock);
633         }
634         return err;
635 }
636 EXPORT_SYMBOL(file_check_and_advance_wb_err);
637
638 /**
639  * file_write_and_wait_range - write out & wait on a file range
640  * @file:       file pointing to address_space with pages
641  * @lstart:     offset in bytes where the range starts
642  * @lend:       offset in bytes where the range ends (inclusive)
643  *
644  * Write out and wait upon file offsets lstart->lend, inclusive.
645  *
646  * Note that @lend is inclusive (describes the last byte to be written) so
647  * that this function can be used to write to the very end-of-file (end = -1).
648  *
649  * After writing out and waiting on the data, we check and advance the
650  * f_wb_err cursor to the latest value, and return any errors detected there.
651  */
652 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
653 {
654         int err = 0, err2;
655         struct address_space *mapping = file->f_mapping;
656
657         if ((!dax_mapping(mapping) && mapping->nrpages) ||
658             (dax_mapping(mapping) && mapping->nrexceptional)) {
659                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
660                                                  WB_SYNC_ALL);
661                 /* See comment of filemap_write_and_wait() */
662                 if (err != -EIO)
663                         __filemap_fdatawait_range(mapping, lstart, lend);
664         }
665         err2 = file_check_and_advance_wb_err(file);
666         if (!err)
667                 err = err2;
668         return err;
669 }
670 EXPORT_SYMBOL(file_write_and_wait_range);
671
672 /**
673  * replace_page_cache_page - replace a pagecache page with a new one
674  * @old:        page to be replaced
675  * @new:        page to replace with
676  * @gfp_mask:   allocation mode
677  *
678  * This function replaces a page in the pagecache with a new one.  On
679  * success it acquires the pagecache reference for the new page and
680  * drops it for the old page.  Both the old and new pages must be
681  * locked.  This function does not add the new page to the LRU, the
682  * caller must do that.
683  *
684  * The remove + add is atomic.  The only way this function can fail is
685  * memory allocation failure.
686  */
687 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
688 {
689         int error;
690
691         VM_BUG_ON_PAGE(!PageLocked(old), old);
692         VM_BUG_ON_PAGE(!PageLocked(new), new);
693         VM_BUG_ON_PAGE(new->mapping, new);
694
695         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
696         if (!error) {
697                 struct address_space *mapping = old->mapping;
698                 void (*freepage)(struct page *);
699                 unsigned long flags;
700
701                 pgoff_t offset = old->index;
702                 freepage = mapping->a_ops->freepage;
703
704                 get_page(new);
705                 new->mapping = mapping;
706                 new->index = offset;
707
708                 spin_lock_irqsave(&mapping->tree_lock, flags);
709                 __delete_from_page_cache(old, NULL);
710                 error = page_cache_tree_insert(mapping, new, NULL);
711                 BUG_ON(error);
712
713                 /*
714                  * hugetlb pages do not participate in page cache accounting.
715                  */
716                 if (!PageHuge(new))
717                         __inc_node_page_state(new, NR_FILE_PAGES);
718                 if (PageSwapBacked(new))
719                         __inc_node_page_state(new, NR_SHMEM);
720                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
721                 mem_cgroup_migrate(old, new);
722                 radix_tree_preload_end();
723                 if (freepage)
724                         freepage(old);
725                 put_page(old);
726         }
727
728         return error;
729 }
730 EXPORT_SYMBOL_GPL(replace_page_cache_page);
731
732 static int __add_to_page_cache_locked(struct page *page,
733                                       struct address_space *mapping,
734                                       pgoff_t offset, gfp_t gfp_mask,
735                                       void **shadowp)
736 {
737         int huge = PageHuge(page);
738         struct mem_cgroup *memcg;
739         int error;
740
741         VM_BUG_ON_PAGE(!PageLocked(page), page);
742         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
743
744         if (!huge) {
745                 error = mem_cgroup_try_charge(page, current->mm,
746                                               gfp_mask, &memcg, false);
747                 if (error)
748                         return error;
749         }
750
751         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
752         if (error) {
753                 if (!huge)
754                         mem_cgroup_cancel_charge(page, memcg, false);
755                 return error;
756         }
757
758         get_page(page);
759         page->mapping = mapping;
760         page->index = offset;
761
762         spin_lock_irq(&mapping->tree_lock);
763         error = page_cache_tree_insert(mapping, page, shadowp);
764         radix_tree_preload_end();
765         if (unlikely(error))
766                 goto err_insert;
767
768         /* hugetlb pages do not participate in page cache accounting. */
769         if (!huge)
770                 __inc_node_page_state(page, NR_FILE_PAGES);
771         spin_unlock_irq(&mapping->tree_lock);
772         if (!huge)
773                 mem_cgroup_commit_charge(page, memcg, false, false);
774         trace_mm_filemap_add_to_page_cache(page);
775         return 0;
776 err_insert:
777         page->mapping = NULL;
778         /* Leave page->index set: truncation relies upon it */
779         spin_unlock_irq(&mapping->tree_lock);
780         if (!huge)
781                 mem_cgroup_cancel_charge(page, memcg, false);
782         put_page(page);
783         return error;
784 }
785
786 /**
787  * add_to_page_cache_locked - add a locked page to the pagecache
788  * @page:       page to add
789  * @mapping:    the page's address_space
790  * @offset:     page index
791  * @gfp_mask:   page allocation mode
792  *
793  * This function is used to add a page to the pagecache. It must be locked.
794  * This function does not add the page to the LRU.  The caller must do that.
795  */
796 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
797                 pgoff_t offset, gfp_t gfp_mask)
798 {
799         return __add_to_page_cache_locked(page, mapping, offset,
800                                           gfp_mask, NULL);
801 }
802 EXPORT_SYMBOL(add_to_page_cache_locked);
803
804 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
805                                 pgoff_t offset, gfp_t gfp_mask)
806 {
807         void *shadow = NULL;
808         int ret;
809
810         __SetPageLocked(page);
811         ret = __add_to_page_cache_locked(page, mapping, offset,
812                                          gfp_mask, &shadow);
813         if (unlikely(ret))
814                 __ClearPageLocked(page);
815         else {
816                 /*
817                  * The page might have been evicted from cache only
818                  * recently, in which case it should be activated like
819                  * any other repeatedly accessed page.
820                  * The exception is pages getting rewritten; evicting other
821                  * data from the working set, only to cache data that will
822                  * get overwritten with something else, is a waste of memory.
823                  */
824                 if (!(gfp_mask & __GFP_WRITE) &&
825                     shadow && workingset_refault(shadow)) {
826                         SetPageActive(page);
827                         workingset_activation(page);
828                 } else
829                         ClearPageActive(page);
830                 lru_cache_add(page);
831         }
832         return ret;
833 }
834 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
835
836 #ifdef CONFIG_NUMA
837 struct page *__page_cache_alloc(gfp_t gfp)
838 {
839         int n;
840         struct page *page;
841
842         if (cpuset_do_page_mem_spread()) {
843                 unsigned int cpuset_mems_cookie;
844                 do {
845                         cpuset_mems_cookie = read_mems_allowed_begin();
846                         n = cpuset_mem_spread_node();
847                         page = __alloc_pages_node(n, gfp, 0);
848                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
849
850                 return page;
851         }
852         return alloc_pages(gfp, 0);
853 }
854 EXPORT_SYMBOL(__page_cache_alloc);
855 #endif
856
857 /*
858  * In order to wait for pages to become available there must be
859  * waitqueues associated with pages. By using a hash table of
860  * waitqueues where the bucket discipline is to maintain all
861  * waiters on the same queue and wake all when any of the pages
862  * become available, and for the woken contexts to check to be
863  * sure the appropriate page became available, this saves space
864  * at a cost of "thundering herd" phenomena during rare hash
865  * collisions.
866  */
867 #define PAGE_WAIT_TABLE_BITS 8
868 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
869 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
870
871 static wait_queue_head_t *page_waitqueue(struct page *page)
872 {
873         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
874 }
875
876 void __init pagecache_init(void)
877 {
878         int i;
879
880         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
881                 init_waitqueue_head(&page_wait_table[i]);
882
883         page_writeback_init();
884 }
885
886 struct wait_page_key {
887         struct page *page;
888         int bit_nr;
889         int page_match;
890 };
891
892 struct wait_page_queue {
893         struct page *page;
894         int bit_nr;
895         wait_queue_entry_t wait;
896 };
897
898 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
899 {
900         struct wait_page_key *key = arg;
901         struct wait_page_queue *wait_page
902                 = container_of(wait, struct wait_page_queue, wait);
903
904         if (wait_page->page != key->page)
905                return 0;
906         key->page_match = 1;
907
908         if (wait_page->bit_nr != key->bit_nr)
909                 return 0;
910         if (test_bit(key->bit_nr, &key->page->flags))
911                 return 0;
912
913         return autoremove_wake_function(wait, mode, sync, key);
914 }
915
916 static void wake_up_page_bit(struct page *page, int bit_nr)
917 {
918         wait_queue_head_t *q = page_waitqueue(page);
919         struct wait_page_key key;
920         unsigned long flags;
921
922         key.page = page;
923         key.bit_nr = bit_nr;
924         key.page_match = 0;
925
926         spin_lock_irqsave(&q->lock, flags);
927         __wake_up_locked_key(q, TASK_NORMAL, &key);
928         /*
929          * It is possible for other pages to have collided on the waitqueue
930          * hash, so in that case check for a page match. That prevents a long-
931          * term waiter
932          *
933          * It is still possible to miss a case here, when we woke page waiters
934          * and removed them from the waitqueue, but there are still other
935          * page waiters.
936          */
937         if (!waitqueue_active(q) || !key.page_match) {
938                 ClearPageWaiters(page);
939                 /*
940                  * It's possible to miss clearing Waiters here, when we woke
941                  * our page waiters, but the hashed waitqueue has waiters for
942                  * other pages on it.
943                  *
944                  * That's okay, it's a rare case. The next waker will clear it.
945                  */
946         }
947         spin_unlock_irqrestore(&q->lock, flags);
948 }
949
950 static void wake_up_page(struct page *page, int bit)
951 {
952         if (!PageWaiters(page))
953                 return;
954         wake_up_page_bit(page, bit);
955 }
956
957 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
958                 struct page *page, int bit_nr, int state, bool lock)
959 {
960         struct wait_page_queue wait_page;
961         wait_queue_entry_t *wait = &wait_page.wait;
962         int ret = 0;
963
964         init_wait(wait);
965         wait->func = wake_page_function;
966         wait_page.page = page;
967         wait_page.bit_nr = bit_nr;
968
969         for (;;) {
970                 spin_lock_irq(&q->lock);
971
972                 if (likely(list_empty(&wait->entry))) {
973                         if (lock)
974                                 __add_wait_queue_entry_tail_exclusive(q, wait);
975                         else
976                                 __add_wait_queue(q, wait);
977                         SetPageWaiters(page);
978                 }
979
980                 set_current_state(state);
981
982                 spin_unlock_irq(&q->lock);
983
984                 if (likely(test_bit(bit_nr, &page->flags))) {
985                         io_schedule();
986                         if (unlikely(signal_pending_state(state, current))) {
987                                 ret = -EINTR;
988                                 break;
989                         }
990                 }
991
992                 if (lock) {
993                         if (!test_and_set_bit_lock(bit_nr, &page->flags))
994                                 break;
995                 } else {
996                         if (!test_bit(bit_nr, &page->flags))
997                                 break;
998                 }
999         }
1000
1001         finish_wait(q, wait);
1002
1003         /*
1004          * A signal could leave PageWaiters set. Clearing it here if
1005          * !waitqueue_active would be possible (by open-coding finish_wait),
1006          * but still fail to catch it in the case of wait hash collision. We
1007          * already can fail to clear wait hash collision cases, so don't
1008          * bother with signals either.
1009          */
1010
1011         return ret;
1012 }
1013
1014 void wait_on_page_bit(struct page *page, int bit_nr)
1015 {
1016         wait_queue_head_t *q = page_waitqueue(page);
1017         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1018 }
1019 EXPORT_SYMBOL(wait_on_page_bit);
1020
1021 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1022 {
1023         wait_queue_head_t *q = page_waitqueue(page);
1024         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1025 }
1026
1027 /**
1028  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1029  * @page: Page defining the wait queue of interest
1030  * @waiter: Waiter to add to the queue
1031  *
1032  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1033  */
1034 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1035 {
1036         wait_queue_head_t *q = page_waitqueue(page);
1037         unsigned long flags;
1038
1039         spin_lock_irqsave(&q->lock, flags);
1040         __add_wait_queue(q, waiter);
1041         SetPageWaiters(page);
1042         spin_unlock_irqrestore(&q->lock, flags);
1043 }
1044 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1045
1046 #ifndef clear_bit_unlock_is_negative_byte
1047
1048 /*
1049  * PG_waiters is the high bit in the same byte as PG_lock.
1050  *
1051  * On x86 (and on many other architectures), we can clear PG_lock and
1052  * test the sign bit at the same time. But if the architecture does
1053  * not support that special operation, we just do this all by hand
1054  * instead.
1055  *
1056  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1057  * being cleared, but a memory barrier should be unneccssary since it is
1058  * in the same byte as PG_locked.
1059  */
1060 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1061 {
1062         clear_bit_unlock(nr, mem);
1063         /* smp_mb__after_atomic(); */
1064         return test_bit(PG_waiters, mem);
1065 }
1066
1067 #endif
1068
1069 /**
1070  * unlock_page - unlock a locked page
1071  * @page: the page
1072  *
1073  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1074  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1075  * mechanism between PageLocked pages and PageWriteback pages is shared.
1076  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1077  *
1078  * Note that this depends on PG_waiters being the sign bit in the byte
1079  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1080  * clear the PG_locked bit and test PG_waiters at the same time fairly
1081  * portably (architectures that do LL/SC can test any bit, while x86 can
1082  * test the sign bit).
1083  */
1084 void unlock_page(struct page *page)
1085 {
1086         BUILD_BUG_ON(PG_waiters != 7);
1087         page = compound_head(page);
1088         VM_BUG_ON_PAGE(!PageLocked(page), page);
1089         if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1090                 wake_up_page_bit(page, PG_locked);
1091 }
1092 EXPORT_SYMBOL(unlock_page);
1093
1094 /**
1095  * end_page_writeback - end writeback against a page
1096  * @page: the page
1097  */
1098 void end_page_writeback(struct page *page)
1099 {
1100         /*
1101          * TestClearPageReclaim could be used here but it is an atomic
1102          * operation and overkill in this particular case. Failing to
1103          * shuffle a page marked for immediate reclaim is too mild to
1104          * justify taking an atomic operation penalty at the end of
1105          * ever page writeback.
1106          */
1107         if (PageReclaim(page)) {
1108                 ClearPageReclaim(page);
1109                 rotate_reclaimable_page(page);
1110         }
1111
1112         if (!test_clear_page_writeback(page))
1113                 BUG();
1114
1115         smp_mb__after_atomic();
1116         wake_up_page(page, PG_writeback);
1117 }
1118 EXPORT_SYMBOL(end_page_writeback);
1119
1120 /*
1121  * After completing I/O on a page, call this routine to update the page
1122  * flags appropriately
1123  */
1124 void page_endio(struct page *page, bool is_write, int err)
1125 {
1126         if (!is_write) {
1127                 if (!err) {
1128                         SetPageUptodate(page);
1129                 } else {
1130                         ClearPageUptodate(page);
1131                         SetPageError(page);
1132                 }
1133                 unlock_page(page);
1134         } else {
1135                 if (err) {
1136                         struct address_space *mapping;
1137
1138                         SetPageError(page);
1139                         mapping = page_mapping(page);
1140                         if (mapping)
1141                                 mapping_set_error(mapping, err);
1142                 }
1143                 end_page_writeback(page);
1144         }
1145 }
1146 EXPORT_SYMBOL_GPL(page_endio);
1147
1148 /**
1149  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1150  * @__page: the page to lock
1151  */
1152 void __lock_page(struct page *__page)
1153 {
1154         struct page *page = compound_head(__page);
1155         wait_queue_head_t *q = page_waitqueue(page);
1156         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1157 }
1158 EXPORT_SYMBOL(__lock_page);
1159
1160 int __lock_page_killable(struct page *__page)
1161 {
1162         struct page *page = compound_head(__page);
1163         wait_queue_head_t *q = page_waitqueue(page);
1164         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1165 }
1166 EXPORT_SYMBOL_GPL(__lock_page_killable);
1167
1168 /*
1169  * Return values:
1170  * 1 - page is locked; mmap_sem is still held.
1171  * 0 - page is not locked.
1172  *     mmap_sem has been released (up_read()), unless flags had both
1173  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1174  *     which case mmap_sem is still held.
1175  *
1176  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1177  * with the page locked and the mmap_sem unperturbed.
1178  */
1179 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1180                          unsigned int flags)
1181 {
1182         if (flags & FAULT_FLAG_ALLOW_RETRY) {
1183                 /*
1184                  * CAUTION! In this case, mmap_sem is not released
1185                  * even though return 0.
1186                  */
1187                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1188                         return 0;
1189
1190                 up_read(&mm->mmap_sem);
1191                 if (flags & FAULT_FLAG_KILLABLE)
1192                         wait_on_page_locked_killable(page);
1193                 else
1194                         wait_on_page_locked(page);
1195                 return 0;
1196         } else {
1197                 if (flags & FAULT_FLAG_KILLABLE) {
1198                         int ret;
1199
1200                         ret = __lock_page_killable(page);
1201                         if (ret) {
1202                                 up_read(&mm->mmap_sem);
1203                                 return 0;
1204                         }
1205                 } else
1206                         __lock_page(page);
1207                 return 1;
1208         }
1209 }
1210
1211 /**
1212  * page_cache_next_hole - find the next hole (not-present entry)
1213  * @mapping: mapping
1214  * @index: index
1215  * @max_scan: maximum range to search
1216  *
1217  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1218  * lowest indexed hole.
1219  *
1220  * Returns: the index of the hole if found, otherwise returns an index
1221  * outside of the set specified (in which case 'return - index >=
1222  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1223  * be returned.
1224  *
1225  * page_cache_next_hole may be called under rcu_read_lock. However,
1226  * like radix_tree_gang_lookup, this will not atomically search a
1227  * snapshot of the tree at a single point in time. For example, if a
1228  * hole is created at index 5, then subsequently a hole is created at
1229  * index 10, page_cache_next_hole covering both indexes may return 10
1230  * if called under rcu_read_lock.
1231  */
1232 pgoff_t page_cache_next_hole(struct address_space *mapping,
1233                              pgoff_t index, unsigned long max_scan)
1234 {
1235         unsigned long i;
1236
1237         for (i = 0; i < max_scan; i++) {
1238                 struct page *page;
1239
1240                 page = radix_tree_lookup(&mapping->page_tree, index);
1241                 if (!page || radix_tree_exceptional_entry(page))
1242                         break;
1243                 index++;
1244                 if (index == 0)
1245                         break;
1246         }
1247
1248         return index;
1249 }
1250 EXPORT_SYMBOL(page_cache_next_hole);
1251
1252 /**
1253  * page_cache_prev_hole - find the prev hole (not-present entry)
1254  * @mapping: mapping
1255  * @index: index
1256  * @max_scan: maximum range to search
1257  *
1258  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1259  * the first hole.
1260  *
1261  * Returns: the index of the hole if found, otherwise returns an index
1262  * outside of the set specified (in which case 'index - return >=
1263  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1264  * will be returned.
1265  *
1266  * page_cache_prev_hole may be called under rcu_read_lock. However,
1267  * like radix_tree_gang_lookup, this will not atomically search a
1268  * snapshot of the tree at a single point in time. For example, if a
1269  * hole is created at index 10, then subsequently a hole is created at
1270  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1271  * called under rcu_read_lock.
1272  */
1273 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1274                              pgoff_t index, unsigned long max_scan)
1275 {
1276         unsigned long i;
1277
1278         for (i = 0; i < max_scan; i++) {
1279                 struct page *page;
1280
1281                 page = radix_tree_lookup(&mapping->page_tree, index);
1282                 if (!page || radix_tree_exceptional_entry(page))
1283                         break;
1284                 index--;
1285                 if (index == ULONG_MAX)
1286                         break;
1287         }
1288
1289         return index;
1290 }
1291 EXPORT_SYMBOL(page_cache_prev_hole);
1292
1293 /**
1294  * find_get_entry - find and get a page cache entry
1295  * @mapping: the address_space to search
1296  * @offset: the page cache index
1297  *
1298  * Looks up the page cache slot at @mapping & @offset.  If there is a
1299  * page cache page, it is returned with an increased refcount.
1300  *
1301  * If the slot holds a shadow entry of a previously evicted page, or a
1302  * swap entry from shmem/tmpfs, it is returned.
1303  *
1304  * Otherwise, %NULL is returned.
1305  */
1306 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1307 {
1308         void **pagep;
1309         struct page *head, *page;
1310
1311         rcu_read_lock();
1312 repeat:
1313         page = NULL;
1314         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1315         if (pagep) {
1316                 page = radix_tree_deref_slot(pagep);
1317                 if (unlikely(!page))
1318                         goto out;
1319                 if (radix_tree_exception(page)) {
1320                         if (radix_tree_deref_retry(page))
1321                                 goto repeat;
1322                         /*
1323                          * A shadow entry of a recently evicted page,
1324                          * or a swap entry from shmem/tmpfs.  Return
1325                          * it without attempting to raise page count.
1326                          */
1327                         goto out;
1328                 }
1329
1330                 head = compound_head(page);
1331                 if (!page_cache_get_speculative(head))
1332                         goto repeat;
1333
1334                 /* The page was split under us? */
1335                 if (compound_head(page) != head) {
1336                         put_page(head);
1337                         goto repeat;
1338                 }
1339
1340                 /*
1341                  * Has the page moved?
1342                  * This is part of the lockless pagecache protocol. See
1343                  * include/linux/pagemap.h for details.
1344                  */
1345                 if (unlikely(page != *pagep)) {
1346                         put_page(head);
1347                         goto repeat;
1348                 }
1349         }
1350 out:
1351         rcu_read_unlock();
1352
1353         return page;
1354 }
1355 EXPORT_SYMBOL(find_get_entry);
1356
1357 /**
1358  * find_lock_entry - locate, pin and lock a page cache entry
1359  * @mapping: the address_space to search
1360  * @offset: the page cache index
1361  *
1362  * Looks up the page cache slot at @mapping & @offset.  If there is a
1363  * page cache page, it is returned locked and with an increased
1364  * refcount.
1365  *
1366  * If the slot holds a shadow entry of a previously evicted page, or a
1367  * swap entry from shmem/tmpfs, it is returned.
1368  *
1369  * Otherwise, %NULL is returned.
1370  *
1371  * find_lock_entry() may sleep.
1372  */
1373 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1374 {
1375         struct page *page;
1376
1377 repeat:
1378         page = find_get_entry(mapping, offset);
1379         if (page && !radix_tree_exception(page)) {
1380                 lock_page(page);
1381                 /* Has the page been truncated? */
1382                 if (unlikely(page_mapping(page) != mapping)) {
1383                         unlock_page(page);
1384                         put_page(page);
1385                         goto repeat;
1386                 }
1387                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1388         }
1389         return page;
1390 }
1391 EXPORT_SYMBOL(find_lock_entry);
1392
1393 /**
1394  * pagecache_get_page - find and get a page reference
1395  * @mapping: the address_space to search
1396  * @offset: the page index
1397  * @fgp_flags: PCG flags
1398  * @gfp_mask: gfp mask to use for the page cache data page allocation
1399  *
1400  * Looks up the page cache slot at @mapping & @offset.
1401  *
1402  * PCG flags modify how the page is returned.
1403  *
1404  * @fgp_flags can be:
1405  *
1406  * - FGP_ACCESSED: the page will be marked accessed
1407  * - FGP_LOCK: Page is return locked
1408  * - FGP_CREAT: If page is not present then a new page is allocated using
1409  *   @gfp_mask and added to the page cache and the VM's LRU
1410  *   list. The page is returned locked and with an increased
1411  *   refcount. Otherwise, NULL is returned.
1412  *
1413  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1414  * if the GFP flags specified for FGP_CREAT are atomic.
1415  *
1416  * If there is a page cache page, it is returned with an increased refcount.
1417  */
1418 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1419         int fgp_flags, gfp_t gfp_mask)
1420 {
1421         struct page *page;
1422
1423 repeat:
1424         page = find_get_entry(mapping, offset);
1425         if (radix_tree_exceptional_entry(page))
1426                 page = NULL;
1427         if (!page)
1428                 goto no_page;
1429
1430         if (fgp_flags & FGP_LOCK) {
1431                 if (fgp_flags & FGP_NOWAIT) {
1432                         if (!trylock_page(page)) {
1433                                 put_page(page);
1434                                 return NULL;
1435                         }
1436                 } else {
1437                         lock_page(page);
1438                 }
1439
1440                 /* Has the page been truncated? */
1441                 if (unlikely(page->mapping != mapping)) {
1442                         unlock_page(page);
1443                         put_page(page);
1444                         goto repeat;
1445                 }
1446                 VM_BUG_ON_PAGE(page->index != offset, page);
1447         }
1448
1449         if (page && (fgp_flags & FGP_ACCESSED))
1450                 mark_page_accessed(page);
1451
1452 no_page:
1453         if (!page && (fgp_flags & FGP_CREAT)) {
1454                 int err;
1455                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1456                         gfp_mask |= __GFP_WRITE;
1457                 if (fgp_flags & FGP_NOFS)
1458                         gfp_mask &= ~__GFP_FS;
1459
1460                 page = __page_cache_alloc(gfp_mask);
1461                 if (!page)
1462                         return NULL;
1463
1464                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1465                         fgp_flags |= FGP_LOCK;
1466
1467                 /* Init accessed so avoid atomic mark_page_accessed later */
1468                 if (fgp_flags & FGP_ACCESSED)
1469                         __SetPageReferenced(page);
1470
1471                 err = add_to_page_cache_lru(page, mapping, offset,
1472                                 gfp_mask & GFP_RECLAIM_MASK);
1473                 if (unlikely(err)) {
1474                         put_page(page);
1475                         page = NULL;
1476                         if (err == -EEXIST)
1477                                 goto repeat;
1478                 }
1479         }
1480
1481         return page;
1482 }
1483 EXPORT_SYMBOL(pagecache_get_page);
1484
1485 /**
1486  * find_get_entries - gang pagecache lookup
1487  * @mapping:    The address_space to search
1488  * @start:      The starting page cache index
1489  * @nr_entries: The maximum number of entries
1490  * @entries:    Where the resulting entries are placed
1491  * @indices:    The cache indices corresponding to the entries in @entries
1492  *
1493  * find_get_entries() will search for and return a group of up to
1494  * @nr_entries entries in the mapping.  The entries are placed at
1495  * @entries.  find_get_entries() takes a reference against any actual
1496  * pages it returns.
1497  *
1498  * The search returns a group of mapping-contiguous page cache entries
1499  * with ascending indexes.  There may be holes in the indices due to
1500  * not-present pages.
1501  *
1502  * Any shadow entries of evicted pages, or swap entries from
1503  * shmem/tmpfs, are included in the returned array.
1504  *
1505  * find_get_entries() returns the number of pages and shadow entries
1506  * which were found.
1507  */
1508 unsigned find_get_entries(struct address_space *mapping,
1509                           pgoff_t start, unsigned int nr_entries,
1510                           struct page **entries, pgoff_t *indices)
1511 {
1512         void **slot;
1513         unsigned int ret = 0;
1514         struct radix_tree_iter iter;
1515
1516         if (!nr_entries)
1517                 return 0;
1518
1519         rcu_read_lock();
1520         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1521                 struct page *head, *page;
1522 repeat:
1523                 page = radix_tree_deref_slot(slot);
1524                 if (unlikely(!page))
1525                         continue;
1526                 if (radix_tree_exception(page)) {
1527                         if (radix_tree_deref_retry(page)) {
1528                                 slot = radix_tree_iter_retry(&iter);
1529                                 continue;
1530                         }
1531                         /*
1532                          * A shadow entry of a recently evicted page, a swap
1533                          * entry from shmem/tmpfs or a DAX entry.  Return it
1534                          * without attempting to raise page count.
1535                          */
1536                         goto export;
1537                 }
1538
1539                 head = compound_head(page);
1540                 if (!page_cache_get_speculative(head))
1541                         goto repeat;
1542
1543                 /* The page was split under us? */
1544                 if (compound_head(page) != head) {
1545                         put_page(head);
1546                         goto repeat;
1547                 }
1548
1549                 /* Has the page moved? */
1550                 if (unlikely(page != *slot)) {
1551                         put_page(head);
1552                         goto repeat;
1553                 }
1554 export:
1555                 indices[ret] = iter.index;
1556                 entries[ret] = page;
1557                 if (++ret == nr_entries)
1558                         break;
1559         }
1560         rcu_read_unlock();
1561         return ret;
1562 }
1563
1564 /**
1565  * find_get_pages - gang pagecache lookup
1566  * @mapping:    The address_space to search
1567  * @start:      The starting page index
1568  * @nr_pages:   The maximum number of pages
1569  * @pages:      Where the resulting pages are placed
1570  *
1571  * find_get_pages() will search for and return a group of up to
1572  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1573  * find_get_pages() takes a reference against the returned pages.
1574  *
1575  * The search returns a group of mapping-contiguous pages with ascending
1576  * indexes.  There may be holes in the indices due to not-present pages.
1577  *
1578  * find_get_pages() returns the number of pages which were found.
1579  */
1580 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1581                             unsigned int nr_pages, struct page **pages)
1582 {
1583         struct radix_tree_iter iter;
1584         void **slot;
1585         unsigned ret = 0;
1586
1587         if (unlikely(!nr_pages))
1588                 return 0;
1589
1590         rcu_read_lock();
1591         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1592                 struct page *head, *page;
1593 repeat:
1594                 page = radix_tree_deref_slot(slot);
1595                 if (unlikely(!page))
1596                         continue;
1597
1598                 if (radix_tree_exception(page)) {
1599                         if (radix_tree_deref_retry(page)) {
1600                                 slot = radix_tree_iter_retry(&iter);
1601                                 continue;
1602                         }
1603                         /*
1604                          * A shadow entry of a recently evicted page,
1605                          * or a swap entry from shmem/tmpfs.  Skip
1606                          * over it.
1607                          */
1608                         continue;
1609                 }
1610
1611                 head = compound_head(page);
1612                 if (!page_cache_get_speculative(head))
1613                         goto repeat;
1614
1615                 /* The page was split under us? */
1616                 if (compound_head(page) != head) {
1617                         put_page(head);
1618                         goto repeat;
1619                 }
1620
1621                 /* Has the page moved? */
1622                 if (unlikely(page != *slot)) {
1623                         put_page(head);
1624                         goto repeat;
1625                 }
1626
1627                 pages[ret] = page;
1628                 if (++ret == nr_pages)
1629                         break;
1630         }
1631
1632         rcu_read_unlock();
1633         return ret;
1634 }
1635
1636 /**
1637  * find_get_pages_contig - gang contiguous pagecache lookup
1638  * @mapping:    The address_space to search
1639  * @index:      The starting page index
1640  * @nr_pages:   The maximum number of pages
1641  * @pages:      Where the resulting pages are placed
1642  *
1643  * find_get_pages_contig() works exactly like find_get_pages(), except
1644  * that the returned number of pages are guaranteed to be contiguous.
1645  *
1646  * find_get_pages_contig() returns the number of pages which were found.
1647  */
1648 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1649                                unsigned int nr_pages, struct page **pages)
1650 {
1651         struct radix_tree_iter iter;
1652         void **slot;
1653         unsigned int ret = 0;
1654
1655         if (unlikely(!nr_pages))
1656                 return 0;
1657
1658         rcu_read_lock();
1659         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1660                 struct page *head, *page;
1661 repeat:
1662                 page = radix_tree_deref_slot(slot);
1663                 /* The hole, there no reason to continue */
1664                 if (unlikely(!page))
1665                         break;
1666
1667                 if (radix_tree_exception(page)) {
1668                         if (radix_tree_deref_retry(page)) {
1669                                 slot = radix_tree_iter_retry(&iter);
1670                                 continue;
1671                         }
1672                         /*
1673                          * A shadow entry of a recently evicted page,
1674                          * or a swap entry from shmem/tmpfs.  Stop
1675                          * looking for contiguous pages.
1676                          */
1677                         break;
1678                 }
1679
1680                 head = compound_head(page);
1681                 if (!page_cache_get_speculative(head))
1682                         goto repeat;
1683
1684                 /* The page was split under us? */
1685                 if (compound_head(page) != head) {
1686                         put_page(head);
1687                         goto repeat;
1688                 }
1689
1690                 /* Has the page moved? */
1691                 if (unlikely(page != *slot)) {
1692                         put_page(head);
1693                         goto repeat;
1694                 }
1695
1696                 /*
1697                  * must check mapping and index after taking the ref.
1698                  * otherwise we can get both false positives and false
1699                  * negatives, which is just confusing to the caller.
1700                  */
1701                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1702                         put_page(page);
1703                         break;
1704                 }
1705
1706                 pages[ret] = page;
1707                 if (++ret == nr_pages)
1708                         break;
1709         }
1710         rcu_read_unlock();
1711         return ret;
1712 }
1713 EXPORT_SYMBOL(find_get_pages_contig);
1714
1715 /**
1716  * find_get_pages_tag - find and return pages that match @tag
1717  * @mapping:    the address_space to search
1718  * @index:      the starting page index
1719  * @tag:        the tag index
1720  * @nr_pages:   the maximum number of pages
1721  * @pages:      where the resulting pages are placed
1722  *
1723  * Like find_get_pages, except we only return pages which are tagged with
1724  * @tag.   We update @index to index the next page for the traversal.
1725  */
1726 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1727                         int tag, unsigned int nr_pages, struct page **pages)
1728 {
1729         struct radix_tree_iter iter;
1730         void **slot;
1731         unsigned ret = 0;
1732
1733         if (unlikely(!nr_pages))
1734                 return 0;
1735
1736         rcu_read_lock();
1737         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1738                                    &iter, *index, tag) {
1739                 struct page *head, *page;
1740 repeat:
1741                 page = radix_tree_deref_slot(slot);
1742                 if (unlikely(!page))
1743                         continue;
1744
1745                 if (radix_tree_exception(page)) {
1746                         if (radix_tree_deref_retry(page)) {
1747                                 slot = radix_tree_iter_retry(&iter);
1748                                 continue;
1749                         }
1750                         /*
1751                          * A shadow entry of a recently evicted page.
1752                          *
1753                          * Those entries should never be tagged, but
1754                          * this tree walk is lockless and the tags are
1755                          * looked up in bulk, one radix tree node at a
1756                          * time, so there is a sizable window for page
1757                          * reclaim to evict a page we saw tagged.
1758                          *
1759                          * Skip over it.
1760                          */
1761                         continue;
1762                 }
1763
1764                 head = compound_head(page);
1765                 if (!page_cache_get_speculative(head))
1766                         goto repeat;
1767
1768                 /* The page was split under us? */
1769                 if (compound_head(page) != head) {
1770                         put_page(head);
1771                         goto repeat;
1772                 }
1773
1774                 /* Has the page moved? */
1775                 if (unlikely(page != *slot)) {
1776                         put_page(head);
1777                         goto repeat;
1778                 }
1779
1780                 pages[ret] = page;
1781                 if (++ret == nr_pages)
1782                         break;
1783         }
1784
1785         rcu_read_unlock();
1786
1787         if (ret)
1788                 *index = pages[ret - 1]->index + 1;
1789
1790         return ret;
1791 }
1792 EXPORT_SYMBOL(find_get_pages_tag);
1793
1794 /**
1795  * find_get_entries_tag - find and return entries that match @tag
1796  * @mapping:    the address_space to search
1797  * @start:      the starting page cache index
1798  * @tag:        the tag index
1799  * @nr_entries: the maximum number of entries
1800  * @entries:    where the resulting entries are placed
1801  * @indices:    the cache indices corresponding to the entries in @entries
1802  *
1803  * Like find_get_entries, except we only return entries which are tagged with
1804  * @tag.
1805  */
1806 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1807                         int tag, unsigned int nr_entries,
1808                         struct page **entries, pgoff_t *indices)
1809 {
1810         void **slot;
1811         unsigned int ret = 0;
1812         struct radix_tree_iter iter;
1813
1814         if (!nr_entries)
1815                 return 0;
1816
1817         rcu_read_lock();
1818         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1819                                    &iter, start, tag) {
1820                 struct page *head, *page;
1821 repeat:
1822                 page = radix_tree_deref_slot(slot);
1823                 if (unlikely(!page))
1824                         continue;
1825                 if (radix_tree_exception(page)) {
1826                         if (radix_tree_deref_retry(page)) {
1827                                 slot = radix_tree_iter_retry(&iter);
1828                                 continue;
1829                         }
1830
1831                         /*
1832                          * A shadow entry of a recently evicted page, a swap
1833                          * entry from shmem/tmpfs or a DAX entry.  Return it
1834                          * without attempting to raise page count.
1835                          */
1836                         goto export;
1837                 }
1838
1839                 head = compound_head(page);
1840                 if (!page_cache_get_speculative(head))
1841                         goto repeat;
1842
1843                 /* The page was split under us? */
1844                 if (compound_head(page) != head) {
1845                         put_page(head);
1846                         goto repeat;
1847                 }
1848
1849                 /* Has the page moved? */
1850                 if (unlikely(page != *slot)) {
1851                         put_page(head);
1852                         goto repeat;
1853                 }
1854 export:
1855                 indices[ret] = iter.index;
1856                 entries[ret] = page;
1857                 if (++ret == nr_entries)
1858                         break;
1859         }
1860         rcu_read_unlock();
1861         return ret;
1862 }
1863 EXPORT_SYMBOL(find_get_entries_tag);
1864
1865 /*
1866  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1867  * a _large_ part of the i/o request. Imagine the worst scenario:
1868  *
1869  *      ---R__________________________________________B__________
1870  *         ^ reading here                             ^ bad block(assume 4k)
1871  *
1872  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1873  * => failing the whole request => read(R) => read(R+1) =>
1874  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1875  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1876  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1877  *
1878  * It is going insane. Fix it by quickly scaling down the readahead size.
1879  */
1880 static void shrink_readahead_size_eio(struct file *filp,
1881                                         struct file_ra_state *ra)
1882 {
1883         ra->ra_pages /= 4;
1884 }
1885
1886 /**
1887  * do_generic_file_read - generic file read routine
1888  * @filp:       the file to read
1889  * @ppos:       current file position
1890  * @iter:       data destination
1891  * @written:    already copied
1892  *
1893  * This is a generic file read routine, and uses the
1894  * mapping->a_ops->readpage() function for the actual low-level stuff.
1895  *
1896  * This is really ugly. But the goto's actually try to clarify some
1897  * of the logic when it comes to error handling etc.
1898  */
1899 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1900                 struct iov_iter *iter, ssize_t written)
1901 {
1902         struct address_space *mapping = filp->f_mapping;
1903         struct inode *inode = mapping->host;
1904         struct file_ra_state *ra = &filp->f_ra;
1905         pgoff_t index;
1906         pgoff_t last_index;
1907         pgoff_t prev_index;
1908         unsigned long offset;      /* offset into pagecache page */
1909         unsigned int prev_offset;
1910         int error = 0;
1911
1912         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1913                 return 0;
1914         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1915
1916         index = *ppos >> PAGE_SHIFT;
1917         prev_index = ra->prev_pos >> PAGE_SHIFT;
1918         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1919         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1920         offset = *ppos & ~PAGE_MASK;
1921
1922         for (;;) {
1923                 struct page *page;
1924                 pgoff_t end_index;
1925                 loff_t isize;
1926                 unsigned long nr, ret;
1927
1928                 cond_resched();
1929 find_page:
1930                 if (fatal_signal_pending(current)) {
1931                         error = -EINTR;
1932                         goto out;
1933                 }
1934
1935                 page = find_get_page(mapping, index);
1936                 if (!page) {
1937                         page_cache_sync_readahead(mapping,
1938                                         ra, filp,
1939                                         index, last_index - index);
1940                         page = find_get_page(mapping, index);
1941                         if (unlikely(page == NULL))
1942                                 goto no_cached_page;
1943                 }
1944                 if (PageReadahead(page)) {
1945                         page_cache_async_readahead(mapping,
1946                                         ra, filp, page,
1947                                         index, last_index - index);
1948                 }
1949                 if (!PageUptodate(page)) {
1950                         /*
1951                          * See comment in do_read_cache_page on why
1952                          * wait_on_page_locked is used to avoid unnecessarily
1953                          * serialisations and why it's safe.
1954                          */
1955                         error = wait_on_page_locked_killable(page);
1956                         if (unlikely(error))
1957                                 goto readpage_error;
1958                         if (PageUptodate(page))
1959                                 goto page_ok;
1960
1961                         if (inode->i_blkbits == PAGE_SHIFT ||
1962                                         !mapping->a_ops->is_partially_uptodate)
1963                                 goto page_not_up_to_date;
1964                         /* pipes can't handle partially uptodate pages */
1965                         if (unlikely(iter->type & ITER_PIPE))
1966                                 goto page_not_up_to_date;
1967                         if (!trylock_page(page))
1968                                 goto page_not_up_to_date;
1969                         /* Did it get truncated before we got the lock? */
1970                         if (!page->mapping)
1971                                 goto page_not_up_to_date_locked;
1972                         if (!mapping->a_ops->is_partially_uptodate(page,
1973                                                         offset, iter->count))
1974                                 goto page_not_up_to_date_locked;
1975                         unlock_page(page);
1976                 }
1977 page_ok:
1978                 /*
1979                  * i_size must be checked after we know the page is Uptodate.
1980                  *
1981                  * Checking i_size after the check allows us to calculate
1982                  * the correct value for "nr", which means the zero-filled
1983                  * part of the page is not copied back to userspace (unless
1984                  * another truncate extends the file - this is desired though).
1985                  */
1986
1987                 isize = i_size_read(inode);
1988                 end_index = (isize - 1) >> PAGE_SHIFT;
1989                 if (unlikely(!isize || index > end_index)) {
1990                         put_page(page);
1991                         goto out;
1992                 }
1993
1994                 /* nr is the maximum number of bytes to copy from this page */
1995                 nr = PAGE_SIZE;
1996                 if (index == end_index) {
1997                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1998                         if (nr <= offset) {
1999                                 put_page(page);
2000                                 goto out;
2001                         }
2002                 }
2003                 nr = nr - offset;
2004
2005                 /* If users can be writing to this page using arbitrary
2006                  * virtual addresses, take care about potential aliasing
2007                  * before reading the page on the kernel side.
2008                  */
2009                 if (mapping_writably_mapped(mapping))
2010                         flush_dcache_page(page);
2011
2012                 /*
2013                  * When a sequential read accesses a page several times,
2014                  * only mark it as accessed the first time.
2015                  */
2016                 if (prev_index != index || offset != prev_offset)
2017                         mark_page_accessed(page);
2018                 prev_index = index;
2019
2020                 /*
2021                  * Ok, we have the page, and it's up-to-date, so
2022                  * now we can copy it to user space...
2023                  */
2024
2025                 ret = copy_page_to_iter(page, offset, nr, iter);
2026                 offset += ret;
2027                 index += offset >> PAGE_SHIFT;
2028                 offset &= ~PAGE_MASK;
2029                 prev_offset = offset;
2030
2031                 put_page(page);
2032                 written += ret;
2033                 if (!iov_iter_count(iter))
2034                         goto out;
2035                 if (ret < nr) {
2036                         error = -EFAULT;
2037                         goto out;
2038                 }
2039                 continue;
2040
2041 page_not_up_to_date:
2042                 /* Get exclusive access to the page ... */
2043                 error = lock_page_killable(page);
2044                 if (unlikely(error))
2045                         goto readpage_error;
2046
2047 page_not_up_to_date_locked:
2048                 /* Did it get truncated before we got the lock? */
2049                 if (!page->mapping) {
2050                         unlock_page(page);
2051                         put_page(page);
2052                         continue;
2053                 }
2054
2055                 /* Did somebody else fill it already? */
2056                 if (PageUptodate(page)) {
2057                         unlock_page(page);
2058                         goto page_ok;
2059                 }
2060
2061 readpage:
2062                 /*
2063                  * A previous I/O error may have been due to temporary
2064                  * failures, eg. multipath errors.
2065                  * PG_error will be set again if readpage fails.
2066                  */
2067                 ClearPageError(page);
2068                 /* Start the actual read. The read will unlock the page. */
2069                 error = mapping->a_ops->readpage(filp, page);
2070
2071                 if (unlikely(error)) {
2072                         if (error == AOP_TRUNCATED_PAGE) {
2073                                 put_page(page);
2074                                 error = 0;
2075                                 goto find_page;
2076                         }
2077                         goto readpage_error;
2078                 }
2079
2080                 if (!PageUptodate(page)) {
2081                         error = lock_page_killable(page);
2082                         if (unlikely(error))
2083                                 goto readpage_error;
2084                         if (!PageUptodate(page)) {
2085                                 if (page->mapping == NULL) {
2086                                         /*
2087                                          * invalidate_mapping_pages got it
2088                                          */
2089                                         unlock_page(page);
2090                                         put_page(page);
2091                                         goto find_page;
2092                                 }
2093                                 unlock_page(page);
2094                                 shrink_readahead_size_eio(filp, ra);
2095                                 error = -EIO;
2096                                 goto readpage_error;
2097                         }
2098                         unlock_page(page);
2099                 }
2100
2101                 goto page_ok;
2102
2103 readpage_error:
2104                 /* UHHUH! A synchronous read error occurred. Report it */
2105                 put_page(page);
2106                 goto out;
2107
2108 no_cached_page:
2109                 /*
2110                  * Ok, it wasn't cached, so we need to create a new
2111                  * page..
2112                  */
2113                 page = page_cache_alloc_cold(mapping);
2114                 if (!page) {
2115                         error = -ENOMEM;
2116                         goto out;
2117                 }
2118                 error = add_to_page_cache_lru(page, mapping, index,
2119                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
2120                 if (error) {
2121                         put_page(page);
2122                         if (error == -EEXIST) {
2123                                 error = 0;
2124                                 goto find_page;
2125                         }
2126                         goto out;
2127                 }
2128                 goto readpage;
2129         }
2130
2131 out:
2132         ra->prev_pos = prev_index;
2133         ra->prev_pos <<= PAGE_SHIFT;
2134         ra->prev_pos |= prev_offset;
2135
2136         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2137         file_accessed(filp);
2138         return written ? written : error;
2139 }
2140
2141 /**
2142  * generic_file_read_iter - generic filesystem read routine
2143  * @iocb:       kernel I/O control block
2144  * @iter:       destination for the data read
2145  *
2146  * This is the "read_iter()" routine for all filesystems
2147  * that can use the page cache directly.
2148  */
2149 ssize_t
2150 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2151 {
2152         struct file *file = iocb->ki_filp;
2153         ssize_t retval = 0;
2154         size_t count = iov_iter_count(iter);
2155
2156         if (!count)
2157                 goto out; /* skip atime */
2158
2159         if (iocb->ki_flags & IOCB_DIRECT) {
2160                 struct address_space *mapping = file->f_mapping;
2161                 struct inode *inode = mapping->host;
2162                 loff_t size;
2163
2164                 size = i_size_read(inode);
2165                 if (iocb->ki_flags & IOCB_NOWAIT) {
2166                         if (filemap_range_has_page(mapping, iocb->ki_pos,
2167                                                    iocb->ki_pos + count - 1))
2168                                 return -EAGAIN;
2169                 } else {
2170                         retval = filemap_write_and_wait_range(mapping,
2171                                                 iocb->ki_pos,
2172                                                 iocb->ki_pos + count - 1);
2173                         if (retval < 0)
2174                                 goto out;
2175                 }
2176
2177                 file_accessed(file);
2178
2179                 retval = mapping->a_ops->direct_IO(iocb, iter);
2180                 if (retval >= 0) {
2181                         iocb->ki_pos += retval;
2182                         count -= retval;
2183                 }
2184                 iov_iter_revert(iter, count - iov_iter_count(iter));
2185
2186                 /*
2187                  * Btrfs can have a short DIO read if we encounter
2188                  * compressed extents, so if there was an error, or if
2189                  * we've already read everything we wanted to, or if
2190                  * there was a short read because we hit EOF, go ahead
2191                  * and return.  Otherwise fallthrough to buffered io for
2192                  * the rest of the read.  Buffered reads will not work for
2193                  * DAX files, so don't bother trying.
2194                  */
2195                 if (retval < 0 || !count || iocb->ki_pos >= size ||
2196                     IS_DAX(inode))
2197                         goto out;
2198         }
2199
2200         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2201 out:
2202         return retval;
2203 }
2204 EXPORT_SYMBOL(generic_file_read_iter);
2205
2206 #ifdef CONFIG_MMU
2207 /**
2208  * page_cache_read - adds requested page to the page cache if not already there
2209  * @file:       file to read
2210  * @offset:     page index
2211  * @gfp_mask:   memory allocation flags
2212  *
2213  * This adds the requested page to the page cache if it isn't already there,
2214  * and schedules an I/O to read in its contents from disk.
2215  */
2216 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2217 {
2218         struct address_space *mapping = file->f_mapping;
2219         struct page *page;
2220         int ret;
2221
2222         do {
2223                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2224                 if (!page)
2225                         return -ENOMEM;
2226
2227                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2228                 if (ret == 0)
2229                         ret = mapping->a_ops->readpage(file, page);
2230                 else if (ret == -EEXIST)
2231                         ret = 0; /* losing race to add is OK */
2232
2233                 put_page(page);
2234
2235         } while (ret == AOP_TRUNCATED_PAGE);
2236
2237         return ret;
2238 }
2239
2240 #define MMAP_LOTSAMISS  (100)
2241
2242 /*
2243  * Synchronous readahead happens when we don't even find
2244  * a page in the page cache at all.
2245  */
2246 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2247                                    struct file_ra_state *ra,
2248                                    struct file *file,
2249                                    pgoff_t offset)
2250 {
2251         struct address_space *mapping = file->f_mapping;
2252
2253         /* If we don't want any read-ahead, don't bother */
2254         if (vma->vm_flags & VM_RAND_READ)
2255                 return;
2256         if (!ra->ra_pages)
2257                 return;
2258
2259         if (vma->vm_flags & VM_SEQ_READ) {
2260                 page_cache_sync_readahead(mapping, ra, file, offset,
2261                                           ra->ra_pages);
2262                 return;
2263         }
2264
2265         /* Avoid banging the cache line if not needed */
2266         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2267                 ra->mmap_miss++;
2268
2269         /*
2270          * Do we miss much more than hit in this file? If so,
2271          * stop bothering with read-ahead. It will only hurt.
2272          */
2273         if (ra->mmap_miss > MMAP_LOTSAMISS)
2274                 return;
2275
2276         /*
2277          * mmap read-around
2278          */
2279         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2280         ra->size = ra->ra_pages;
2281         ra->async_size = ra->ra_pages / 4;
2282         ra_submit(ra, mapping, file);
2283 }
2284
2285 /*
2286  * Asynchronous readahead happens when we find the page and PG_readahead,
2287  * so we want to possibly extend the readahead further..
2288  */
2289 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2290                                     struct file_ra_state *ra,
2291                                     struct file *file,
2292                                     struct page *page,
2293                                     pgoff_t offset)
2294 {
2295         struct address_space *mapping = file->f_mapping;
2296
2297         /* If we don't want any read-ahead, don't bother */
2298         if (vma->vm_flags & VM_RAND_READ)
2299                 return;
2300         if (ra->mmap_miss > 0)
2301                 ra->mmap_miss--;
2302         if (PageReadahead(page))
2303                 page_cache_async_readahead(mapping, ra, file,
2304                                            page, offset, ra->ra_pages);
2305 }
2306
2307 /**
2308  * filemap_fault - read in file data for page fault handling
2309  * @vmf:        struct vm_fault containing details of the fault
2310  *
2311  * filemap_fault() is invoked via the vma operations vector for a
2312  * mapped memory region to read in file data during a page fault.
2313  *
2314  * The goto's are kind of ugly, but this streamlines the normal case of having
2315  * it in the page cache, and handles the special cases reasonably without
2316  * having a lot of duplicated code.
2317  *
2318  * vma->vm_mm->mmap_sem must be held on entry.
2319  *
2320  * If our return value has VM_FAULT_RETRY set, it's because
2321  * lock_page_or_retry() returned 0.
2322  * The mmap_sem has usually been released in this case.
2323  * See __lock_page_or_retry() for the exception.
2324  *
2325  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2326  * has not been released.
2327  *
2328  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2329  */
2330 int filemap_fault(struct vm_fault *vmf)
2331 {
2332         int error;
2333         struct file *file = vmf->vma->vm_file;
2334         struct address_space *mapping = file->f_mapping;
2335         struct file_ra_state *ra = &file->f_ra;
2336         struct inode *inode = mapping->host;
2337         pgoff_t offset = vmf->pgoff;
2338         pgoff_t max_off;
2339         struct page *page;
2340         int ret = 0;
2341
2342         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2343         if (unlikely(offset >= max_off))
2344                 return VM_FAULT_SIGBUS;
2345
2346         /*
2347          * Do we have something in the page cache already?
2348          */
2349         page = find_get_page(mapping, offset);
2350         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2351                 /*
2352                  * We found the page, so try async readahead before
2353                  * waiting for the lock.
2354                  */
2355                 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2356         } else if (!page) {
2357                 /* No page in the page cache at all */
2358                 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2359                 count_vm_event(PGMAJFAULT);
2360                 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2361                 ret = VM_FAULT_MAJOR;
2362 retry_find:
2363                 page = find_get_page(mapping, offset);
2364                 if (!page)
2365                         goto no_cached_page;
2366         }
2367
2368         if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2369                 put_page(page);
2370                 return ret | VM_FAULT_RETRY;
2371         }
2372
2373         /* Did it get truncated? */
2374         if (unlikely(page->mapping != mapping)) {
2375                 unlock_page(page);
2376                 put_page(page);
2377                 goto retry_find;
2378         }
2379         VM_BUG_ON_PAGE(page->index != offset, page);
2380
2381         /*
2382          * We have a locked page in the page cache, now we need to check
2383          * that it's up-to-date. If not, it is going to be due to an error.
2384          */
2385         if (unlikely(!PageUptodate(page)))
2386                 goto page_not_uptodate;
2387
2388         /*
2389          * Found the page and have a reference on it.
2390          * We must recheck i_size under page lock.
2391          */
2392         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2393         if (unlikely(offset >= max_off)) {
2394                 unlock_page(page);
2395                 put_page(page);
2396                 return VM_FAULT_SIGBUS;
2397         }
2398
2399         vmf->page = page;
2400         return ret | VM_FAULT_LOCKED;
2401
2402 no_cached_page:
2403         /*
2404          * We're only likely to ever get here if MADV_RANDOM is in
2405          * effect.
2406          */
2407         error = page_cache_read(file, offset, vmf->gfp_mask);
2408
2409         /*
2410          * The page we want has now been added to the page cache.
2411          * In the unlikely event that someone removed it in the
2412          * meantime, we'll just come back here and read it again.
2413          */
2414         if (error >= 0)
2415                 goto retry_find;
2416
2417         /*
2418          * An error return from page_cache_read can result if the
2419          * system is low on memory, or a problem occurs while trying
2420          * to schedule I/O.
2421          */
2422         if (error == -ENOMEM)
2423                 return VM_FAULT_OOM;
2424         return VM_FAULT_SIGBUS;
2425
2426 page_not_uptodate:
2427         /*
2428          * Umm, take care of errors if the page isn't up-to-date.
2429          * Try to re-read it _once_. We do this synchronously,
2430          * because there really aren't any performance issues here
2431          * and we need to check for errors.
2432          */
2433         ClearPageError(page);
2434         error = mapping->a_ops->readpage(file, page);
2435         if (!error) {
2436                 wait_on_page_locked(page);
2437                 if (!PageUptodate(page))
2438                         error = -EIO;
2439         }
2440         put_page(page);
2441
2442         if (!error || error == AOP_TRUNCATED_PAGE)
2443                 goto retry_find;
2444
2445         /* Things didn't work out. Return zero to tell the mm layer so. */
2446         shrink_readahead_size_eio(file, ra);
2447         return VM_FAULT_SIGBUS;
2448 }
2449 EXPORT_SYMBOL(filemap_fault);
2450
2451 void filemap_map_pages(struct vm_fault *vmf,
2452                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2453 {
2454         struct radix_tree_iter iter;
2455         void **slot;
2456         struct file *file = vmf->vma->vm_file;
2457         struct address_space *mapping = file->f_mapping;
2458         pgoff_t last_pgoff = start_pgoff;
2459         unsigned long max_idx;
2460         struct page *head, *page;
2461
2462         rcu_read_lock();
2463         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2464                         start_pgoff) {
2465                 if (iter.index > end_pgoff)
2466                         break;
2467 repeat:
2468                 page = radix_tree_deref_slot(slot);
2469                 if (unlikely(!page))
2470                         goto next;
2471                 if (radix_tree_exception(page)) {
2472                         if (radix_tree_deref_retry(page)) {
2473                                 slot = radix_tree_iter_retry(&iter);
2474                                 continue;
2475                         }
2476                         goto next;
2477                 }
2478
2479                 head = compound_head(page);
2480                 if (!page_cache_get_speculative(head))
2481                         goto repeat;
2482
2483                 /* The page was split under us? */
2484                 if (compound_head(page) != head) {
2485                         put_page(head);
2486                         goto repeat;
2487                 }
2488
2489                 /* Has the page moved? */
2490                 if (unlikely(page != *slot)) {
2491                         put_page(head);
2492                         goto repeat;
2493                 }
2494
2495                 if (!PageUptodate(page) ||
2496                                 PageReadahead(page) ||
2497                                 PageHWPoison(page))
2498                         goto skip;
2499                 if (!trylock_page(page))
2500                         goto skip;
2501
2502                 if (page->mapping != mapping || !PageUptodate(page))
2503                         goto unlock;
2504
2505                 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2506                 if (page->index >= max_idx)
2507                         goto unlock;
2508
2509                 if (file->f_ra.mmap_miss > 0)
2510                         file->f_ra.mmap_miss--;
2511
2512                 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2513                 if (vmf->pte)
2514                         vmf->pte += iter.index - last_pgoff;
2515                 last_pgoff = iter.index;
2516                 if (alloc_set_pte(vmf, NULL, page))
2517                         goto unlock;
2518                 unlock_page(page);
2519                 goto next;
2520 unlock:
2521                 unlock_page(page);
2522 skip:
2523                 put_page(page);
2524 next:
2525                 /* Huge page is mapped? No need to proceed. */
2526                 if (pmd_trans_huge(*vmf->pmd))
2527                         break;
2528                 if (iter.index == end_pgoff)
2529                         break;
2530         }
2531         rcu_read_unlock();
2532 }
2533 EXPORT_SYMBOL(filemap_map_pages);
2534
2535 int filemap_page_mkwrite(struct vm_fault *vmf)
2536 {
2537         struct page *page = vmf->page;
2538         struct inode *inode = file_inode(vmf->vma->vm_file);
2539         int ret = VM_FAULT_LOCKED;
2540
2541         sb_start_pagefault(inode->i_sb);
2542         file_update_time(vmf->vma->vm_file);
2543         lock_page(page);
2544         if (page->mapping != inode->i_mapping) {
2545                 unlock_page(page);
2546                 ret = VM_FAULT_NOPAGE;
2547                 goto out;
2548         }
2549         /*
2550          * We mark the page dirty already here so that when freeze is in
2551          * progress, we are guaranteed that writeback during freezing will
2552          * see the dirty page and writeprotect it again.
2553          */
2554         set_page_dirty(page);
2555         wait_for_stable_page(page);
2556 out:
2557         sb_end_pagefault(inode->i_sb);
2558         return ret;
2559 }
2560 EXPORT_SYMBOL(filemap_page_mkwrite);
2561
2562 const struct vm_operations_struct generic_file_vm_ops = {
2563         .fault          = filemap_fault,
2564         .map_pages      = filemap_map_pages,
2565         .page_mkwrite   = filemap_page_mkwrite,
2566 };
2567
2568 /* This is used for a general mmap of a disk file */
2569
2570 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2571 {
2572         struct address_space *mapping = file->f_mapping;
2573
2574         if (!mapping->a_ops->readpage)
2575                 return -ENOEXEC;
2576         file_accessed(file);
2577         vma->vm_ops = &generic_file_vm_ops;
2578         return 0;
2579 }
2580
2581 /*
2582  * This is for filesystems which do not implement ->writepage.
2583  */
2584 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2585 {
2586         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2587                 return -EINVAL;
2588         return generic_file_mmap(file, vma);
2589 }
2590 #else
2591 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2592 {
2593         return -ENOSYS;
2594 }
2595 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2596 {
2597         return -ENOSYS;
2598 }
2599 #endif /* CONFIG_MMU */
2600
2601 EXPORT_SYMBOL(generic_file_mmap);
2602 EXPORT_SYMBOL(generic_file_readonly_mmap);
2603
2604 static struct page *wait_on_page_read(struct page *page)
2605 {
2606         if (!IS_ERR(page)) {
2607                 wait_on_page_locked(page);
2608                 if (!PageUptodate(page)) {
2609                         put_page(page);
2610                         page = ERR_PTR(-EIO);
2611                 }
2612         }
2613         return page;
2614 }
2615
2616 static struct page *do_read_cache_page(struct address_space *mapping,
2617                                 pgoff_t index,
2618                                 int (*filler)(void *, struct page *),
2619                                 void *data,
2620                                 gfp_t gfp)
2621 {
2622         struct page *page;
2623         int err;
2624 repeat:
2625         page = find_get_page(mapping, index);
2626         if (!page) {
2627                 page = __page_cache_alloc(gfp | __GFP_COLD);
2628                 if (!page)
2629                         return ERR_PTR(-ENOMEM);
2630                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2631                 if (unlikely(err)) {
2632                         put_page(page);
2633                         if (err == -EEXIST)
2634                                 goto repeat;
2635                         /* Presumably ENOMEM for radix tree node */
2636                         return ERR_PTR(err);
2637                 }
2638
2639 filler:
2640                 err = filler(data, page);
2641                 if (err < 0) {
2642                         put_page(page);
2643                         return ERR_PTR(err);
2644                 }
2645
2646                 page = wait_on_page_read(page);
2647                 if (IS_ERR(page))
2648                         return page;
2649                 goto out;
2650         }
2651         if (PageUptodate(page))
2652                 goto out;
2653
2654         /*
2655          * Page is not up to date and may be locked due one of the following
2656          * case a: Page is being filled and the page lock is held
2657          * case b: Read/write error clearing the page uptodate status
2658          * case c: Truncation in progress (page locked)
2659          * case d: Reclaim in progress
2660          *
2661          * Case a, the page will be up to date when the page is unlocked.
2662          *    There is no need to serialise on the page lock here as the page
2663          *    is pinned so the lock gives no additional protection. Even if the
2664          *    the page is truncated, the data is still valid if PageUptodate as
2665          *    it's a race vs truncate race.
2666          * Case b, the page will not be up to date
2667          * Case c, the page may be truncated but in itself, the data may still
2668          *    be valid after IO completes as it's a read vs truncate race. The
2669          *    operation must restart if the page is not uptodate on unlock but
2670          *    otherwise serialising on page lock to stabilise the mapping gives
2671          *    no additional guarantees to the caller as the page lock is
2672          *    released before return.
2673          * Case d, similar to truncation. If reclaim holds the page lock, it
2674          *    will be a race with remove_mapping that determines if the mapping
2675          *    is valid on unlock but otherwise the data is valid and there is
2676          *    no need to serialise with page lock.
2677          *
2678          * As the page lock gives no additional guarantee, we optimistically
2679          * wait on the page to be unlocked and check if it's up to date and
2680          * use the page if it is. Otherwise, the page lock is required to
2681          * distinguish between the different cases. The motivation is that we
2682          * avoid spurious serialisations and wakeups when multiple processes
2683          * wait on the same page for IO to complete.
2684          */
2685         wait_on_page_locked(page);
2686         if (PageUptodate(page))
2687                 goto out;
2688
2689         /* Distinguish between all the cases under the safety of the lock */
2690         lock_page(page);
2691
2692         /* Case c or d, restart the operation */
2693         if (!page->mapping) {
2694                 unlock_page(page);
2695                 put_page(page);
2696                 goto repeat;
2697         }
2698
2699         /* Someone else locked and filled the page in a very small window */
2700         if (PageUptodate(page)) {
2701                 unlock_page(page);
2702                 goto out;
2703         }
2704         goto filler;
2705
2706 out:
2707         mark_page_accessed(page);
2708         return page;
2709 }
2710
2711 /**
2712  * read_cache_page - read into page cache, fill it if needed
2713  * @mapping:    the page's address_space
2714  * @index:      the page index
2715  * @filler:     function to perform the read
2716  * @data:       first arg to filler(data, page) function, often left as NULL
2717  *
2718  * Read into the page cache. If a page already exists, and PageUptodate() is
2719  * not set, try to fill the page and wait for it to become unlocked.
2720  *
2721  * If the page does not get brought uptodate, return -EIO.
2722  */
2723 struct page *read_cache_page(struct address_space *mapping,
2724                                 pgoff_t index,
2725                                 int (*filler)(void *, struct page *),
2726                                 void *data)
2727 {
2728         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2729 }
2730 EXPORT_SYMBOL(read_cache_page);
2731
2732 /**
2733  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2734  * @mapping:    the page's address_space
2735  * @index:      the page index
2736  * @gfp:        the page allocator flags to use if allocating
2737  *
2738  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2739  * any new page allocations done using the specified allocation flags.
2740  *
2741  * If the page does not get brought uptodate, return -EIO.
2742  */
2743 struct page *read_cache_page_gfp(struct address_space *mapping,
2744                                 pgoff_t index,
2745                                 gfp_t gfp)
2746 {
2747         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2748
2749         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2750 }
2751 EXPORT_SYMBOL(read_cache_page_gfp);
2752
2753 /*
2754  * Performs necessary checks before doing a write
2755  *
2756  * Can adjust writing position or amount of bytes to write.
2757  * Returns appropriate error code that caller should return or
2758  * zero in case that write should be allowed.
2759  */
2760 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2761 {
2762         struct file *file = iocb->ki_filp;
2763         struct inode *inode = file->f_mapping->host;
2764         unsigned long limit = rlimit(RLIMIT_FSIZE);
2765         loff_t pos;
2766
2767         if (!iov_iter_count(from))
2768                 return 0;
2769
2770         /* FIXME: this is for backwards compatibility with 2.4 */
2771         if (iocb->ki_flags & IOCB_APPEND)
2772                 iocb->ki_pos = i_size_read(inode);
2773
2774         pos = iocb->ki_pos;
2775
2776         if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2777                 return -EINVAL;
2778
2779         if (limit != RLIM_INFINITY) {
2780                 if (iocb->ki_pos >= limit) {
2781                         send_sig(SIGXFSZ, current, 0);
2782                         return -EFBIG;
2783                 }
2784                 iov_iter_truncate(from, limit - (unsigned long)pos);
2785         }
2786
2787         /*
2788          * LFS rule
2789          */
2790         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2791                                 !(file->f_flags & O_LARGEFILE))) {
2792                 if (pos >= MAX_NON_LFS)
2793                         return -EFBIG;
2794                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2795         }
2796
2797         /*
2798          * Are we about to exceed the fs block limit ?
2799          *
2800          * If we have written data it becomes a short write.  If we have
2801          * exceeded without writing data we send a signal and return EFBIG.
2802          * Linus frestrict idea will clean these up nicely..
2803          */
2804         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2805                 return -EFBIG;
2806
2807         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2808         return iov_iter_count(from);
2809 }
2810 EXPORT_SYMBOL(generic_write_checks);
2811
2812 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2813                                 loff_t pos, unsigned len, unsigned flags,
2814                                 struct page **pagep, void **fsdata)
2815 {
2816         const struct address_space_operations *aops = mapping->a_ops;
2817
2818         return aops->write_begin(file, mapping, pos, len, flags,
2819                                                         pagep, fsdata);
2820 }
2821 EXPORT_SYMBOL(pagecache_write_begin);
2822
2823 int pagecache_write_end(struct file *file, struct address_space *mapping,
2824                                 loff_t pos, unsigned len, unsigned copied,
2825                                 struct page *page, void *fsdata)
2826 {
2827         const struct address_space_operations *aops = mapping->a_ops;
2828
2829         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2830 }
2831 EXPORT_SYMBOL(pagecache_write_end);
2832
2833 ssize_t
2834 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2835 {
2836         struct file     *file = iocb->ki_filp;
2837         struct address_space *mapping = file->f_mapping;
2838         struct inode    *inode = mapping->host;
2839         loff_t          pos = iocb->ki_pos;
2840         ssize_t         written;
2841         size_t          write_len;
2842         pgoff_t         end;
2843
2844         write_len = iov_iter_count(from);
2845         end = (pos + write_len - 1) >> PAGE_SHIFT;
2846
2847         if (iocb->ki_flags & IOCB_NOWAIT) {
2848                 /* If there are pages to writeback, return */
2849                 if (filemap_range_has_page(inode->i_mapping, pos,
2850                                            pos + iov_iter_count(from)))
2851                         return -EAGAIN;
2852         } else {
2853                 written = filemap_write_and_wait_range(mapping, pos,
2854                                                         pos + write_len - 1);
2855                 if (written)
2856                         goto out;
2857         }
2858
2859         /*
2860          * After a write we want buffered reads to be sure to go to disk to get
2861          * the new data.  We invalidate clean cached page from the region we're
2862          * about to write.  We do this *before* the write so that we can return
2863          * without clobbering -EIOCBQUEUED from ->direct_IO().
2864          */
2865         written = invalidate_inode_pages2_range(mapping,
2866                                         pos >> PAGE_SHIFT, end);
2867         /*
2868          * If a page can not be invalidated, return 0 to fall back
2869          * to buffered write.
2870          */
2871         if (written) {
2872                 if (written == -EBUSY)
2873                         return 0;
2874                 goto out;
2875         }
2876
2877         written = mapping->a_ops->direct_IO(iocb, from);
2878
2879         /*
2880          * Finally, try again to invalidate clean pages which might have been
2881          * cached by non-direct readahead, or faulted in by get_user_pages()
2882          * if the source of the write was an mmap'ed region of the file
2883          * we're writing.  Either one is a pretty crazy thing to do,
2884          * so we don't support it 100%.  If this invalidation
2885          * fails, tough, the write still worked...
2886          */
2887         invalidate_inode_pages2_range(mapping,
2888                                 pos >> PAGE_SHIFT, end);
2889
2890         if (written > 0) {
2891                 pos += written;
2892                 write_len -= written;
2893                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2894                         i_size_write(inode, pos);
2895                         mark_inode_dirty(inode);
2896                 }
2897                 iocb->ki_pos = pos;
2898         }
2899         iov_iter_revert(from, write_len - iov_iter_count(from));
2900 out:
2901         return written;
2902 }
2903 EXPORT_SYMBOL(generic_file_direct_write);
2904
2905 /*
2906  * Find or create a page at the given pagecache position. Return the locked
2907  * page. This function is specifically for buffered writes.
2908  */
2909 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2910                                         pgoff_t index, unsigned flags)
2911 {
2912         struct page *page;
2913         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2914
2915         if (flags & AOP_FLAG_NOFS)
2916                 fgp_flags |= FGP_NOFS;
2917
2918         page = pagecache_get_page(mapping, index, fgp_flags,
2919                         mapping_gfp_mask(mapping));
2920         if (page)
2921                 wait_for_stable_page(page);
2922
2923         return page;
2924 }
2925 EXPORT_SYMBOL(grab_cache_page_write_begin);
2926
2927 ssize_t generic_perform_write(struct file *file,
2928                                 struct iov_iter *i, loff_t pos)
2929 {
2930         struct address_space *mapping = file->f_mapping;
2931         const struct address_space_operations *a_ops = mapping->a_ops;
2932         long status = 0;
2933         ssize_t written = 0;
2934         unsigned int flags = 0;
2935
2936         do {
2937                 struct page *page;
2938                 unsigned long offset;   /* Offset into pagecache page */
2939                 unsigned long bytes;    /* Bytes to write to page */
2940                 size_t copied;          /* Bytes copied from user */
2941                 void *fsdata;
2942
2943                 offset = (pos & (PAGE_SIZE - 1));
2944                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2945                                                 iov_iter_count(i));
2946
2947 again:
2948                 /*
2949                  * Bring in the user page that we will copy from _first_.
2950                  * Otherwise there's a nasty deadlock on copying from the
2951                  * same page as we're writing to, without it being marked
2952                  * up-to-date.
2953                  *
2954                  * Not only is this an optimisation, but it is also required
2955                  * to check that the address is actually valid, when atomic
2956                  * usercopies are used, below.
2957                  */
2958                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2959                         status = -EFAULT;
2960                         break;
2961                 }
2962
2963                 if (fatal_signal_pending(current)) {
2964                         status = -EINTR;
2965                         break;
2966                 }
2967
2968                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2969                                                 &page, &fsdata);
2970                 if (unlikely(status < 0))
2971                         break;
2972
2973                 if (mapping_writably_mapped(mapping))
2974                         flush_dcache_page(page);
2975
2976                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2977                 flush_dcache_page(page);
2978
2979                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2980                                                 page, fsdata);
2981                 if (unlikely(status < 0))
2982                         break;
2983                 copied = status;
2984
2985                 cond_resched();
2986
2987                 iov_iter_advance(i, copied);
2988                 if (unlikely(copied == 0)) {
2989                         /*
2990                          * If we were unable to copy any data at all, we must
2991                          * fall back to a single segment length write.
2992                          *
2993                          * If we didn't fallback here, we could livelock
2994                          * because not all segments in the iov can be copied at
2995                          * once without a pagefault.
2996                          */
2997                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2998                                                 iov_iter_single_seg_count(i));
2999                         goto again;
3000                 }
3001                 pos += copied;
3002                 written += copied;
3003
3004                 balance_dirty_pages_ratelimited(mapping);
3005         } while (iov_iter_count(i));
3006
3007         return written ? written : status;
3008 }
3009 EXPORT_SYMBOL(generic_perform_write);
3010
3011 /**
3012  * __generic_file_write_iter - write data to a file
3013  * @iocb:       IO state structure (file, offset, etc.)
3014  * @from:       iov_iter with data to write
3015  *
3016  * This function does all the work needed for actually writing data to a
3017  * file. It does all basic checks, removes SUID from the file, updates
3018  * modification times and calls proper subroutines depending on whether we
3019  * do direct IO or a standard buffered write.
3020  *
3021  * It expects i_mutex to be grabbed unless we work on a block device or similar
3022  * object which does not need locking at all.
3023  *
3024  * This function does *not* take care of syncing data in case of O_SYNC write.
3025  * A caller has to handle it. This is mainly due to the fact that we want to
3026  * avoid syncing under i_mutex.
3027  */
3028 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3029 {
3030         struct file *file = iocb->ki_filp;
3031         struct address_space * mapping = file->f_mapping;
3032         struct inode    *inode = mapping->host;
3033         ssize_t         written = 0;
3034         ssize_t         err;
3035         ssize_t         status;
3036
3037         /* We can write back this queue in page reclaim */
3038         current->backing_dev_info = inode_to_bdi(inode);
3039         err = file_remove_privs(file);
3040         if (err)
3041                 goto out;
3042
3043         err = file_update_time(file);
3044         if (err)
3045                 goto out;
3046
3047         if (iocb->ki_flags & IOCB_DIRECT) {
3048                 loff_t pos, endbyte;
3049
3050                 written = generic_file_direct_write(iocb, from);
3051                 /*
3052                  * If the write stopped short of completing, fall back to
3053                  * buffered writes.  Some filesystems do this for writes to
3054                  * holes, for example.  For DAX files, a buffered write will
3055                  * not succeed (even if it did, DAX does not handle dirty
3056                  * page-cache pages correctly).
3057                  */
3058                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3059                         goto out;
3060
3061                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3062                 /*
3063                  * If generic_perform_write() returned a synchronous error
3064                  * then we want to return the number of bytes which were
3065                  * direct-written, or the error code if that was zero.  Note
3066                  * that this differs from normal direct-io semantics, which
3067                  * will return -EFOO even if some bytes were written.
3068                  */
3069                 if (unlikely(status < 0)) {
3070                         err = status;
3071                         goto out;
3072                 }
3073                 /*
3074                  * We need to ensure that the page cache pages are written to
3075                  * disk and invalidated to preserve the expected O_DIRECT
3076                  * semantics.
3077                  */
3078                 endbyte = pos + status - 1;
3079                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3080                 if (err == 0) {
3081                         iocb->ki_pos = endbyte + 1;
3082                         written += status;
3083                         invalidate_mapping_pages(mapping,
3084                                                  pos >> PAGE_SHIFT,
3085                                                  endbyte >> PAGE_SHIFT);
3086                 } else {
3087                         /*
3088                          * We don't know how much we wrote, so just return
3089                          * the number of bytes which were direct-written
3090                          */
3091                 }
3092         } else {
3093                 written = generic_perform_write(file, from, iocb->ki_pos);
3094                 if (likely(written > 0))
3095                         iocb->ki_pos += written;
3096         }
3097 out:
3098         current->backing_dev_info = NULL;
3099         return written ? written : err;
3100 }
3101 EXPORT_SYMBOL(__generic_file_write_iter);
3102
3103 /**
3104  * generic_file_write_iter - write data to a file
3105  * @iocb:       IO state structure
3106  * @from:       iov_iter with data to write
3107  *
3108  * This is a wrapper around __generic_file_write_iter() to be used by most
3109  * filesystems. It takes care of syncing the file in case of O_SYNC file
3110  * and acquires i_mutex as needed.
3111  */
3112 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3113 {
3114         struct file *file = iocb->ki_filp;
3115         struct inode *inode = file->f_mapping->host;
3116         ssize_t ret;
3117
3118         inode_lock(inode);
3119         ret = generic_write_checks(iocb, from);
3120         if (ret > 0)
3121                 ret = __generic_file_write_iter(iocb, from);
3122         inode_unlock(inode);
3123
3124         if (ret > 0)
3125                 ret = generic_write_sync(iocb, ret);
3126         return ret;
3127 }
3128 EXPORT_SYMBOL(generic_file_write_iter);
3129
3130 /**
3131  * try_to_release_page() - release old fs-specific metadata on a page
3132  *
3133  * @page: the page which the kernel is trying to free
3134  * @gfp_mask: memory allocation flags (and I/O mode)
3135  *
3136  * The address_space is to try to release any data against the page
3137  * (presumably at page->private).  If the release was successful, return '1'.
3138  * Otherwise return zero.
3139  *
3140  * This may also be called if PG_fscache is set on a page, indicating that the
3141  * page is known to the local caching routines.
3142  *
3143  * The @gfp_mask argument specifies whether I/O may be performed to release
3144  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3145  *
3146  */
3147 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3148 {
3149         struct address_space * const mapping = page->mapping;
3150
3151         BUG_ON(!PageLocked(page));
3152         if (PageWriteback(page))
3153                 return 0;
3154
3155         if (mapping && mapping->a_ops->releasepage)
3156                 return mapping->a_ops->releasepage(page, gfp_mask);
3157         return try_to_free_buffers(page);
3158 }
3159
3160 EXPORT_SYMBOL(try_to_release_page);