]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/memcontrol.c
mm: memcontrol: reclaim when shrinking memory.high below usage
[karo-tx-linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES      5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account         0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102         "cache",
103         "rss",
104         "rss_huge",
105         "mapped_file",
106         "dirty",
107         "writeback",
108         "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112         "pgpgin",
113         "pgpgout",
114         "pgfault",
115         "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119         "inactive_anon",
120         "active_anon",
121         "inactive_file",
122         "active_file",
123         "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET  1024
129
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134
135 struct mem_cgroup_tree_per_zone {
136         struct rb_root rb_root;
137         spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152         struct list_head list;
153         struct eventfd_ctx *eventfd;
154 };
155
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160         /*
161          * memcg which the event belongs to.
162          */
163         struct mem_cgroup *memcg;
164         /*
165          * eventfd to signal userspace about the event.
166          */
167         struct eventfd_ctx *eventfd;
168         /*
169          * Each of these stored in a list by the cgroup.
170          */
171         struct list_head list;
172         /*
173          * register_event() callback will be used to add new userspace
174          * waiter for changes related to this event.  Use eventfd_signal()
175          * on eventfd to send notification to userspace.
176          */
177         int (*register_event)(struct mem_cgroup *memcg,
178                               struct eventfd_ctx *eventfd, const char *args);
179         /*
180          * unregister_event() callback will be called when userspace closes
181          * the eventfd or on cgroup removing.  This callback must be set,
182          * if you want provide notification functionality.
183          */
184         void (*unregister_event)(struct mem_cgroup *memcg,
185                                  struct eventfd_ctx *eventfd);
186         /*
187          * All fields below needed to unregister event when
188          * userspace closes eventfd.
189          */
190         poll_table pt;
191         wait_queue_head_t *wqh;
192         wait_queue_t wait;
193         struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON       0x1U
204 #define MOVE_FILE       0x2U
205 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209         spinlock_t        lock; /* for from, to */
210         struct mem_cgroup *from;
211         struct mem_cgroup *to;
212         unsigned long flags;
213         unsigned long precharge;
214         unsigned long moved_charge;
215         unsigned long moved_swap;
216         struct task_struct *moving_task;        /* a task moving charges */
217         wait_queue_head_t waitq;                /* a waitq for other context */
218 } mc = {
219         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221 };
222
223 /*
224  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225  * limit reclaim to prevent infinite loops, if they ever occur.
226  */
227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
229
230 enum charge_type {
231         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232         MEM_CGROUP_CHARGE_TYPE_ANON,
233         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
234         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
235         NR_CHARGE_TYPE,
236 };
237
238 /* for encoding cft->private value on file */
239 enum res_type {
240         _MEM,
241         _MEMSWAP,
242         _OOM_TYPE,
243         _KMEM,
244         _TCP,
245 };
246
247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL             (0)
252
253 /* Some nice accessors for the vmpressure. */
254 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255 {
256         if (!memcg)
257                 memcg = root_mem_cgroup;
258         return &memcg->vmpressure;
259 }
260
261 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262 {
263         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 }
265
266 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267 {
268         return (memcg == root_mem_cgroup);
269 }
270
271 #ifndef CONFIG_SLOB
272 /*
273  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
274  * The main reason for not using cgroup id for this:
275  *  this works better in sparse environments, where we have a lot of memcgs,
276  *  but only a few kmem-limited. Or also, if we have, for instance, 200
277  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
278  *  200 entry array for that.
279  *
280  * The current size of the caches array is stored in memcg_nr_cache_ids. It
281  * will double each time we have to increase it.
282  */
283 static DEFINE_IDA(memcg_cache_ida);
284 int memcg_nr_cache_ids;
285
286 /* Protects memcg_nr_cache_ids */
287 static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289 void memcg_get_cache_ids(void)
290 {
291         down_read(&memcg_cache_ids_sem);
292 }
293
294 void memcg_put_cache_ids(void)
295 {
296         up_read(&memcg_cache_ids_sem);
297 }
298
299 /*
300  * MIN_SIZE is different than 1, because we would like to avoid going through
301  * the alloc/free process all the time. In a small machine, 4 kmem-limited
302  * cgroups is a reasonable guess. In the future, it could be a parameter or
303  * tunable, but that is strictly not necessary.
304  *
305  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306  * this constant directly from cgroup, but it is understandable that this is
307  * better kept as an internal representation in cgroup.c. In any case, the
308  * cgrp_id space is not getting any smaller, and we don't have to necessarily
309  * increase ours as well if it increases.
310  */
311 #define MEMCG_CACHES_MIN_SIZE 4
312 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313
314 /*
315  * A lot of the calls to the cache allocation functions are expected to be
316  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317  * conditional to this static branch, we'll have to allow modules that does
318  * kmem_cache_alloc and the such to see this symbol as well
319  */
320 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321 EXPORT_SYMBOL(memcg_kmem_enabled_key);
322
323 #endif /* !CONFIG_SLOB */
324
325 static struct mem_cgroup_per_zone *
326 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
327 {
328         int nid = zone_to_nid(zone);
329         int zid = zone_idx(zone);
330
331         return &memcg->nodeinfo[nid]->zoneinfo[zid];
332 }
333
334 /**
335  * mem_cgroup_css_from_page - css of the memcg associated with a page
336  * @page: page of interest
337  *
338  * If memcg is bound to the default hierarchy, css of the memcg associated
339  * with @page is returned.  The returned css remains associated with @page
340  * until it is released.
341  *
342  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
343  * is returned.
344  */
345 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
346 {
347         struct mem_cgroup *memcg;
348
349         memcg = page->mem_cgroup;
350
351         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
352                 memcg = root_mem_cgroup;
353
354         return &memcg->css;
355 }
356
357 /**
358  * page_cgroup_ino - return inode number of the memcg a page is charged to
359  * @page: the page
360  *
361  * Look up the closest online ancestor of the memory cgroup @page is charged to
362  * and return its inode number or 0 if @page is not charged to any cgroup. It
363  * is safe to call this function without holding a reference to @page.
364  *
365  * Note, this function is inherently racy, because there is nothing to prevent
366  * the cgroup inode from getting torn down and potentially reallocated a moment
367  * after page_cgroup_ino() returns, so it only should be used by callers that
368  * do not care (such as procfs interfaces).
369  */
370 ino_t page_cgroup_ino(struct page *page)
371 {
372         struct mem_cgroup *memcg;
373         unsigned long ino = 0;
374
375         rcu_read_lock();
376         memcg = READ_ONCE(page->mem_cgroup);
377         while (memcg && !(memcg->css.flags & CSS_ONLINE))
378                 memcg = parent_mem_cgroup(memcg);
379         if (memcg)
380                 ino = cgroup_ino(memcg->css.cgroup);
381         rcu_read_unlock();
382         return ino;
383 }
384
385 static struct mem_cgroup_per_zone *
386 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
387 {
388         int nid = page_to_nid(page);
389         int zid = page_zonenum(page);
390
391         return &memcg->nodeinfo[nid]->zoneinfo[zid];
392 }
393
394 static struct mem_cgroup_tree_per_zone *
395 soft_limit_tree_node_zone(int nid, int zid)
396 {
397         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
398 }
399
400 static struct mem_cgroup_tree_per_zone *
401 soft_limit_tree_from_page(struct page *page)
402 {
403         int nid = page_to_nid(page);
404         int zid = page_zonenum(page);
405
406         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
407 }
408
409 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
410                                          struct mem_cgroup_tree_per_zone *mctz,
411                                          unsigned long new_usage_in_excess)
412 {
413         struct rb_node **p = &mctz->rb_root.rb_node;
414         struct rb_node *parent = NULL;
415         struct mem_cgroup_per_zone *mz_node;
416
417         if (mz->on_tree)
418                 return;
419
420         mz->usage_in_excess = new_usage_in_excess;
421         if (!mz->usage_in_excess)
422                 return;
423         while (*p) {
424                 parent = *p;
425                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
426                                         tree_node);
427                 if (mz->usage_in_excess < mz_node->usage_in_excess)
428                         p = &(*p)->rb_left;
429                 /*
430                  * We can't avoid mem cgroups that are over their soft
431                  * limit by the same amount
432                  */
433                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
434                         p = &(*p)->rb_right;
435         }
436         rb_link_node(&mz->tree_node, parent, p);
437         rb_insert_color(&mz->tree_node, &mctz->rb_root);
438         mz->on_tree = true;
439 }
440
441 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
442                                          struct mem_cgroup_tree_per_zone *mctz)
443 {
444         if (!mz->on_tree)
445                 return;
446         rb_erase(&mz->tree_node, &mctz->rb_root);
447         mz->on_tree = false;
448 }
449
450 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
451                                        struct mem_cgroup_tree_per_zone *mctz)
452 {
453         unsigned long flags;
454
455         spin_lock_irqsave(&mctz->lock, flags);
456         __mem_cgroup_remove_exceeded(mz, mctz);
457         spin_unlock_irqrestore(&mctz->lock, flags);
458 }
459
460 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
461 {
462         unsigned long nr_pages = page_counter_read(&memcg->memory);
463         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
464         unsigned long excess = 0;
465
466         if (nr_pages > soft_limit)
467                 excess = nr_pages - soft_limit;
468
469         return excess;
470 }
471
472 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
473 {
474         unsigned long excess;
475         struct mem_cgroup_per_zone *mz;
476         struct mem_cgroup_tree_per_zone *mctz;
477
478         mctz = soft_limit_tree_from_page(page);
479         /*
480          * Necessary to update all ancestors when hierarchy is used.
481          * because their event counter is not touched.
482          */
483         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
484                 mz = mem_cgroup_page_zoneinfo(memcg, page);
485                 excess = soft_limit_excess(memcg);
486                 /*
487                  * We have to update the tree if mz is on RB-tree or
488                  * mem is over its softlimit.
489                  */
490                 if (excess || mz->on_tree) {
491                         unsigned long flags;
492
493                         spin_lock_irqsave(&mctz->lock, flags);
494                         /* if on-tree, remove it */
495                         if (mz->on_tree)
496                                 __mem_cgroup_remove_exceeded(mz, mctz);
497                         /*
498                          * Insert again. mz->usage_in_excess will be updated.
499                          * If excess is 0, no tree ops.
500                          */
501                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
502                         spin_unlock_irqrestore(&mctz->lock, flags);
503                 }
504         }
505 }
506
507 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
508 {
509         struct mem_cgroup_tree_per_zone *mctz;
510         struct mem_cgroup_per_zone *mz;
511         int nid, zid;
512
513         for_each_node(nid) {
514                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
516                         mctz = soft_limit_tree_node_zone(nid, zid);
517                         mem_cgroup_remove_exceeded(mz, mctz);
518                 }
519         }
520 }
521
522 static struct mem_cgroup_per_zone *
523 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524 {
525         struct rb_node *rightmost = NULL;
526         struct mem_cgroup_per_zone *mz;
527
528 retry:
529         mz = NULL;
530         rightmost = rb_last(&mctz->rb_root);
531         if (!rightmost)
532                 goto done;              /* Nothing to reclaim from */
533
534         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
535         /*
536          * Remove the node now but someone else can add it back,
537          * we will to add it back at the end of reclaim to its correct
538          * position in the tree.
539          */
540         __mem_cgroup_remove_exceeded(mz, mctz);
541         if (!soft_limit_excess(mz->memcg) ||
542             !css_tryget_online(&mz->memcg->css))
543                 goto retry;
544 done:
545         return mz;
546 }
547
548 static struct mem_cgroup_per_zone *
549 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
550 {
551         struct mem_cgroup_per_zone *mz;
552
553         spin_lock_irq(&mctz->lock);
554         mz = __mem_cgroup_largest_soft_limit_node(mctz);
555         spin_unlock_irq(&mctz->lock);
556         return mz;
557 }
558
559 /*
560  * Return page count for single (non recursive) @memcg.
561  *
562  * Implementation Note: reading percpu statistics for memcg.
563  *
564  * Both of vmstat[] and percpu_counter has threshold and do periodic
565  * synchronization to implement "quick" read. There are trade-off between
566  * reading cost and precision of value. Then, we may have a chance to implement
567  * a periodic synchronization of counter in memcg's counter.
568  *
569  * But this _read() function is used for user interface now. The user accounts
570  * memory usage by memory cgroup and he _always_ requires exact value because
571  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572  * have to visit all online cpus and make sum. So, for now, unnecessary
573  * synchronization is not implemented. (just implemented for cpu hotplug)
574  *
575  * If there are kernel internal actions which can make use of some not-exact
576  * value, and reading all cpu value can be performance bottleneck in some
577  * common workload, threshold and synchronization as vmstat[] should be
578  * implemented.
579  */
580 static unsigned long
581 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
582 {
583         long val = 0;
584         int cpu;
585
586         /* Per-cpu values can be negative, use a signed accumulator */
587         for_each_possible_cpu(cpu)
588                 val += per_cpu(memcg->stat->count[idx], cpu);
589         /*
590          * Summing races with updates, so val may be negative.  Avoid exposing
591          * transient negative values.
592          */
593         if (val < 0)
594                 val = 0;
595         return val;
596 }
597
598 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
599                                             enum mem_cgroup_events_index idx)
600 {
601         unsigned long val = 0;
602         int cpu;
603
604         for_each_possible_cpu(cpu)
605                 val += per_cpu(memcg->stat->events[idx], cpu);
606         return val;
607 }
608
609 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
610                                          struct page *page,
611                                          bool compound, int nr_pages)
612 {
613         /*
614          * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615          * counted as CACHE even if it's on ANON LRU.
616          */
617         if (PageAnon(page))
618                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
619                                 nr_pages);
620         else
621                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
622                                 nr_pages);
623
624         if (compound) {
625                 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
626                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
627                                 nr_pages);
628         }
629
630         /* pagein of a big page is an event. So, ignore page size */
631         if (nr_pages > 0)
632                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633         else {
634                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635                 nr_pages = -nr_pages; /* for event */
636         }
637
638         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
639 }
640
641 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
642                                            int nid, unsigned int lru_mask)
643 {
644         unsigned long nr = 0;
645         int zid;
646
647         VM_BUG_ON((unsigned)nid >= nr_node_ids);
648
649         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
650                 struct mem_cgroup_per_zone *mz;
651                 enum lru_list lru;
652
653                 for_each_lru(lru) {
654                         if (!(BIT(lru) & lru_mask))
655                                 continue;
656                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
657                         nr += mz->lru_size[lru];
658                 }
659         }
660         return nr;
661 }
662
663 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
664                         unsigned int lru_mask)
665 {
666         unsigned long nr = 0;
667         int nid;
668
669         for_each_node_state(nid, N_MEMORY)
670                 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
671         return nr;
672 }
673
674 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
675                                        enum mem_cgroup_events_target target)
676 {
677         unsigned long val, next;
678
679         val = __this_cpu_read(memcg->stat->nr_page_events);
680         next = __this_cpu_read(memcg->stat->targets[target]);
681         /* from time_after() in jiffies.h */
682         if ((long)next - (long)val < 0) {
683                 switch (target) {
684                 case MEM_CGROUP_TARGET_THRESH:
685                         next = val + THRESHOLDS_EVENTS_TARGET;
686                         break;
687                 case MEM_CGROUP_TARGET_SOFTLIMIT:
688                         next = val + SOFTLIMIT_EVENTS_TARGET;
689                         break;
690                 case MEM_CGROUP_TARGET_NUMAINFO:
691                         next = val + NUMAINFO_EVENTS_TARGET;
692                         break;
693                 default:
694                         break;
695                 }
696                 __this_cpu_write(memcg->stat->targets[target], next);
697                 return true;
698         }
699         return false;
700 }
701
702 /*
703  * Check events in order.
704  *
705  */
706 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
707 {
708         /* threshold event is triggered in finer grain than soft limit */
709         if (unlikely(mem_cgroup_event_ratelimit(memcg,
710                                                 MEM_CGROUP_TARGET_THRESH))) {
711                 bool do_softlimit;
712                 bool do_numainfo __maybe_unused;
713
714                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
715                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
716 #if MAX_NUMNODES > 1
717                 do_numainfo = mem_cgroup_event_ratelimit(memcg,
718                                                 MEM_CGROUP_TARGET_NUMAINFO);
719 #endif
720                 mem_cgroup_threshold(memcg);
721                 if (unlikely(do_softlimit))
722                         mem_cgroup_update_tree(memcg, page);
723 #if MAX_NUMNODES > 1
724                 if (unlikely(do_numainfo))
725                         atomic_inc(&memcg->numainfo_events);
726 #endif
727         }
728 }
729
730 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
731 {
732         /*
733          * mm_update_next_owner() may clear mm->owner to NULL
734          * if it races with swapoff, page migration, etc.
735          * So this can be called with p == NULL.
736          */
737         if (unlikely(!p))
738                 return NULL;
739
740         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
741 }
742 EXPORT_SYMBOL(mem_cgroup_from_task);
743
744 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
745 {
746         struct mem_cgroup *memcg = NULL;
747
748         rcu_read_lock();
749         do {
750                 /*
751                  * Page cache insertions can happen withou an
752                  * actual mm context, e.g. during disk probing
753                  * on boot, loopback IO, acct() writes etc.
754                  */
755                 if (unlikely(!mm))
756                         memcg = root_mem_cgroup;
757                 else {
758                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
759                         if (unlikely(!memcg))
760                                 memcg = root_mem_cgroup;
761                 }
762         } while (!css_tryget_online(&memcg->css));
763         rcu_read_unlock();
764         return memcg;
765 }
766
767 /**
768  * mem_cgroup_iter - iterate over memory cgroup hierarchy
769  * @root: hierarchy root
770  * @prev: previously returned memcg, NULL on first invocation
771  * @reclaim: cookie for shared reclaim walks, NULL for full walks
772  *
773  * Returns references to children of the hierarchy below @root, or
774  * @root itself, or %NULL after a full round-trip.
775  *
776  * Caller must pass the return value in @prev on subsequent
777  * invocations for reference counting, or use mem_cgroup_iter_break()
778  * to cancel a hierarchy walk before the round-trip is complete.
779  *
780  * Reclaimers can specify a zone and a priority level in @reclaim to
781  * divide up the memcgs in the hierarchy among all concurrent
782  * reclaimers operating on the same zone and priority.
783  */
784 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
785                                    struct mem_cgroup *prev,
786                                    struct mem_cgroup_reclaim_cookie *reclaim)
787 {
788         struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
789         struct cgroup_subsys_state *css = NULL;
790         struct mem_cgroup *memcg = NULL;
791         struct mem_cgroup *pos = NULL;
792
793         if (mem_cgroup_disabled())
794                 return NULL;
795
796         if (!root)
797                 root = root_mem_cgroup;
798
799         if (prev && !reclaim)
800                 pos = prev;
801
802         if (!root->use_hierarchy && root != root_mem_cgroup) {
803                 if (prev)
804                         goto out;
805                 return root;
806         }
807
808         rcu_read_lock();
809
810         if (reclaim) {
811                 struct mem_cgroup_per_zone *mz;
812
813                 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
814                 iter = &mz->iter[reclaim->priority];
815
816                 if (prev && reclaim->generation != iter->generation)
817                         goto out_unlock;
818
819                 while (1) {
820                         pos = READ_ONCE(iter->position);
821                         if (!pos || css_tryget(&pos->css))
822                                 break;
823                         /*
824                          * css reference reached zero, so iter->position will
825                          * be cleared by ->css_released. However, we should not
826                          * rely on this happening soon, because ->css_released
827                          * is called from a work queue, and by busy-waiting we
828                          * might block it. So we clear iter->position right
829                          * away.
830                          */
831                         (void)cmpxchg(&iter->position, pos, NULL);
832                 }
833         }
834
835         if (pos)
836                 css = &pos->css;
837
838         for (;;) {
839                 css = css_next_descendant_pre(css, &root->css);
840                 if (!css) {
841                         /*
842                          * Reclaimers share the hierarchy walk, and a
843                          * new one might jump in right at the end of
844                          * the hierarchy - make sure they see at least
845                          * one group and restart from the beginning.
846                          */
847                         if (!prev)
848                                 continue;
849                         break;
850                 }
851
852                 /*
853                  * Verify the css and acquire a reference.  The root
854                  * is provided by the caller, so we know it's alive
855                  * and kicking, and don't take an extra reference.
856                  */
857                 memcg = mem_cgroup_from_css(css);
858
859                 if (css == &root->css)
860                         break;
861
862                 if (css_tryget(css))
863                         break;
864
865                 memcg = NULL;
866         }
867
868         if (reclaim) {
869                 /*
870                  * The position could have already been updated by a competing
871                  * thread, so check that the value hasn't changed since we read
872                  * it to avoid reclaiming from the same cgroup twice.
873                  */
874                 (void)cmpxchg(&iter->position, pos, memcg);
875
876                 if (pos)
877                         css_put(&pos->css);
878
879                 if (!memcg)
880                         iter->generation++;
881                 else if (!prev)
882                         reclaim->generation = iter->generation;
883         }
884
885 out_unlock:
886         rcu_read_unlock();
887 out:
888         if (prev && prev != root)
889                 css_put(&prev->css);
890
891         return memcg;
892 }
893
894 /**
895  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
896  * @root: hierarchy root
897  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
898  */
899 void mem_cgroup_iter_break(struct mem_cgroup *root,
900                            struct mem_cgroup *prev)
901 {
902         if (!root)
903                 root = root_mem_cgroup;
904         if (prev && prev != root)
905                 css_put(&prev->css);
906 }
907
908 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
909 {
910         struct mem_cgroup *memcg = dead_memcg;
911         struct mem_cgroup_reclaim_iter *iter;
912         struct mem_cgroup_per_zone *mz;
913         int nid, zid;
914         int i;
915
916         while ((memcg = parent_mem_cgroup(memcg))) {
917                 for_each_node(nid) {
918                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
919                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
920                                 for (i = 0; i <= DEF_PRIORITY; i++) {
921                                         iter = &mz->iter[i];
922                                         cmpxchg(&iter->position,
923                                                 dead_memcg, NULL);
924                                 }
925                         }
926                 }
927         }
928 }
929
930 /*
931  * Iteration constructs for visiting all cgroups (under a tree).  If
932  * loops are exited prematurely (break), mem_cgroup_iter_break() must
933  * be used for reference counting.
934  */
935 #define for_each_mem_cgroup_tree(iter, root)            \
936         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
937              iter != NULL;                              \
938              iter = mem_cgroup_iter(root, iter, NULL))
939
940 #define for_each_mem_cgroup(iter)                       \
941         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
942              iter != NULL;                              \
943              iter = mem_cgroup_iter(NULL, iter, NULL))
944
945 /**
946  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
947  * @zone: zone of the wanted lruvec
948  * @memcg: memcg of the wanted lruvec
949  *
950  * Returns the lru list vector holding pages for the given @zone and
951  * @mem.  This can be the global zone lruvec, if the memory controller
952  * is disabled.
953  */
954 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
955                                       struct mem_cgroup *memcg)
956 {
957         struct mem_cgroup_per_zone *mz;
958         struct lruvec *lruvec;
959
960         if (mem_cgroup_disabled()) {
961                 lruvec = &zone->lruvec;
962                 goto out;
963         }
964
965         mz = mem_cgroup_zone_zoneinfo(memcg, zone);
966         lruvec = &mz->lruvec;
967 out:
968         /*
969          * Since a node can be onlined after the mem_cgroup was created,
970          * we have to be prepared to initialize lruvec->zone here;
971          * and if offlined then reonlined, we need to reinitialize it.
972          */
973         if (unlikely(lruvec->zone != zone))
974                 lruvec->zone = zone;
975         return lruvec;
976 }
977
978 /**
979  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
980  * @page: the page
981  * @zone: zone of the page
982  *
983  * This function is only safe when following the LRU page isolation
984  * and putback protocol: the LRU lock must be held, and the page must
985  * either be PageLRU() or the caller must have isolated/allocated it.
986  */
987 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
988 {
989         struct mem_cgroup_per_zone *mz;
990         struct mem_cgroup *memcg;
991         struct lruvec *lruvec;
992
993         if (mem_cgroup_disabled()) {
994                 lruvec = &zone->lruvec;
995                 goto out;
996         }
997
998         memcg = page->mem_cgroup;
999         /*
1000          * Swapcache readahead pages are added to the LRU - and
1001          * possibly migrated - before they are charged.
1002          */
1003         if (!memcg)
1004                 memcg = root_mem_cgroup;
1005
1006         mz = mem_cgroup_page_zoneinfo(memcg, page);
1007         lruvec = &mz->lruvec;
1008 out:
1009         /*
1010          * Since a node can be onlined after the mem_cgroup was created,
1011          * we have to be prepared to initialize lruvec->zone here;
1012          * and if offlined then reonlined, we need to reinitialize it.
1013          */
1014         if (unlikely(lruvec->zone != zone))
1015                 lruvec->zone = zone;
1016         return lruvec;
1017 }
1018
1019 /**
1020  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1021  * @lruvec: mem_cgroup per zone lru vector
1022  * @lru: index of lru list the page is sitting on
1023  * @nr_pages: positive when adding or negative when removing
1024  *
1025  * This function must be called when a page is added to or removed from an
1026  * lru list.
1027  */
1028 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1029                                 int nr_pages)
1030 {
1031         struct mem_cgroup_per_zone *mz;
1032         unsigned long *lru_size;
1033
1034         if (mem_cgroup_disabled())
1035                 return;
1036
1037         mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1038         lru_size = mz->lru_size + lru;
1039         *lru_size += nr_pages;
1040         VM_BUG_ON((long)(*lru_size) < 0);
1041 }
1042
1043 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1044 {
1045         struct mem_cgroup *task_memcg;
1046         struct task_struct *p;
1047         bool ret;
1048
1049         p = find_lock_task_mm(task);
1050         if (p) {
1051                 task_memcg = get_mem_cgroup_from_mm(p->mm);
1052                 task_unlock(p);
1053         } else {
1054                 /*
1055                  * All threads may have already detached their mm's, but the oom
1056                  * killer still needs to detect if they have already been oom
1057                  * killed to prevent needlessly killing additional tasks.
1058                  */
1059                 rcu_read_lock();
1060                 task_memcg = mem_cgroup_from_task(task);
1061                 css_get(&task_memcg->css);
1062                 rcu_read_unlock();
1063         }
1064         ret = mem_cgroup_is_descendant(task_memcg, memcg);
1065         css_put(&task_memcg->css);
1066         return ret;
1067 }
1068
1069 /**
1070  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1071  * @memcg: the memory cgroup
1072  *
1073  * Returns the maximum amount of memory @mem can be charged with, in
1074  * pages.
1075  */
1076 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1077 {
1078         unsigned long margin = 0;
1079         unsigned long count;
1080         unsigned long limit;
1081
1082         count = page_counter_read(&memcg->memory);
1083         limit = READ_ONCE(memcg->memory.limit);
1084         if (count < limit)
1085                 margin = limit - count;
1086
1087         if (do_memsw_account()) {
1088                 count = page_counter_read(&memcg->memsw);
1089                 limit = READ_ONCE(memcg->memsw.limit);
1090                 if (count <= limit)
1091                         margin = min(margin, limit - count);
1092         }
1093
1094         return margin;
1095 }
1096
1097 /*
1098  * A routine for checking "mem" is under move_account() or not.
1099  *
1100  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101  * moving cgroups. This is for waiting at high-memory pressure
1102  * caused by "move".
1103  */
1104 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1105 {
1106         struct mem_cgroup *from;
1107         struct mem_cgroup *to;
1108         bool ret = false;
1109         /*
1110          * Unlike task_move routines, we access mc.to, mc.from not under
1111          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112          */
1113         spin_lock(&mc.lock);
1114         from = mc.from;
1115         to = mc.to;
1116         if (!from)
1117                 goto unlock;
1118
1119         ret = mem_cgroup_is_descendant(from, memcg) ||
1120                 mem_cgroup_is_descendant(to, memcg);
1121 unlock:
1122         spin_unlock(&mc.lock);
1123         return ret;
1124 }
1125
1126 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1127 {
1128         if (mc.moving_task && current != mc.moving_task) {
1129                 if (mem_cgroup_under_move(memcg)) {
1130                         DEFINE_WAIT(wait);
1131                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132                         /* moving charge context might have finished. */
1133                         if (mc.moving_task)
1134                                 schedule();
1135                         finish_wait(&mc.waitq, &wait);
1136                         return true;
1137                 }
1138         }
1139         return false;
1140 }
1141
1142 #define K(x) ((x) << (PAGE_SHIFT-10))
1143 /**
1144  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1145  * @memcg: The memory cgroup that went over limit
1146  * @p: Task that is going to be killed
1147  *
1148  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149  * enabled
1150  */
1151 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152 {
1153         /* oom_info_lock ensures that parallel ooms do not interleave */
1154         static DEFINE_MUTEX(oom_info_lock);
1155         struct mem_cgroup *iter;
1156         unsigned int i;
1157
1158         mutex_lock(&oom_info_lock);
1159         rcu_read_lock();
1160
1161         if (p) {
1162                 pr_info("Task in ");
1163                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1164                 pr_cont(" killed as a result of limit of ");
1165         } else {
1166                 pr_info("Memory limit reached of cgroup ");
1167         }
1168
1169         pr_cont_cgroup_path(memcg->css.cgroup);
1170         pr_cont("\n");
1171
1172         rcu_read_unlock();
1173
1174         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1175                 K((u64)page_counter_read(&memcg->memory)),
1176                 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1177         pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1178                 K((u64)page_counter_read(&memcg->memsw)),
1179                 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1180         pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1181                 K((u64)page_counter_read(&memcg->kmem)),
1182                 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1183
1184         for_each_mem_cgroup_tree(iter, memcg) {
1185                 pr_info("Memory cgroup stats for ");
1186                 pr_cont_cgroup_path(iter->css.cgroup);
1187                 pr_cont(":");
1188
1189                 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1190                         if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1191                                 continue;
1192                         pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1193                                 K(mem_cgroup_read_stat(iter, i)));
1194                 }
1195
1196                 for (i = 0; i < NR_LRU_LISTS; i++)
1197                         pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1198                                 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1199
1200                 pr_cont("\n");
1201         }
1202         mutex_unlock(&oom_info_lock);
1203 }
1204
1205 /*
1206  * This function returns the number of memcg under hierarchy tree. Returns
1207  * 1(self count) if no children.
1208  */
1209 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1210 {
1211         int num = 0;
1212         struct mem_cgroup *iter;
1213
1214         for_each_mem_cgroup_tree(iter, memcg)
1215                 num++;
1216         return num;
1217 }
1218
1219 /*
1220  * Return the memory (and swap, if configured) limit for a memcg.
1221  */
1222 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1223 {
1224         unsigned long limit;
1225
1226         limit = memcg->memory.limit;
1227         if (mem_cgroup_swappiness(memcg)) {
1228                 unsigned long memsw_limit;
1229                 unsigned long swap_limit;
1230
1231                 memsw_limit = memcg->memsw.limit;
1232                 swap_limit = memcg->swap.limit;
1233                 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1234                 limit = min(limit + swap_limit, memsw_limit);
1235         }
1236         return limit;
1237 }
1238
1239 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1240                                      int order)
1241 {
1242         struct oom_control oc = {
1243                 .zonelist = NULL,
1244                 .nodemask = NULL,
1245                 .gfp_mask = gfp_mask,
1246                 .order = order,
1247         };
1248         struct mem_cgroup *iter;
1249         unsigned long chosen_points = 0;
1250         unsigned long totalpages;
1251         unsigned int points = 0;
1252         struct task_struct *chosen = NULL;
1253
1254         mutex_lock(&oom_lock);
1255
1256         /*
1257          * If current has a pending SIGKILL or is exiting, then automatically
1258          * select it.  The goal is to allow it to allocate so that it may
1259          * quickly exit and free its memory.
1260          */
1261         if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1262                 mark_oom_victim(current);
1263                 goto unlock;
1264         }
1265
1266         check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1267         totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1268         for_each_mem_cgroup_tree(iter, memcg) {
1269                 struct css_task_iter it;
1270                 struct task_struct *task;
1271
1272                 css_task_iter_start(&iter->css, &it);
1273                 while ((task = css_task_iter_next(&it))) {
1274                         switch (oom_scan_process_thread(&oc, task, totalpages)) {
1275                         case OOM_SCAN_SELECT:
1276                                 if (chosen)
1277                                         put_task_struct(chosen);
1278                                 chosen = task;
1279                                 chosen_points = ULONG_MAX;
1280                                 get_task_struct(chosen);
1281                                 /* fall through */
1282                         case OOM_SCAN_CONTINUE:
1283                                 continue;
1284                         case OOM_SCAN_ABORT:
1285                                 css_task_iter_end(&it);
1286                                 mem_cgroup_iter_break(memcg, iter);
1287                                 if (chosen)
1288                                         put_task_struct(chosen);
1289                                 goto unlock;
1290                         case OOM_SCAN_OK:
1291                                 break;
1292                         };
1293                         points = oom_badness(task, memcg, NULL, totalpages);
1294                         if (!points || points < chosen_points)
1295                                 continue;
1296                         /* Prefer thread group leaders for display purposes */
1297                         if (points == chosen_points &&
1298                             thread_group_leader(chosen))
1299                                 continue;
1300
1301                         if (chosen)
1302                                 put_task_struct(chosen);
1303                         chosen = task;
1304                         chosen_points = points;
1305                         get_task_struct(chosen);
1306                 }
1307                 css_task_iter_end(&it);
1308         }
1309
1310         if (chosen) {
1311                 points = chosen_points * 1000 / totalpages;
1312                 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1313                                  "Memory cgroup out of memory");
1314         }
1315 unlock:
1316         mutex_unlock(&oom_lock);
1317 }
1318
1319 #if MAX_NUMNODES > 1
1320
1321 /**
1322  * test_mem_cgroup_node_reclaimable
1323  * @memcg: the target memcg
1324  * @nid: the node ID to be checked.
1325  * @noswap : specify true here if the user wants flle only information.
1326  *
1327  * This function returns whether the specified memcg contains any
1328  * reclaimable pages on a node. Returns true if there are any reclaimable
1329  * pages in the node.
1330  */
1331 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1332                 int nid, bool noswap)
1333 {
1334         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1335                 return true;
1336         if (noswap || !total_swap_pages)
1337                 return false;
1338         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1339                 return true;
1340         return false;
1341
1342 }
1343
1344 /*
1345  * Always updating the nodemask is not very good - even if we have an empty
1346  * list or the wrong list here, we can start from some node and traverse all
1347  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1348  *
1349  */
1350 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1351 {
1352         int nid;
1353         /*
1354          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1355          * pagein/pageout changes since the last update.
1356          */
1357         if (!atomic_read(&memcg->numainfo_events))
1358                 return;
1359         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1360                 return;
1361
1362         /* make a nodemask where this memcg uses memory from */
1363         memcg->scan_nodes = node_states[N_MEMORY];
1364
1365         for_each_node_mask(nid, node_states[N_MEMORY]) {
1366
1367                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1368                         node_clear(nid, memcg->scan_nodes);
1369         }
1370
1371         atomic_set(&memcg->numainfo_events, 0);
1372         atomic_set(&memcg->numainfo_updating, 0);
1373 }
1374
1375 /*
1376  * Selecting a node where we start reclaim from. Because what we need is just
1377  * reducing usage counter, start from anywhere is O,K. Considering
1378  * memory reclaim from current node, there are pros. and cons.
1379  *
1380  * Freeing memory from current node means freeing memory from a node which
1381  * we'll use or we've used. So, it may make LRU bad. And if several threads
1382  * hit limits, it will see a contention on a node. But freeing from remote
1383  * node means more costs for memory reclaim because of memory latency.
1384  *
1385  * Now, we use round-robin. Better algorithm is welcomed.
1386  */
1387 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1388 {
1389         int node;
1390
1391         mem_cgroup_may_update_nodemask(memcg);
1392         node = memcg->last_scanned_node;
1393
1394         node = next_node(node, memcg->scan_nodes);
1395         if (node == MAX_NUMNODES)
1396                 node = first_node(memcg->scan_nodes);
1397         /*
1398          * We call this when we hit limit, not when pages are added to LRU.
1399          * No LRU may hold pages because all pages are UNEVICTABLE or
1400          * memcg is too small and all pages are not on LRU. In that case,
1401          * we use curret node.
1402          */
1403         if (unlikely(node == MAX_NUMNODES))
1404                 node = numa_node_id();
1405
1406         memcg->last_scanned_node = node;
1407         return node;
1408 }
1409 #else
1410 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1411 {
1412         return 0;
1413 }
1414 #endif
1415
1416 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1417                                    struct zone *zone,
1418                                    gfp_t gfp_mask,
1419                                    unsigned long *total_scanned)
1420 {
1421         struct mem_cgroup *victim = NULL;
1422         int total = 0;
1423         int loop = 0;
1424         unsigned long excess;
1425         unsigned long nr_scanned;
1426         struct mem_cgroup_reclaim_cookie reclaim = {
1427                 .zone = zone,
1428                 .priority = 0,
1429         };
1430
1431         excess = soft_limit_excess(root_memcg);
1432
1433         while (1) {
1434                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1435                 if (!victim) {
1436                         loop++;
1437                         if (loop >= 2) {
1438                                 /*
1439                                  * If we have not been able to reclaim
1440                                  * anything, it might because there are
1441                                  * no reclaimable pages under this hierarchy
1442                                  */
1443                                 if (!total)
1444                                         break;
1445                                 /*
1446                                  * We want to do more targeted reclaim.
1447                                  * excess >> 2 is not to excessive so as to
1448                                  * reclaim too much, nor too less that we keep
1449                                  * coming back to reclaim from this cgroup
1450                                  */
1451                                 if (total >= (excess >> 2) ||
1452                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1453                                         break;
1454                         }
1455                         continue;
1456                 }
1457                 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1458                                                      zone, &nr_scanned);
1459                 *total_scanned += nr_scanned;
1460                 if (!soft_limit_excess(root_memcg))
1461                         break;
1462         }
1463         mem_cgroup_iter_break(root_memcg, victim);
1464         return total;
1465 }
1466
1467 #ifdef CONFIG_LOCKDEP
1468 static struct lockdep_map memcg_oom_lock_dep_map = {
1469         .name = "memcg_oom_lock",
1470 };
1471 #endif
1472
1473 static DEFINE_SPINLOCK(memcg_oom_lock);
1474
1475 /*
1476  * Check OOM-Killer is already running under our hierarchy.
1477  * If someone is running, return false.
1478  */
1479 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1480 {
1481         struct mem_cgroup *iter, *failed = NULL;
1482
1483         spin_lock(&memcg_oom_lock);
1484
1485         for_each_mem_cgroup_tree(iter, memcg) {
1486                 if (iter->oom_lock) {
1487                         /*
1488                          * this subtree of our hierarchy is already locked
1489                          * so we cannot give a lock.
1490                          */
1491                         failed = iter;
1492                         mem_cgroup_iter_break(memcg, iter);
1493                         break;
1494                 } else
1495                         iter->oom_lock = true;
1496         }
1497
1498         if (failed) {
1499                 /*
1500                  * OK, we failed to lock the whole subtree so we have
1501                  * to clean up what we set up to the failing subtree
1502                  */
1503                 for_each_mem_cgroup_tree(iter, memcg) {
1504                         if (iter == failed) {
1505                                 mem_cgroup_iter_break(memcg, iter);
1506                                 break;
1507                         }
1508                         iter->oom_lock = false;
1509                 }
1510         } else
1511                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1512
1513         spin_unlock(&memcg_oom_lock);
1514
1515         return !failed;
1516 }
1517
1518 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1519 {
1520         struct mem_cgroup *iter;
1521
1522         spin_lock(&memcg_oom_lock);
1523         mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1524         for_each_mem_cgroup_tree(iter, memcg)
1525                 iter->oom_lock = false;
1526         spin_unlock(&memcg_oom_lock);
1527 }
1528
1529 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1530 {
1531         struct mem_cgroup *iter;
1532
1533         spin_lock(&memcg_oom_lock);
1534         for_each_mem_cgroup_tree(iter, memcg)
1535                 iter->under_oom++;
1536         spin_unlock(&memcg_oom_lock);
1537 }
1538
1539 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1540 {
1541         struct mem_cgroup *iter;
1542
1543         /*
1544          * When a new child is created while the hierarchy is under oom,
1545          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1546          */
1547         spin_lock(&memcg_oom_lock);
1548         for_each_mem_cgroup_tree(iter, memcg)
1549                 if (iter->under_oom > 0)
1550                         iter->under_oom--;
1551         spin_unlock(&memcg_oom_lock);
1552 }
1553
1554 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1555
1556 struct oom_wait_info {
1557         struct mem_cgroup *memcg;
1558         wait_queue_t    wait;
1559 };
1560
1561 static int memcg_oom_wake_function(wait_queue_t *wait,
1562         unsigned mode, int sync, void *arg)
1563 {
1564         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1565         struct mem_cgroup *oom_wait_memcg;
1566         struct oom_wait_info *oom_wait_info;
1567
1568         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1569         oom_wait_memcg = oom_wait_info->memcg;
1570
1571         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1572             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1573                 return 0;
1574         return autoremove_wake_function(wait, mode, sync, arg);
1575 }
1576
1577 static void memcg_oom_recover(struct mem_cgroup *memcg)
1578 {
1579         /*
1580          * For the following lockless ->under_oom test, the only required
1581          * guarantee is that it must see the state asserted by an OOM when
1582          * this function is called as a result of userland actions
1583          * triggered by the notification of the OOM.  This is trivially
1584          * achieved by invoking mem_cgroup_mark_under_oom() before
1585          * triggering notification.
1586          */
1587         if (memcg && memcg->under_oom)
1588                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1589 }
1590
1591 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1592 {
1593         if (!current->memcg_may_oom)
1594                 return;
1595         /*
1596          * We are in the middle of the charge context here, so we
1597          * don't want to block when potentially sitting on a callstack
1598          * that holds all kinds of filesystem and mm locks.
1599          *
1600          * Also, the caller may handle a failed allocation gracefully
1601          * (like optional page cache readahead) and so an OOM killer
1602          * invocation might not even be necessary.
1603          *
1604          * That's why we don't do anything here except remember the
1605          * OOM context and then deal with it at the end of the page
1606          * fault when the stack is unwound, the locks are released,
1607          * and when we know whether the fault was overall successful.
1608          */
1609         css_get(&memcg->css);
1610         current->memcg_in_oom = memcg;
1611         current->memcg_oom_gfp_mask = mask;
1612         current->memcg_oom_order = order;
1613 }
1614
1615 /**
1616  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1617  * @handle: actually kill/wait or just clean up the OOM state
1618  *
1619  * This has to be called at the end of a page fault if the memcg OOM
1620  * handler was enabled.
1621  *
1622  * Memcg supports userspace OOM handling where failed allocations must
1623  * sleep on a waitqueue until the userspace task resolves the
1624  * situation.  Sleeping directly in the charge context with all kinds
1625  * of locks held is not a good idea, instead we remember an OOM state
1626  * in the task and mem_cgroup_oom_synchronize() has to be called at
1627  * the end of the page fault to complete the OOM handling.
1628  *
1629  * Returns %true if an ongoing memcg OOM situation was detected and
1630  * completed, %false otherwise.
1631  */
1632 bool mem_cgroup_oom_synchronize(bool handle)
1633 {
1634         struct mem_cgroup *memcg = current->memcg_in_oom;
1635         struct oom_wait_info owait;
1636         bool locked;
1637
1638         /* OOM is global, do not handle */
1639         if (!memcg)
1640                 return false;
1641
1642         if (!handle || oom_killer_disabled)
1643                 goto cleanup;
1644
1645         owait.memcg = memcg;
1646         owait.wait.flags = 0;
1647         owait.wait.func = memcg_oom_wake_function;
1648         owait.wait.private = current;
1649         INIT_LIST_HEAD(&owait.wait.task_list);
1650
1651         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1652         mem_cgroup_mark_under_oom(memcg);
1653
1654         locked = mem_cgroup_oom_trylock(memcg);
1655
1656         if (locked)
1657                 mem_cgroup_oom_notify(memcg);
1658
1659         if (locked && !memcg->oom_kill_disable) {
1660                 mem_cgroup_unmark_under_oom(memcg);
1661                 finish_wait(&memcg_oom_waitq, &owait.wait);
1662                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1663                                          current->memcg_oom_order);
1664         } else {
1665                 schedule();
1666                 mem_cgroup_unmark_under_oom(memcg);
1667                 finish_wait(&memcg_oom_waitq, &owait.wait);
1668         }
1669
1670         if (locked) {
1671                 mem_cgroup_oom_unlock(memcg);
1672                 /*
1673                  * There is no guarantee that an OOM-lock contender
1674                  * sees the wakeups triggered by the OOM kill
1675                  * uncharges.  Wake any sleepers explicitely.
1676                  */
1677                 memcg_oom_recover(memcg);
1678         }
1679 cleanup:
1680         current->memcg_in_oom = NULL;
1681         css_put(&memcg->css);
1682         return true;
1683 }
1684
1685 /**
1686  * lock_page_memcg - lock a page->mem_cgroup binding
1687  * @page: the page
1688  *
1689  * This function protects unlocked LRU pages from being moved to
1690  * another cgroup and stabilizes their page->mem_cgroup binding.
1691  */
1692 void lock_page_memcg(struct page *page)
1693 {
1694         struct mem_cgroup *memcg;
1695         unsigned long flags;
1696
1697         /*
1698          * The RCU lock is held throughout the transaction.  The fast
1699          * path can get away without acquiring the memcg->move_lock
1700          * because page moving starts with an RCU grace period.
1701          */
1702         rcu_read_lock();
1703
1704         if (mem_cgroup_disabled())
1705                 return;
1706 again:
1707         memcg = page->mem_cgroup;
1708         if (unlikely(!memcg))
1709                 return;
1710
1711         if (atomic_read(&memcg->moving_account) <= 0)
1712                 return;
1713
1714         spin_lock_irqsave(&memcg->move_lock, flags);
1715         if (memcg != page->mem_cgroup) {
1716                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1717                 goto again;
1718         }
1719
1720         /*
1721          * When charge migration first begins, we can have locked and
1722          * unlocked page stat updates happening concurrently.  Track
1723          * the task who has the lock for unlock_page_memcg().
1724          */
1725         memcg->move_lock_task = current;
1726         memcg->move_lock_flags = flags;
1727
1728         return;
1729 }
1730 EXPORT_SYMBOL(lock_page_memcg);
1731
1732 /**
1733  * unlock_page_memcg - unlock a page->mem_cgroup binding
1734  * @page: the page
1735  */
1736 void unlock_page_memcg(struct page *page)
1737 {
1738         struct mem_cgroup *memcg = page->mem_cgroup;
1739
1740         if (memcg && memcg->move_lock_task == current) {
1741                 unsigned long flags = memcg->move_lock_flags;
1742
1743                 memcg->move_lock_task = NULL;
1744                 memcg->move_lock_flags = 0;
1745
1746                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1747         }
1748
1749         rcu_read_unlock();
1750 }
1751 EXPORT_SYMBOL(unlock_page_memcg);
1752
1753 /*
1754  * size of first charge trial. "32" comes from vmscan.c's magic value.
1755  * TODO: maybe necessary to use big numbers in big irons.
1756  */
1757 #define CHARGE_BATCH    32U
1758 struct memcg_stock_pcp {
1759         struct mem_cgroup *cached; /* this never be root cgroup */
1760         unsigned int nr_pages;
1761         struct work_struct work;
1762         unsigned long flags;
1763 #define FLUSHING_CACHED_CHARGE  0
1764 };
1765 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1766 static DEFINE_MUTEX(percpu_charge_mutex);
1767
1768 /**
1769  * consume_stock: Try to consume stocked charge on this cpu.
1770  * @memcg: memcg to consume from.
1771  * @nr_pages: how many pages to charge.
1772  *
1773  * The charges will only happen if @memcg matches the current cpu's memcg
1774  * stock, and at least @nr_pages are available in that stock.  Failure to
1775  * service an allocation will refill the stock.
1776  *
1777  * returns true if successful, false otherwise.
1778  */
1779 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1780 {
1781         struct memcg_stock_pcp *stock;
1782         bool ret = false;
1783
1784         if (nr_pages > CHARGE_BATCH)
1785                 return ret;
1786
1787         stock = &get_cpu_var(memcg_stock);
1788         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1789                 stock->nr_pages -= nr_pages;
1790                 ret = true;
1791         }
1792         put_cpu_var(memcg_stock);
1793         return ret;
1794 }
1795
1796 /*
1797  * Returns stocks cached in percpu and reset cached information.
1798  */
1799 static void drain_stock(struct memcg_stock_pcp *stock)
1800 {
1801         struct mem_cgroup *old = stock->cached;
1802
1803         if (stock->nr_pages) {
1804                 page_counter_uncharge(&old->memory, stock->nr_pages);
1805                 if (do_memsw_account())
1806                         page_counter_uncharge(&old->memsw, stock->nr_pages);
1807                 css_put_many(&old->css, stock->nr_pages);
1808                 stock->nr_pages = 0;
1809         }
1810         stock->cached = NULL;
1811 }
1812
1813 /*
1814  * This must be called under preempt disabled or must be called by
1815  * a thread which is pinned to local cpu.
1816  */
1817 static void drain_local_stock(struct work_struct *dummy)
1818 {
1819         struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1820         drain_stock(stock);
1821         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1822 }
1823
1824 /*
1825  * Cache charges(val) to local per_cpu area.
1826  * This will be consumed by consume_stock() function, later.
1827  */
1828 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1829 {
1830         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1831
1832         if (stock->cached != memcg) { /* reset if necessary */
1833                 drain_stock(stock);
1834                 stock->cached = memcg;
1835         }
1836         stock->nr_pages += nr_pages;
1837         put_cpu_var(memcg_stock);
1838 }
1839
1840 /*
1841  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1842  * of the hierarchy under it.
1843  */
1844 static void drain_all_stock(struct mem_cgroup *root_memcg)
1845 {
1846         int cpu, curcpu;
1847
1848         /* If someone's already draining, avoid adding running more workers. */
1849         if (!mutex_trylock(&percpu_charge_mutex))
1850                 return;
1851         /* Notify other cpus that system-wide "drain" is running */
1852         get_online_cpus();
1853         curcpu = get_cpu();
1854         for_each_online_cpu(cpu) {
1855                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1856                 struct mem_cgroup *memcg;
1857
1858                 memcg = stock->cached;
1859                 if (!memcg || !stock->nr_pages)
1860                         continue;
1861                 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1862                         continue;
1863                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1864                         if (cpu == curcpu)
1865                                 drain_local_stock(&stock->work);
1866                         else
1867                                 schedule_work_on(cpu, &stock->work);
1868                 }
1869         }
1870         put_cpu();
1871         put_online_cpus();
1872         mutex_unlock(&percpu_charge_mutex);
1873 }
1874
1875 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1876                                         unsigned long action,
1877                                         void *hcpu)
1878 {
1879         int cpu = (unsigned long)hcpu;
1880         struct memcg_stock_pcp *stock;
1881
1882         if (action == CPU_ONLINE)
1883                 return NOTIFY_OK;
1884
1885         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1886                 return NOTIFY_OK;
1887
1888         stock = &per_cpu(memcg_stock, cpu);
1889         drain_stock(stock);
1890         return NOTIFY_OK;
1891 }
1892
1893 static void reclaim_high(struct mem_cgroup *memcg,
1894                          unsigned int nr_pages,
1895                          gfp_t gfp_mask)
1896 {
1897         do {
1898                 if (page_counter_read(&memcg->memory) <= memcg->high)
1899                         continue;
1900                 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1901                 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1902         } while ((memcg = parent_mem_cgroup(memcg)));
1903 }
1904
1905 static void high_work_func(struct work_struct *work)
1906 {
1907         struct mem_cgroup *memcg;
1908
1909         memcg = container_of(work, struct mem_cgroup, high_work);
1910         reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1911 }
1912
1913 /*
1914  * Scheduled by try_charge() to be executed from the userland return path
1915  * and reclaims memory over the high limit.
1916  */
1917 void mem_cgroup_handle_over_high(void)
1918 {
1919         unsigned int nr_pages = current->memcg_nr_pages_over_high;
1920         struct mem_cgroup *memcg;
1921
1922         if (likely(!nr_pages))
1923                 return;
1924
1925         memcg = get_mem_cgroup_from_mm(current->mm);
1926         reclaim_high(memcg, nr_pages, GFP_KERNEL);
1927         css_put(&memcg->css);
1928         current->memcg_nr_pages_over_high = 0;
1929 }
1930
1931 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1932                       unsigned int nr_pages)
1933 {
1934         unsigned int batch = max(CHARGE_BATCH, nr_pages);
1935         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1936         struct mem_cgroup *mem_over_limit;
1937         struct page_counter *counter;
1938         unsigned long nr_reclaimed;
1939         bool may_swap = true;
1940         bool drained = false;
1941
1942         if (mem_cgroup_is_root(memcg))
1943                 return 0;
1944 retry:
1945         if (consume_stock(memcg, nr_pages))
1946                 return 0;
1947
1948         if (!do_memsw_account() ||
1949             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1950                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1951                         goto done_restock;
1952                 if (do_memsw_account())
1953                         page_counter_uncharge(&memcg->memsw, batch);
1954                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1955         } else {
1956                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1957                 may_swap = false;
1958         }
1959
1960         if (batch > nr_pages) {
1961                 batch = nr_pages;
1962                 goto retry;
1963         }
1964
1965         /*
1966          * Unlike in global OOM situations, memcg is not in a physical
1967          * memory shortage.  Allow dying and OOM-killed tasks to
1968          * bypass the last charges so that they can exit quickly and
1969          * free their memory.
1970          */
1971         if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1972                      fatal_signal_pending(current) ||
1973                      current->flags & PF_EXITING))
1974                 goto force;
1975
1976         if (unlikely(task_in_memcg_oom(current)))
1977                 goto nomem;
1978
1979         if (!gfpflags_allow_blocking(gfp_mask))
1980                 goto nomem;
1981
1982         mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1983
1984         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1985                                                     gfp_mask, may_swap);
1986
1987         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1988                 goto retry;
1989
1990         if (!drained) {
1991                 drain_all_stock(mem_over_limit);
1992                 drained = true;
1993                 goto retry;
1994         }
1995
1996         if (gfp_mask & __GFP_NORETRY)
1997                 goto nomem;
1998         /*
1999          * Even though the limit is exceeded at this point, reclaim
2000          * may have been able to free some pages.  Retry the charge
2001          * before killing the task.
2002          *
2003          * Only for regular pages, though: huge pages are rather
2004          * unlikely to succeed so close to the limit, and we fall back
2005          * to regular pages anyway in case of failure.
2006          */
2007         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2008                 goto retry;
2009         /*
2010          * At task move, charge accounts can be doubly counted. So, it's
2011          * better to wait until the end of task_move if something is going on.
2012          */
2013         if (mem_cgroup_wait_acct_move(mem_over_limit))
2014                 goto retry;
2015
2016         if (nr_retries--)
2017                 goto retry;
2018
2019         if (gfp_mask & __GFP_NOFAIL)
2020                 goto force;
2021
2022         if (fatal_signal_pending(current))
2023                 goto force;
2024
2025         mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2026
2027         mem_cgroup_oom(mem_over_limit, gfp_mask,
2028                        get_order(nr_pages * PAGE_SIZE));
2029 nomem:
2030         if (!(gfp_mask & __GFP_NOFAIL))
2031                 return -ENOMEM;
2032 force:
2033         /*
2034          * The allocation either can't fail or will lead to more memory
2035          * being freed very soon.  Allow memory usage go over the limit
2036          * temporarily by force charging it.
2037          */
2038         page_counter_charge(&memcg->memory, nr_pages);
2039         if (do_memsw_account())
2040                 page_counter_charge(&memcg->memsw, nr_pages);
2041         css_get_many(&memcg->css, nr_pages);
2042
2043         return 0;
2044
2045 done_restock:
2046         css_get_many(&memcg->css, batch);
2047         if (batch > nr_pages)
2048                 refill_stock(memcg, batch - nr_pages);
2049
2050         /*
2051          * If the hierarchy is above the normal consumption range, schedule
2052          * reclaim on returning to userland.  We can perform reclaim here
2053          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2054          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2055          * not recorded as it most likely matches current's and won't
2056          * change in the meantime.  As high limit is checked again before
2057          * reclaim, the cost of mismatch is negligible.
2058          */
2059         do {
2060                 if (page_counter_read(&memcg->memory) > memcg->high) {
2061                         /* Don't bother a random interrupted task */
2062                         if (in_interrupt()) {
2063                                 schedule_work(&memcg->high_work);
2064                                 break;
2065                         }
2066                         current->memcg_nr_pages_over_high += batch;
2067                         set_notify_resume(current);
2068                         break;
2069                 }
2070         } while ((memcg = parent_mem_cgroup(memcg)));
2071
2072         return 0;
2073 }
2074
2075 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2076 {
2077         if (mem_cgroup_is_root(memcg))
2078                 return;
2079
2080         page_counter_uncharge(&memcg->memory, nr_pages);
2081         if (do_memsw_account())
2082                 page_counter_uncharge(&memcg->memsw, nr_pages);
2083
2084         css_put_many(&memcg->css, nr_pages);
2085 }
2086
2087 static void lock_page_lru(struct page *page, int *isolated)
2088 {
2089         struct zone *zone = page_zone(page);
2090
2091         spin_lock_irq(&zone->lru_lock);
2092         if (PageLRU(page)) {
2093                 struct lruvec *lruvec;
2094
2095                 lruvec = mem_cgroup_page_lruvec(page, zone);
2096                 ClearPageLRU(page);
2097                 del_page_from_lru_list(page, lruvec, page_lru(page));
2098                 *isolated = 1;
2099         } else
2100                 *isolated = 0;
2101 }
2102
2103 static void unlock_page_lru(struct page *page, int isolated)
2104 {
2105         struct zone *zone = page_zone(page);
2106
2107         if (isolated) {
2108                 struct lruvec *lruvec;
2109
2110                 lruvec = mem_cgroup_page_lruvec(page, zone);
2111                 VM_BUG_ON_PAGE(PageLRU(page), page);
2112                 SetPageLRU(page);
2113                 add_page_to_lru_list(page, lruvec, page_lru(page));
2114         }
2115         spin_unlock_irq(&zone->lru_lock);
2116 }
2117
2118 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2119                           bool lrucare)
2120 {
2121         int isolated;
2122
2123         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2124
2125         /*
2126          * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2127          * may already be on some other mem_cgroup's LRU.  Take care of it.
2128          */
2129         if (lrucare)
2130                 lock_page_lru(page, &isolated);
2131
2132         /*
2133          * Nobody should be changing or seriously looking at
2134          * page->mem_cgroup at this point:
2135          *
2136          * - the page is uncharged
2137          *
2138          * - the page is off-LRU
2139          *
2140          * - an anonymous fault has exclusive page access, except for
2141          *   a locked page table
2142          *
2143          * - a page cache insertion, a swapin fault, or a migration
2144          *   have the page locked
2145          */
2146         page->mem_cgroup = memcg;
2147
2148         if (lrucare)
2149                 unlock_page_lru(page, isolated);
2150 }
2151
2152 #ifndef CONFIG_SLOB
2153 static int memcg_alloc_cache_id(void)
2154 {
2155         int id, size;
2156         int err;
2157
2158         id = ida_simple_get(&memcg_cache_ida,
2159                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2160         if (id < 0)
2161                 return id;
2162
2163         if (id < memcg_nr_cache_ids)
2164                 return id;
2165
2166         /*
2167          * There's no space for the new id in memcg_caches arrays,
2168          * so we have to grow them.
2169          */
2170         down_write(&memcg_cache_ids_sem);
2171
2172         size = 2 * (id + 1);
2173         if (size < MEMCG_CACHES_MIN_SIZE)
2174                 size = MEMCG_CACHES_MIN_SIZE;
2175         else if (size > MEMCG_CACHES_MAX_SIZE)
2176                 size = MEMCG_CACHES_MAX_SIZE;
2177
2178         err = memcg_update_all_caches(size);
2179         if (!err)
2180                 err = memcg_update_all_list_lrus(size);
2181         if (!err)
2182                 memcg_nr_cache_ids = size;
2183
2184         up_write(&memcg_cache_ids_sem);
2185
2186         if (err) {
2187                 ida_simple_remove(&memcg_cache_ida, id);
2188                 return err;
2189         }
2190         return id;
2191 }
2192
2193 static void memcg_free_cache_id(int id)
2194 {
2195         ida_simple_remove(&memcg_cache_ida, id);
2196 }
2197
2198 struct memcg_kmem_cache_create_work {
2199         struct mem_cgroup *memcg;
2200         struct kmem_cache *cachep;
2201         struct work_struct work;
2202 };
2203
2204 static void memcg_kmem_cache_create_func(struct work_struct *w)
2205 {
2206         struct memcg_kmem_cache_create_work *cw =
2207                 container_of(w, struct memcg_kmem_cache_create_work, work);
2208         struct mem_cgroup *memcg = cw->memcg;
2209         struct kmem_cache *cachep = cw->cachep;
2210
2211         memcg_create_kmem_cache(memcg, cachep);
2212
2213         css_put(&memcg->css);
2214         kfree(cw);
2215 }
2216
2217 /*
2218  * Enqueue the creation of a per-memcg kmem_cache.
2219  */
2220 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2221                                                struct kmem_cache *cachep)
2222 {
2223         struct memcg_kmem_cache_create_work *cw;
2224
2225         cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2226         if (!cw)
2227                 return;
2228
2229         css_get(&memcg->css);
2230
2231         cw->memcg = memcg;
2232         cw->cachep = cachep;
2233         INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2234
2235         schedule_work(&cw->work);
2236 }
2237
2238 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2239                                              struct kmem_cache *cachep)
2240 {
2241         /*
2242          * We need to stop accounting when we kmalloc, because if the
2243          * corresponding kmalloc cache is not yet created, the first allocation
2244          * in __memcg_schedule_kmem_cache_create will recurse.
2245          *
2246          * However, it is better to enclose the whole function. Depending on
2247          * the debugging options enabled, INIT_WORK(), for instance, can
2248          * trigger an allocation. This too, will make us recurse. Because at
2249          * this point we can't allow ourselves back into memcg_kmem_get_cache,
2250          * the safest choice is to do it like this, wrapping the whole function.
2251          */
2252         current->memcg_kmem_skip_account = 1;
2253         __memcg_schedule_kmem_cache_create(memcg, cachep);
2254         current->memcg_kmem_skip_account = 0;
2255 }
2256
2257 /*
2258  * Return the kmem_cache we're supposed to use for a slab allocation.
2259  * We try to use the current memcg's version of the cache.
2260  *
2261  * If the cache does not exist yet, if we are the first user of it,
2262  * we either create it immediately, if possible, or create it asynchronously
2263  * in a workqueue.
2264  * In the latter case, we will let the current allocation go through with
2265  * the original cache.
2266  *
2267  * Can't be called in interrupt context or from kernel threads.
2268  * This function needs to be called with rcu_read_lock() held.
2269  */
2270 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2271 {
2272         struct mem_cgroup *memcg;
2273         struct kmem_cache *memcg_cachep;
2274         int kmemcg_id;
2275
2276         VM_BUG_ON(!is_root_cache(cachep));
2277
2278         if (cachep->flags & SLAB_ACCOUNT)
2279                 gfp |= __GFP_ACCOUNT;
2280
2281         if (!(gfp & __GFP_ACCOUNT))
2282                 return cachep;
2283
2284         if (current->memcg_kmem_skip_account)
2285                 return cachep;
2286
2287         memcg = get_mem_cgroup_from_mm(current->mm);
2288         kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2289         if (kmemcg_id < 0)
2290                 goto out;
2291
2292         memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2293         if (likely(memcg_cachep))
2294                 return memcg_cachep;
2295
2296         /*
2297          * If we are in a safe context (can wait, and not in interrupt
2298          * context), we could be be predictable and return right away.
2299          * This would guarantee that the allocation being performed
2300          * already belongs in the new cache.
2301          *
2302          * However, there are some clashes that can arrive from locking.
2303          * For instance, because we acquire the slab_mutex while doing
2304          * memcg_create_kmem_cache, this means no further allocation
2305          * could happen with the slab_mutex held. So it's better to
2306          * defer everything.
2307          */
2308         memcg_schedule_kmem_cache_create(memcg, cachep);
2309 out:
2310         css_put(&memcg->css);
2311         return cachep;
2312 }
2313
2314 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2315 {
2316         if (!is_root_cache(cachep))
2317                 css_put(&cachep->memcg_params.memcg->css);
2318 }
2319
2320 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2321                               struct mem_cgroup *memcg)
2322 {
2323         unsigned int nr_pages = 1 << order;
2324         struct page_counter *counter;
2325         int ret;
2326
2327         ret = try_charge(memcg, gfp, nr_pages);
2328         if (ret)
2329                 return ret;
2330
2331         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2332             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2333                 cancel_charge(memcg, nr_pages);
2334                 return -ENOMEM;
2335         }
2336
2337         page->mem_cgroup = memcg;
2338
2339         return 0;
2340 }
2341
2342 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2343 {
2344         struct mem_cgroup *memcg;
2345         int ret = 0;
2346
2347         memcg = get_mem_cgroup_from_mm(current->mm);
2348         if (!mem_cgroup_is_root(memcg))
2349                 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2350         css_put(&memcg->css);
2351         return ret;
2352 }
2353
2354 void __memcg_kmem_uncharge(struct page *page, int order)
2355 {
2356         struct mem_cgroup *memcg = page->mem_cgroup;
2357         unsigned int nr_pages = 1 << order;
2358
2359         if (!memcg)
2360                 return;
2361
2362         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2363
2364         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2365                 page_counter_uncharge(&memcg->kmem, nr_pages);
2366
2367         page_counter_uncharge(&memcg->memory, nr_pages);
2368         if (do_memsw_account())
2369                 page_counter_uncharge(&memcg->memsw, nr_pages);
2370
2371         page->mem_cgroup = NULL;
2372         css_put_many(&memcg->css, nr_pages);
2373 }
2374 #endif /* !CONFIG_SLOB */
2375
2376 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2377
2378 /*
2379  * Because tail pages are not marked as "used", set it. We're under
2380  * zone->lru_lock and migration entries setup in all page mappings.
2381  */
2382 void mem_cgroup_split_huge_fixup(struct page *head)
2383 {
2384         int i;
2385
2386         if (mem_cgroup_disabled())
2387                 return;
2388
2389         for (i = 1; i < HPAGE_PMD_NR; i++)
2390                 head[i].mem_cgroup = head->mem_cgroup;
2391
2392         __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2393                        HPAGE_PMD_NR);
2394 }
2395 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2396
2397 #ifdef CONFIG_MEMCG_SWAP
2398 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2399                                          bool charge)
2400 {
2401         int val = (charge) ? 1 : -1;
2402         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2403 }
2404
2405 /**
2406  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2407  * @entry: swap entry to be moved
2408  * @from:  mem_cgroup which the entry is moved from
2409  * @to:  mem_cgroup which the entry is moved to
2410  *
2411  * It succeeds only when the swap_cgroup's record for this entry is the same
2412  * as the mem_cgroup's id of @from.
2413  *
2414  * Returns 0 on success, -EINVAL on failure.
2415  *
2416  * The caller must have charged to @to, IOW, called page_counter_charge() about
2417  * both res and memsw, and called css_get().
2418  */
2419 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2420                                 struct mem_cgroup *from, struct mem_cgroup *to)
2421 {
2422         unsigned short old_id, new_id;
2423
2424         old_id = mem_cgroup_id(from);
2425         new_id = mem_cgroup_id(to);
2426
2427         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2428                 mem_cgroup_swap_statistics(from, false);
2429                 mem_cgroup_swap_statistics(to, true);
2430                 return 0;
2431         }
2432         return -EINVAL;
2433 }
2434 #else
2435 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2436                                 struct mem_cgroup *from, struct mem_cgroup *to)
2437 {
2438         return -EINVAL;
2439 }
2440 #endif
2441
2442 static DEFINE_MUTEX(memcg_limit_mutex);
2443
2444 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2445                                    unsigned long limit)
2446 {
2447         unsigned long curusage;
2448         unsigned long oldusage;
2449         bool enlarge = false;
2450         int retry_count;
2451         int ret;
2452
2453         /*
2454          * For keeping hierarchical_reclaim simple, how long we should retry
2455          * is depends on callers. We set our retry-count to be function
2456          * of # of children which we should visit in this loop.
2457          */
2458         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2459                       mem_cgroup_count_children(memcg);
2460
2461         oldusage = page_counter_read(&memcg->memory);
2462
2463         do {
2464                 if (signal_pending(current)) {
2465                         ret = -EINTR;
2466                         break;
2467                 }
2468
2469                 mutex_lock(&memcg_limit_mutex);
2470                 if (limit > memcg->memsw.limit) {
2471                         mutex_unlock(&memcg_limit_mutex);
2472                         ret = -EINVAL;
2473                         break;
2474                 }
2475                 if (limit > memcg->memory.limit)
2476                         enlarge = true;
2477                 ret = page_counter_limit(&memcg->memory, limit);
2478                 mutex_unlock(&memcg_limit_mutex);
2479
2480                 if (!ret)
2481                         break;
2482
2483                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2484
2485                 curusage = page_counter_read(&memcg->memory);
2486                 /* Usage is reduced ? */
2487                 if (curusage >= oldusage)
2488                         retry_count--;
2489                 else
2490                         oldusage = curusage;
2491         } while (retry_count);
2492
2493         if (!ret && enlarge)
2494                 memcg_oom_recover(memcg);
2495
2496         return ret;
2497 }
2498
2499 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2500                                          unsigned long limit)
2501 {
2502         unsigned long curusage;
2503         unsigned long oldusage;
2504         bool enlarge = false;
2505         int retry_count;
2506         int ret;
2507
2508         /* see mem_cgroup_resize_res_limit */
2509         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2510                       mem_cgroup_count_children(memcg);
2511
2512         oldusage = page_counter_read(&memcg->memsw);
2513
2514         do {
2515                 if (signal_pending(current)) {
2516                         ret = -EINTR;
2517                         break;
2518                 }
2519
2520                 mutex_lock(&memcg_limit_mutex);
2521                 if (limit < memcg->memory.limit) {
2522                         mutex_unlock(&memcg_limit_mutex);
2523                         ret = -EINVAL;
2524                         break;
2525                 }
2526                 if (limit > memcg->memsw.limit)
2527                         enlarge = true;
2528                 ret = page_counter_limit(&memcg->memsw, limit);
2529                 mutex_unlock(&memcg_limit_mutex);
2530
2531                 if (!ret)
2532                         break;
2533
2534                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2535
2536                 curusage = page_counter_read(&memcg->memsw);
2537                 /* Usage is reduced ? */
2538                 if (curusage >= oldusage)
2539                         retry_count--;
2540                 else
2541                         oldusage = curusage;
2542         } while (retry_count);
2543
2544         if (!ret && enlarge)
2545                 memcg_oom_recover(memcg);
2546
2547         return ret;
2548 }
2549
2550 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2551                                             gfp_t gfp_mask,
2552                                             unsigned long *total_scanned)
2553 {
2554         unsigned long nr_reclaimed = 0;
2555         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2556         unsigned long reclaimed;
2557         int loop = 0;
2558         struct mem_cgroup_tree_per_zone *mctz;
2559         unsigned long excess;
2560         unsigned long nr_scanned;
2561
2562         if (order > 0)
2563                 return 0;
2564
2565         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2566         /*
2567          * This loop can run a while, specially if mem_cgroup's continuously
2568          * keep exceeding their soft limit and putting the system under
2569          * pressure
2570          */
2571         do {
2572                 if (next_mz)
2573                         mz = next_mz;
2574                 else
2575                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2576                 if (!mz)
2577                         break;
2578
2579                 nr_scanned = 0;
2580                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2581                                                     gfp_mask, &nr_scanned);
2582                 nr_reclaimed += reclaimed;
2583                 *total_scanned += nr_scanned;
2584                 spin_lock_irq(&mctz->lock);
2585                 __mem_cgroup_remove_exceeded(mz, mctz);
2586
2587                 /*
2588                  * If we failed to reclaim anything from this memory cgroup
2589                  * it is time to move on to the next cgroup
2590                  */
2591                 next_mz = NULL;
2592                 if (!reclaimed)
2593                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2594
2595                 excess = soft_limit_excess(mz->memcg);
2596                 /*
2597                  * One school of thought says that we should not add
2598                  * back the node to the tree if reclaim returns 0.
2599                  * But our reclaim could return 0, simply because due
2600                  * to priority we are exposing a smaller subset of
2601                  * memory to reclaim from. Consider this as a longer
2602                  * term TODO.
2603                  */
2604                 /* If excess == 0, no tree ops */
2605                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2606                 spin_unlock_irq(&mctz->lock);
2607                 css_put(&mz->memcg->css);
2608                 loop++;
2609                 /*
2610                  * Could not reclaim anything and there are no more
2611                  * mem cgroups to try or we seem to be looping without
2612                  * reclaiming anything.
2613                  */
2614                 if (!nr_reclaimed &&
2615                         (next_mz == NULL ||
2616                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2617                         break;
2618         } while (!nr_reclaimed);
2619         if (next_mz)
2620                 css_put(&next_mz->memcg->css);
2621         return nr_reclaimed;
2622 }
2623
2624 /*
2625  * Test whether @memcg has children, dead or alive.  Note that this
2626  * function doesn't care whether @memcg has use_hierarchy enabled and
2627  * returns %true if there are child csses according to the cgroup
2628  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2629  */
2630 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2631 {
2632         bool ret;
2633
2634         rcu_read_lock();
2635         ret = css_next_child(NULL, &memcg->css);
2636         rcu_read_unlock();
2637         return ret;
2638 }
2639
2640 /*
2641  * Reclaims as many pages from the given memcg as possible and moves
2642  * the rest to the parent.
2643  *
2644  * Caller is responsible for holding css reference for memcg.
2645  */
2646 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2647 {
2648         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2649
2650         /* we call try-to-free pages for make this cgroup empty */
2651         lru_add_drain_all();
2652         /* try to free all pages in this cgroup */
2653         while (nr_retries && page_counter_read(&memcg->memory)) {
2654                 int progress;
2655
2656                 if (signal_pending(current))
2657                         return -EINTR;
2658
2659                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2660                                                         GFP_KERNEL, true);
2661                 if (!progress) {
2662                         nr_retries--;
2663                         /* maybe some writeback is necessary */
2664                         congestion_wait(BLK_RW_ASYNC, HZ/10);
2665                 }
2666
2667         }
2668
2669         return 0;
2670 }
2671
2672 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2673                                             char *buf, size_t nbytes,
2674                                             loff_t off)
2675 {
2676         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2677
2678         if (mem_cgroup_is_root(memcg))
2679                 return -EINVAL;
2680         return mem_cgroup_force_empty(memcg) ?: nbytes;
2681 }
2682
2683 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2684                                      struct cftype *cft)
2685 {
2686         return mem_cgroup_from_css(css)->use_hierarchy;
2687 }
2688
2689 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2690                                       struct cftype *cft, u64 val)
2691 {
2692         int retval = 0;
2693         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2694         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2695
2696         if (memcg->use_hierarchy == val)
2697                 return 0;
2698
2699         /*
2700          * If parent's use_hierarchy is set, we can't make any modifications
2701          * in the child subtrees. If it is unset, then the change can
2702          * occur, provided the current cgroup has no children.
2703          *
2704          * For the root cgroup, parent_mem is NULL, we allow value to be
2705          * set if there are no children.
2706          */
2707         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2708                                 (val == 1 || val == 0)) {
2709                 if (!memcg_has_children(memcg))
2710                         memcg->use_hierarchy = val;
2711                 else
2712                         retval = -EBUSY;
2713         } else
2714                 retval = -EINVAL;
2715
2716         return retval;
2717 }
2718
2719 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2720 {
2721         struct mem_cgroup *iter;
2722         int i;
2723
2724         memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2725
2726         for_each_mem_cgroup_tree(iter, memcg) {
2727                 for (i = 0; i < MEMCG_NR_STAT; i++)
2728                         stat[i] += mem_cgroup_read_stat(iter, i);
2729         }
2730 }
2731
2732 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2733 {
2734         struct mem_cgroup *iter;
2735         int i;
2736
2737         memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2738
2739         for_each_mem_cgroup_tree(iter, memcg) {
2740                 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2741                         events[i] += mem_cgroup_read_events(iter, i);
2742         }
2743 }
2744
2745 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2746 {
2747         unsigned long val = 0;
2748
2749         if (mem_cgroup_is_root(memcg)) {
2750                 struct mem_cgroup *iter;
2751
2752                 for_each_mem_cgroup_tree(iter, memcg) {
2753                         val += mem_cgroup_read_stat(iter,
2754                                         MEM_CGROUP_STAT_CACHE);
2755                         val += mem_cgroup_read_stat(iter,
2756                                         MEM_CGROUP_STAT_RSS);
2757                         if (swap)
2758                                 val += mem_cgroup_read_stat(iter,
2759                                                 MEM_CGROUP_STAT_SWAP);
2760                 }
2761         } else {
2762                 if (!swap)
2763                         val = page_counter_read(&memcg->memory);
2764                 else
2765                         val = page_counter_read(&memcg->memsw);
2766         }
2767         return val;
2768 }
2769
2770 enum {
2771         RES_USAGE,
2772         RES_LIMIT,
2773         RES_MAX_USAGE,
2774         RES_FAILCNT,
2775         RES_SOFT_LIMIT,
2776 };
2777
2778 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2779                                struct cftype *cft)
2780 {
2781         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2782         struct page_counter *counter;
2783
2784         switch (MEMFILE_TYPE(cft->private)) {
2785         case _MEM:
2786                 counter = &memcg->memory;
2787                 break;
2788         case _MEMSWAP:
2789                 counter = &memcg->memsw;
2790                 break;
2791         case _KMEM:
2792                 counter = &memcg->kmem;
2793                 break;
2794         case _TCP:
2795                 counter = &memcg->tcpmem;
2796                 break;
2797         default:
2798                 BUG();
2799         }
2800
2801         switch (MEMFILE_ATTR(cft->private)) {
2802         case RES_USAGE:
2803                 if (counter == &memcg->memory)
2804                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2805                 if (counter == &memcg->memsw)
2806                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2807                 return (u64)page_counter_read(counter) * PAGE_SIZE;
2808         case RES_LIMIT:
2809                 return (u64)counter->limit * PAGE_SIZE;
2810         case RES_MAX_USAGE:
2811                 return (u64)counter->watermark * PAGE_SIZE;
2812         case RES_FAILCNT:
2813                 return counter->failcnt;
2814         case RES_SOFT_LIMIT:
2815                 return (u64)memcg->soft_limit * PAGE_SIZE;
2816         default:
2817                 BUG();
2818         }
2819 }
2820
2821 #ifndef CONFIG_SLOB
2822 static int memcg_online_kmem(struct mem_cgroup *memcg)
2823 {
2824         int memcg_id;
2825
2826         if (cgroup_memory_nokmem)
2827                 return 0;
2828
2829         BUG_ON(memcg->kmemcg_id >= 0);
2830         BUG_ON(memcg->kmem_state);
2831
2832         memcg_id = memcg_alloc_cache_id();
2833         if (memcg_id < 0)
2834                 return memcg_id;
2835
2836         static_branch_inc(&memcg_kmem_enabled_key);
2837         /*
2838          * A memory cgroup is considered kmem-online as soon as it gets
2839          * kmemcg_id. Setting the id after enabling static branching will
2840          * guarantee no one starts accounting before all call sites are
2841          * patched.
2842          */
2843         memcg->kmemcg_id = memcg_id;
2844         memcg->kmem_state = KMEM_ONLINE;
2845
2846         return 0;
2847 }
2848
2849 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2850 {
2851         struct cgroup_subsys_state *css;
2852         struct mem_cgroup *parent, *child;
2853         int kmemcg_id;
2854
2855         if (memcg->kmem_state != KMEM_ONLINE)
2856                 return;
2857         /*
2858          * Clear the online state before clearing memcg_caches array
2859          * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2860          * guarantees that no cache will be created for this cgroup
2861          * after we are done (see memcg_create_kmem_cache()).
2862          */
2863         memcg->kmem_state = KMEM_ALLOCATED;
2864
2865         memcg_deactivate_kmem_caches(memcg);
2866
2867         kmemcg_id = memcg->kmemcg_id;
2868         BUG_ON(kmemcg_id < 0);
2869
2870         parent = parent_mem_cgroup(memcg);
2871         if (!parent)
2872                 parent = root_mem_cgroup;
2873
2874         /*
2875          * Change kmemcg_id of this cgroup and all its descendants to the
2876          * parent's id, and then move all entries from this cgroup's list_lrus
2877          * to ones of the parent. After we have finished, all list_lrus
2878          * corresponding to this cgroup are guaranteed to remain empty. The
2879          * ordering is imposed by list_lru_node->lock taken by
2880          * memcg_drain_all_list_lrus().
2881          */
2882         css_for_each_descendant_pre(css, &memcg->css) {
2883                 child = mem_cgroup_from_css(css);
2884                 BUG_ON(child->kmemcg_id != kmemcg_id);
2885                 child->kmemcg_id = parent->kmemcg_id;
2886                 if (!memcg->use_hierarchy)
2887                         break;
2888         }
2889         memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2890
2891         memcg_free_cache_id(kmemcg_id);
2892 }
2893
2894 static void memcg_free_kmem(struct mem_cgroup *memcg)
2895 {
2896         /* css_alloc() failed, offlining didn't happen */
2897         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2898                 memcg_offline_kmem(memcg);
2899
2900         if (memcg->kmem_state == KMEM_ALLOCATED) {
2901                 memcg_destroy_kmem_caches(memcg);
2902                 static_branch_dec(&memcg_kmem_enabled_key);
2903                 WARN_ON(page_counter_read(&memcg->kmem));
2904         }
2905 }
2906 #else
2907 static int memcg_online_kmem(struct mem_cgroup *memcg)
2908 {
2909         return 0;
2910 }
2911 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2912 {
2913 }
2914 static void memcg_free_kmem(struct mem_cgroup *memcg)
2915 {
2916 }
2917 #endif /* !CONFIG_SLOB */
2918
2919 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2920                                    unsigned long limit)
2921 {
2922         int ret;
2923
2924         mutex_lock(&memcg_limit_mutex);
2925         ret = page_counter_limit(&memcg->kmem, limit);
2926         mutex_unlock(&memcg_limit_mutex);
2927         return ret;
2928 }
2929
2930 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2931 {
2932         int ret;
2933
2934         mutex_lock(&memcg_limit_mutex);
2935
2936         ret = page_counter_limit(&memcg->tcpmem, limit);
2937         if (ret)
2938                 goto out;
2939
2940         if (!memcg->tcpmem_active) {
2941                 /*
2942                  * The active flag needs to be written after the static_key
2943                  * update. This is what guarantees that the socket activation
2944                  * function is the last one to run. See sock_update_memcg() for
2945                  * details, and note that we don't mark any socket as belonging
2946                  * to this memcg until that flag is up.
2947                  *
2948                  * We need to do this, because static_keys will span multiple
2949                  * sites, but we can't control their order. If we mark a socket
2950                  * as accounted, but the accounting functions are not patched in
2951                  * yet, we'll lose accounting.
2952                  *
2953                  * We never race with the readers in sock_update_memcg(),
2954                  * because when this value change, the code to process it is not
2955                  * patched in yet.
2956                  */
2957                 static_branch_inc(&memcg_sockets_enabled_key);
2958                 memcg->tcpmem_active = true;
2959         }
2960 out:
2961         mutex_unlock(&memcg_limit_mutex);
2962         return ret;
2963 }
2964
2965 /*
2966  * The user of this function is...
2967  * RES_LIMIT.
2968  */
2969 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2970                                 char *buf, size_t nbytes, loff_t off)
2971 {
2972         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2973         unsigned long nr_pages;
2974         int ret;
2975
2976         buf = strstrip(buf);
2977         ret = page_counter_memparse(buf, "-1", &nr_pages);
2978         if (ret)
2979                 return ret;
2980
2981         switch (MEMFILE_ATTR(of_cft(of)->private)) {
2982         case RES_LIMIT:
2983                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2984                         ret = -EINVAL;
2985                         break;
2986                 }
2987                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2988                 case _MEM:
2989                         ret = mem_cgroup_resize_limit(memcg, nr_pages);
2990                         break;
2991                 case _MEMSWAP:
2992                         ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2993                         break;
2994                 case _KMEM:
2995                         ret = memcg_update_kmem_limit(memcg, nr_pages);
2996                         break;
2997                 case _TCP:
2998                         ret = memcg_update_tcp_limit(memcg, nr_pages);
2999                         break;
3000                 }
3001                 break;
3002         case RES_SOFT_LIMIT:
3003                 memcg->soft_limit = nr_pages;
3004                 ret = 0;
3005                 break;
3006         }
3007         return ret ?: nbytes;
3008 }
3009
3010 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3011                                 size_t nbytes, loff_t off)
3012 {
3013         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3014         struct page_counter *counter;
3015
3016         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3017         case _MEM:
3018                 counter = &memcg->memory;
3019                 break;
3020         case _MEMSWAP:
3021                 counter = &memcg->memsw;
3022                 break;
3023         case _KMEM:
3024                 counter = &memcg->kmem;
3025                 break;
3026         case _TCP:
3027                 counter = &memcg->tcpmem;
3028                 break;
3029         default:
3030                 BUG();
3031         }
3032
3033         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3034         case RES_MAX_USAGE:
3035                 page_counter_reset_watermark(counter);
3036                 break;
3037         case RES_FAILCNT:
3038                 counter->failcnt = 0;
3039                 break;
3040         default:
3041                 BUG();
3042         }
3043
3044         return nbytes;
3045 }
3046
3047 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3048                                         struct cftype *cft)
3049 {
3050         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3051 }
3052
3053 #ifdef CONFIG_MMU
3054 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3055                                         struct cftype *cft, u64 val)
3056 {
3057         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3058
3059         if (val & ~MOVE_MASK)
3060                 return -EINVAL;
3061
3062         /*
3063          * No kind of locking is needed in here, because ->can_attach() will
3064          * check this value once in the beginning of the process, and then carry
3065          * on with stale data. This means that changes to this value will only
3066          * affect task migrations starting after the change.
3067          */
3068         memcg->move_charge_at_immigrate = val;
3069         return 0;
3070 }
3071 #else
3072 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3073                                         struct cftype *cft, u64 val)
3074 {
3075         return -ENOSYS;
3076 }
3077 #endif
3078
3079 #ifdef CONFIG_NUMA
3080 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3081 {
3082         struct numa_stat {
3083                 const char *name;
3084                 unsigned int lru_mask;
3085         };
3086
3087         static const struct numa_stat stats[] = {
3088                 { "total", LRU_ALL },
3089                 { "file", LRU_ALL_FILE },
3090                 { "anon", LRU_ALL_ANON },
3091                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3092         };
3093         const struct numa_stat *stat;
3094         int nid;
3095         unsigned long nr;
3096         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3097
3098         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3099                 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3100                 seq_printf(m, "%s=%lu", stat->name, nr);
3101                 for_each_node_state(nid, N_MEMORY) {
3102                         nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3103                                                           stat->lru_mask);
3104                         seq_printf(m, " N%d=%lu", nid, nr);
3105                 }
3106                 seq_putc(m, '\n');
3107         }
3108
3109         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3110                 struct mem_cgroup *iter;
3111
3112                 nr = 0;
3113                 for_each_mem_cgroup_tree(iter, memcg)
3114                         nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3115                 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3116                 for_each_node_state(nid, N_MEMORY) {
3117                         nr = 0;
3118                         for_each_mem_cgroup_tree(iter, memcg)
3119                                 nr += mem_cgroup_node_nr_lru_pages(
3120                                         iter, nid, stat->lru_mask);
3121                         seq_printf(m, " N%d=%lu", nid, nr);
3122                 }
3123                 seq_putc(m, '\n');
3124         }
3125
3126         return 0;
3127 }
3128 #endif /* CONFIG_NUMA */
3129
3130 static int memcg_stat_show(struct seq_file *m, void *v)
3131 {
3132         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3133         unsigned long memory, memsw;
3134         struct mem_cgroup *mi;
3135         unsigned int i;
3136
3137         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3138                      MEM_CGROUP_STAT_NSTATS);
3139         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3140                      MEM_CGROUP_EVENTS_NSTATS);
3141         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3142
3143         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3144                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3145                         continue;
3146                 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3147                            mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3148         }
3149
3150         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3151                 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3152                            mem_cgroup_read_events(memcg, i));
3153
3154         for (i = 0; i < NR_LRU_LISTS; i++)
3155                 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3156                            mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3157
3158         /* Hierarchical information */
3159         memory = memsw = PAGE_COUNTER_MAX;
3160         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3161                 memory = min(memory, mi->memory.limit);
3162                 memsw = min(memsw, mi->memsw.limit);
3163         }
3164         seq_printf(m, "hierarchical_memory_limit %llu\n",
3165                    (u64)memory * PAGE_SIZE);
3166         if (do_memsw_account())
3167                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3168                            (u64)memsw * PAGE_SIZE);
3169
3170         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3171                 unsigned long long val = 0;
3172
3173                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3174                         continue;
3175                 for_each_mem_cgroup_tree(mi, memcg)
3176                         val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3177                 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3178         }
3179
3180         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3181                 unsigned long long val = 0;
3182
3183                 for_each_mem_cgroup_tree(mi, memcg)
3184                         val += mem_cgroup_read_events(mi, i);
3185                 seq_printf(m, "total_%s %llu\n",
3186                            mem_cgroup_events_names[i], val);
3187         }
3188
3189         for (i = 0; i < NR_LRU_LISTS; i++) {
3190                 unsigned long long val = 0;
3191
3192                 for_each_mem_cgroup_tree(mi, memcg)
3193                         val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3194                 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3195         }
3196
3197 #ifdef CONFIG_DEBUG_VM
3198         {
3199                 int nid, zid;
3200                 struct mem_cgroup_per_zone *mz;
3201                 struct zone_reclaim_stat *rstat;
3202                 unsigned long recent_rotated[2] = {0, 0};
3203                 unsigned long recent_scanned[2] = {0, 0};
3204
3205                 for_each_online_node(nid)
3206                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3207                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3208                                 rstat = &mz->lruvec.reclaim_stat;
3209
3210                                 recent_rotated[0] += rstat->recent_rotated[0];
3211                                 recent_rotated[1] += rstat->recent_rotated[1];
3212                                 recent_scanned[0] += rstat->recent_scanned[0];
3213                                 recent_scanned[1] += rstat->recent_scanned[1];
3214                         }
3215                 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3216                 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3217                 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3218                 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3219         }
3220 #endif
3221
3222         return 0;
3223 }
3224
3225 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3226                                       struct cftype *cft)
3227 {
3228         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3229
3230         return mem_cgroup_swappiness(memcg);
3231 }
3232
3233 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3234                                        struct cftype *cft, u64 val)
3235 {
3236         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3237
3238         if (val > 100)
3239                 return -EINVAL;
3240
3241         if (css->parent)
3242                 memcg->swappiness = val;
3243         else
3244                 vm_swappiness = val;
3245
3246         return 0;
3247 }
3248
3249 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3250 {
3251         struct mem_cgroup_threshold_ary *t;
3252         unsigned long usage;
3253         int i;
3254
3255         rcu_read_lock();
3256         if (!swap)
3257                 t = rcu_dereference(memcg->thresholds.primary);
3258         else
3259                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3260
3261         if (!t)
3262                 goto unlock;
3263
3264         usage = mem_cgroup_usage(memcg, swap);
3265
3266         /*
3267          * current_threshold points to threshold just below or equal to usage.
3268          * If it's not true, a threshold was crossed after last
3269          * call of __mem_cgroup_threshold().
3270          */
3271         i = t->current_threshold;
3272
3273         /*
3274          * Iterate backward over array of thresholds starting from
3275          * current_threshold and check if a threshold is crossed.
3276          * If none of thresholds below usage is crossed, we read
3277          * only one element of the array here.
3278          */
3279         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3280                 eventfd_signal(t->entries[i].eventfd, 1);
3281
3282         /* i = current_threshold + 1 */
3283         i++;
3284
3285         /*
3286          * Iterate forward over array of thresholds starting from
3287          * current_threshold+1 and check if a threshold is crossed.
3288          * If none of thresholds above usage is crossed, we read
3289          * only one element of the array here.
3290          */
3291         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3292                 eventfd_signal(t->entries[i].eventfd, 1);
3293
3294         /* Update current_threshold */
3295         t->current_threshold = i - 1;
3296 unlock:
3297         rcu_read_unlock();
3298 }
3299
3300 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3301 {
3302         while (memcg) {
3303                 __mem_cgroup_threshold(memcg, false);
3304                 if (do_memsw_account())
3305                         __mem_cgroup_threshold(memcg, true);
3306
3307                 memcg = parent_mem_cgroup(memcg);
3308         }
3309 }
3310
3311 static int compare_thresholds(const void *a, const void *b)
3312 {
3313         const struct mem_cgroup_threshold *_a = a;
3314         const struct mem_cgroup_threshold *_b = b;
3315
3316         if (_a->threshold > _b->threshold)
3317                 return 1;
3318
3319         if (_a->threshold < _b->threshold)
3320                 return -1;
3321
3322         return 0;
3323 }
3324
3325 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3326 {
3327         struct mem_cgroup_eventfd_list *ev;
3328
3329         spin_lock(&memcg_oom_lock);
3330
3331         list_for_each_entry(ev, &memcg->oom_notify, list)
3332                 eventfd_signal(ev->eventfd, 1);
3333
3334         spin_unlock(&memcg_oom_lock);
3335         return 0;
3336 }
3337
3338 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3339 {
3340         struct mem_cgroup *iter;
3341
3342         for_each_mem_cgroup_tree(iter, memcg)
3343                 mem_cgroup_oom_notify_cb(iter);
3344 }
3345
3346 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3347         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3348 {
3349         struct mem_cgroup_thresholds *thresholds;
3350         struct mem_cgroup_threshold_ary *new;
3351         unsigned long threshold;
3352         unsigned long usage;
3353         int i, size, ret;
3354
3355         ret = page_counter_memparse(args, "-1", &threshold);
3356         if (ret)
3357                 return ret;
3358
3359         mutex_lock(&memcg->thresholds_lock);
3360
3361         if (type == _MEM) {
3362                 thresholds = &memcg->thresholds;
3363                 usage = mem_cgroup_usage(memcg, false);
3364         } else if (type == _MEMSWAP) {
3365                 thresholds = &memcg->memsw_thresholds;
3366                 usage = mem_cgroup_usage(memcg, true);
3367         } else
3368                 BUG();
3369
3370         /* Check if a threshold crossed before adding a new one */
3371         if (thresholds->primary)
3372                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3373
3374         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3375
3376         /* Allocate memory for new array of thresholds */
3377         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3378                         GFP_KERNEL);
3379         if (!new) {
3380                 ret = -ENOMEM;
3381                 goto unlock;
3382         }
3383         new->size = size;
3384
3385         /* Copy thresholds (if any) to new array */
3386         if (thresholds->primary) {
3387                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3388                                 sizeof(struct mem_cgroup_threshold));
3389         }
3390
3391         /* Add new threshold */
3392         new->entries[size - 1].eventfd = eventfd;
3393         new->entries[size - 1].threshold = threshold;
3394
3395         /* Sort thresholds. Registering of new threshold isn't time-critical */
3396         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3397                         compare_thresholds, NULL);
3398
3399         /* Find current threshold */
3400         new->current_threshold = -1;
3401         for (i = 0; i < size; i++) {
3402                 if (new->entries[i].threshold <= usage) {
3403                         /*
3404                          * new->current_threshold will not be used until
3405                          * rcu_assign_pointer(), so it's safe to increment
3406                          * it here.
3407                          */
3408                         ++new->current_threshold;
3409                 } else
3410                         break;
3411         }
3412
3413         /* Free old spare buffer and save old primary buffer as spare */
3414         kfree(thresholds->spare);
3415         thresholds->spare = thresholds->primary;
3416
3417         rcu_assign_pointer(thresholds->primary, new);
3418
3419         /* To be sure that nobody uses thresholds */
3420         synchronize_rcu();
3421
3422 unlock:
3423         mutex_unlock(&memcg->thresholds_lock);
3424
3425         return ret;
3426 }
3427
3428 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3429         struct eventfd_ctx *eventfd, const char *args)
3430 {
3431         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3432 }
3433
3434 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3435         struct eventfd_ctx *eventfd, const char *args)
3436 {
3437         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3438 }
3439
3440 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3441         struct eventfd_ctx *eventfd, enum res_type type)
3442 {
3443         struct mem_cgroup_thresholds *thresholds;
3444         struct mem_cgroup_threshold_ary *new;
3445         unsigned long usage;
3446         int i, j, size;
3447
3448         mutex_lock(&memcg->thresholds_lock);
3449
3450         if (type == _MEM) {
3451                 thresholds = &memcg->thresholds;
3452                 usage = mem_cgroup_usage(memcg, false);
3453         } else if (type == _MEMSWAP) {
3454                 thresholds = &memcg->memsw_thresholds;
3455                 usage = mem_cgroup_usage(memcg, true);
3456         } else
3457                 BUG();
3458
3459         if (!thresholds->primary)
3460                 goto unlock;
3461
3462         /* Check if a threshold crossed before removing */
3463         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3464
3465         /* Calculate new number of threshold */
3466         size = 0;
3467         for (i = 0; i < thresholds->primary->size; i++) {
3468                 if (thresholds->primary->entries[i].eventfd != eventfd)
3469                         size++;
3470         }
3471
3472         new = thresholds->spare;
3473
3474         /* Set thresholds array to NULL if we don't have thresholds */
3475         if (!size) {
3476                 kfree(new);
3477                 new = NULL;
3478                 goto swap_buffers;
3479         }
3480
3481         new->size = size;
3482
3483         /* Copy thresholds and find current threshold */
3484         new->current_threshold = -1;
3485         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3486                 if (thresholds->primary->entries[i].eventfd == eventfd)
3487                         continue;
3488
3489                 new->entries[j] = thresholds->primary->entries[i];
3490                 if (new->entries[j].threshold <= usage) {
3491                         /*
3492                          * new->current_threshold will not be used
3493                          * until rcu_assign_pointer(), so it's safe to increment
3494                          * it here.
3495                          */
3496                         ++new->current_threshold;
3497                 }
3498                 j++;
3499         }
3500
3501 swap_buffers:
3502         /* Swap primary and spare array */
3503         thresholds->spare = thresholds->primary;
3504
3505         rcu_assign_pointer(thresholds->primary, new);
3506
3507         /* To be sure that nobody uses thresholds */
3508         synchronize_rcu();
3509
3510         /* If all events are unregistered, free the spare array */
3511         if (!new) {
3512                 kfree(thresholds->spare);
3513                 thresholds->spare = NULL;
3514         }
3515 unlock:
3516         mutex_unlock(&memcg->thresholds_lock);
3517 }
3518
3519 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3520         struct eventfd_ctx *eventfd)
3521 {
3522         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3523 }
3524
3525 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3526         struct eventfd_ctx *eventfd)
3527 {
3528         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3529 }
3530
3531 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3532         struct eventfd_ctx *eventfd, const char *args)
3533 {
3534         struct mem_cgroup_eventfd_list *event;
3535
3536         event = kmalloc(sizeof(*event), GFP_KERNEL);
3537         if (!event)
3538                 return -ENOMEM;
3539
3540         spin_lock(&memcg_oom_lock);
3541
3542         event->eventfd = eventfd;
3543         list_add(&event->list, &memcg->oom_notify);
3544
3545         /* already in OOM ? */
3546         if (memcg->under_oom)
3547                 eventfd_signal(eventfd, 1);
3548         spin_unlock(&memcg_oom_lock);
3549
3550         return 0;
3551 }
3552
3553 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3554         struct eventfd_ctx *eventfd)
3555 {
3556         struct mem_cgroup_eventfd_list *ev, *tmp;
3557
3558         spin_lock(&memcg_oom_lock);
3559
3560         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3561                 if (ev->eventfd == eventfd) {
3562                         list_del(&ev->list);
3563                         kfree(ev);
3564                 }
3565         }
3566
3567         spin_unlock(&memcg_oom_lock);
3568 }
3569
3570 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3571 {
3572         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3573
3574         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3575         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3576         return 0;
3577 }
3578
3579 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3580         struct cftype *cft, u64 val)
3581 {
3582         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3583
3584         /* cannot set to root cgroup and only 0 and 1 are allowed */
3585         if (!css->parent || !((val == 0) || (val == 1)))
3586                 return -EINVAL;
3587
3588         memcg->oom_kill_disable = val;
3589         if (!val)
3590                 memcg_oom_recover(memcg);
3591
3592         return 0;
3593 }
3594
3595 #ifdef CONFIG_CGROUP_WRITEBACK
3596
3597 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3598 {
3599         return &memcg->cgwb_list;
3600 }
3601
3602 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3603 {
3604         return wb_domain_init(&memcg->cgwb_domain, gfp);
3605 }
3606
3607 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3608 {
3609         wb_domain_exit(&memcg->cgwb_domain);
3610 }
3611
3612 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3613 {
3614         wb_domain_size_changed(&memcg->cgwb_domain);
3615 }
3616
3617 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3618 {
3619         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3620
3621         if (!memcg->css.parent)
3622                 return NULL;
3623
3624         return &memcg->cgwb_domain;
3625 }
3626
3627 /**
3628  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3629  * @wb: bdi_writeback in question
3630  * @pfilepages: out parameter for number of file pages
3631  * @pheadroom: out parameter for number of allocatable pages according to memcg
3632  * @pdirty: out parameter for number of dirty pages
3633  * @pwriteback: out parameter for number of pages under writeback
3634  *
3635  * Determine the numbers of file, headroom, dirty, and writeback pages in
3636  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3637  * is a bit more involved.
3638  *
3639  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3640  * headroom is calculated as the lowest headroom of itself and the
3641  * ancestors.  Note that this doesn't consider the actual amount of
3642  * available memory in the system.  The caller should further cap
3643  * *@pheadroom accordingly.
3644  */
3645 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3646                          unsigned long *pheadroom, unsigned long *pdirty,
3647                          unsigned long *pwriteback)
3648 {
3649         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3650         struct mem_cgroup *parent;
3651
3652         *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3653
3654         /* this should eventually include NR_UNSTABLE_NFS */
3655         *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3656         *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3657                                                      (1 << LRU_ACTIVE_FILE));
3658         *pheadroom = PAGE_COUNTER_MAX;
3659
3660         while ((parent = parent_mem_cgroup(memcg))) {
3661                 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3662                 unsigned long used = page_counter_read(&memcg->memory);
3663
3664                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3665                 memcg = parent;
3666         }
3667 }
3668
3669 #else   /* CONFIG_CGROUP_WRITEBACK */
3670
3671 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3672 {
3673         return 0;
3674 }
3675
3676 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3677 {
3678 }
3679
3680 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3681 {
3682 }
3683
3684 #endif  /* CONFIG_CGROUP_WRITEBACK */
3685
3686 /*
3687  * DO NOT USE IN NEW FILES.
3688  *
3689  * "cgroup.event_control" implementation.
3690  *
3691  * This is way over-engineered.  It tries to support fully configurable
3692  * events for each user.  Such level of flexibility is completely
3693  * unnecessary especially in the light of the planned unified hierarchy.
3694  *
3695  * Please deprecate this and replace with something simpler if at all
3696  * possible.
3697  */
3698
3699 /*
3700  * Unregister event and free resources.
3701  *
3702  * Gets called from workqueue.
3703  */
3704 static void memcg_event_remove(struct work_struct *work)
3705 {
3706         struct mem_cgroup_event *event =
3707                 container_of(work, struct mem_cgroup_event, remove);
3708         struct mem_cgroup *memcg = event->memcg;
3709
3710         remove_wait_queue(event->wqh, &event->wait);
3711
3712         event->unregister_event(memcg, event->eventfd);
3713
3714         /* Notify userspace the event is going away. */
3715         eventfd_signal(event->eventfd, 1);
3716
3717         eventfd_ctx_put(event->eventfd);
3718         kfree(event);
3719         css_put(&memcg->css);
3720 }
3721
3722 /*
3723  * Gets called on POLLHUP on eventfd when user closes it.
3724  *
3725  * Called with wqh->lock held and interrupts disabled.
3726  */
3727 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3728                             int sync, void *key)
3729 {
3730         struct mem_cgroup_event *event =
3731                 container_of(wait, struct mem_cgroup_event, wait);
3732         struct mem_cgroup *memcg = event->memcg;
3733         unsigned long flags = (unsigned long)key;
3734
3735         if (flags & POLLHUP) {
3736                 /*
3737                  * If the event has been detached at cgroup removal, we
3738                  * can simply return knowing the other side will cleanup
3739                  * for us.
3740                  *
3741                  * We can't race against event freeing since the other
3742                  * side will require wqh->lock via remove_wait_queue(),
3743                  * which we hold.
3744                  */
3745                 spin_lock(&memcg->event_list_lock);
3746                 if (!list_empty(&event->list)) {
3747                         list_del_init(&event->list);
3748                         /*
3749                          * We are in atomic context, but cgroup_event_remove()
3750                          * may sleep, so we have to call it in workqueue.
3751                          */
3752                         schedule_work(&event->remove);
3753                 }
3754                 spin_unlock(&memcg->event_list_lock);
3755         }
3756
3757         return 0;
3758 }
3759
3760 static void memcg_event_ptable_queue_proc(struct file *file,
3761                 wait_queue_head_t *wqh, poll_table *pt)
3762 {
3763         struct mem_cgroup_event *event =
3764                 container_of(pt, struct mem_cgroup_event, pt);
3765
3766         event->wqh = wqh;
3767         add_wait_queue(wqh, &event->wait);
3768 }
3769
3770 /*
3771  * DO NOT USE IN NEW FILES.
3772  *
3773  * Parse input and register new cgroup event handler.
3774  *
3775  * Input must be in format '<event_fd> <control_fd> <args>'.
3776  * Interpretation of args is defined by control file implementation.
3777  */
3778 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3779                                          char *buf, size_t nbytes, loff_t off)
3780 {
3781         struct cgroup_subsys_state *css = of_css(of);
3782         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3783         struct mem_cgroup_event *event;
3784         struct cgroup_subsys_state *cfile_css;
3785         unsigned int efd, cfd;
3786         struct fd efile;
3787         struct fd cfile;
3788         const char *name;
3789         char *endp;
3790         int ret;
3791
3792         buf = strstrip(buf);
3793
3794         efd = simple_strtoul(buf, &endp, 10);
3795         if (*endp != ' ')
3796                 return -EINVAL;
3797         buf = endp + 1;
3798
3799         cfd = simple_strtoul(buf, &endp, 10);
3800         if ((*endp != ' ') && (*endp != '\0'))
3801                 return -EINVAL;
3802         buf = endp + 1;
3803
3804         event = kzalloc(sizeof(*event), GFP_KERNEL);
3805         if (!event)
3806                 return -ENOMEM;
3807
3808         event->memcg = memcg;
3809         INIT_LIST_HEAD(&event->list);
3810         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3811         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3812         INIT_WORK(&event->remove, memcg_event_remove);
3813
3814         efile = fdget(efd);
3815         if (!efile.file) {
3816                 ret = -EBADF;
3817                 goto out_kfree;
3818         }
3819
3820         event->eventfd = eventfd_ctx_fileget(efile.file);
3821         if (IS_ERR(event->eventfd)) {
3822                 ret = PTR_ERR(event->eventfd);
3823                 goto out_put_efile;
3824         }
3825
3826         cfile = fdget(cfd);
3827         if (!cfile.file) {
3828                 ret = -EBADF;
3829                 goto out_put_eventfd;
3830         }
3831
3832         /* the process need read permission on control file */
3833         /* AV: shouldn't we check that it's been opened for read instead? */
3834         ret = inode_permission(file_inode(cfile.file), MAY_READ);
3835         if (ret < 0)
3836                 goto out_put_cfile;
3837
3838         /*
3839          * Determine the event callbacks and set them in @event.  This used
3840          * to be done via struct cftype but cgroup core no longer knows
3841          * about these events.  The following is crude but the whole thing
3842          * is for compatibility anyway.
3843          *
3844          * DO NOT ADD NEW FILES.
3845          */
3846         name = cfile.file->f_path.dentry->d_name.name;
3847
3848         if (!strcmp(name, "memory.usage_in_bytes")) {
3849                 event->register_event = mem_cgroup_usage_register_event;
3850                 event->unregister_event = mem_cgroup_usage_unregister_event;
3851         } else if (!strcmp(name, "memory.oom_control")) {
3852                 event->register_event = mem_cgroup_oom_register_event;
3853                 event->unregister_event = mem_cgroup_oom_unregister_event;
3854         } else if (!strcmp(name, "memory.pressure_level")) {
3855                 event->register_event = vmpressure_register_event;
3856                 event->unregister_event = vmpressure_unregister_event;
3857         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3858                 event->register_event = memsw_cgroup_usage_register_event;
3859                 event->unregister_event = memsw_cgroup_usage_unregister_event;
3860         } else {
3861                 ret = -EINVAL;
3862                 goto out_put_cfile;
3863         }
3864
3865         /*
3866          * Verify @cfile should belong to @css.  Also, remaining events are
3867          * automatically removed on cgroup destruction but the removal is
3868          * asynchronous, so take an extra ref on @css.
3869          */
3870         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3871                                                &memory_cgrp_subsys);
3872         ret = -EINVAL;
3873         if (IS_ERR(cfile_css))
3874                 goto out_put_cfile;
3875         if (cfile_css != css) {
3876                 css_put(cfile_css);
3877                 goto out_put_cfile;
3878         }
3879
3880         ret = event->register_event(memcg, event->eventfd, buf);
3881         if (ret)
3882                 goto out_put_css;
3883
3884         efile.file->f_op->poll(efile.file, &event->pt);
3885
3886         spin_lock(&memcg->event_list_lock);
3887         list_add(&event->list, &memcg->event_list);
3888         spin_unlock(&memcg->event_list_lock);
3889
3890         fdput(cfile);
3891         fdput(efile);
3892
3893         return nbytes;
3894
3895 out_put_css:
3896         css_put(css);
3897 out_put_cfile:
3898         fdput(cfile);
3899 out_put_eventfd:
3900         eventfd_ctx_put(event->eventfd);
3901 out_put_efile:
3902         fdput(efile);
3903 out_kfree:
3904         kfree(event);
3905
3906         return ret;
3907 }
3908
3909 static struct cftype mem_cgroup_legacy_files[] = {
3910         {
3911                 .name = "usage_in_bytes",
3912                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3913                 .read_u64 = mem_cgroup_read_u64,
3914         },
3915         {
3916                 .name = "max_usage_in_bytes",
3917                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3918                 .write = mem_cgroup_reset,
3919                 .read_u64 = mem_cgroup_read_u64,
3920         },
3921         {
3922                 .name = "limit_in_bytes",
3923                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3924                 .write = mem_cgroup_write,
3925                 .read_u64 = mem_cgroup_read_u64,
3926         },
3927         {
3928                 .name = "soft_limit_in_bytes",
3929                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3930                 .write = mem_cgroup_write,
3931                 .read_u64 = mem_cgroup_read_u64,
3932         },
3933         {
3934                 .name = "failcnt",
3935                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3936                 .write = mem_cgroup_reset,
3937                 .read_u64 = mem_cgroup_read_u64,
3938         },
3939         {
3940                 .name = "stat",
3941                 .seq_show = memcg_stat_show,
3942         },
3943         {
3944                 .name = "force_empty",
3945                 .write = mem_cgroup_force_empty_write,
3946         },
3947         {
3948                 .name = "use_hierarchy",
3949                 .write_u64 = mem_cgroup_hierarchy_write,
3950                 .read_u64 = mem_cgroup_hierarchy_read,
3951         },
3952         {
3953                 .name = "cgroup.event_control",         /* XXX: for compat */
3954                 .write = memcg_write_event_control,
3955                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3956         },
3957         {
3958                 .name = "swappiness",
3959                 .read_u64 = mem_cgroup_swappiness_read,
3960                 .write_u64 = mem_cgroup_swappiness_write,
3961         },
3962         {
3963                 .name = "move_charge_at_immigrate",
3964                 .read_u64 = mem_cgroup_move_charge_read,
3965                 .write_u64 = mem_cgroup_move_charge_write,
3966         },
3967         {
3968                 .name = "oom_control",
3969                 .seq_show = mem_cgroup_oom_control_read,
3970                 .write_u64 = mem_cgroup_oom_control_write,
3971                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3972         },
3973         {
3974                 .name = "pressure_level",
3975         },
3976 #ifdef CONFIG_NUMA
3977         {
3978                 .name = "numa_stat",
3979                 .seq_show = memcg_numa_stat_show,
3980         },
3981 #endif
3982         {
3983                 .name = "kmem.limit_in_bytes",
3984                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3985                 .write = mem_cgroup_write,
3986                 .read_u64 = mem_cgroup_read_u64,
3987         },
3988         {
3989                 .name = "kmem.usage_in_bytes",
3990                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3991                 .read_u64 = mem_cgroup_read_u64,
3992         },
3993         {
3994                 .name = "kmem.failcnt",
3995                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3996                 .write = mem_cgroup_reset,
3997                 .read_u64 = mem_cgroup_read_u64,
3998         },
3999         {
4000                 .name = "kmem.max_usage_in_bytes",
4001                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4002                 .write = mem_cgroup_reset,
4003                 .read_u64 = mem_cgroup_read_u64,
4004         },
4005 #ifdef CONFIG_SLABINFO
4006         {
4007                 .name = "kmem.slabinfo",
4008                 .seq_start = slab_start,
4009                 .seq_next = slab_next,
4010                 .seq_stop = slab_stop,
4011                 .seq_show = memcg_slab_show,
4012         },
4013 #endif
4014         {
4015                 .name = "kmem.tcp.limit_in_bytes",
4016                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4017                 .write = mem_cgroup_write,
4018                 .read_u64 = mem_cgroup_read_u64,
4019         },
4020         {
4021                 .name = "kmem.tcp.usage_in_bytes",
4022                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4023                 .read_u64 = mem_cgroup_read_u64,
4024         },
4025         {
4026                 .name = "kmem.tcp.failcnt",
4027                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4028                 .write = mem_cgroup_reset,
4029                 .read_u64 = mem_cgroup_read_u64,
4030         },
4031         {
4032                 .name = "kmem.tcp.max_usage_in_bytes",
4033                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4034                 .write = mem_cgroup_reset,
4035                 .read_u64 = mem_cgroup_read_u64,
4036         },
4037         { },    /* terminate */
4038 };
4039
4040 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4041 {
4042         struct mem_cgroup_per_node *pn;
4043         struct mem_cgroup_per_zone *mz;
4044         int zone, tmp = node;
4045         /*
4046          * This routine is called against possible nodes.
4047          * But it's BUG to call kmalloc() against offline node.
4048          *
4049          * TODO: this routine can waste much memory for nodes which will
4050          *       never be onlined. It's better to use memory hotplug callback
4051          *       function.
4052          */
4053         if (!node_state(node, N_NORMAL_MEMORY))
4054                 tmp = -1;
4055         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4056         if (!pn)
4057                 return 1;
4058
4059         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4060                 mz = &pn->zoneinfo[zone];
4061                 lruvec_init(&mz->lruvec);
4062                 mz->usage_in_excess = 0;
4063                 mz->on_tree = false;
4064                 mz->memcg = memcg;
4065         }
4066         memcg->nodeinfo[node] = pn;
4067         return 0;
4068 }
4069
4070 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4071 {
4072         kfree(memcg->nodeinfo[node]);
4073 }
4074
4075 static void mem_cgroup_free(struct mem_cgroup *memcg)
4076 {
4077         int node;
4078
4079         memcg_wb_domain_exit(memcg);
4080         for_each_node(node)
4081                 free_mem_cgroup_per_zone_info(memcg, node);
4082         free_percpu(memcg->stat);
4083         kfree(memcg);
4084 }
4085
4086 static struct mem_cgroup *mem_cgroup_alloc(void)
4087 {
4088         struct mem_cgroup *memcg;
4089         size_t size;
4090         int node;
4091
4092         size = sizeof(struct mem_cgroup);
4093         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4094
4095         memcg = kzalloc(size, GFP_KERNEL);
4096         if (!memcg)
4097                 return NULL;
4098
4099         memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4100         if (!memcg->stat)
4101                 goto fail;
4102
4103         for_each_node(node)
4104                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4105                         goto fail;
4106
4107         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4108                 goto fail;
4109
4110         INIT_WORK(&memcg->high_work, high_work_func);
4111         memcg->last_scanned_node = MAX_NUMNODES;
4112         INIT_LIST_HEAD(&memcg->oom_notify);
4113         mutex_init(&memcg->thresholds_lock);
4114         spin_lock_init(&memcg->move_lock);
4115         vmpressure_init(&memcg->vmpressure);
4116         INIT_LIST_HEAD(&memcg->event_list);
4117         spin_lock_init(&memcg->event_list_lock);
4118         memcg->socket_pressure = jiffies;
4119 #ifndef CONFIG_SLOB
4120         memcg->kmemcg_id = -1;
4121 #endif
4122 #ifdef CONFIG_CGROUP_WRITEBACK
4123         INIT_LIST_HEAD(&memcg->cgwb_list);
4124 #endif
4125         return memcg;
4126 fail:
4127         mem_cgroup_free(memcg);
4128         return NULL;
4129 }
4130
4131 static struct cgroup_subsys_state * __ref
4132 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4133 {
4134         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4135         struct mem_cgroup *memcg;
4136         long error = -ENOMEM;
4137
4138         memcg = mem_cgroup_alloc();
4139         if (!memcg)
4140                 return ERR_PTR(error);
4141
4142         memcg->high = PAGE_COUNTER_MAX;
4143         memcg->soft_limit = PAGE_COUNTER_MAX;
4144         if (parent) {
4145                 memcg->swappiness = mem_cgroup_swappiness(parent);
4146                 memcg->oom_kill_disable = parent->oom_kill_disable;
4147         }
4148         if (parent && parent->use_hierarchy) {
4149                 memcg->use_hierarchy = true;
4150                 page_counter_init(&memcg->memory, &parent->memory);
4151                 page_counter_init(&memcg->swap, &parent->swap);
4152                 page_counter_init(&memcg->memsw, &parent->memsw);
4153                 page_counter_init(&memcg->kmem, &parent->kmem);
4154                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4155         } else {
4156                 page_counter_init(&memcg->memory, NULL);
4157                 page_counter_init(&memcg->swap, NULL);
4158                 page_counter_init(&memcg->memsw, NULL);
4159                 page_counter_init(&memcg->kmem, NULL);
4160                 page_counter_init(&memcg->tcpmem, NULL);
4161                 /*
4162                  * Deeper hierachy with use_hierarchy == false doesn't make
4163                  * much sense so let cgroup subsystem know about this
4164                  * unfortunate state in our controller.
4165                  */
4166                 if (parent != root_mem_cgroup)
4167                         memory_cgrp_subsys.broken_hierarchy = true;
4168         }
4169
4170         /* The following stuff does not apply to the root */
4171         if (!parent) {
4172                 root_mem_cgroup = memcg;
4173                 return &memcg->css;
4174         }
4175
4176         error = memcg_online_kmem(memcg);
4177         if (error)
4178                 goto fail;
4179
4180         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4181                 static_branch_inc(&memcg_sockets_enabled_key);
4182
4183         return &memcg->css;
4184 fail:
4185         mem_cgroup_free(memcg);
4186         return NULL;
4187 }
4188
4189 static int
4190 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4191 {
4192         if (css->id > MEM_CGROUP_ID_MAX)
4193                 return -ENOSPC;
4194
4195         return 0;
4196 }
4197
4198 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4199 {
4200         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4201         struct mem_cgroup_event *event, *tmp;
4202
4203         /*
4204          * Unregister events and notify userspace.
4205          * Notify userspace about cgroup removing only after rmdir of cgroup
4206          * directory to avoid race between userspace and kernelspace.
4207          */
4208         spin_lock(&memcg->event_list_lock);
4209         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4210                 list_del_init(&event->list);
4211                 schedule_work(&event->remove);
4212         }
4213         spin_unlock(&memcg->event_list_lock);
4214
4215         memcg_offline_kmem(memcg);
4216         wb_memcg_offline(memcg);
4217 }
4218
4219 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4220 {
4221         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4222
4223         invalidate_reclaim_iterators(memcg);
4224 }
4225
4226 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4227 {
4228         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4229
4230         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4231                 static_branch_dec(&memcg_sockets_enabled_key);
4232
4233         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4234                 static_branch_dec(&memcg_sockets_enabled_key);
4235
4236         vmpressure_cleanup(&memcg->vmpressure);
4237         cancel_work_sync(&memcg->high_work);
4238         mem_cgroup_remove_from_trees(memcg);
4239         memcg_free_kmem(memcg);
4240         mem_cgroup_free(memcg);
4241 }
4242
4243 /**
4244  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4245  * @css: the target css
4246  *
4247  * Reset the states of the mem_cgroup associated with @css.  This is
4248  * invoked when the userland requests disabling on the default hierarchy
4249  * but the memcg is pinned through dependency.  The memcg should stop
4250  * applying policies and should revert to the vanilla state as it may be
4251  * made visible again.
4252  *
4253  * The current implementation only resets the essential configurations.
4254  * This needs to be expanded to cover all the visible parts.
4255  */
4256 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4257 {
4258         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4259
4260         page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4261         page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4262         page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4263         page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4264         page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4265         memcg->low = 0;
4266         memcg->high = PAGE_COUNTER_MAX;
4267         memcg->soft_limit = PAGE_COUNTER_MAX;
4268         memcg_wb_domain_size_changed(memcg);
4269 }
4270
4271 #ifdef CONFIG_MMU
4272 /* Handlers for move charge at task migration. */
4273 static int mem_cgroup_do_precharge(unsigned long count)
4274 {
4275         int ret;
4276
4277         /* Try a single bulk charge without reclaim first, kswapd may wake */
4278         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4279         if (!ret) {
4280                 mc.precharge += count;
4281                 return ret;
4282         }
4283
4284         /* Try charges one by one with reclaim */
4285         while (count--) {
4286                 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4287                 if (ret)
4288                         return ret;
4289                 mc.precharge++;
4290                 cond_resched();
4291         }
4292         return 0;
4293 }
4294
4295 /**
4296  * get_mctgt_type - get target type of moving charge
4297  * @vma: the vma the pte to be checked belongs
4298  * @addr: the address corresponding to the pte to be checked
4299  * @ptent: the pte to be checked
4300  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4301  *
4302  * Returns
4303  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4304  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4305  *     move charge. if @target is not NULL, the page is stored in target->page
4306  *     with extra refcnt got(Callers should handle it).
4307  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4308  *     target for charge migration. if @target is not NULL, the entry is stored
4309  *     in target->ent.
4310  *
4311  * Called with pte lock held.
4312  */
4313 union mc_target {
4314         struct page     *page;
4315         swp_entry_t     ent;
4316 };
4317
4318 enum mc_target_type {
4319         MC_TARGET_NONE = 0,
4320         MC_TARGET_PAGE,
4321         MC_TARGET_SWAP,
4322 };
4323
4324 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4325                                                 unsigned long addr, pte_t ptent)
4326 {
4327         struct page *page = vm_normal_page(vma, addr, ptent);
4328
4329         if (!page || !page_mapped(page))
4330                 return NULL;
4331         if (PageAnon(page)) {
4332                 if (!(mc.flags & MOVE_ANON))
4333                         return NULL;
4334         } else {
4335                 if (!(mc.flags & MOVE_FILE))
4336                         return NULL;
4337         }
4338         if (!get_page_unless_zero(page))
4339                 return NULL;
4340
4341         return page;
4342 }
4343
4344 #ifdef CONFIG_SWAP
4345 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4346                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4347 {
4348         struct page *page = NULL;
4349         swp_entry_t ent = pte_to_swp_entry(ptent);
4350
4351         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4352                 return NULL;
4353         /*
4354          * Because lookup_swap_cache() updates some statistics counter,
4355          * we call find_get_page() with swapper_space directly.
4356          */
4357         page = find_get_page(swap_address_space(ent), ent.val);
4358         if (do_memsw_account())
4359                 entry->val = ent.val;
4360
4361         return page;
4362 }
4363 #else
4364 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4365                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4366 {
4367         return NULL;
4368 }
4369 #endif
4370
4371 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4372                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4373 {
4374         struct page *page = NULL;
4375         struct address_space *mapping;
4376         pgoff_t pgoff;
4377
4378         if (!vma->vm_file) /* anonymous vma */
4379                 return NULL;
4380         if (!(mc.flags & MOVE_FILE))
4381                 return NULL;
4382
4383         mapping = vma->vm_file->f_mapping;
4384         pgoff = linear_page_index(vma, addr);
4385
4386         /* page is moved even if it's not RSS of this task(page-faulted). */
4387 #ifdef CONFIG_SWAP
4388         /* shmem/tmpfs may report page out on swap: account for that too. */
4389         if (shmem_mapping(mapping)) {
4390                 page = find_get_entry(mapping, pgoff);
4391                 if (radix_tree_exceptional_entry(page)) {
4392                         swp_entry_t swp = radix_to_swp_entry(page);
4393                         if (do_memsw_account())
4394                                 *entry = swp;
4395                         page = find_get_page(swap_address_space(swp), swp.val);
4396                 }
4397         } else
4398                 page = find_get_page(mapping, pgoff);
4399 #else
4400         page = find_get_page(mapping, pgoff);
4401 #endif
4402         return page;
4403 }
4404
4405 /**
4406  * mem_cgroup_move_account - move account of the page
4407  * @page: the page
4408  * @nr_pages: number of regular pages (>1 for huge pages)
4409  * @from: mem_cgroup which the page is moved from.
4410  * @to: mem_cgroup which the page is moved to. @from != @to.
4411  *
4412  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4413  *
4414  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4415  * from old cgroup.
4416  */
4417 static int mem_cgroup_move_account(struct page *page,
4418                                    bool compound,
4419                                    struct mem_cgroup *from,
4420                                    struct mem_cgroup *to)
4421 {
4422         unsigned long flags;
4423         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4424         int ret;
4425         bool anon;
4426
4427         VM_BUG_ON(from == to);
4428         VM_BUG_ON_PAGE(PageLRU(page), page);
4429         VM_BUG_ON(compound && !PageTransHuge(page));
4430
4431         /*
4432          * Prevent mem_cgroup_migrate() from looking at
4433          * page->mem_cgroup of its source page while we change it.
4434          */
4435         ret = -EBUSY;
4436         if (!trylock_page(page))
4437                 goto out;
4438
4439         ret = -EINVAL;
4440         if (page->mem_cgroup != from)
4441                 goto out_unlock;
4442
4443         anon = PageAnon(page);
4444
4445         spin_lock_irqsave(&from->move_lock, flags);
4446
4447         if (!anon && page_mapped(page)) {
4448                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4449                                nr_pages);
4450                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4451                                nr_pages);
4452         }
4453
4454         /*
4455          * move_lock grabbed above and caller set from->moving_account, so
4456          * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4457          * So mapping should be stable for dirty pages.
4458          */
4459         if (!anon && PageDirty(page)) {
4460                 struct address_space *mapping = page_mapping(page);
4461
4462                 if (mapping_cap_account_dirty(mapping)) {
4463                         __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4464                                        nr_pages);
4465                         __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4466                                        nr_pages);
4467                 }
4468         }
4469
4470         if (PageWriteback(page)) {
4471                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4472                                nr_pages);
4473                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4474                                nr_pages);
4475         }
4476
4477         /*
4478          * It is safe to change page->mem_cgroup here because the page
4479          * is referenced, charged, and isolated - we can't race with
4480          * uncharging, charging, migration, or LRU putback.
4481          */
4482
4483         /* caller should have done css_get */
4484         page->mem_cgroup = to;
4485         spin_unlock_irqrestore(&from->move_lock, flags);
4486
4487         ret = 0;
4488
4489         local_irq_disable();
4490         mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4491         memcg_check_events(to, page);
4492         mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4493         memcg_check_events(from, page);
4494         local_irq_enable();
4495 out_unlock:
4496         unlock_page(page);
4497 out:
4498         return ret;
4499 }
4500
4501 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4502                 unsigned long addr, pte_t ptent, union mc_target *target)
4503 {
4504         struct page *page = NULL;
4505         enum mc_target_type ret = MC_TARGET_NONE;
4506         swp_entry_t ent = { .val = 0 };
4507
4508         if (pte_present(ptent))
4509                 page = mc_handle_present_pte(vma, addr, ptent);
4510         else if (is_swap_pte(ptent))
4511                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4512         else if (pte_none(ptent))
4513                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4514
4515         if (!page && !ent.val)
4516                 return ret;
4517         if (page) {
4518                 /*
4519                  * Do only loose check w/o serialization.
4520                  * mem_cgroup_move_account() checks the page is valid or
4521                  * not under LRU exclusion.
4522                  */
4523                 if (page->mem_cgroup == mc.from) {
4524                         ret = MC_TARGET_PAGE;
4525                         if (target)
4526                                 target->page = page;
4527                 }
4528                 if (!ret || !target)
4529                         put_page(page);
4530         }
4531         /* There is a swap entry and a page doesn't exist or isn't charged */
4532         if (ent.val && !ret &&
4533             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4534                 ret = MC_TARGET_SWAP;
4535                 if (target)
4536                         target->ent = ent;
4537         }
4538         return ret;
4539 }
4540
4541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4542 /*
4543  * We don't consider swapping or file mapped pages because THP does not
4544  * support them for now.
4545  * Caller should make sure that pmd_trans_huge(pmd) is true.
4546  */
4547 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4548                 unsigned long addr, pmd_t pmd, union mc_target *target)
4549 {
4550         struct page *page = NULL;
4551         enum mc_target_type ret = MC_TARGET_NONE;
4552
4553         page = pmd_page(pmd);
4554         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4555         if (!(mc.flags & MOVE_ANON))
4556                 return ret;
4557         if (page->mem_cgroup == mc.from) {
4558                 ret = MC_TARGET_PAGE;
4559                 if (target) {
4560                         get_page(page);
4561                         target->page = page;
4562                 }
4563         }
4564         return ret;
4565 }
4566 #else
4567 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4568                 unsigned long addr, pmd_t pmd, union mc_target *target)
4569 {
4570         return MC_TARGET_NONE;
4571 }
4572 #endif
4573
4574 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4575                                         unsigned long addr, unsigned long end,
4576                                         struct mm_walk *walk)
4577 {
4578         struct vm_area_struct *vma = walk->vma;
4579         pte_t *pte;
4580         spinlock_t *ptl;
4581
4582         ptl = pmd_trans_huge_lock(pmd, vma);
4583         if (ptl) {
4584                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4585                         mc.precharge += HPAGE_PMD_NR;
4586                 spin_unlock(ptl);
4587                 return 0;
4588         }
4589
4590         if (pmd_trans_unstable(pmd))
4591                 return 0;
4592         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4593         for (; addr != end; pte++, addr += PAGE_SIZE)
4594                 if (get_mctgt_type(vma, addr, *pte, NULL))
4595                         mc.precharge++; /* increment precharge temporarily */
4596         pte_unmap_unlock(pte - 1, ptl);
4597         cond_resched();
4598
4599         return 0;
4600 }
4601
4602 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4603 {
4604         unsigned long precharge;
4605
4606         struct mm_walk mem_cgroup_count_precharge_walk = {
4607                 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4608                 .mm = mm,
4609         };
4610         down_read(&mm->mmap_sem);
4611         walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4612         up_read(&mm->mmap_sem);
4613
4614         precharge = mc.precharge;
4615         mc.precharge = 0;
4616
4617         return precharge;
4618 }
4619
4620 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4621 {
4622         unsigned long precharge = mem_cgroup_count_precharge(mm);
4623
4624         VM_BUG_ON(mc.moving_task);
4625         mc.moving_task = current;
4626         return mem_cgroup_do_precharge(precharge);
4627 }
4628
4629 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4630 static void __mem_cgroup_clear_mc(void)
4631 {
4632         struct mem_cgroup *from = mc.from;
4633         struct mem_cgroup *to = mc.to;
4634
4635         /* we must uncharge all the leftover precharges from mc.to */
4636         if (mc.precharge) {
4637                 cancel_charge(mc.to, mc.precharge);
4638                 mc.precharge = 0;
4639         }
4640         /*
4641          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4642          * we must uncharge here.
4643          */
4644         if (mc.moved_charge) {
4645                 cancel_charge(mc.from, mc.moved_charge);
4646                 mc.moved_charge = 0;
4647         }
4648         /* we must fixup refcnts and charges */
4649         if (mc.moved_swap) {
4650                 /* uncharge swap account from the old cgroup */
4651                 if (!mem_cgroup_is_root(mc.from))
4652                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4653
4654                 /*
4655                  * we charged both to->memory and to->memsw, so we
4656                  * should uncharge to->memory.
4657                  */
4658                 if (!mem_cgroup_is_root(mc.to))
4659                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4660
4661                 css_put_many(&mc.from->css, mc.moved_swap);
4662
4663                 /* we've already done css_get(mc.to) */
4664                 mc.moved_swap = 0;
4665         }
4666         memcg_oom_recover(from);
4667         memcg_oom_recover(to);
4668         wake_up_all(&mc.waitq);
4669 }
4670
4671 static void mem_cgroup_clear_mc(void)
4672 {
4673         /*
4674          * we must clear moving_task before waking up waiters at the end of
4675          * task migration.
4676          */
4677         mc.moving_task = NULL;
4678         __mem_cgroup_clear_mc();
4679         spin_lock(&mc.lock);
4680         mc.from = NULL;
4681         mc.to = NULL;
4682         spin_unlock(&mc.lock);
4683 }
4684
4685 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4686 {
4687         struct cgroup_subsys_state *css;
4688         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4689         struct mem_cgroup *from;
4690         struct task_struct *leader, *p;
4691         struct mm_struct *mm;
4692         unsigned long move_flags;
4693         int ret = 0;
4694
4695         /* charge immigration isn't supported on the default hierarchy */
4696         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4697                 return 0;
4698
4699         /*
4700          * Multi-process migrations only happen on the default hierarchy
4701          * where charge immigration is not used.  Perform charge
4702          * immigration if @tset contains a leader and whine if there are
4703          * multiple.
4704          */
4705         p = NULL;
4706         cgroup_taskset_for_each_leader(leader, css, tset) {
4707                 WARN_ON_ONCE(p);
4708                 p = leader;
4709                 memcg = mem_cgroup_from_css(css);
4710         }
4711         if (!p)
4712                 return 0;
4713
4714         /*
4715          * We are now commited to this value whatever it is. Changes in this
4716          * tunable will only affect upcoming migrations, not the current one.
4717          * So we need to save it, and keep it going.
4718          */
4719         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4720         if (!move_flags)
4721                 return 0;
4722
4723         from = mem_cgroup_from_task(p);
4724
4725         VM_BUG_ON(from == memcg);
4726
4727         mm = get_task_mm(p);
4728         if (!mm)
4729                 return 0;
4730         /* We move charges only when we move a owner of the mm */
4731         if (mm->owner == p) {
4732                 VM_BUG_ON(mc.from);
4733                 VM_BUG_ON(mc.to);
4734                 VM_BUG_ON(mc.precharge);
4735                 VM_BUG_ON(mc.moved_charge);
4736                 VM_BUG_ON(mc.moved_swap);
4737
4738                 spin_lock(&mc.lock);
4739                 mc.from = from;
4740                 mc.to = memcg;
4741                 mc.flags = move_flags;
4742                 spin_unlock(&mc.lock);
4743                 /* We set mc.moving_task later */
4744
4745                 ret = mem_cgroup_precharge_mc(mm);
4746                 if (ret)
4747                         mem_cgroup_clear_mc();
4748         }
4749         mmput(mm);
4750         return ret;
4751 }
4752
4753 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4754 {
4755         if (mc.to)
4756                 mem_cgroup_clear_mc();
4757 }
4758
4759 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4760                                 unsigned long addr, unsigned long end,
4761                                 struct mm_walk *walk)
4762 {
4763         int ret = 0;
4764         struct vm_area_struct *vma = walk->vma;
4765         pte_t *pte;
4766         spinlock_t *ptl;
4767         enum mc_target_type target_type;
4768         union mc_target target;
4769         struct page *page;
4770
4771         ptl = pmd_trans_huge_lock(pmd, vma);
4772         if (ptl) {
4773                 if (mc.precharge < HPAGE_PMD_NR) {
4774                         spin_unlock(ptl);
4775                         return 0;
4776                 }
4777                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4778                 if (target_type == MC_TARGET_PAGE) {
4779                         page = target.page;
4780                         if (!isolate_lru_page(page)) {
4781                                 if (!mem_cgroup_move_account(page, true,
4782                                                              mc.from, mc.to)) {
4783                                         mc.precharge -= HPAGE_PMD_NR;
4784                                         mc.moved_charge += HPAGE_PMD_NR;
4785                                 }
4786                                 putback_lru_page(page);
4787                         }
4788                         put_page(page);
4789                 }
4790                 spin_unlock(ptl);
4791                 return 0;
4792         }
4793
4794         if (pmd_trans_unstable(pmd))
4795                 return 0;
4796 retry:
4797         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4798         for (; addr != end; addr += PAGE_SIZE) {
4799                 pte_t ptent = *(pte++);
4800                 swp_entry_t ent;
4801
4802                 if (!mc.precharge)
4803                         break;
4804
4805                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4806                 case MC_TARGET_PAGE:
4807                         page = target.page;
4808                         /*
4809                          * We can have a part of the split pmd here. Moving it
4810                          * can be done but it would be too convoluted so simply
4811                          * ignore such a partial THP and keep it in original
4812                          * memcg. There should be somebody mapping the head.
4813                          */
4814                         if (PageTransCompound(page))
4815                                 goto put;
4816                         if (isolate_lru_page(page))
4817                                 goto put;
4818                         if (!mem_cgroup_move_account(page, false,
4819                                                 mc.from, mc.to)) {
4820                                 mc.precharge--;
4821                                 /* we uncharge from mc.from later. */
4822                                 mc.moved_charge++;
4823                         }
4824                         putback_lru_page(page);
4825 put:                    /* get_mctgt_type() gets the page */
4826                         put_page(page);
4827                         break;
4828                 case MC_TARGET_SWAP:
4829                         ent = target.ent;
4830                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4831                                 mc.precharge--;
4832                                 /* we fixup refcnts and charges later. */
4833                                 mc.moved_swap++;
4834                         }
4835                         break;
4836                 default:
4837                         break;
4838                 }
4839         }
4840         pte_unmap_unlock(pte - 1, ptl);
4841         cond_resched();
4842
4843         if (addr != end) {
4844                 /*
4845                  * We have consumed all precharges we got in can_attach().
4846                  * We try charge one by one, but don't do any additional
4847                  * charges to mc.to if we have failed in charge once in attach()
4848                  * phase.
4849                  */
4850                 ret = mem_cgroup_do_precharge(1);
4851                 if (!ret)
4852                         goto retry;
4853         }
4854
4855         return ret;
4856 }
4857
4858 static void mem_cgroup_move_charge(struct mm_struct *mm)
4859 {
4860         struct mm_walk mem_cgroup_move_charge_walk = {
4861                 .pmd_entry = mem_cgroup_move_charge_pte_range,
4862                 .mm = mm,
4863         };
4864
4865         lru_add_drain_all();
4866         /*
4867          * Signal lock_page_memcg() to take the memcg's move_lock
4868          * while we're moving its pages to another memcg. Then wait
4869          * for already started RCU-only updates to finish.
4870          */
4871         atomic_inc(&mc.from->moving_account);
4872         synchronize_rcu();
4873 retry:
4874         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4875                 /*
4876                  * Someone who are holding the mmap_sem might be waiting in
4877                  * waitq. So we cancel all extra charges, wake up all waiters,
4878                  * and retry. Because we cancel precharges, we might not be able
4879                  * to move enough charges, but moving charge is a best-effort
4880                  * feature anyway, so it wouldn't be a big problem.
4881                  */
4882                 __mem_cgroup_clear_mc();
4883                 cond_resched();
4884                 goto retry;
4885         }
4886         /*
4887          * When we have consumed all precharges and failed in doing
4888          * additional charge, the page walk just aborts.
4889          */
4890         walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4891         up_read(&mm->mmap_sem);
4892         atomic_dec(&mc.from->moving_account);
4893 }
4894
4895 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4896 {
4897         struct cgroup_subsys_state *css;
4898         struct task_struct *p = cgroup_taskset_first(tset, &css);
4899         struct mm_struct *mm = get_task_mm(p);
4900
4901         if (mm) {
4902                 if (mc.to)
4903                         mem_cgroup_move_charge(mm);
4904                 mmput(mm);
4905         }
4906         if (mc.to)
4907                 mem_cgroup_clear_mc();
4908 }
4909 #else   /* !CONFIG_MMU */
4910 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4911 {
4912         return 0;
4913 }
4914 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4915 {
4916 }
4917 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4918 {
4919 }
4920 #endif
4921
4922 /*
4923  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4924  * to verify whether we're attached to the default hierarchy on each mount
4925  * attempt.
4926  */
4927 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4928 {
4929         /*
4930          * use_hierarchy is forced on the default hierarchy.  cgroup core
4931          * guarantees that @root doesn't have any children, so turning it
4932          * on for the root memcg is enough.
4933          */
4934         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4935                 root_mem_cgroup->use_hierarchy = true;
4936         else
4937                 root_mem_cgroup->use_hierarchy = false;
4938 }
4939
4940 static u64 memory_current_read(struct cgroup_subsys_state *css,
4941                                struct cftype *cft)
4942 {
4943         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4944
4945         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4946 }
4947
4948 static int memory_low_show(struct seq_file *m, void *v)
4949 {
4950         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4951         unsigned long low = READ_ONCE(memcg->low);
4952
4953         if (low == PAGE_COUNTER_MAX)
4954                 seq_puts(m, "max\n");
4955         else
4956                 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4957
4958         return 0;
4959 }
4960
4961 static ssize_t memory_low_write(struct kernfs_open_file *of,
4962                                 char *buf, size_t nbytes, loff_t off)
4963 {
4964         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4965         unsigned long low;
4966         int err;
4967
4968         buf = strstrip(buf);
4969         err = page_counter_memparse(buf, "max", &low);
4970         if (err)
4971                 return err;
4972
4973         memcg->low = low;
4974
4975         return nbytes;
4976 }
4977
4978 static int memory_high_show(struct seq_file *m, void *v)
4979 {
4980         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4981         unsigned long high = READ_ONCE(memcg->high);
4982
4983         if (high == PAGE_COUNTER_MAX)
4984                 seq_puts(m, "max\n");
4985         else
4986                 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4987
4988         return 0;
4989 }
4990
4991 static ssize_t memory_high_write(struct kernfs_open_file *of,
4992                                  char *buf, size_t nbytes, loff_t off)
4993 {
4994         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4995         unsigned long nr_pages;
4996         unsigned long high;
4997         int err;
4998
4999         buf = strstrip(buf);
5000         err = page_counter_memparse(buf, "max", &high);
5001         if (err)
5002                 return err;
5003
5004         memcg->high = high;
5005
5006         nr_pages = page_counter_read(&memcg->memory);
5007         if (nr_pages > high)
5008                 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5009                                              GFP_KERNEL, true);
5010
5011         memcg_wb_domain_size_changed(memcg);
5012         return nbytes;
5013 }
5014
5015 static int memory_max_show(struct seq_file *m, void *v)
5016 {
5017         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5018         unsigned long max = READ_ONCE(memcg->memory.limit);
5019
5020         if (max == PAGE_COUNTER_MAX)
5021                 seq_puts(m, "max\n");
5022         else
5023                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5024
5025         return 0;
5026 }
5027
5028 static ssize_t memory_max_write(struct kernfs_open_file *of,
5029                                 char *buf, size_t nbytes, loff_t off)
5030 {
5031         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5032         unsigned long max;
5033         int err;
5034
5035         buf = strstrip(buf);
5036         err = page_counter_memparse(buf, "max", &max);
5037         if (err)
5038                 return err;
5039
5040         err = mem_cgroup_resize_limit(memcg, max);
5041         if (err)
5042                 return err;
5043
5044         memcg_wb_domain_size_changed(memcg);
5045         return nbytes;
5046 }
5047
5048 static int memory_events_show(struct seq_file *m, void *v)
5049 {
5050         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5051
5052         seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5053         seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5054         seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5055         seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5056
5057         return 0;
5058 }
5059
5060 static int memory_stat_show(struct seq_file *m, void *v)
5061 {
5062         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5063         unsigned long stat[MEMCG_NR_STAT];
5064         unsigned long events[MEMCG_NR_EVENTS];
5065         int i;
5066
5067         /*
5068          * Provide statistics on the state of the memory subsystem as
5069          * well as cumulative event counters that show past behavior.
5070          *
5071          * This list is ordered following a combination of these gradients:
5072          * 1) generic big picture -> specifics and details
5073          * 2) reflecting userspace activity -> reflecting kernel heuristics
5074          *
5075          * Current memory state:
5076          */
5077
5078         tree_stat(memcg, stat);
5079         tree_events(memcg, events);
5080
5081         seq_printf(m, "anon %llu\n",
5082                    (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5083         seq_printf(m, "file %llu\n",
5084                    (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5085         seq_printf(m, "kernel_stack %llu\n",
5086                    (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5087         seq_printf(m, "slab %llu\n",
5088                    (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5089                          stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5090         seq_printf(m, "sock %llu\n",
5091                    (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5092
5093         seq_printf(m, "file_mapped %llu\n",
5094                    (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5095         seq_printf(m, "file_dirty %llu\n",
5096                    (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5097         seq_printf(m, "file_writeback %llu\n",
5098                    (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5099
5100         for (i = 0; i < NR_LRU_LISTS; i++) {
5101                 struct mem_cgroup *mi;
5102                 unsigned long val = 0;
5103
5104                 for_each_mem_cgroup_tree(mi, memcg)
5105                         val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5106                 seq_printf(m, "%s %llu\n",
5107                            mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5108         }
5109
5110         seq_printf(m, "slab_reclaimable %llu\n",
5111                    (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5112         seq_printf(m, "slab_unreclaimable %llu\n",
5113                    (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5114
5115         /* Accumulated memory events */
5116
5117         seq_printf(m, "pgfault %lu\n",
5118                    events[MEM_CGROUP_EVENTS_PGFAULT]);
5119         seq_printf(m, "pgmajfault %lu\n",
5120                    events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5121
5122         return 0;
5123 }
5124
5125 static struct cftype memory_files[] = {
5126         {
5127                 .name = "current",
5128                 .flags = CFTYPE_NOT_ON_ROOT,
5129                 .read_u64 = memory_current_read,
5130         },
5131         {
5132                 .name = "low",
5133                 .flags = CFTYPE_NOT_ON_ROOT,
5134                 .seq_show = memory_low_show,
5135                 .write = memory_low_write,
5136         },
5137         {
5138                 .name = "high",
5139                 .flags = CFTYPE_NOT_ON_ROOT,
5140                 .seq_show = memory_high_show,
5141                 .write = memory_high_write,
5142         },
5143         {
5144                 .name = "max",
5145                 .flags = CFTYPE_NOT_ON_ROOT,
5146                 .seq_show = memory_max_show,
5147                 .write = memory_max_write,
5148         },
5149         {
5150                 .name = "events",
5151                 .flags = CFTYPE_NOT_ON_ROOT,
5152                 .file_offset = offsetof(struct mem_cgroup, events_file),
5153                 .seq_show = memory_events_show,
5154         },
5155         {
5156                 .name = "stat",
5157                 .flags = CFTYPE_NOT_ON_ROOT,
5158                 .seq_show = memory_stat_show,
5159         },
5160         { }     /* terminate */
5161 };
5162
5163 struct cgroup_subsys memory_cgrp_subsys = {
5164         .css_alloc = mem_cgroup_css_alloc,
5165         .css_online = mem_cgroup_css_online,
5166         .css_offline = mem_cgroup_css_offline,
5167         .css_released = mem_cgroup_css_released,
5168         .css_free = mem_cgroup_css_free,
5169         .css_reset = mem_cgroup_css_reset,
5170         .can_attach = mem_cgroup_can_attach,
5171         .cancel_attach = mem_cgroup_cancel_attach,
5172         .attach = mem_cgroup_move_task,
5173         .bind = mem_cgroup_bind,
5174         .dfl_cftypes = memory_files,
5175         .legacy_cftypes = mem_cgroup_legacy_files,
5176         .early_init = 0,
5177 };
5178
5179 /**
5180  * mem_cgroup_low - check if memory consumption is below the normal range
5181  * @root: the highest ancestor to consider
5182  * @memcg: the memory cgroup to check
5183  *
5184  * Returns %true if memory consumption of @memcg, and that of all
5185  * configurable ancestors up to @root, is below the normal range.
5186  */
5187 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5188 {
5189         if (mem_cgroup_disabled())
5190                 return false;
5191
5192         /*
5193          * The toplevel group doesn't have a configurable range, so
5194          * it's never low when looked at directly, and it is not
5195          * considered an ancestor when assessing the hierarchy.
5196          */
5197
5198         if (memcg == root_mem_cgroup)
5199                 return false;
5200
5201         if (page_counter_read(&memcg->memory) >= memcg->low)
5202                 return false;
5203
5204         while (memcg != root) {
5205                 memcg = parent_mem_cgroup(memcg);
5206
5207                 if (memcg == root_mem_cgroup)
5208                         break;
5209
5210                 if (page_counter_read(&memcg->memory) >= memcg->low)
5211                         return false;
5212         }
5213         return true;
5214 }
5215
5216 /**
5217  * mem_cgroup_try_charge - try charging a page
5218  * @page: page to charge
5219  * @mm: mm context of the victim
5220  * @gfp_mask: reclaim mode
5221  * @memcgp: charged memcg return
5222  *
5223  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5224  * pages according to @gfp_mask if necessary.
5225  *
5226  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5227  * Otherwise, an error code is returned.
5228  *
5229  * After page->mapping has been set up, the caller must finalize the
5230  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5231  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5232  */
5233 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5234                           gfp_t gfp_mask, struct mem_cgroup **memcgp,
5235                           bool compound)
5236 {
5237         struct mem_cgroup *memcg = NULL;
5238         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5239         int ret = 0;
5240
5241         if (mem_cgroup_disabled())
5242                 goto out;
5243
5244         if (PageSwapCache(page)) {
5245                 /*
5246                  * Every swap fault against a single page tries to charge the
5247                  * page, bail as early as possible.  shmem_unuse() encounters
5248                  * already charged pages, too.  The USED bit is protected by
5249                  * the page lock, which serializes swap cache removal, which
5250                  * in turn serializes uncharging.
5251                  */
5252                 VM_BUG_ON_PAGE(!PageLocked(page), page);
5253                 if (page->mem_cgroup)
5254                         goto out;
5255
5256                 if (do_swap_account) {
5257                         swp_entry_t ent = { .val = page_private(page), };
5258                         unsigned short id = lookup_swap_cgroup_id(ent);
5259
5260                         rcu_read_lock();
5261                         memcg = mem_cgroup_from_id(id);
5262                         if (memcg && !css_tryget_online(&memcg->css))
5263                                 memcg = NULL;
5264                         rcu_read_unlock();
5265                 }
5266         }
5267
5268         if (!memcg)
5269                 memcg = get_mem_cgroup_from_mm(mm);
5270
5271         ret = try_charge(memcg, gfp_mask, nr_pages);
5272
5273         css_put(&memcg->css);
5274 out:
5275         *memcgp = memcg;
5276         return ret;
5277 }
5278
5279 /**
5280  * mem_cgroup_commit_charge - commit a page charge
5281  * @page: page to charge
5282  * @memcg: memcg to charge the page to
5283  * @lrucare: page might be on LRU already
5284  *
5285  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5286  * after page->mapping has been set up.  This must happen atomically
5287  * as part of the page instantiation, i.e. under the page table lock
5288  * for anonymous pages, under the page lock for page and swap cache.
5289  *
5290  * In addition, the page must not be on the LRU during the commit, to
5291  * prevent racing with task migration.  If it might be, use @lrucare.
5292  *
5293  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5294  */
5295 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5296                               bool lrucare, bool compound)
5297 {
5298         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5299
5300         VM_BUG_ON_PAGE(!page->mapping, page);
5301         VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5302
5303         if (mem_cgroup_disabled())
5304                 return;
5305         /*
5306          * Swap faults will attempt to charge the same page multiple
5307          * times.  But reuse_swap_page() might have removed the page
5308          * from swapcache already, so we can't check PageSwapCache().
5309          */
5310         if (!memcg)
5311                 return;
5312
5313         commit_charge(page, memcg, lrucare);
5314
5315         local_irq_disable();
5316         mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5317         memcg_check_events(memcg, page);
5318         local_irq_enable();
5319
5320         if (do_memsw_account() && PageSwapCache(page)) {
5321                 swp_entry_t entry = { .val = page_private(page) };
5322                 /*
5323                  * The swap entry might not get freed for a long time,
5324                  * let's not wait for it.  The page already received a
5325                  * memory+swap charge, drop the swap entry duplicate.
5326                  */
5327                 mem_cgroup_uncharge_swap(entry);
5328         }
5329 }
5330
5331 /**
5332  * mem_cgroup_cancel_charge - cancel a page charge
5333  * @page: page to charge
5334  * @memcg: memcg to charge the page to
5335  *
5336  * Cancel a charge transaction started by mem_cgroup_try_charge().
5337  */
5338 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5339                 bool compound)
5340 {
5341         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5342
5343         if (mem_cgroup_disabled())
5344                 return;
5345         /*
5346          * Swap faults will attempt to charge the same page multiple
5347          * times.  But reuse_swap_page() might have removed the page
5348          * from swapcache already, so we can't check PageSwapCache().
5349          */
5350         if (!memcg)
5351                 return;
5352
5353         cancel_charge(memcg, nr_pages);
5354 }
5355
5356 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5357                            unsigned long nr_anon, unsigned long nr_file,
5358                            unsigned long nr_huge, struct page *dummy_page)
5359 {
5360         unsigned long nr_pages = nr_anon + nr_file;
5361         unsigned long flags;
5362
5363         if (!mem_cgroup_is_root(memcg)) {
5364                 page_counter_uncharge(&memcg->memory, nr_pages);
5365                 if (do_memsw_account())
5366                         page_counter_uncharge(&memcg->memsw, nr_pages);
5367                 memcg_oom_recover(memcg);
5368         }
5369
5370         local_irq_save(flags);
5371         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5372         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5373         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5374         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5375         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5376         memcg_check_events(memcg, dummy_page);
5377         local_irq_restore(flags);
5378
5379         if (!mem_cgroup_is_root(memcg))
5380                 css_put_many(&memcg->css, nr_pages);
5381 }
5382
5383 static void uncharge_list(struct list_head *page_list)
5384 {
5385         struct mem_cgroup *memcg = NULL;
5386         unsigned long nr_anon = 0;
5387         unsigned long nr_file = 0;
5388         unsigned long nr_huge = 0;
5389         unsigned long pgpgout = 0;
5390         struct list_head *next;
5391         struct page *page;
5392
5393         next = page_list->next;
5394         do {
5395                 unsigned int nr_pages = 1;
5396
5397                 page = list_entry(next, struct page, lru);
5398                 next = page->lru.next;
5399
5400                 VM_BUG_ON_PAGE(PageLRU(page), page);
5401                 VM_BUG_ON_PAGE(page_count(page), page);
5402
5403                 if (!page->mem_cgroup)
5404                         continue;
5405
5406                 /*
5407                  * Nobody should be changing or seriously looking at
5408                  * page->mem_cgroup at this point, we have fully
5409                  * exclusive access to the page.
5410                  */
5411
5412                 if (memcg != page->mem_cgroup) {
5413                         if (memcg) {
5414                                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5415                                                nr_huge, page);
5416                                 pgpgout = nr_anon = nr_file = nr_huge = 0;
5417                         }
5418                         memcg = page->mem_cgroup;
5419                 }
5420
5421                 if (PageTransHuge(page)) {
5422                         nr_pages <<= compound_order(page);
5423                         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5424                         nr_huge += nr_pages;
5425                 }
5426
5427                 if (PageAnon(page))
5428                         nr_anon += nr_pages;
5429                 else
5430                         nr_file += nr_pages;
5431
5432                 page->mem_cgroup = NULL;
5433
5434                 pgpgout++;
5435         } while (next != page_list);
5436
5437         if (memcg)
5438                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5439                                nr_huge, page);
5440 }
5441
5442 /**
5443  * mem_cgroup_uncharge - uncharge a page
5444  * @page: page to uncharge
5445  *
5446  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5447  * mem_cgroup_commit_charge().
5448  */
5449 void mem_cgroup_uncharge(struct page *page)
5450 {
5451         if (mem_cgroup_disabled())
5452                 return;
5453
5454         /* Don't touch page->lru of any random page, pre-check: */
5455         if (!page->mem_cgroup)
5456                 return;
5457
5458         INIT_LIST_HEAD(&page->lru);
5459         uncharge_list(&page->lru);
5460 }
5461
5462 /**
5463  * mem_cgroup_uncharge_list - uncharge a list of page
5464  * @page_list: list of pages to uncharge
5465  *
5466  * Uncharge a list of pages previously charged with
5467  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5468  */
5469 void mem_cgroup_uncharge_list(struct list_head *page_list)
5470 {
5471         if (mem_cgroup_disabled())
5472                 return;
5473
5474         if (!list_empty(page_list))
5475                 uncharge_list(page_list);
5476 }
5477
5478 /**
5479  * mem_cgroup_migrate - charge a page's replacement
5480  * @oldpage: currently circulating page
5481  * @newpage: replacement page
5482  *
5483  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5484  * be uncharged upon free.
5485  *
5486  * Both pages must be locked, @newpage->mapping must be set up.
5487  */
5488 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5489 {
5490         struct mem_cgroup *memcg;
5491         unsigned int nr_pages;
5492         bool compound;
5493
5494         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5495         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5496         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5497         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5498                        newpage);
5499
5500         if (mem_cgroup_disabled())
5501                 return;
5502
5503         /* Page cache replacement: new page already charged? */
5504         if (newpage->mem_cgroup)
5505                 return;
5506
5507         /* Swapcache readahead pages can get replaced before being charged */
5508         memcg = oldpage->mem_cgroup;
5509         if (!memcg)
5510                 return;
5511
5512         /* Force-charge the new page. The old one will be freed soon */
5513         compound = PageTransHuge(newpage);
5514         nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5515
5516         page_counter_charge(&memcg->memory, nr_pages);
5517         if (do_memsw_account())
5518                 page_counter_charge(&memcg->memsw, nr_pages);
5519         css_get_many(&memcg->css, nr_pages);
5520
5521         commit_charge(newpage, memcg, false);
5522
5523         local_irq_disable();
5524         mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5525         memcg_check_events(memcg, newpage);
5526         local_irq_enable();
5527 }
5528
5529 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5530 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5531
5532 void sock_update_memcg(struct sock *sk)
5533 {
5534         struct mem_cgroup *memcg;
5535
5536         /* Socket cloning can throw us here with sk_cgrp already
5537          * filled. It won't however, necessarily happen from
5538          * process context. So the test for root memcg given
5539          * the current task's memcg won't help us in this case.
5540          *
5541          * Respecting the original socket's memcg is a better
5542          * decision in this case.
5543          */
5544         if (sk->sk_memcg) {
5545                 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5546                 css_get(&sk->sk_memcg->css);
5547                 return;
5548         }
5549
5550         rcu_read_lock();
5551         memcg = mem_cgroup_from_task(current);
5552         if (memcg == root_mem_cgroup)
5553                 goto out;
5554         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5555                 goto out;
5556         if (css_tryget_online(&memcg->css))
5557                 sk->sk_memcg = memcg;
5558 out:
5559         rcu_read_unlock();
5560 }
5561 EXPORT_SYMBOL(sock_update_memcg);
5562
5563 void sock_release_memcg(struct sock *sk)
5564 {
5565         WARN_ON(!sk->sk_memcg);
5566         css_put(&sk->sk_memcg->css);
5567 }
5568
5569 /**
5570  * mem_cgroup_charge_skmem - charge socket memory
5571  * @memcg: memcg to charge
5572  * @nr_pages: number of pages to charge
5573  *
5574  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5575  * @memcg's configured limit, %false if the charge had to be forced.
5576  */
5577 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5578 {
5579         gfp_t gfp_mask = GFP_KERNEL;
5580
5581         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5582                 struct page_counter *fail;
5583
5584                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5585                         memcg->tcpmem_pressure = 0;
5586                         return true;
5587                 }
5588                 page_counter_charge(&memcg->tcpmem, nr_pages);
5589                 memcg->tcpmem_pressure = 1;
5590                 return false;
5591         }
5592
5593         /* Don't block in the packet receive path */
5594         if (in_softirq())
5595                 gfp_mask = GFP_NOWAIT;
5596
5597         this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5598
5599         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5600                 return true;
5601
5602         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5603         return false;
5604 }
5605
5606 /**
5607  * mem_cgroup_uncharge_skmem - uncharge socket memory
5608  * @memcg - memcg to uncharge
5609  * @nr_pages - number of pages to uncharge
5610  */
5611 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5612 {
5613         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5614                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5615                 return;
5616         }
5617
5618         this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5619
5620         page_counter_uncharge(&memcg->memory, nr_pages);
5621         css_put_many(&memcg->css, nr_pages);
5622 }
5623
5624 static int __init cgroup_memory(char *s)
5625 {
5626         char *token;
5627
5628         while ((token = strsep(&s, ",")) != NULL) {
5629                 if (!*token)
5630                         continue;
5631                 if (!strcmp(token, "nosocket"))
5632                         cgroup_memory_nosocket = true;
5633                 if (!strcmp(token, "nokmem"))
5634                         cgroup_memory_nokmem = true;
5635         }
5636         return 0;
5637 }
5638 __setup("cgroup.memory=", cgroup_memory);
5639
5640 /*
5641  * subsys_initcall() for memory controller.
5642  *
5643  * Some parts like hotcpu_notifier() have to be initialized from this context
5644  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5645  * everything that doesn't depend on a specific mem_cgroup structure should
5646  * be initialized from here.
5647  */
5648 static int __init mem_cgroup_init(void)
5649 {
5650         int cpu, node;
5651
5652         hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5653
5654         for_each_possible_cpu(cpu)
5655                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5656                           drain_local_stock);
5657
5658         for_each_node(node) {
5659                 struct mem_cgroup_tree_per_node *rtpn;
5660                 int zone;
5661
5662                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5663                                     node_online(node) ? node : NUMA_NO_NODE);
5664
5665                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5666                         struct mem_cgroup_tree_per_zone *rtpz;
5667
5668                         rtpz = &rtpn->rb_tree_per_zone[zone];
5669                         rtpz->rb_root = RB_ROOT;
5670                         spin_lock_init(&rtpz->lock);
5671                 }
5672                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5673         }
5674
5675         return 0;
5676 }
5677 subsys_initcall(mem_cgroup_init);
5678
5679 #ifdef CONFIG_MEMCG_SWAP
5680 /**
5681  * mem_cgroup_swapout - transfer a memsw charge to swap
5682  * @page: page whose memsw charge to transfer
5683  * @entry: swap entry to move the charge to
5684  *
5685  * Transfer the memsw charge of @page to @entry.
5686  */
5687 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5688 {
5689         struct mem_cgroup *memcg;
5690         unsigned short oldid;
5691
5692         VM_BUG_ON_PAGE(PageLRU(page), page);
5693         VM_BUG_ON_PAGE(page_count(page), page);
5694
5695         if (!do_memsw_account())
5696                 return;
5697
5698         memcg = page->mem_cgroup;
5699
5700         /* Readahead page, never charged */
5701         if (!memcg)
5702                 return;
5703
5704         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5705         VM_BUG_ON_PAGE(oldid, page);
5706         mem_cgroup_swap_statistics(memcg, true);
5707
5708         page->mem_cgroup = NULL;
5709
5710         if (!mem_cgroup_is_root(memcg))
5711                 page_counter_uncharge(&memcg->memory, 1);
5712
5713         /*
5714          * Interrupts should be disabled here because the caller holds the
5715          * mapping->tree_lock lock which is taken with interrupts-off. It is
5716          * important here to have the interrupts disabled because it is the
5717          * only synchronisation we have for udpating the per-CPU variables.
5718          */
5719         VM_BUG_ON(!irqs_disabled());
5720         mem_cgroup_charge_statistics(memcg, page, false, -1);
5721         memcg_check_events(memcg, page);
5722 }
5723
5724 /*
5725  * mem_cgroup_try_charge_swap - try charging a swap entry
5726  * @page: page being added to swap
5727  * @entry: swap entry to charge
5728  *
5729  * Try to charge @entry to the memcg that @page belongs to.
5730  *
5731  * Returns 0 on success, -ENOMEM on failure.
5732  */
5733 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5734 {
5735         struct mem_cgroup *memcg;
5736         struct page_counter *counter;
5737         unsigned short oldid;
5738
5739         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5740                 return 0;
5741
5742         memcg = page->mem_cgroup;
5743
5744         /* Readahead page, never charged */
5745         if (!memcg)
5746                 return 0;
5747
5748         if (!mem_cgroup_is_root(memcg) &&
5749             !page_counter_try_charge(&memcg->swap, 1, &counter))
5750                 return -ENOMEM;
5751
5752         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5753         VM_BUG_ON_PAGE(oldid, page);
5754         mem_cgroup_swap_statistics(memcg, true);
5755
5756         css_get(&memcg->css);
5757         return 0;
5758 }
5759
5760 /**
5761  * mem_cgroup_uncharge_swap - uncharge a swap entry
5762  * @entry: swap entry to uncharge
5763  *
5764  * Drop the swap charge associated with @entry.
5765  */
5766 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5767 {
5768         struct mem_cgroup *memcg;
5769         unsigned short id;
5770
5771         if (!do_swap_account)
5772                 return;
5773
5774         id = swap_cgroup_record(entry, 0);
5775         rcu_read_lock();
5776         memcg = mem_cgroup_from_id(id);
5777         if (memcg) {
5778                 if (!mem_cgroup_is_root(memcg)) {
5779                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5780                                 page_counter_uncharge(&memcg->swap, 1);
5781                         else
5782                                 page_counter_uncharge(&memcg->memsw, 1);
5783                 }
5784                 mem_cgroup_swap_statistics(memcg, false);
5785                 css_put(&memcg->css);
5786         }
5787         rcu_read_unlock();
5788 }
5789
5790 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5791 {
5792         long nr_swap_pages = get_nr_swap_pages();
5793
5794         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5795                 return nr_swap_pages;
5796         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5797                 nr_swap_pages = min_t(long, nr_swap_pages,
5798                                       READ_ONCE(memcg->swap.limit) -
5799                                       page_counter_read(&memcg->swap));
5800         return nr_swap_pages;
5801 }
5802
5803 bool mem_cgroup_swap_full(struct page *page)
5804 {
5805         struct mem_cgroup *memcg;
5806
5807         VM_BUG_ON_PAGE(!PageLocked(page), page);
5808
5809         if (vm_swap_full())
5810                 return true;
5811         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5812                 return false;
5813
5814         memcg = page->mem_cgroup;
5815         if (!memcg)
5816                 return false;
5817
5818         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5819                 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5820                         return true;
5821
5822         return false;
5823 }
5824
5825 /* for remember boot option*/
5826 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5827 static int really_do_swap_account __initdata = 1;
5828 #else
5829 static int really_do_swap_account __initdata;
5830 #endif
5831
5832 static int __init enable_swap_account(char *s)
5833 {
5834         if (!strcmp(s, "1"))
5835                 really_do_swap_account = 1;
5836         else if (!strcmp(s, "0"))
5837                 really_do_swap_account = 0;
5838         return 1;
5839 }
5840 __setup("swapaccount=", enable_swap_account);
5841
5842 static u64 swap_current_read(struct cgroup_subsys_state *css,
5843                              struct cftype *cft)
5844 {
5845         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5846
5847         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5848 }
5849
5850 static int swap_max_show(struct seq_file *m, void *v)
5851 {
5852         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5853         unsigned long max = READ_ONCE(memcg->swap.limit);
5854
5855         if (max == PAGE_COUNTER_MAX)
5856                 seq_puts(m, "max\n");
5857         else
5858                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5859
5860         return 0;
5861 }
5862
5863 static ssize_t swap_max_write(struct kernfs_open_file *of,
5864                               char *buf, size_t nbytes, loff_t off)
5865 {
5866         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5867         unsigned long max;
5868         int err;
5869
5870         buf = strstrip(buf);
5871         err = page_counter_memparse(buf, "max", &max);
5872         if (err)
5873                 return err;
5874
5875         mutex_lock(&memcg_limit_mutex);
5876         err = page_counter_limit(&memcg->swap, max);
5877         mutex_unlock(&memcg_limit_mutex);
5878         if (err)
5879                 return err;
5880
5881         return nbytes;
5882 }
5883
5884 static struct cftype swap_files[] = {
5885         {
5886                 .name = "swap.current",
5887                 .flags = CFTYPE_NOT_ON_ROOT,
5888                 .read_u64 = swap_current_read,
5889         },
5890         {
5891                 .name = "swap.max",
5892                 .flags = CFTYPE_NOT_ON_ROOT,
5893                 .seq_show = swap_max_show,
5894                 .write = swap_max_write,
5895         },
5896         { }     /* terminate */
5897 };
5898
5899 static struct cftype memsw_cgroup_files[] = {
5900         {
5901                 .name = "memsw.usage_in_bytes",
5902                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5903                 .read_u64 = mem_cgroup_read_u64,
5904         },
5905         {
5906                 .name = "memsw.max_usage_in_bytes",
5907                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5908                 .write = mem_cgroup_reset,
5909                 .read_u64 = mem_cgroup_read_u64,
5910         },
5911         {
5912                 .name = "memsw.limit_in_bytes",
5913                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5914                 .write = mem_cgroup_write,
5915                 .read_u64 = mem_cgroup_read_u64,
5916         },
5917         {
5918                 .name = "memsw.failcnt",
5919                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5920                 .write = mem_cgroup_reset,
5921                 .read_u64 = mem_cgroup_read_u64,
5922         },
5923         { },    /* terminate */
5924 };
5925
5926 static int __init mem_cgroup_swap_init(void)
5927 {
5928         if (!mem_cgroup_disabled() && really_do_swap_account) {
5929                 do_swap_account = 1;
5930                 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5931                                                swap_files));
5932                 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5933                                                   memsw_cgroup_files));
5934         }
5935         return 0;
5936 }
5937 subsys_initcall(mem_cgroup_swap_init);
5938
5939 #endif /* CONFIG_MEMCG_SWAP */