]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/ksm.c
fs/ncpfs/dir.c: remove unnecessary new_valid_dev() check
[karo-tx-linux.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103         struct hlist_node link;
104         struct list_head mm_list;
105         struct rmap_item *rmap_list;
106         struct mm_struct *mm;
107 };
108
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119         struct mm_slot *mm_slot;
120         unsigned long address;
121         struct rmap_item **rmap_list;
122         unsigned long seqnr;
123 };
124
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135         union {
136                 struct rb_node node;    /* when node of stable tree */
137                 struct {                /* when listed for migration */
138                         struct list_head *head;
139                         struct list_head list;
140                 };
141         };
142         struct hlist_head hlist;
143         unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145         int nid;
146 #endif
147 };
148
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162         struct rmap_item *rmap_list;
163         union {
164                 struct anon_vma *anon_vma;      /* when stable */
165 #ifdef CONFIG_NUMA
166                 int nid;                /* when node of unstable tree */
167 #endif
168         };
169         struct mm_struct *mm;
170         unsigned long address;          /* + low bits used for flags below */
171         unsigned int oldchecksum;       /* when unstable */
172         union {
173                 struct rb_node node;    /* when node of unstable tree */
174                 struct {                /* when listed from stable tree */
175                         struct stable_node *head;
176                         struct hlist_node hlist;
177                 };
178         };
179 };
180
181 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
183 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201         .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes  1U
232 #define ksm_nr_node_ids         1
233 #endif
234
235 #define KSM_RUN_STOP    0
236 #define KSM_RUN_MERGE   1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247                 sizeof(struct __struct), __alignof__(struct __struct),\
248                 (__flags), NULL)
249
250 static int __init ksm_slab_init(void)
251 {
252         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253         if (!rmap_item_cache)
254                 goto out;
255
256         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257         if (!stable_node_cache)
258                 goto out_free1;
259
260         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261         if (!mm_slot_cache)
262                 goto out_free2;
263
264         return 0;
265
266 out_free2:
267         kmem_cache_destroy(stable_node_cache);
268 out_free1:
269         kmem_cache_destroy(rmap_item_cache);
270 out:
271         return -ENOMEM;
272 }
273
274 static void __init ksm_slab_free(void)
275 {
276         kmem_cache_destroy(mm_slot_cache);
277         kmem_cache_destroy(stable_node_cache);
278         kmem_cache_destroy(rmap_item_cache);
279         mm_slot_cache = NULL;
280 }
281
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284         struct rmap_item *rmap_item;
285
286         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287         if (rmap_item)
288                 ksm_rmap_items++;
289         return rmap_item;
290 }
291
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
293 {
294         ksm_rmap_items--;
295         rmap_item->mm = NULL;   /* debug safety */
296         kmem_cache_free(rmap_item_cache, rmap_item);
297 }
298
299 static inline struct stable_node *alloc_stable_node(void)
300 {
301         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302 }
303
304 static inline void free_stable_node(struct stable_node *stable_node)
305 {
306         kmem_cache_free(stable_node_cache, stable_node);
307 }
308
309 static inline struct mm_slot *alloc_mm_slot(void)
310 {
311         if (!mm_slot_cache)     /* initialization failed */
312                 return NULL;
313         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314 }
315
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
317 {
318         kmem_cache_free(mm_slot_cache, mm_slot);
319 }
320
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322 {
323         struct mm_slot *slot;
324
325         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326                 if (slot->mm == mm)
327                         return slot;
328
329         return NULL;
330 }
331
332 static void insert_to_mm_slots_hash(struct mm_struct *mm,
333                                     struct mm_slot *mm_slot)
334 {
335         mm_slot->mm = mm;
336         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337 }
338
339 /*
340  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341  * page tables after it has passed through ksm_exit() - which, if necessary,
342  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343  * a special flag: they can just back out as soon as mm_users goes to zero.
344  * ksm_test_exit() is used throughout to make this test for exit: in some
345  * places for correctness, in some places just to avoid unnecessary work.
346  */
347 static inline bool ksm_test_exit(struct mm_struct *mm)
348 {
349         return atomic_read(&mm->mm_users) == 0;
350 }
351
352 /*
353  * If the mm isn't the one associated with the current
354  * ksm_scan.mm_slot ksm_exit() will not down_write();up_write() and in
355  * turn the ksm_test_exit() check run inside a mm->mmap_sem critical
356  * section, will not prevent exit_mmap() to run from under us. In
357  * turn, in those cases where we could work with an "mm" that isn't
358  * guaranteed to be associated with the current ksm_scan.mm_slot,
359  * ksm_get_mm() is needed instead of the ksm_test_exit() run inside
360  * the mmap_sem. Return true if the mm_users was incremented or false
361  * if it we failed at taking the mm because it was freed from under
362  * us. If it returns 1, the caller must take care of calling mmput()
363  * after it finishes using the mm.
364  */
365 static __always_inline bool ksm_get_mm(struct mm_struct *mm)
366 {
367         return likely(atomic_inc_not_zero(&mm->mm_users));
368 }
369
370 /*
371  * We use break_ksm to break COW on a ksm page: it's a stripped down
372  *
373  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
374  *              put_page(page);
375  *
376  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
377  * in case the application has unmapped and remapped mm,addr meanwhile.
378  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
379  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
380  */
381 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
382 {
383         struct page *page;
384         int ret = 0;
385
386         do {
387                 cond_resched();
388                 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
389                 if (IS_ERR_OR_NULL(page))
390                         break;
391                 if (PageKsm(page))
392                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
393                                                         FAULT_FLAG_WRITE);
394                 else
395                         ret = VM_FAULT_WRITE;
396                 put_page(page);
397         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
398         /*
399          * We must loop because handle_mm_fault() may back out if there's
400          * any difficulty e.g. if pte accessed bit gets updated concurrently.
401          *
402          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
403          * COW has been broken, even if the vma does not permit VM_WRITE;
404          * but note that a concurrent fault might break PageKsm for us.
405          *
406          * VM_FAULT_SIGBUS could occur if we race with truncation of the
407          * backing file, which also invalidates anonymous pages: that's
408          * okay, that truncation will have unmapped the PageKsm for us.
409          *
410          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
411          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
412          * current task has TIF_MEMDIE set, and will be OOM killed on return
413          * to user; and ksmd, having no mm, would never be chosen for that.
414          *
415          * But if the mm is in a limited mem_cgroup, then the fault may fail
416          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
417          * even ksmd can fail in this way - though it's usually breaking ksm
418          * just to undo a merge it made a moment before, so unlikely to oom.
419          *
420          * That's a pity: we might therefore have more kernel pages allocated
421          * than we're counting as nodes in the stable tree; but ksm_do_scan
422          * will retry to break_cow on each pass, so should recover the page
423          * in due course.  The important thing is to not let VM_MERGEABLE
424          * be cleared while any such pages might remain in the area.
425          */
426         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
427 }
428
429 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
430                 unsigned long addr)
431 {
432         struct vm_area_struct *vma;
433         vma = find_vma(mm, addr);
434         if (!vma || vma->vm_start > addr)
435                 return NULL;
436         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
437                 return NULL;
438         return vma;
439 }
440
441 static void break_cow(struct rmap_item *rmap_item)
442 {
443         struct mm_struct *mm = rmap_item->mm;
444         unsigned long addr = rmap_item->address;
445         struct vm_area_struct *vma;
446
447         /*
448          * It is not an accident that whenever we want to break COW
449          * to undo, we also need to drop a reference to the anon_vma.
450          */
451         put_anon_vma(rmap_item->anon_vma);
452
453         /*
454          * The "mm" of the unstable tree rmap_item isn't necessairly
455          * associated with the current ksm_scan.mm_slot, it could be
456          * any random mm. So we need ksm_get_mm here to prevent the
457          * exit_mmap to run from under us in mmput().
458          */
459         if (!ksm_get_mm(mm))
460                 return;
461
462         down_read(&mm->mmap_sem);
463         vma = find_mergeable_vma(mm, addr);
464         if (vma)
465                 break_ksm(vma, addr);
466         up_read(&mm->mmap_sem);
467         mmput(mm);
468 }
469
470 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
471 {
472         struct mm_struct *mm = rmap_item->mm;
473         unsigned long addr = rmap_item->address;
474         struct vm_area_struct *vma;
475         struct page *page;
476
477         /*
478          * The "mm" of the unstable tree rmap_item isn't necessairly
479          * associated with the current ksm_scan.mm_slot, it could be
480          * any random mm. So we need ksm_get_mm here to prevent the
481          * exit_mmap to run from under us in mmput().
482          */
483         if (!ksm_get_mm(mm))
484                 return NULL;
485
486         down_read(&mm->mmap_sem);
487         vma = find_mergeable_vma(mm, addr);
488         if (!vma)
489                 goto out;
490
491         page = follow_page(vma, addr, FOLL_GET);
492         if (IS_ERR_OR_NULL(page))
493                 goto out;
494         if (PageAnon(page)) {
495                 flush_anon_page(vma, page, addr);
496                 flush_dcache_page(page);
497         } else {
498                 put_page(page);
499 out:            page = NULL;
500         }
501         up_read(&mm->mmap_sem);
502         mmput(mm);
503         return page;
504 }
505
506 /*
507  * This helper is used for getting right index into array of tree roots.
508  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
509  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
510  * every node has its own stable and unstable tree.
511  */
512 static inline int get_kpfn_nid(unsigned long kpfn)
513 {
514         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
515 }
516
517 static void remove_node_from_stable_tree(struct stable_node *stable_node)
518 {
519         struct rmap_item *rmap_item;
520
521         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
522                 if (rmap_item->hlist.next)
523                         ksm_pages_sharing--;
524                 else
525                         ksm_pages_shared--;
526                 put_anon_vma(rmap_item->anon_vma);
527                 rmap_item->address &= PAGE_MASK;
528                 cond_resched();
529         }
530
531         if (stable_node->head == &migrate_nodes)
532                 list_del(&stable_node->list);
533         else
534                 rb_erase(&stable_node->node,
535                          root_stable_tree + NUMA(stable_node->nid));
536         free_stable_node(stable_node);
537 }
538
539 /*
540  * get_ksm_page: checks if the page indicated by the stable node
541  * is still its ksm page, despite having held no reference to it.
542  * In which case we can trust the content of the page, and it
543  * returns the gotten page; but if the page has now been zapped,
544  * remove the stale node from the stable tree and return NULL.
545  * But beware, the stable node's page might be being migrated.
546  *
547  * You would expect the stable_node to hold a reference to the ksm page.
548  * But if it increments the page's count, swapping out has to wait for
549  * ksmd to come around again before it can free the page, which may take
550  * seconds or even minutes: much too unresponsive.  So instead we use a
551  * "keyhole reference": access to the ksm page from the stable node peeps
552  * out through its keyhole to see if that page still holds the right key,
553  * pointing back to this stable node.  This relies on freeing a PageAnon
554  * page to reset its page->mapping to NULL, and relies on no other use of
555  * a page to put something that might look like our key in page->mapping.
556  * is on its way to being freed; but it is an anomaly to bear in mind.
557  */
558 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
559 {
560         struct page *page;
561         void *expected_mapping;
562         unsigned long kpfn;
563
564         expected_mapping = (void *)stable_node +
565                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
566 again:
567         kpfn = READ_ONCE(stable_node->kpfn);
568         page = pfn_to_page(kpfn);
569
570         /*
571          * page is computed from kpfn, so on most architectures reading
572          * page->mapping is naturally ordered after reading node->kpfn,
573          * but on Alpha we need to be more careful.
574          */
575         smp_read_barrier_depends();
576         if (READ_ONCE(page->mapping) != expected_mapping)
577                 goto stale;
578
579         /*
580          * We cannot do anything with the page while its refcount is 0.
581          * Usually 0 means free, or tail of a higher-order page: in which
582          * case this node is no longer referenced, and should be freed;
583          * however, it might mean that the page is under page_freeze_refs().
584          * The __remove_mapping() case is easy, again the node is now stale;
585          * but if page is swapcache in migrate_page_move_mapping(), it might
586          * still be our page, in which case it's essential to keep the node.
587          */
588         while (!get_page_unless_zero(page)) {
589                 /*
590                  * Another check for page->mapping != expected_mapping would
591                  * work here too.  We have chosen the !PageSwapCache test to
592                  * optimize the common case, when the page is or is about to
593                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
594                  * in the freeze_refs section of __remove_mapping(); but Anon
595                  * page->mapping reset to NULL later, in free_pages_prepare().
596                  */
597                 if (!PageSwapCache(page))
598                         goto stale;
599                 cpu_relax();
600         }
601
602         if (READ_ONCE(page->mapping) != expected_mapping) {
603                 put_page(page);
604                 goto stale;
605         }
606
607         if (lock_it) {
608                 lock_page(page);
609                 if (READ_ONCE(page->mapping) != expected_mapping) {
610                         unlock_page(page);
611                         put_page(page);
612                         goto stale;
613                 }
614         }
615         return page;
616
617 stale:
618         /*
619          * We come here from above when page->mapping or !PageSwapCache
620          * suggests that the node is stale; but it might be under migration.
621          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
622          * before checking whether node->kpfn has been changed.
623          */
624         smp_rmb();
625         if (READ_ONCE(stable_node->kpfn) != kpfn)
626                 goto again;
627         remove_node_from_stable_tree(stable_node);
628         return NULL;
629 }
630
631 /*
632  * Removing rmap_item from stable or unstable tree.
633  * This function will clean the information from the stable/unstable tree.
634  */
635 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
636 {
637         if (rmap_item->address & STABLE_FLAG) {
638                 struct stable_node *stable_node;
639                 struct page *page;
640
641                 stable_node = rmap_item->head;
642                 page = get_ksm_page(stable_node, true);
643                 if (!page)
644                         goto out;
645
646                 hlist_del(&rmap_item->hlist);
647                 unlock_page(page);
648                 put_page(page);
649
650                 if (!hlist_empty(&stable_node->hlist))
651                         ksm_pages_sharing--;
652                 else
653                         ksm_pages_shared--;
654
655                 put_anon_vma(rmap_item->anon_vma);
656                 rmap_item->address &= PAGE_MASK;
657
658         } else if (rmap_item->address & UNSTABLE_FLAG) {
659                 unsigned char age;
660                 /*
661                  * Usually ksmd can and must skip the rb_erase, because
662                  * root_unstable_tree was already reset to RB_ROOT.
663                  * But be careful when an mm is exiting: do the rb_erase
664                  * if this rmap_item was inserted by this scan, rather
665                  * than left over from before.
666                  */
667                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
668                 BUG_ON(age > 1);
669                 if (!age)
670                         rb_erase(&rmap_item->node,
671                                  root_unstable_tree + NUMA(rmap_item->nid));
672                 ksm_pages_unshared--;
673                 rmap_item->address &= PAGE_MASK;
674         }
675 out:
676         cond_resched();         /* we're called from many long loops */
677 }
678
679 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
680                                        struct rmap_item **rmap_list)
681 {
682         while (*rmap_list) {
683                 struct rmap_item *rmap_item = *rmap_list;
684                 *rmap_list = rmap_item->rmap_list;
685                 remove_rmap_item_from_tree(rmap_item);
686                 free_rmap_item(rmap_item);
687         }
688 }
689
690 /*
691  * Though it's very tempting to unmerge rmap_items from stable tree rather
692  * than check every pte of a given vma, the locking doesn't quite work for
693  * that - an rmap_item is assigned to the stable tree after inserting ksm
694  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
695  * rmap_items from parent to child at fork time (so as not to waste time
696  * if exit comes before the next scan reaches it).
697  *
698  * Similarly, although we'd like to remove rmap_items (so updating counts
699  * and freeing memory) when unmerging an area, it's easier to leave that
700  * to the next pass of ksmd - consider, for example, how ksmd might be
701  * in cmp_and_merge_page on one of the rmap_items we would be removing.
702  */
703 static int unmerge_ksm_pages(struct vm_area_struct *vma,
704                              unsigned long start, unsigned long end)
705 {
706         unsigned long addr;
707         int err = 0;
708
709         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
710                 if (ksm_test_exit(vma->vm_mm))
711                         break;
712                 if (signal_pending(current))
713                         err = -ERESTARTSYS;
714                 else
715                         err = break_ksm(vma, addr);
716         }
717         return err;
718 }
719
720 #ifdef CONFIG_SYSFS
721 /*
722  * Only called through the sysfs control interface:
723  */
724 static int remove_stable_node(struct stable_node *stable_node)
725 {
726         struct page *page;
727         int err;
728
729         page = get_ksm_page(stable_node, true);
730         if (!page) {
731                 /*
732                  * get_ksm_page did remove_node_from_stable_tree itself.
733                  */
734                 return 0;
735         }
736
737         if (WARN_ON_ONCE(page_mapped(page))) {
738                 /*
739                  * This should not happen: but if it does, just refuse to let
740                  * merge_across_nodes be switched - there is no need to panic.
741                  */
742                 err = -EBUSY;
743         } else {
744                 /*
745                  * The stable node did not yet appear stale to get_ksm_page(),
746                  * since that allows for an unmapped ksm page to be recognized
747                  * right up until it is freed; but the node is safe to remove.
748                  * This page might be in a pagevec waiting to be freed,
749                  * or it might be PageSwapCache (perhaps under writeback),
750                  * or it might have been removed from swapcache a moment ago.
751                  */
752                 set_page_stable_node(page, NULL);
753                 remove_node_from_stable_tree(stable_node);
754                 err = 0;
755         }
756
757         unlock_page(page);
758         put_page(page);
759         return err;
760 }
761
762 static int remove_all_stable_nodes(void)
763 {
764         struct stable_node *stable_node;
765         struct list_head *this, *next;
766         int nid;
767         int err = 0;
768
769         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
770                 while (root_stable_tree[nid].rb_node) {
771                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
772                                                 struct stable_node, node);
773                         if (remove_stable_node(stable_node)) {
774                                 err = -EBUSY;
775                                 break;  /* proceed to next nid */
776                         }
777                         cond_resched();
778                 }
779         }
780         list_for_each_safe(this, next, &migrate_nodes) {
781                 stable_node = list_entry(this, struct stable_node, list);
782                 if (remove_stable_node(stable_node))
783                         err = -EBUSY;
784                 cond_resched();
785         }
786         return err;
787 }
788
789 static int unmerge_and_remove_all_rmap_items(void)
790 {
791         struct mm_slot *mm_slot;
792         struct mm_struct *mm;
793         struct vm_area_struct *vma;
794         int err = 0;
795
796         spin_lock(&ksm_mmlist_lock);
797         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
798                                                 struct mm_slot, mm_list);
799         spin_unlock(&ksm_mmlist_lock);
800
801         for (mm_slot = ksm_scan.mm_slot;
802                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
803                 mm = mm_slot->mm;
804                 down_read(&mm->mmap_sem);
805                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
806                         if (ksm_test_exit(mm))
807                                 break;
808                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
809                                 continue;
810                         err = unmerge_ksm_pages(vma,
811                                                 vma->vm_start, vma->vm_end);
812                         if (err)
813                                 goto error;
814                 }
815
816                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
817
818                 spin_lock(&ksm_mmlist_lock);
819                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
820                                                 struct mm_slot, mm_list);
821                 if (ksm_test_exit(mm)) {
822                         hash_del(&mm_slot->link);
823                         list_del(&mm_slot->mm_list);
824                         spin_unlock(&ksm_mmlist_lock);
825
826                         free_mm_slot(mm_slot);
827                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
828                         up_read(&mm->mmap_sem);
829                         mmdrop(mm);
830                 } else {
831                         spin_unlock(&ksm_mmlist_lock);
832                         up_read(&mm->mmap_sem);
833                 }
834         }
835
836         /* Clean up stable nodes, but don't worry if some are still busy */
837         remove_all_stable_nodes();
838         ksm_scan.seqnr = 0;
839         return 0;
840
841 error:
842         up_read(&mm->mmap_sem);
843         spin_lock(&ksm_mmlist_lock);
844         ksm_scan.mm_slot = &ksm_mm_head;
845         spin_unlock(&ksm_mmlist_lock);
846         return err;
847 }
848 #endif /* CONFIG_SYSFS */
849
850 static u32 calc_checksum(struct page *page)
851 {
852         u32 checksum;
853         void *addr = kmap_atomic(page);
854         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
855         kunmap_atomic(addr);
856         return checksum;
857 }
858
859 static int memcmp_pages(struct page *page1, struct page *page2)
860 {
861         char *addr1, *addr2;
862         int ret;
863
864         addr1 = kmap_atomic(page1);
865         addr2 = kmap_atomic(page2);
866         ret = memcmp(addr1, addr2, PAGE_SIZE);
867         kunmap_atomic(addr2);
868         kunmap_atomic(addr1);
869         return ret;
870 }
871
872 static inline int pages_identical(struct page *page1, struct page *page2)
873 {
874         return !memcmp_pages(page1, page2);
875 }
876
877 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
878                               pte_t *orig_pte)
879 {
880         struct mm_struct *mm = vma->vm_mm;
881         unsigned long addr;
882         pte_t *ptep;
883         spinlock_t *ptl;
884         int swapped;
885         int err = -EFAULT;
886         unsigned long mmun_start;       /* For mmu_notifiers */
887         unsigned long mmun_end;         /* For mmu_notifiers */
888
889         addr = page_address_in_vma(page, vma);
890         if (addr == -EFAULT)
891                 goto out;
892
893         BUG_ON(PageTransCompound(page));
894
895         mmun_start = addr;
896         mmun_end   = addr + PAGE_SIZE;
897         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
898
899         ptep = page_check_address(page, mm, addr, &ptl, 0);
900         if (!ptep)
901                 goto out_mn;
902
903         if (pte_write(*ptep) || pte_dirty(*ptep)) {
904                 pte_t entry;
905
906                 swapped = PageSwapCache(page);
907                 flush_cache_page(vma, addr, page_to_pfn(page));
908                 /*
909                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
910                  * take any lock, therefore the check that we are going to make
911                  * with the pagecount against the mapcount is racey and
912                  * O_DIRECT can happen right after the check.
913                  * So we clear the pte and flush the tlb before the check
914                  * this assure us that no O_DIRECT can happen after the check
915                  * or in the middle of the check.
916                  */
917                 entry = ptep_clear_flush_notify(vma, addr, ptep);
918                 /*
919                  * Check that no O_DIRECT or similar I/O is in progress on the
920                  * page
921                  */
922                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
923                         set_pte_at(mm, addr, ptep, entry);
924                         goto out_unlock;
925                 }
926                 if (pte_dirty(entry))
927                         set_page_dirty(page);
928                 entry = pte_mkclean(pte_wrprotect(entry));
929                 set_pte_at_notify(mm, addr, ptep, entry);
930         }
931         *orig_pte = *ptep;
932         err = 0;
933
934 out_unlock:
935         pte_unmap_unlock(ptep, ptl);
936 out_mn:
937         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
938 out:
939         return err;
940 }
941
942 /**
943  * replace_page - replace page in vma by new ksm page
944  * @vma:      vma that holds the pte pointing to page
945  * @page:     the page we are replacing by kpage
946  * @kpage:    the ksm page we replace page by
947  * @orig_pte: the original value of the pte
948  *
949  * Returns 0 on success, -EFAULT on failure.
950  */
951 static int replace_page(struct vm_area_struct *vma, struct page *page,
952                         struct page *kpage, pte_t orig_pte)
953 {
954         struct mm_struct *mm = vma->vm_mm;
955         pmd_t *pmd;
956         pte_t *ptep;
957         spinlock_t *ptl;
958         unsigned long addr;
959         int err = -EFAULT;
960         unsigned long mmun_start;       /* For mmu_notifiers */
961         unsigned long mmun_end;         /* For mmu_notifiers */
962
963         addr = page_address_in_vma(page, vma);
964         if (addr == -EFAULT)
965                 goto out;
966
967         pmd = mm_find_pmd(mm, addr);
968         if (!pmd)
969                 goto out;
970
971         mmun_start = addr;
972         mmun_end   = addr + PAGE_SIZE;
973         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
974
975         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
976         if (!pte_same(*ptep, orig_pte)) {
977                 pte_unmap_unlock(ptep, ptl);
978                 goto out_mn;
979         }
980
981         get_page(kpage);
982         page_add_anon_rmap(kpage, vma, addr, false);
983
984         flush_cache_page(vma, addr, pte_pfn(*ptep));
985         ptep_clear_flush_notify(vma, addr, ptep);
986         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
987
988         page_remove_rmap(page, false);
989         if (!page_mapped(page))
990                 try_to_free_swap(page);
991         put_page(page);
992
993         pte_unmap_unlock(ptep, ptl);
994         err = 0;
995 out_mn:
996         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
997 out:
998         return err;
999 }
1000
1001 /*
1002  * try_to_merge_one_page - take two pages and merge them into one
1003  * @vma: the vma that holds the pte pointing to page
1004  * @page: the PageAnon page that we want to replace with kpage
1005  * @kpage: the PageKsm page that we want to map instead of page,
1006  *         or NULL the first time when we want to use page as kpage.
1007  *
1008  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1009  */
1010 static int try_to_merge_one_page(struct vm_area_struct *vma,
1011                                  struct page *page, struct page *kpage)
1012 {
1013         pte_t orig_pte = __pte(0);
1014         int err = -EFAULT;
1015
1016         if (page == kpage)                      /* ksm page forked */
1017                 return 0;
1018
1019         if (!PageAnon(page))
1020                 goto out;
1021
1022         /*
1023          * We need the page lock to read a stable PageSwapCache in
1024          * write_protect_page().  We use trylock_page() instead of
1025          * lock_page() because we don't want to wait here - we
1026          * prefer to continue scanning and merging different pages,
1027          * then come back to this page when it is unlocked.
1028          */
1029         if (!trylock_page(page))
1030                 goto out;
1031
1032         if (PageTransCompound(page)) {
1033                 err = split_huge_page(page);
1034                 if (err)
1035                         goto out_unlock;
1036         }
1037
1038         /*
1039          * If this anonymous page is mapped only here, its pte may need
1040          * to be write-protected.  If it's mapped elsewhere, all of its
1041          * ptes are necessarily already write-protected.  But in either
1042          * case, we need to lock and check page_count is not raised.
1043          */
1044         if (write_protect_page(vma, page, &orig_pte) == 0) {
1045                 if (!kpage) {
1046                         /*
1047                          * While we hold page lock, upgrade page from
1048                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1049                          * stable_tree_insert() will update stable_node.
1050                          */
1051                         set_page_stable_node(page, NULL);
1052                         mark_page_accessed(page);
1053                         /*
1054                          * Stable page could be shared by several processes
1055                          * and last process could own the page among them after
1056                          * CoW or zapping for every process except last process
1057                          * happens. Then, page table entry of the page
1058                          * in last process can have no dirty bit.
1059                          * In this case, MADV_FREE could discard the page
1060                          * wrongly.
1061                          * For preventing it, we mark stable page dirty.
1062                          */
1063                         if (!PageDirty(page))
1064                                 SetPageDirty(page);
1065                         err = 0;
1066                 } else if (pages_identical(page, kpage))
1067                         err = replace_page(vma, page, kpage, orig_pte);
1068         }
1069
1070         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1071                 munlock_vma_page(page);
1072                 if (!PageMlocked(kpage)) {
1073                         unlock_page(page);
1074                         lock_page(kpage);
1075                         mlock_vma_page(kpage);
1076                         page = kpage;           /* for final unlock */
1077                 }
1078         }
1079
1080 out_unlock:
1081         unlock_page(page);
1082 out:
1083         return err;
1084 }
1085
1086 /*
1087  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1088  * but no new kernel page is allocated: kpage must already be a ksm page.
1089  *
1090  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1091  */
1092 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1093                                       struct page *page, struct page *kpage)
1094 {
1095         struct mm_struct *mm = rmap_item->mm;
1096         struct vm_area_struct *vma;
1097         int err = -EFAULT;
1098
1099         /*
1100          * The "mm" of the unstable tree rmap_item isn't necessairly
1101          * associated with the current ksm_scan.mm_slot, it could be
1102          * any random mm. So we need ksm_get_mm() here to prevent the
1103          * exit_mmap to run from under us in mmput(). Otherwise
1104          * rmap_item->anon_vma could point to an anon_vma that has
1105          * already been freed (i.e. get_anon_vma() below would run too
1106          * late).
1107          */
1108         if (!ksm_get_mm(mm))
1109                 return err;
1110
1111         down_read(&mm->mmap_sem);
1112         vma = find_mergeable_vma(mm, rmap_item->address);
1113         if (!vma)
1114                 goto out;
1115
1116         err = try_to_merge_one_page(vma, page, kpage);
1117         if (err)
1118                 goto out;
1119
1120         /* Unstable nid is in union with stable anon_vma: remove first */
1121         remove_rmap_item_from_tree(rmap_item);
1122
1123         /* Must get reference to anon_vma while still holding mmap_sem */
1124         rmap_item->anon_vma = vma->anon_vma;
1125         get_anon_vma(vma->anon_vma);
1126 out:
1127         up_read(&mm->mmap_sem);
1128         mmput(mm);
1129         return err;
1130 }
1131
1132 /*
1133  * try_to_merge_two_pages - take two identical pages and prepare them
1134  * to be merged into one page.
1135  *
1136  * This function returns the kpage if we successfully merged two identical
1137  * pages into one ksm page, NULL otherwise.
1138  *
1139  * Note that this function upgrades page to ksm page: if one of the pages
1140  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1141  */
1142 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1143                                            struct page *page,
1144                                            struct rmap_item *tree_rmap_item,
1145                                            struct page *tree_page)
1146 {
1147         int err;
1148
1149         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1150         if (!err) {
1151                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1152                                                         tree_page, page);
1153                 /*
1154                  * If that fails, we have a ksm page with only one pte
1155                  * pointing to it: so break it.
1156                  */
1157                 if (err)
1158                         break_cow(rmap_item);
1159         }
1160         return err ? NULL : page;
1161 }
1162
1163 /*
1164  * stable_tree_search - search for page inside the stable tree
1165  *
1166  * This function checks if there is a page inside the stable tree
1167  * with identical content to the page that we are scanning right now.
1168  *
1169  * This function returns the stable tree node of identical content if found,
1170  * NULL otherwise.
1171  */
1172 static struct page *stable_tree_search(struct page *page)
1173 {
1174         int nid;
1175         struct rb_root *root;
1176         struct rb_node **new;
1177         struct rb_node *parent;
1178         struct stable_node *stable_node;
1179         struct stable_node *page_node;
1180
1181         page_node = page_stable_node(page);
1182         if (page_node && page_node->head != &migrate_nodes) {
1183                 /* ksm page forked */
1184                 get_page(page);
1185                 return page;
1186         }
1187
1188         nid = get_kpfn_nid(page_to_pfn(page));
1189         root = root_stable_tree + nid;
1190 again:
1191         new = &root->rb_node;
1192         parent = NULL;
1193
1194         while (*new) {
1195                 struct page *tree_page;
1196                 int ret;
1197
1198                 cond_resched();
1199                 stable_node = rb_entry(*new, struct stable_node, node);
1200                 tree_page = get_ksm_page(stable_node, false);
1201                 if (!tree_page)
1202                         /*
1203                          * If we walked over a stale stable_node,
1204                          * get_ksm_page() will call rb_erase() and it
1205                          * may rebalance the tree from under us. So
1206                          * restart the search from scratch. Returning
1207                          * NULL would be safe too, but we'd generate
1208                          * false negative insertions just because some
1209                          * stable_node was stale which would waste CPU
1210                          * by doing the preparation work twice at the
1211                          * next KSM pass.
1212                          */
1213                         goto again;
1214
1215                 ret = memcmp_pages(page, tree_page);
1216                 put_page(tree_page);
1217
1218                 parent = *new;
1219                 if (ret < 0)
1220                         new = &parent->rb_left;
1221                 else if (ret > 0)
1222                         new = &parent->rb_right;
1223                 else {
1224                         /*
1225                          * Lock and unlock the stable_node's page (which
1226                          * might already have been migrated) so that page
1227                          * migration is sure to notice its raised count.
1228                          * It would be more elegant to return stable_node
1229                          * than kpage, but that involves more changes.
1230                          */
1231                         tree_page = get_ksm_page(stable_node, true);
1232                         if (tree_page) {
1233                                 unlock_page(tree_page);
1234                                 if (get_kpfn_nid(stable_node->kpfn) !=
1235                                                 NUMA(stable_node->nid)) {
1236                                         put_page(tree_page);
1237                                         goto replace;
1238                                 }
1239                                 return tree_page;
1240                         }
1241                         /*
1242                          * There is now a place for page_node, but the tree may
1243                          * have been rebalanced, so re-evaluate parent and new.
1244                          */
1245                         if (page_node)
1246                                 goto again;
1247                         return NULL;
1248                 }
1249         }
1250
1251         if (!page_node)
1252                 return NULL;
1253
1254         list_del(&page_node->list);
1255         DO_NUMA(page_node->nid = nid);
1256         rb_link_node(&page_node->node, parent, new);
1257         rb_insert_color(&page_node->node, root);
1258         get_page(page);
1259         return page;
1260
1261 replace:
1262         if (page_node) {
1263                 list_del(&page_node->list);
1264                 DO_NUMA(page_node->nid = nid);
1265                 rb_replace_node(&stable_node->node, &page_node->node, root);
1266                 get_page(page);
1267         } else {
1268                 rb_erase(&stable_node->node, root);
1269                 page = NULL;
1270         }
1271         stable_node->head = &migrate_nodes;
1272         list_add(&stable_node->list, stable_node->head);
1273         return page;
1274 }
1275
1276 /*
1277  * stable_tree_insert - insert stable tree node pointing to new ksm page
1278  * into the stable tree.
1279  *
1280  * This function returns the stable tree node just allocated on success,
1281  * NULL otherwise.
1282  */
1283 static struct stable_node *stable_tree_insert(struct page *kpage)
1284 {
1285         int nid;
1286         unsigned long kpfn;
1287         struct rb_root *root;
1288         struct rb_node **new;
1289         struct rb_node *parent;
1290         struct stable_node *stable_node;
1291
1292         kpfn = page_to_pfn(kpage);
1293         nid = get_kpfn_nid(kpfn);
1294         root = root_stable_tree + nid;
1295 again:
1296         parent = NULL;
1297         new = &root->rb_node;
1298
1299         while (*new) {
1300                 struct page *tree_page;
1301                 int ret;
1302
1303                 cond_resched();
1304                 stable_node = rb_entry(*new, struct stable_node, node);
1305                 tree_page = get_ksm_page(stable_node, false);
1306                 if (!tree_page)
1307                         /*
1308                          * If we walked over a stale stable_node,
1309                          * get_ksm_page() will call rb_erase() and it
1310                          * may rebalance the tree from under us. So
1311                          * restart the search from scratch. Returning
1312                          * NULL would be safe too, but we'd generate
1313                          * false negative insertions just because some
1314                          * stable_node was stale which would waste CPU
1315                          * by doing the preparation work twice at the
1316                          * next KSM pass.
1317                          */
1318                         goto again;
1319
1320                 ret = memcmp_pages(kpage, tree_page);
1321                 put_page(tree_page);
1322
1323                 parent = *new;
1324                 if (ret < 0)
1325                         new = &parent->rb_left;
1326                 else if (ret > 0)
1327                         new = &parent->rb_right;
1328                 else {
1329                         /*
1330                          * It is not a bug that stable_tree_search() didn't
1331                          * find this node: because at that time our page was
1332                          * not yet write-protected, so may have changed since.
1333                          */
1334                         return NULL;
1335                 }
1336         }
1337
1338         stable_node = alloc_stable_node();
1339         if (!stable_node)
1340                 return NULL;
1341
1342         INIT_HLIST_HEAD(&stable_node->hlist);
1343         stable_node->kpfn = kpfn;
1344         set_page_stable_node(kpage, stable_node);
1345         DO_NUMA(stable_node->nid = nid);
1346         rb_link_node(&stable_node->node, parent, new);
1347         rb_insert_color(&stable_node->node, root);
1348
1349         return stable_node;
1350 }
1351
1352 /*
1353  * unstable_tree_search_insert - search for identical page,
1354  * else insert rmap_item into the unstable tree.
1355  *
1356  * This function searches for a page in the unstable tree identical to the
1357  * page currently being scanned; and if no identical page is found in the
1358  * tree, we insert rmap_item as a new object into the unstable tree.
1359  *
1360  * This function returns pointer to rmap_item found to be identical
1361  * to the currently scanned page, NULL otherwise.
1362  *
1363  * This function does both searching and inserting, because they share
1364  * the same walking algorithm in an rbtree.
1365  */
1366 static
1367 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1368                                               struct page *page,
1369                                               struct page **tree_pagep)
1370 {
1371         struct rb_node **new;
1372         struct rb_root *root;
1373         struct rb_node *parent = NULL;
1374         int nid;
1375
1376         nid = get_kpfn_nid(page_to_pfn(page));
1377         root = root_unstable_tree + nid;
1378         new = &root->rb_node;
1379
1380         while (*new) {
1381                 struct rmap_item *tree_rmap_item;
1382                 struct page *tree_page;
1383                 int ret;
1384
1385                 cond_resched();
1386                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1387                 tree_page = get_mergeable_page(tree_rmap_item);
1388                 if (!tree_page)
1389                         return NULL;
1390
1391                 /*
1392                  * Don't substitute a ksm page for a forked page.
1393                  */
1394                 if (page == tree_page) {
1395                         put_page(tree_page);
1396                         return NULL;
1397                 }
1398
1399                 ret = memcmp_pages(page, tree_page);
1400
1401                 parent = *new;
1402                 if (ret < 0) {
1403                         put_page(tree_page);
1404                         new = &parent->rb_left;
1405                 } else if (ret > 0) {
1406                         put_page(tree_page);
1407                         new = &parent->rb_right;
1408                 } else if (!ksm_merge_across_nodes &&
1409                            page_to_nid(tree_page) != nid) {
1410                         /*
1411                          * If tree_page has been migrated to another NUMA node,
1412                          * it will be flushed out and put in the right unstable
1413                          * tree next time: only merge with it when across_nodes.
1414                          */
1415                         put_page(tree_page);
1416                         return NULL;
1417                 } else {
1418                         *tree_pagep = tree_page;
1419                         return tree_rmap_item;
1420                 }
1421         }
1422
1423         rmap_item->address |= UNSTABLE_FLAG;
1424         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1425         DO_NUMA(rmap_item->nid = nid);
1426         rb_link_node(&rmap_item->node, parent, new);
1427         rb_insert_color(&rmap_item->node, root);
1428
1429         ksm_pages_unshared++;
1430         return NULL;
1431 }
1432
1433 /*
1434  * stable_tree_append - add another rmap_item to the linked list of
1435  * rmap_items hanging off a given node of the stable tree, all sharing
1436  * the same ksm page.
1437  */
1438 static void stable_tree_append(struct rmap_item *rmap_item,
1439                                struct stable_node *stable_node)
1440 {
1441         rmap_item->head = stable_node;
1442         rmap_item->address |= STABLE_FLAG;
1443         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1444
1445         if (rmap_item->hlist.next)
1446                 ksm_pages_sharing++;
1447         else
1448                 ksm_pages_shared++;
1449 }
1450
1451 /*
1452  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1453  * if not, compare checksum to previous and if it's the same, see if page can
1454  * be inserted into the unstable tree, or merged with a page already there and
1455  * both transferred to the stable tree.
1456  *
1457  * @page: the page that we are searching identical page to.
1458  * @rmap_item: the reverse mapping into the virtual address of this page
1459  */
1460 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1461 {
1462         struct rmap_item *tree_rmap_item;
1463         struct page *tree_page = NULL;
1464         struct stable_node *stable_node;
1465         struct page *kpage;
1466         unsigned int checksum;
1467         int err;
1468
1469         stable_node = page_stable_node(page);
1470         if (stable_node) {
1471                 if (stable_node->head != &migrate_nodes &&
1472                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1473                         rb_erase(&stable_node->node,
1474                                  root_stable_tree + NUMA(stable_node->nid));
1475                         stable_node->head = &migrate_nodes;
1476                         list_add(&stable_node->list, stable_node->head);
1477                 }
1478                 if (stable_node->head != &migrate_nodes &&
1479                     rmap_item->head == stable_node)
1480                         return;
1481         }
1482
1483         /* We first start with searching the page inside the stable tree */
1484         kpage = stable_tree_search(page);
1485         if (kpage == page && rmap_item->head == stable_node) {
1486                 put_page(kpage);
1487                 return;
1488         }
1489
1490         remove_rmap_item_from_tree(rmap_item);
1491
1492         if (kpage) {
1493                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1494                 if (!err) {
1495                         /*
1496                          * The page was successfully merged:
1497                          * add its rmap_item to the stable tree.
1498                          */
1499                         lock_page(kpage);
1500                         stable_tree_append(rmap_item, page_stable_node(kpage));
1501                         unlock_page(kpage);
1502                 }
1503                 put_page(kpage);
1504                 return;
1505         }
1506
1507         /*
1508          * If the hash value of the page has changed from the last time
1509          * we calculated it, this page is changing frequently: therefore we
1510          * don't want to insert it in the unstable tree, and we don't want
1511          * to waste our time searching for something identical to it there.
1512          */
1513         checksum = calc_checksum(page);
1514         if (rmap_item->oldchecksum != checksum) {
1515                 rmap_item->oldchecksum = checksum;
1516                 return;
1517         }
1518
1519         tree_rmap_item =
1520                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1521         if (tree_rmap_item) {
1522                 kpage = try_to_merge_two_pages(rmap_item, page,
1523                                                 tree_rmap_item, tree_page);
1524                 put_page(tree_page);
1525                 if (kpage) {
1526                         /*
1527                          * The pages were successfully merged: insert new
1528                          * node in the stable tree and add both rmap_items.
1529                          */
1530                         lock_page(kpage);
1531                         stable_node = stable_tree_insert(kpage);
1532                         if (stable_node) {
1533                                 stable_tree_append(tree_rmap_item, stable_node);
1534                                 stable_tree_append(rmap_item, stable_node);
1535                         }
1536                         unlock_page(kpage);
1537
1538                         /*
1539                          * If we fail to insert the page into the stable tree,
1540                          * we will have 2 virtual addresses that are pointing
1541                          * to a ksm page left outside the stable tree,
1542                          * in which case we need to break_cow on both.
1543                          */
1544                         if (!stable_node) {
1545                                 break_cow(tree_rmap_item);
1546                                 break_cow(rmap_item);
1547                         }
1548                 }
1549         }
1550 }
1551
1552 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1553                                             struct rmap_item **rmap_list,
1554                                             unsigned long addr)
1555 {
1556         struct rmap_item *rmap_item;
1557
1558         while (*rmap_list) {
1559                 rmap_item = *rmap_list;
1560                 if ((rmap_item->address & PAGE_MASK) == addr)
1561                         return rmap_item;
1562                 if (rmap_item->address > addr)
1563                         break;
1564                 *rmap_list = rmap_item->rmap_list;
1565                 remove_rmap_item_from_tree(rmap_item);
1566                 free_rmap_item(rmap_item);
1567         }
1568
1569         rmap_item = alloc_rmap_item();
1570         if (rmap_item) {
1571                 /* It has already been zeroed */
1572                 rmap_item->mm = mm_slot->mm;
1573                 rmap_item->address = addr;
1574                 rmap_item->rmap_list = *rmap_list;
1575                 *rmap_list = rmap_item;
1576         }
1577         return rmap_item;
1578 }
1579
1580 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1581 {
1582         struct mm_struct *mm;
1583         struct mm_slot *slot;
1584         struct vm_area_struct *vma;
1585         struct rmap_item *rmap_item;
1586         int nid;
1587
1588         if (list_empty(&ksm_mm_head.mm_list))
1589                 return NULL;
1590
1591         slot = ksm_scan.mm_slot;
1592         if (slot == &ksm_mm_head) {
1593                 /*
1594                  * A number of pages can hang around indefinitely on per-cpu
1595                  * pagevecs, raised page count preventing write_protect_page
1596                  * from merging them.  Though it doesn't really matter much,
1597                  * it is puzzling to see some stuck in pages_volatile until
1598                  * other activity jostles them out, and they also prevented
1599                  * LTP's KSM test from succeeding deterministically; so drain
1600                  * them here (here rather than on entry to ksm_do_scan(),
1601                  * so we don't IPI too often when pages_to_scan is set low).
1602                  */
1603                 lru_add_drain_all();
1604
1605                 /*
1606                  * Whereas stale stable_nodes on the stable_tree itself
1607                  * get pruned in the regular course of stable_tree_search(),
1608                  * those moved out to the migrate_nodes list can accumulate:
1609                  * so prune them once before each full scan.
1610                  */
1611                 if (!ksm_merge_across_nodes) {
1612                         struct stable_node *stable_node;
1613                         struct list_head *this, *next;
1614                         struct page *page;
1615
1616                         list_for_each_safe(this, next, &migrate_nodes) {
1617                                 stable_node = list_entry(this,
1618                                                 struct stable_node, list);
1619                                 page = get_ksm_page(stable_node, false);
1620                                 if (page)
1621                                         put_page(page);
1622                                 cond_resched();
1623                         }
1624                 }
1625
1626                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1627                         root_unstable_tree[nid] = RB_ROOT;
1628
1629                 spin_lock(&ksm_mmlist_lock);
1630                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1631                 ksm_scan.mm_slot = slot;
1632                 spin_unlock(&ksm_mmlist_lock);
1633                 /*
1634                  * Although we tested list_empty() above, a racing __ksm_exit
1635                  * of the last mm on the list may have removed it since then.
1636                  */
1637                 if (slot == &ksm_mm_head)
1638                         return NULL;
1639 next_mm:
1640                 ksm_scan.address = 0;
1641                 ksm_scan.rmap_list = &slot->rmap_list;
1642         }
1643
1644         mm = slot->mm;
1645         down_read(&mm->mmap_sem);
1646         if (ksm_test_exit(mm))
1647                 vma = NULL;
1648         else
1649                 vma = find_vma(mm, ksm_scan.address);
1650
1651         for (; vma; vma = vma->vm_next) {
1652                 if (!(vma->vm_flags & VM_MERGEABLE))
1653                         continue;
1654                 if (ksm_scan.address < vma->vm_start)
1655                         ksm_scan.address = vma->vm_start;
1656                 if (!vma->anon_vma)
1657                         ksm_scan.address = vma->vm_end;
1658
1659                 while (ksm_scan.address < vma->vm_end) {
1660                         if (ksm_test_exit(mm))
1661                                 break;
1662                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1663                         if (IS_ERR_OR_NULL(*page)) {
1664                                 ksm_scan.address += PAGE_SIZE;
1665                                 cond_resched();
1666                                 continue;
1667                         }
1668                         if (PageAnon(*page)) {
1669                                 flush_anon_page(vma, *page, ksm_scan.address);
1670                                 flush_dcache_page(*page);
1671                                 rmap_item = get_next_rmap_item(slot,
1672                                         ksm_scan.rmap_list, ksm_scan.address);
1673                                 if (rmap_item) {
1674                                         ksm_scan.rmap_list =
1675                                                         &rmap_item->rmap_list;
1676                                         ksm_scan.address += PAGE_SIZE;
1677                                 } else
1678                                         put_page(*page);
1679                                 up_read(&mm->mmap_sem);
1680                                 return rmap_item;
1681                         }
1682                         put_page(*page);
1683                         ksm_scan.address += PAGE_SIZE;
1684                         cond_resched();
1685                 }
1686         }
1687
1688         if (ksm_test_exit(mm)) {
1689                 ksm_scan.address = 0;
1690                 ksm_scan.rmap_list = &slot->rmap_list;
1691         }
1692         /*
1693          * Nuke all the rmap_items that are above this current rmap:
1694          * because there were no VM_MERGEABLE vmas with such addresses.
1695          */
1696         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1697
1698         spin_lock(&ksm_mmlist_lock);
1699         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1700                                                 struct mm_slot, mm_list);
1701         if (ksm_scan.address == 0) {
1702                 /*
1703                  * We've completed a full scan of all vmas, holding mmap_sem
1704                  * throughout, and found no VM_MERGEABLE: so do the same as
1705                  * __ksm_exit does to remove this mm from all our lists now.
1706                  * This applies either when cleaning up after __ksm_exit
1707                  * (but beware: we can reach here even before __ksm_exit),
1708                  * or when all VM_MERGEABLE areas have been unmapped (and
1709                  * mmap_sem then protects against race with MADV_MERGEABLE).
1710                  */
1711                 hash_del(&slot->link);
1712                 list_del(&slot->mm_list);
1713                 spin_unlock(&ksm_mmlist_lock);
1714
1715                 free_mm_slot(slot);
1716                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1717                 up_read(&mm->mmap_sem);
1718                 mmdrop(mm);
1719         } else {
1720                 spin_unlock(&ksm_mmlist_lock);
1721                 up_read(&mm->mmap_sem);
1722         }
1723
1724         /* Repeat until we've completed scanning the whole list */
1725         slot = ksm_scan.mm_slot;
1726         if (slot != &ksm_mm_head)
1727                 goto next_mm;
1728
1729         ksm_scan.seqnr++;
1730         return NULL;
1731 }
1732
1733 /**
1734  * ksm_do_scan  - the ksm scanner main worker function.
1735  * @scan_npages - number of pages we want to scan before we return.
1736  */
1737 static void ksm_do_scan(unsigned int scan_npages)
1738 {
1739         struct rmap_item *rmap_item;
1740         struct page *uninitialized_var(page);
1741
1742         while (scan_npages-- && likely(!freezing(current))) {
1743                 cond_resched();
1744                 rmap_item = scan_get_next_rmap_item(&page);
1745                 if (!rmap_item)
1746                         return;
1747                 cmp_and_merge_page(page, rmap_item);
1748                 put_page(page);
1749         }
1750 }
1751
1752 static int ksmd_should_run(void)
1753 {
1754         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1755 }
1756
1757 static int ksm_scan_thread(void *nothing)
1758 {
1759         set_freezable();
1760         set_user_nice(current, 5);
1761
1762         while (!kthread_should_stop()) {
1763                 mutex_lock(&ksm_thread_mutex);
1764                 wait_while_offlining();
1765                 if (ksmd_should_run())
1766                         ksm_do_scan(ksm_thread_pages_to_scan);
1767                 mutex_unlock(&ksm_thread_mutex);
1768
1769                 try_to_freeze();
1770
1771                 if (ksmd_should_run()) {
1772                         schedule_timeout_interruptible(
1773                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1774                 } else {
1775                         wait_event_freezable(ksm_thread_wait,
1776                                 ksmd_should_run() || kthread_should_stop());
1777                 }
1778         }
1779         return 0;
1780 }
1781
1782 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1783                 unsigned long end, int advice, unsigned long *vm_flags)
1784 {
1785         struct mm_struct *mm = vma->vm_mm;
1786         int err;
1787
1788         switch (advice) {
1789         case MADV_MERGEABLE:
1790                 /*
1791                  * Be somewhat over-protective for now!
1792                  */
1793                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1794                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1795                                  VM_HUGETLB | VM_MIXEDMAP))
1796                         return 0;               /* just ignore the advice */
1797
1798 #ifdef VM_SAO
1799                 if (*vm_flags & VM_SAO)
1800                         return 0;
1801 #endif
1802
1803                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1804                         err = __ksm_enter(mm);
1805                         if (err)
1806                                 return err;
1807                 }
1808
1809                 *vm_flags |= VM_MERGEABLE;
1810                 break;
1811
1812         case MADV_UNMERGEABLE:
1813                 if (!(*vm_flags & VM_MERGEABLE))
1814                         return 0;               /* just ignore the advice */
1815
1816                 if (vma->anon_vma) {
1817                         err = unmerge_ksm_pages(vma, start, end);
1818                         if (err)
1819                                 return err;
1820                 }
1821
1822                 *vm_flags &= ~VM_MERGEABLE;
1823                 break;
1824         }
1825
1826         return 0;
1827 }
1828
1829 int __ksm_enter(struct mm_struct *mm)
1830 {
1831         struct mm_slot *mm_slot;
1832         int needs_wakeup;
1833
1834         mm_slot = alloc_mm_slot();
1835         if (!mm_slot)
1836                 return -ENOMEM;
1837
1838         /* Check ksm_run too?  Would need tighter locking */
1839         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1840
1841         spin_lock(&ksm_mmlist_lock);
1842         insert_to_mm_slots_hash(mm, mm_slot);
1843         /*
1844          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1845          * insert just behind the scanning cursor, to let the area settle
1846          * down a little; when fork is followed by immediate exec, we don't
1847          * want ksmd to waste time setting up and tearing down an rmap_list.
1848          *
1849          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1850          * scanning cursor, otherwise KSM pages in newly forked mms will be
1851          * missed: then we might as well insert at the end of the list.
1852          */
1853         if (ksm_run & KSM_RUN_UNMERGE)
1854                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1855         else
1856                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1857         spin_unlock(&ksm_mmlist_lock);
1858
1859         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1860         atomic_inc(&mm->mm_count);
1861
1862         if (needs_wakeup)
1863                 wake_up_interruptible(&ksm_thread_wait);
1864
1865         return 0;
1866 }
1867
1868 void __ksm_exit(struct mm_struct *mm)
1869 {
1870         struct mm_slot *mm_slot;
1871         int easy_to_free = 0;
1872
1873         /*
1874          * This process is exiting: if it's straightforward (as is the
1875          * case when ksmd was never running), free mm_slot immediately.
1876          * But if it's at the cursor or has rmap_items linked to it, use
1877          * mmap_sem to synchronize with any break_cows before pagetables
1878          * are freed, and leave the mm_slot on the list for ksmd to free.
1879          * Beware: ksm may already have noticed it exiting and freed the slot.
1880          */
1881
1882         spin_lock(&ksm_mmlist_lock);
1883         mm_slot = get_mm_slot(mm);
1884         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1885                 if (!mm_slot->rmap_list) {
1886                         hash_del(&mm_slot->link);
1887                         list_del(&mm_slot->mm_list);
1888                         easy_to_free = 1;
1889                 } else {
1890                         list_move(&mm_slot->mm_list,
1891                                   &ksm_scan.mm_slot->mm_list);
1892                 }
1893         }
1894         spin_unlock(&ksm_mmlist_lock);
1895
1896         if (easy_to_free) {
1897                 free_mm_slot(mm_slot);
1898                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1899                 mmdrop(mm);
1900         } else if (mm_slot) {
1901                 down_write(&mm->mmap_sem);
1902                 up_write(&mm->mmap_sem);
1903         }
1904 }
1905
1906 struct page *ksm_might_need_to_copy(struct page *page,
1907                         struct vm_area_struct *vma, unsigned long address)
1908 {
1909         struct anon_vma *anon_vma = page_anon_vma(page);
1910         struct page *new_page;
1911
1912         if (PageKsm(page)) {
1913                 if (page_stable_node(page) &&
1914                     !(ksm_run & KSM_RUN_UNMERGE))
1915                         return page;    /* no need to copy it */
1916         } else if (!anon_vma) {
1917                 return page;            /* no need to copy it */
1918         } else if (anon_vma->root == vma->anon_vma->root &&
1919                  page->index == linear_page_index(vma, address)) {
1920                 return page;            /* still no need to copy it */
1921         }
1922         if (!PageUptodate(page))
1923                 return page;            /* let do_swap_page report the error */
1924
1925         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1926         if (new_page) {
1927                 copy_user_highpage(new_page, page, address, vma);
1928
1929                 SetPageDirty(new_page);
1930                 __SetPageUptodate(new_page);
1931                 __SetPageLocked(new_page);
1932         }
1933
1934         return new_page;
1935 }
1936
1937 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1938 {
1939         struct stable_node *stable_node;
1940         struct rmap_item *rmap_item;
1941         int ret = SWAP_AGAIN;
1942         int search_new_forks = 0;
1943
1944         VM_BUG_ON_PAGE(!PageKsm(page), page);
1945
1946         /*
1947          * Rely on the page lock to protect against concurrent modifications
1948          * to that page's node of the stable tree.
1949          */
1950         VM_BUG_ON_PAGE(!PageLocked(page), page);
1951
1952         stable_node = page_stable_node(page);
1953         if (!stable_node)
1954                 return ret;
1955 again:
1956         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1957                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1958                 struct anon_vma_chain *vmac;
1959                 struct vm_area_struct *vma;
1960
1961                 cond_resched();
1962                 anon_vma_lock_read(anon_vma);
1963                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1964                                                0, ULONG_MAX) {
1965                         cond_resched();
1966                         vma = vmac->vma;
1967                         if (rmap_item->address < vma->vm_start ||
1968                             rmap_item->address >= vma->vm_end)
1969                                 continue;
1970                         /*
1971                          * Initially we examine only the vma which covers this
1972                          * rmap_item; but later, if there is still work to do,
1973                          * we examine covering vmas in other mms: in case they
1974                          * were forked from the original since ksmd passed.
1975                          */
1976                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1977                                 continue;
1978
1979                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1980                                 continue;
1981
1982                         ret = rwc->rmap_one(page, vma,
1983                                         rmap_item->address, rwc->arg);
1984                         if (ret != SWAP_AGAIN) {
1985                                 anon_vma_unlock_read(anon_vma);
1986                                 goto out;
1987                         }
1988                         if (rwc->done && rwc->done(page)) {
1989                                 anon_vma_unlock_read(anon_vma);
1990                                 goto out;
1991                         }
1992                 }
1993                 anon_vma_unlock_read(anon_vma);
1994         }
1995         if (!search_new_forks++)
1996                 goto again;
1997 out:
1998         return ret;
1999 }
2000
2001 #ifdef CONFIG_MIGRATION
2002 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2003 {
2004         struct stable_node *stable_node;
2005
2006         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2007         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2008         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2009
2010         stable_node = page_stable_node(newpage);
2011         if (stable_node) {
2012                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2013                 stable_node->kpfn = page_to_pfn(newpage);
2014                 /*
2015                  * newpage->mapping was set in advance; now we need smp_wmb()
2016                  * to make sure that the new stable_node->kpfn is visible
2017                  * to get_ksm_page() before it can see that oldpage->mapping
2018                  * has gone stale (or that PageSwapCache has been cleared).
2019                  */
2020                 smp_wmb();
2021                 set_page_stable_node(oldpage, NULL);
2022         }
2023 }
2024 #endif /* CONFIG_MIGRATION */
2025
2026 #ifdef CONFIG_MEMORY_HOTREMOVE
2027 static void wait_while_offlining(void)
2028 {
2029         while (ksm_run & KSM_RUN_OFFLINE) {
2030                 mutex_unlock(&ksm_thread_mutex);
2031                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2032                             TASK_UNINTERRUPTIBLE);
2033                 mutex_lock(&ksm_thread_mutex);
2034         }
2035 }
2036
2037 static void ksm_check_stable_tree(unsigned long start_pfn,
2038                                   unsigned long end_pfn)
2039 {
2040         struct stable_node *stable_node;
2041         struct list_head *this, *next;
2042         struct rb_node *node;
2043         int nid;
2044
2045         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2046                 node = rb_first(root_stable_tree + nid);
2047                 while (node) {
2048                         stable_node = rb_entry(node, struct stable_node, node);
2049                         if (stable_node->kpfn >= start_pfn &&
2050                             stable_node->kpfn < end_pfn) {
2051                                 /*
2052                                  * Don't get_ksm_page, page has already gone:
2053                                  * which is why we keep kpfn instead of page*
2054                                  */
2055                                 remove_node_from_stable_tree(stable_node);
2056                                 node = rb_first(root_stable_tree + nid);
2057                         } else
2058                                 node = rb_next(node);
2059                         cond_resched();
2060                 }
2061         }
2062         list_for_each_safe(this, next, &migrate_nodes) {
2063                 stable_node = list_entry(this, struct stable_node, list);
2064                 if (stable_node->kpfn >= start_pfn &&
2065                     stable_node->kpfn < end_pfn)
2066                         remove_node_from_stable_tree(stable_node);
2067                 cond_resched();
2068         }
2069 }
2070
2071 static int ksm_memory_callback(struct notifier_block *self,
2072                                unsigned long action, void *arg)
2073 {
2074         struct memory_notify *mn = arg;
2075
2076         switch (action) {
2077         case MEM_GOING_OFFLINE:
2078                 /*
2079                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2080                  * and remove_all_stable_nodes() while memory is going offline:
2081                  * it is unsafe for them to touch the stable tree at this time.
2082                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2083                  * which do not need the ksm_thread_mutex are all safe.
2084                  */
2085                 mutex_lock(&ksm_thread_mutex);
2086                 ksm_run |= KSM_RUN_OFFLINE;
2087                 mutex_unlock(&ksm_thread_mutex);
2088                 break;
2089
2090         case MEM_OFFLINE:
2091                 /*
2092                  * Most of the work is done by page migration; but there might
2093                  * be a few stable_nodes left over, still pointing to struct
2094                  * pages which have been offlined: prune those from the tree,
2095                  * otherwise get_ksm_page() might later try to access a
2096                  * non-existent struct page.
2097                  */
2098                 ksm_check_stable_tree(mn->start_pfn,
2099                                       mn->start_pfn + mn->nr_pages);
2100                 /* fallthrough */
2101
2102         case MEM_CANCEL_OFFLINE:
2103                 mutex_lock(&ksm_thread_mutex);
2104                 ksm_run &= ~KSM_RUN_OFFLINE;
2105                 mutex_unlock(&ksm_thread_mutex);
2106
2107                 smp_mb();       /* wake_up_bit advises this */
2108                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2109                 break;
2110         }
2111         return NOTIFY_OK;
2112 }
2113 #else
2114 static void wait_while_offlining(void)
2115 {
2116 }
2117 #endif /* CONFIG_MEMORY_HOTREMOVE */
2118
2119 #ifdef CONFIG_SYSFS
2120 /*
2121  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2122  */
2123
2124 #define KSM_ATTR_RO(_name) \
2125         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2126 #define KSM_ATTR(_name) \
2127         static struct kobj_attribute _name##_attr = \
2128                 __ATTR(_name, 0644, _name##_show, _name##_store)
2129
2130 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2131                                     struct kobj_attribute *attr, char *buf)
2132 {
2133         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2134 }
2135
2136 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2137                                      struct kobj_attribute *attr,
2138                                      const char *buf, size_t count)
2139 {
2140         unsigned long msecs;
2141         int err;
2142
2143         err = kstrtoul(buf, 10, &msecs);
2144         if (err || msecs > UINT_MAX)
2145                 return -EINVAL;
2146
2147         ksm_thread_sleep_millisecs = msecs;
2148
2149         return count;
2150 }
2151 KSM_ATTR(sleep_millisecs);
2152
2153 static ssize_t pages_to_scan_show(struct kobject *kobj,
2154                                   struct kobj_attribute *attr, char *buf)
2155 {
2156         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2157 }
2158
2159 static ssize_t pages_to_scan_store(struct kobject *kobj,
2160                                    struct kobj_attribute *attr,
2161                                    const char *buf, size_t count)
2162 {
2163         int err;
2164         unsigned long nr_pages;
2165
2166         err = kstrtoul(buf, 10, &nr_pages);
2167         if (err || nr_pages > UINT_MAX)
2168                 return -EINVAL;
2169
2170         ksm_thread_pages_to_scan = nr_pages;
2171
2172         return count;
2173 }
2174 KSM_ATTR(pages_to_scan);
2175
2176 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2177                         char *buf)
2178 {
2179         return sprintf(buf, "%lu\n", ksm_run);
2180 }
2181
2182 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2183                          const char *buf, size_t count)
2184 {
2185         int err;
2186         unsigned long flags;
2187
2188         err = kstrtoul(buf, 10, &flags);
2189         if (err || flags > UINT_MAX)
2190                 return -EINVAL;
2191         if (flags > KSM_RUN_UNMERGE)
2192                 return -EINVAL;
2193
2194         /*
2195          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2196          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2197          * breaking COW to free the pages_shared (but leaves mm_slots
2198          * on the list for when ksmd may be set running again).
2199          */
2200
2201         mutex_lock(&ksm_thread_mutex);
2202         wait_while_offlining();
2203         if (ksm_run != flags) {
2204                 ksm_run = flags;
2205                 if (flags & KSM_RUN_UNMERGE) {
2206                         set_current_oom_origin();
2207                         err = unmerge_and_remove_all_rmap_items();
2208                         clear_current_oom_origin();
2209                         if (err) {
2210                                 ksm_run = KSM_RUN_STOP;
2211                                 count = err;
2212                         }
2213                 }
2214         }
2215         mutex_unlock(&ksm_thread_mutex);
2216
2217         if (flags & KSM_RUN_MERGE)
2218                 wake_up_interruptible(&ksm_thread_wait);
2219
2220         return count;
2221 }
2222 KSM_ATTR(run);
2223
2224 #ifdef CONFIG_NUMA
2225 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2226                                 struct kobj_attribute *attr, char *buf)
2227 {
2228         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2229 }
2230
2231 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2232                                    struct kobj_attribute *attr,
2233                                    const char *buf, size_t count)
2234 {
2235         int err;
2236         unsigned long knob;
2237
2238         err = kstrtoul(buf, 10, &knob);
2239         if (err)
2240                 return err;
2241         if (knob > 1)
2242                 return -EINVAL;
2243
2244         mutex_lock(&ksm_thread_mutex);
2245         wait_while_offlining();
2246         if (ksm_merge_across_nodes != knob) {
2247                 if (ksm_pages_shared || remove_all_stable_nodes())
2248                         err = -EBUSY;
2249                 else if (root_stable_tree == one_stable_tree) {
2250                         struct rb_root *buf;
2251                         /*
2252                          * This is the first time that we switch away from the
2253                          * default of merging across nodes: must now allocate
2254                          * a buffer to hold as many roots as may be needed.
2255                          * Allocate stable and unstable together:
2256                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2257                          */
2258                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2259                                       GFP_KERNEL);
2260                         /* Let us assume that RB_ROOT is NULL is zero */
2261                         if (!buf)
2262                                 err = -ENOMEM;
2263                         else {
2264                                 root_stable_tree = buf;
2265                                 root_unstable_tree = buf + nr_node_ids;
2266                                 /* Stable tree is empty but not the unstable */
2267                                 root_unstable_tree[0] = one_unstable_tree[0];
2268                         }
2269                 }
2270                 if (!err) {
2271                         ksm_merge_across_nodes = knob;
2272                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2273                 }
2274         }
2275         mutex_unlock(&ksm_thread_mutex);
2276
2277         return err ? err : count;
2278 }
2279 KSM_ATTR(merge_across_nodes);
2280 #endif
2281
2282 static ssize_t pages_shared_show(struct kobject *kobj,
2283                                  struct kobj_attribute *attr, char *buf)
2284 {
2285         return sprintf(buf, "%lu\n", ksm_pages_shared);
2286 }
2287 KSM_ATTR_RO(pages_shared);
2288
2289 static ssize_t pages_sharing_show(struct kobject *kobj,
2290                                   struct kobj_attribute *attr, char *buf)
2291 {
2292         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2293 }
2294 KSM_ATTR_RO(pages_sharing);
2295
2296 static ssize_t pages_unshared_show(struct kobject *kobj,
2297                                    struct kobj_attribute *attr, char *buf)
2298 {
2299         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2300 }
2301 KSM_ATTR_RO(pages_unshared);
2302
2303 static ssize_t pages_volatile_show(struct kobject *kobj,
2304                                    struct kobj_attribute *attr, char *buf)
2305 {
2306         long ksm_pages_volatile;
2307
2308         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2309                                 - ksm_pages_sharing - ksm_pages_unshared;
2310         /*
2311          * It was not worth any locking to calculate that statistic,
2312          * but it might therefore sometimes be negative: conceal that.
2313          */
2314         if (ksm_pages_volatile < 0)
2315                 ksm_pages_volatile = 0;
2316         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2317 }
2318 KSM_ATTR_RO(pages_volatile);
2319
2320 static ssize_t full_scans_show(struct kobject *kobj,
2321                                struct kobj_attribute *attr, char *buf)
2322 {
2323         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2324 }
2325 KSM_ATTR_RO(full_scans);
2326
2327 static struct attribute *ksm_attrs[] = {
2328         &sleep_millisecs_attr.attr,
2329         &pages_to_scan_attr.attr,
2330         &run_attr.attr,
2331         &pages_shared_attr.attr,
2332         &pages_sharing_attr.attr,
2333         &pages_unshared_attr.attr,
2334         &pages_volatile_attr.attr,
2335         &full_scans_attr.attr,
2336 #ifdef CONFIG_NUMA
2337         &merge_across_nodes_attr.attr,
2338 #endif
2339         NULL,
2340 };
2341
2342 static struct attribute_group ksm_attr_group = {
2343         .attrs = ksm_attrs,
2344         .name = "ksm",
2345 };
2346 #endif /* CONFIG_SYSFS */
2347
2348 static int __init ksm_init(void)
2349 {
2350         struct task_struct *ksm_thread;
2351         int err;
2352
2353         err = ksm_slab_init();
2354         if (err)
2355                 goto out;
2356
2357         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2358         if (IS_ERR(ksm_thread)) {
2359                 pr_err("ksm: creating kthread failed\n");
2360                 err = PTR_ERR(ksm_thread);
2361                 goto out_free;
2362         }
2363
2364 #ifdef CONFIG_SYSFS
2365         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2366         if (err) {
2367                 pr_err("ksm: register sysfs failed\n");
2368                 kthread_stop(ksm_thread);
2369                 goto out_free;
2370         }
2371 #else
2372         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2373
2374 #endif /* CONFIG_SYSFS */
2375
2376 #ifdef CONFIG_MEMORY_HOTREMOVE
2377         /* There is no significance to this priority 100 */
2378         hotplug_memory_notifier(ksm_memory_callback, 100);
2379 #endif
2380         return 0;
2381
2382 out_free:
2383         ksm_slab_free();
2384 out:
2385         return err;
2386 }
2387 subsys_initcall(ksm_init);