]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/memory.c
cx25821: use pci_set_dma_mask insted of pci_dma_supported
[karo-tx-linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 #include <linux/userfaultfd_k.h>
65
66 #include <asm/io.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/tlb.h>
70 #include <asm/tlbflush.h>
71 #include <asm/pgtable.h>
72
73 #include "internal.h"
74
75 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
76 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
77 #endif
78
79 #ifndef CONFIG_NEED_MULTIPLE_NODES
80 /* use the per-pgdat data instead for discontigmem - mbligh */
81 unsigned long max_mapnr;
82 struct page *mem_map;
83
84 EXPORT_SYMBOL(max_mapnr);
85 EXPORT_SYMBOL(mem_map);
86 #endif
87
88 /*
89  * A number of key systems in x86 including ioremap() rely on the assumption
90  * that high_memory defines the upper bound on direct map memory, then end
91  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
92  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93  * and ZONE_HIGHMEM.
94  */
95 void * high_memory;
96
97 EXPORT_SYMBOL(high_memory);
98
99 /*
100  * Randomize the address space (stacks, mmaps, brk, etc.).
101  *
102  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103  *   as ancient (libc5 based) binaries can segfault. )
104  */
105 int randomize_va_space __read_mostly =
106 #ifdef CONFIG_COMPAT_BRK
107                                         1;
108 #else
109                                         2;
110 #endif
111
112 static int __init disable_randmaps(char *s)
113 {
114         randomize_va_space = 0;
115         return 1;
116 }
117 __setup("norandmaps", disable_randmaps);
118
119 unsigned long zero_pfn __read_mostly;
120 unsigned long highest_memmap_pfn __read_mostly;
121
122 EXPORT_SYMBOL(zero_pfn);
123
124 /*
125  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126  */
127 static int __init init_zero_pfn(void)
128 {
129         zero_pfn = page_to_pfn(ZERO_PAGE(0));
130         return 0;
131 }
132 core_initcall(init_zero_pfn);
133
134
135 #if defined(SPLIT_RSS_COUNTING)
136
137 void sync_mm_rss(struct mm_struct *mm)
138 {
139         int i;
140
141         for (i = 0; i < NR_MM_COUNTERS; i++) {
142                 if (current->rss_stat.count[i]) {
143                         add_mm_counter(mm, i, current->rss_stat.count[i]);
144                         current->rss_stat.count[i] = 0;
145                 }
146         }
147         current->rss_stat.events = 0;
148 }
149
150 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151 {
152         struct task_struct *task = current;
153
154         if (likely(task->mm == mm))
155                 task->rss_stat.count[member] += val;
156         else
157                 add_mm_counter(mm, member, val);
158 }
159 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161
162 /* sync counter once per 64 page faults */
163 #define TASK_RSS_EVENTS_THRESH  (64)
164 static void check_sync_rss_stat(struct task_struct *task)
165 {
166         if (unlikely(task != current))
167                 return;
168         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
169                 sync_mm_rss(task->mm);
170 }
171 #else /* SPLIT_RSS_COUNTING */
172
173 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175
176 static void check_sync_rss_stat(struct task_struct *task)
177 {
178 }
179
180 #endif /* SPLIT_RSS_COUNTING */
181
182 #ifdef HAVE_GENERIC_MMU_GATHER
183
184 static bool tlb_next_batch(struct mmu_gather *tlb)
185 {
186         struct mmu_gather_batch *batch;
187
188         batch = tlb->active;
189         if (batch->next) {
190                 tlb->active = batch->next;
191                 return true;
192         }
193
194         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
195                 return false;
196
197         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
198         if (!batch)
199                 return false;
200
201         tlb->batch_count++;
202         batch->next = NULL;
203         batch->nr   = 0;
204         batch->max  = MAX_GATHER_BATCH;
205
206         tlb->active->next = batch;
207         tlb->active = batch;
208
209         return true;
210 }
211
212 /* tlb_gather_mmu
213  *      Called to initialize an (on-stack) mmu_gather structure for page-table
214  *      tear-down from @mm. The @fullmm argument is used when @mm is without
215  *      users and we're going to destroy the full address space (exit/execve).
216  */
217 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
218 {
219         tlb->mm = mm;
220
221         /* Is it from 0 to ~0? */
222         tlb->fullmm     = !(start | (end+1));
223         tlb->need_flush_all = 0;
224         tlb->local.next = NULL;
225         tlb->local.nr   = 0;
226         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227         tlb->active     = &tlb->local;
228         tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231         tlb->batch = NULL;
232 #endif
233
234         __tlb_reset_range(tlb);
235 }
236
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 {
239         if (!tlb->end)
240                 return;
241
242         tlb_flush(tlb);
243         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245         tlb_table_flush(tlb);
246 #endif
247         __tlb_reset_range(tlb);
248 }
249
250 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
251 {
252         struct mmu_gather_batch *batch;
253
254         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
255                 free_pages_and_swap_cache(batch->pages, batch->nr);
256                 batch->nr = 0;
257         }
258         tlb->active = &tlb->local;
259 }
260
261 void tlb_flush_mmu(struct mmu_gather *tlb)
262 {
263         tlb_flush_mmu_tlbonly(tlb);
264         tlb_flush_mmu_free(tlb);
265 }
266
267 /* tlb_finish_mmu
268  *      Called at the end of the shootdown operation to free up any resources
269  *      that were required.
270  */
271 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272 {
273         struct mmu_gather_batch *batch, *next;
274
275         tlb_flush_mmu(tlb);
276
277         /* keep the page table cache within bounds */
278         check_pgt_cache();
279
280         for (batch = tlb->local.next; batch; batch = next) {
281                 next = batch->next;
282                 free_pages((unsigned long)batch, 0);
283         }
284         tlb->local.next = NULL;
285 }
286
287 /* __tlb_remove_page
288  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289  *      handling the additional races in SMP caused by other CPUs caching valid
290  *      mappings in their TLBs. Returns the number of free page slots left.
291  *      When out of page slots we must call tlb_flush_mmu().
292  */
293 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294 {
295         struct mmu_gather_batch *batch;
296
297         VM_BUG_ON(!tlb->end);
298
299         batch = tlb->active;
300         batch->pages[batch->nr++] = page;
301         if (batch->nr == batch->max) {
302                 if (!tlb_next_batch(tlb))
303                         return 0;
304                 batch = tlb->active;
305         }
306         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
307
308         return batch->max - batch->nr;
309 }
310
311 #endif /* HAVE_GENERIC_MMU_GATHER */
312
313 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
314
315 /*
316  * See the comment near struct mmu_table_batch.
317  */
318
319 static void tlb_remove_table_smp_sync(void *arg)
320 {
321         /* Simply deliver the interrupt */
322 }
323
324 static void tlb_remove_table_one(void *table)
325 {
326         /*
327          * This isn't an RCU grace period and hence the page-tables cannot be
328          * assumed to be actually RCU-freed.
329          *
330          * It is however sufficient for software page-table walkers that rely on
331          * IRQ disabling. See the comment near struct mmu_table_batch.
332          */
333         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
334         __tlb_remove_table(table);
335 }
336
337 static void tlb_remove_table_rcu(struct rcu_head *head)
338 {
339         struct mmu_table_batch *batch;
340         int i;
341
342         batch = container_of(head, struct mmu_table_batch, rcu);
343
344         for (i = 0; i < batch->nr; i++)
345                 __tlb_remove_table(batch->tables[i]);
346
347         free_page((unsigned long)batch);
348 }
349
350 void tlb_table_flush(struct mmu_gather *tlb)
351 {
352         struct mmu_table_batch **batch = &tlb->batch;
353
354         if (*batch) {
355                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
356                 *batch = NULL;
357         }
358 }
359
360 void tlb_remove_table(struct mmu_gather *tlb, void *table)
361 {
362         struct mmu_table_batch **batch = &tlb->batch;
363
364         /*
365          * When there's less then two users of this mm there cannot be a
366          * concurrent page-table walk.
367          */
368         if (atomic_read(&tlb->mm->mm_users) < 2) {
369                 __tlb_remove_table(table);
370                 return;
371         }
372
373         if (*batch == NULL) {
374                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375                 if (*batch == NULL) {
376                         tlb_remove_table_one(table);
377                         return;
378                 }
379                 (*batch)->nr = 0;
380         }
381         (*batch)->tables[(*batch)->nr++] = table;
382         if ((*batch)->nr == MAX_TABLE_BATCH)
383                 tlb_table_flush(tlb);
384 }
385
386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387
388 /*
389  * Note: this doesn't free the actual pages themselves. That
390  * has been handled earlier when unmapping all the memory regions.
391  */
392 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393                            unsigned long addr)
394 {
395         pgtable_t token = pmd_pgtable(*pmd);
396         pmd_clear(pmd);
397         pte_free_tlb(tlb, token, addr);
398         atomic_long_dec(&tlb->mm->nr_ptes);
399 }
400
401 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402                                 unsigned long addr, unsigned long end,
403                                 unsigned long floor, unsigned long ceiling)
404 {
405         pmd_t *pmd;
406         unsigned long next;
407         unsigned long start;
408
409         start = addr;
410         pmd = pmd_offset(pud, addr);
411         do {
412                 next = pmd_addr_end(addr, end);
413                 if (pmd_none_or_clear_bad(pmd))
414                         continue;
415                 free_pte_range(tlb, pmd, addr);
416         } while (pmd++, addr = next, addr != end);
417
418         start &= PUD_MASK;
419         if (start < floor)
420                 return;
421         if (ceiling) {
422                 ceiling &= PUD_MASK;
423                 if (!ceiling)
424                         return;
425         }
426         if (end - 1 > ceiling - 1)
427                 return;
428
429         pmd = pmd_offset(pud, start);
430         pud_clear(pud);
431         pmd_free_tlb(tlb, pmd, start);
432         mm_dec_nr_pmds(tlb->mm);
433 }
434
435 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
436                                 unsigned long addr, unsigned long end,
437                                 unsigned long floor, unsigned long ceiling)
438 {
439         pud_t *pud;
440         unsigned long next;
441         unsigned long start;
442
443         start = addr;
444         pud = pud_offset(pgd, addr);
445         do {
446                 next = pud_addr_end(addr, end);
447                 if (pud_none_or_clear_bad(pud))
448                         continue;
449                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
450         } while (pud++, addr = next, addr != end);
451
452         start &= PGDIR_MASK;
453         if (start < floor)
454                 return;
455         if (ceiling) {
456                 ceiling &= PGDIR_MASK;
457                 if (!ceiling)
458                         return;
459         }
460         if (end - 1 > ceiling - 1)
461                 return;
462
463         pud = pud_offset(pgd, start);
464         pgd_clear(pgd);
465         pud_free_tlb(tlb, pud, start);
466 }
467
468 /*
469  * This function frees user-level page tables of a process.
470  */
471 void free_pgd_range(struct mmu_gather *tlb,
472                         unsigned long addr, unsigned long end,
473                         unsigned long floor, unsigned long ceiling)
474 {
475         pgd_t *pgd;
476         unsigned long next;
477
478         /*
479          * The next few lines have given us lots of grief...
480          *
481          * Why are we testing PMD* at this top level?  Because often
482          * there will be no work to do at all, and we'd prefer not to
483          * go all the way down to the bottom just to discover that.
484          *
485          * Why all these "- 1"s?  Because 0 represents both the bottom
486          * of the address space and the top of it (using -1 for the
487          * top wouldn't help much: the masks would do the wrong thing).
488          * The rule is that addr 0 and floor 0 refer to the bottom of
489          * the address space, but end 0 and ceiling 0 refer to the top
490          * Comparisons need to use "end - 1" and "ceiling - 1" (though
491          * that end 0 case should be mythical).
492          *
493          * Wherever addr is brought up or ceiling brought down, we must
494          * be careful to reject "the opposite 0" before it confuses the
495          * subsequent tests.  But what about where end is brought down
496          * by PMD_SIZE below? no, end can't go down to 0 there.
497          *
498          * Whereas we round start (addr) and ceiling down, by different
499          * masks at different levels, in order to test whether a table
500          * now has no other vmas using it, so can be freed, we don't
501          * bother to round floor or end up - the tests don't need that.
502          */
503
504         addr &= PMD_MASK;
505         if (addr < floor) {
506                 addr += PMD_SIZE;
507                 if (!addr)
508                         return;
509         }
510         if (ceiling) {
511                 ceiling &= PMD_MASK;
512                 if (!ceiling)
513                         return;
514         }
515         if (end - 1 > ceiling - 1)
516                 end -= PMD_SIZE;
517         if (addr > end - 1)
518                 return;
519
520         pgd = pgd_offset(tlb->mm, addr);
521         do {
522                 next = pgd_addr_end(addr, end);
523                 if (pgd_none_or_clear_bad(pgd))
524                         continue;
525                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
526         } while (pgd++, addr = next, addr != end);
527 }
528
529 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
530                 unsigned long floor, unsigned long ceiling)
531 {
532         while (vma) {
533                 struct vm_area_struct *next = vma->vm_next;
534                 unsigned long addr = vma->vm_start;
535
536                 /*
537                  * Hide vma from rmap and truncate_pagecache before freeing
538                  * pgtables
539                  */
540                 unlink_anon_vmas(vma);
541                 unlink_file_vma(vma);
542
543                 if (is_vm_hugetlb_page(vma)) {
544                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
545                                 floor, next? next->vm_start: ceiling);
546                 } else {
547                         /*
548                          * Optimization: gather nearby vmas into one call down
549                          */
550                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
551                                && !is_vm_hugetlb_page(next)) {
552                                 vma = next;
553                                 next = vma->vm_next;
554                                 unlink_anon_vmas(vma);
555                                 unlink_file_vma(vma);
556                         }
557                         free_pgd_range(tlb, addr, vma->vm_end,
558                                 floor, next? next->vm_start: ceiling);
559                 }
560                 vma = next;
561         }
562 }
563
564 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
565                 pmd_t *pmd, unsigned long address)
566 {
567         spinlock_t *ptl;
568         pgtable_t new = pte_alloc_one(mm, address);
569         if (!new)
570                 return -ENOMEM;
571
572         /*
573          * Ensure all pte setup (eg. pte page lock and page clearing) are
574          * visible before the pte is made visible to other CPUs by being
575          * put into page tables.
576          *
577          * The other side of the story is the pointer chasing in the page
578          * table walking code (when walking the page table without locking;
579          * ie. most of the time). Fortunately, these data accesses consist
580          * of a chain of data-dependent loads, meaning most CPUs (alpha
581          * being the notable exception) will already guarantee loads are
582          * seen in-order. See the alpha page table accessors for the
583          * smp_read_barrier_depends() barriers in page table walking code.
584          */
585         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586
587         ptl = pmd_lock(mm, pmd);
588         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
589                 atomic_long_inc(&mm->nr_ptes);
590                 pmd_populate(mm, pmd, new);
591                 new = NULL;
592         }
593         spin_unlock(ptl);
594         if (new)
595                 pte_free(mm, new);
596         return 0;
597 }
598
599 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
600 {
601         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
602         if (!new)
603                 return -ENOMEM;
604
605         smp_wmb(); /* See comment in __pte_alloc */
606
607         spin_lock(&init_mm.page_table_lock);
608         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
609                 pmd_populate_kernel(&init_mm, pmd, new);
610                 new = NULL;
611         }
612         spin_unlock(&init_mm.page_table_lock);
613         if (new)
614                 pte_free_kernel(&init_mm, new);
615         return 0;
616 }
617
618 static inline void init_rss_vec(int *rss)
619 {
620         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
621 }
622
623 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
624 {
625         int i;
626
627         if (current->mm == mm)
628                 sync_mm_rss(mm);
629         for (i = 0; i < NR_MM_COUNTERS; i++)
630                 if (rss[i])
631                         add_mm_counter(mm, i, rss[i]);
632 }
633
634 /*
635  * This function is called to print an error when a bad pte
636  * is found. For example, we might have a PFN-mapped pte in
637  * a region that doesn't allow it.
638  *
639  * The calling function must still handle the error.
640  */
641 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
642                           pte_t pte, struct page *page)
643 {
644         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
645         pud_t *pud = pud_offset(pgd, addr);
646         pmd_t *pmd = pmd_offset(pud, addr);
647         struct address_space *mapping;
648         pgoff_t index;
649         static unsigned long resume;
650         static unsigned long nr_shown;
651         static unsigned long nr_unshown;
652
653         /*
654          * Allow a burst of 60 reports, then keep quiet for that minute;
655          * or allow a steady drip of one report per second.
656          */
657         if (nr_shown == 60) {
658                 if (time_before(jiffies, resume)) {
659                         nr_unshown++;
660                         return;
661                 }
662                 if (nr_unshown) {
663                         printk(KERN_ALERT
664                                 "BUG: Bad page map: %lu messages suppressed\n",
665                                 nr_unshown);
666                         nr_unshown = 0;
667                 }
668                 nr_shown = 0;
669         }
670         if (nr_shown++ == 0)
671                 resume = jiffies + 60 * HZ;
672
673         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
674         index = linear_page_index(vma, addr);
675
676         printk(KERN_ALERT
677                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
678                 current->comm,
679                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
680         if (page)
681                 dump_page(page, "bad pte");
682         printk(KERN_ALERT
683                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
684                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
685         /*
686          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
687          */
688         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
689                  vma->vm_file,
690                  vma->vm_ops ? vma->vm_ops->fault : NULL,
691                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
692                  mapping ? mapping->a_ops->readpage : NULL);
693         dump_stack();
694         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
695 }
696
697 /*
698  * vm_normal_page -- This function gets the "struct page" associated with a pte.
699  *
700  * "Special" mappings do not wish to be associated with a "struct page" (either
701  * it doesn't exist, or it exists but they don't want to touch it). In this
702  * case, NULL is returned here. "Normal" mappings do have a struct page.
703  *
704  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
705  * pte bit, in which case this function is trivial. Secondly, an architecture
706  * may not have a spare pte bit, which requires a more complicated scheme,
707  * described below.
708  *
709  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
710  * special mapping (even if there are underlying and valid "struct pages").
711  * COWed pages of a VM_PFNMAP are always normal.
712  *
713  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
714  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
715  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
716  * mapping will always honor the rule
717  *
718  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
719  *
720  * And for normal mappings this is false.
721  *
722  * This restricts such mappings to be a linear translation from virtual address
723  * to pfn. To get around this restriction, we allow arbitrary mappings so long
724  * as the vma is not a COW mapping; in that case, we know that all ptes are
725  * special (because none can have been COWed).
726  *
727  *
728  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
729  *
730  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
731  * page" backing, however the difference is that _all_ pages with a struct
732  * page (that is, those where pfn_valid is true) are refcounted and considered
733  * normal pages by the VM. The disadvantage is that pages are refcounted
734  * (which can be slower and simply not an option for some PFNMAP users). The
735  * advantage is that we don't have to follow the strict linearity rule of
736  * PFNMAP mappings in order to support COWable mappings.
737  *
738  */
739 #ifdef __HAVE_ARCH_PTE_SPECIAL
740 # define HAVE_PTE_SPECIAL 1
741 #else
742 # define HAVE_PTE_SPECIAL 0
743 #endif
744 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
745                                 pte_t pte)
746 {
747         unsigned long pfn = pte_pfn(pte);
748
749         if (HAVE_PTE_SPECIAL) {
750                 if (likely(!pte_special(pte)))
751                         goto check_pfn;
752                 if (vma->vm_ops && vma->vm_ops->find_special_page)
753                         return vma->vm_ops->find_special_page(vma, addr);
754                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
755                         return NULL;
756                 if (!is_zero_pfn(pfn))
757                         print_bad_pte(vma, addr, pte, NULL);
758                 return NULL;
759         }
760
761         /* !HAVE_PTE_SPECIAL case follows: */
762
763         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
764                 if (vma->vm_flags & VM_MIXEDMAP) {
765                         if (!pfn_valid(pfn))
766                                 return NULL;
767                         goto out;
768                 } else {
769                         unsigned long off;
770                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
771                         if (pfn == vma->vm_pgoff + off)
772                                 return NULL;
773                         if (!is_cow_mapping(vma->vm_flags))
774                                 return NULL;
775                 }
776         }
777
778         if (is_zero_pfn(pfn))
779                 return NULL;
780 check_pfn:
781         if (unlikely(pfn > highest_memmap_pfn)) {
782                 print_bad_pte(vma, addr, pte, NULL);
783                 return NULL;
784         }
785
786         /*
787          * NOTE! We still have PageReserved() pages in the page tables.
788          * eg. VDSO mappings can cause them to exist.
789          */
790 out:
791         return pfn_to_page(pfn);
792 }
793
794 /*
795  * copy one vm_area from one task to the other. Assumes the page tables
796  * already present in the new task to be cleared in the whole range
797  * covered by this vma.
798  */
799
800 static inline unsigned long
801 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
802                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
803                 unsigned long addr, int *rss)
804 {
805         unsigned long vm_flags = vma->vm_flags;
806         pte_t pte = *src_pte;
807         struct page *page;
808
809         /* pte contains position in swap or file, so copy. */
810         if (unlikely(!pte_present(pte))) {
811                 swp_entry_t entry = pte_to_swp_entry(pte);
812
813                 if (likely(!non_swap_entry(entry))) {
814                         if (swap_duplicate(entry) < 0)
815                                 return entry.val;
816
817                         /* make sure dst_mm is on swapoff's mmlist. */
818                         if (unlikely(list_empty(&dst_mm->mmlist))) {
819                                 spin_lock(&mmlist_lock);
820                                 if (list_empty(&dst_mm->mmlist))
821                                         list_add(&dst_mm->mmlist,
822                                                         &src_mm->mmlist);
823                                 spin_unlock(&mmlist_lock);
824                         }
825                         rss[MM_SWAPENTS]++;
826                 } else if (is_migration_entry(entry)) {
827                         page = migration_entry_to_page(entry);
828
829                         if (PageAnon(page))
830                                 rss[MM_ANONPAGES]++;
831                         else
832                                 rss[MM_FILEPAGES]++;
833
834                         if (is_write_migration_entry(entry) &&
835                                         is_cow_mapping(vm_flags)) {
836                                 /*
837                                  * COW mappings require pages in both
838                                  * parent and child to be set to read.
839                                  */
840                                 make_migration_entry_read(&entry);
841                                 pte = swp_entry_to_pte(entry);
842                                 if (pte_swp_soft_dirty(*src_pte))
843                                         pte = pte_swp_mksoft_dirty(pte);
844                                 set_pte_at(src_mm, addr, src_pte, pte);
845                         }
846                 }
847                 goto out_set_pte;
848         }
849
850         /*
851          * If it's a COW mapping, write protect it both
852          * in the parent and the child
853          */
854         if (is_cow_mapping(vm_flags)) {
855                 ptep_set_wrprotect(src_mm, addr, src_pte);
856                 pte = pte_wrprotect(pte);
857         }
858
859         /*
860          * If it's a shared mapping, mark it clean in
861          * the child
862          */
863         if (vm_flags & VM_SHARED)
864                 pte = pte_mkclean(pte);
865         pte = pte_mkold(pte);
866
867         page = vm_normal_page(vma, addr, pte);
868         if (page) {
869                 get_page(page);
870                 page_dup_rmap(page, false);
871                 if (PageAnon(page))
872                         rss[MM_ANONPAGES]++;
873                 else
874                         rss[MM_FILEPAGES]++;
875         }
876
877 out_set_pte:
878         set_pte_at(dst_mm, addr, dst_pte, pte);
879         return 0;
880 }
881
882 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
883                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
884                    unsigned long addr, unsigned long end)
885 {
886         pte_t *orig_src_pte, *orig_dst_pte;
887         pte_t *src_pte, *dst_pte;
888         spinlock_t *src_ptl, *dst_ptl;
889         int progress = 0;
890         int rss[NR_MM_COUNTERS];
891         swp_entry_t entry = (swp_entry_t){0};
892
893 again:
894         init_rss_vec(rss);
895
896         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
897         if (!dst_pte)
898                 return -ENOMEM;
899         src_pte = pte_offset_map(src_pmd, addr);
900         src_ptl = pte_lockptr(src_mm, src_pmd);
901         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
902         orig_src_pte = src_pte;
903         orig_dst_pte = dst_pte;
904         arch_enter_lazy_mmu_mode();
905
906         do {
907                 /*
908                  * We are holding two locks at this point - either of them
909                  * could generate latencies in another task on another CPU.
910                  */
911                 if (progress >= 32) {
912                         progress = 0;
913                         if (need_resched() ||
914                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
915                                 break;
916                 }
917                 if (pte_none(*src_pte)) {
918                         progress++;
919                         continue;
920                 }
921                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
922                                                         vma, addr, rss);
923                 if (entry.val)
924                         break;
925                 progress += 8;
926         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
927
928         arch_leave_lazy_mmu_mode();
929         spin_unlock(src_ptl);
930         pte_unmap(orig_src_pte);
931         add_mm_rss_vec(dst_mm, rss);
932         pte_unmap_unlock(orig_dst_pte, dst_ptl);
933         cond_resched();
934
935         if (entry.val) {
936                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
937                         return -ENOMEM;
938                 progress = 0;
939         }
940         if (addr != end)
941                 goto again;
942         return 0;
943 }
944
945 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
947                 unsigned long addr, unsigned long end)
948 {
949         pmd_t *src_pmd, *dst_pmd;
950         unsigned long next;
951
952         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
953         if (!dst_pmd)
954                 return -ENOMEM;
955         src_pmd = pmd_offset(src_pud, addr);
956         do {
957                 next = pmd_addr_end(addr, end);
958                 if (pmd_trans_huge(*src_pmd)) {
959                         int err;
960                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
961                         err = copy_huge_pmd(dst_mm, src_mm,
962                                             dst_pmd, src_pmd, addr, vma);
963                         if (err == -ENOMEM)
964                                 return -ENOMEM;
965                         if (!err)
966                                 continue;
967                         /* fall through */
968                 }
969                 if (pmd_none_or_clear_bad(src_pmd))
970                         continue;
971                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
972                                                 vma, addr, next))
973                         return -ENOMEM;
974         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
975         return 0;
976 }
977
978 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
980                 unsigned long addr, unsigned long end)
981 {
982         pud_t *src_pud, *dst_pud;
983         unsigned long next;
984
985         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
986         if (!dst_pud)
987                 return -ENOMEM;
988         src_pud = pud_offset(src_pgd, addr);
989         do {
990                 next = pud_addr_end(addr, end);
991                 if (pud_none_or_clear_bad(src_pud))
992                         continue;
993                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
994                                                 vma, addr, next))
995                         return -ENOMEM;
996         } while (dst_pud++, src_pud++, addr = next, addr != end);
997         return 0;
998 }
999
1000 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1001                 struct vm_area_struct *vma)
1002 {
1003         pgd_t *src_pgd, *dst_pgd;
1004         unsigned long next;
1005         unsigned long addr = vma->vm_start;
1006         unsigned long end = vma->vm_end;
1007         unsigned long mmun_start;       /* For mmu_notifiers */
1008         unsigned long mmun_end;         /* For mmu_notifiers */
1009         bool is_cow;
1010         int ret;
1011
1012         /*
1013          * Don't copy ptes where a page fault will fill them correctly.
1014          * Fork becomes much lighter when there are big shared or private
1015          * readonly mappings. The tradeoff is that copy_page_range is more
1016          * efficient than faulting.
1017          */
1018         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1019                         !vma->anon_vma)
1020                 return 0;
1021
1022         if (is_vm_hugetlb_page(vma))
1023                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1024
1025         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1026                 /*
1027                  * We do not free on error cases below as remove_vma
1028                  * gets called on error from higher level routine
1029                  */
1030                 ret = track_pfn_copy(vma);
1031                 if (ret)
1032                         return ret;
1033         }
1034
1035         /*
1036          * We need to invalidate the secondary MMU mappings only when
1037          * there could be a permission downgrade on the ptes of the
1038          * parent mm. And a permission downgrade will only happen if
1039          * is_cow_mapping() returns true.
1040          */
1041         is_cow = is_cow_mapping(vma->vm_flags);
1042         mmun_start = addr;
1043         mmun_end   = end;
1044         if (is_cow)
1045                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1046                                                     mmun_end);
1047
1048         ret = 0;
1049         dst_pgd = pgd_offset(dst_mm, addr);
1050         src_pgd = pgd_offset(src_mm, addr);
1051         do {
1052                 next = pgd_addr_end(addr, end);
1053                 if (pgd_none_or_clear_bad(src_pgd))
1054                         continue;
1055                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1056                                             vma, addr, next))) {
1057                         ret = -ENOMEM;
1058                         break;
1059                 }
1060         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1061
1062         if (is_cow)
1063                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1064         return ret;
1065 }
1066
1067 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1068                                 struct vm_area_struct *vma, pmd_t *pmd,
1069                                 unsigned long addr, unsigned long end,
1070                                 struct zap_details *details)
1071 {
1072         struct mm_struct *mm = tlb->mm;
1073         int force_flush = 0;
1074         int rss[NR_MM_COUNTERS];
1075         spinlock_t *ptl;
1076         pte_t *start_pte;
1077         pte_t *pte;
1078         swp_entry_t entry;
1079
1080 again:
1081         init_rss_vec(rss);
1082         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1083         pte = start_pte;
1084         arch_enter_lazy_mmu_mode();
1085         do {
1086                 pte_t ptent = *pte;
1087                 if (pte_none(ptent)) {
1088                         continue;
1089                 }
1090
1091                 if (pte_present(ptent)) {
1092                         struct page *page;
1093
1094                         page = vm_normal_page(vma, addr, ptent);
1095                         if (unlikely(details) && page) {
1096                                 /*
1097                                  * unmap_shared_mapping_pages() wants to
1098                                  * invalidate cache without truncating:
1099                                  * unmap shared but keep private pages.
1100                                  */
1101                                 if (details->check_mapping &&
1102                                     details->check_mapping != page->mapping)
1103                                         continue;
1104                         }
1105                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1106                                                         tlb->fullmm);
1107                         tlb_remove_tlb_entry(tlb, pte, addr);
1108                         if (unlikely(!page))
1109                                 continue;
1110                         if (PageAnon(page))
1111                                 rss[MM_ANONPAGES]--;
1112                         else {
1113                                 if (pte_dirty(ptent)) {
1114                                         force_flush = 1;
1115                                         set_page_dirty(page);
1116                                 }
1117                                 if (pte_young(ptent) &&
1118                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1119                                         mark_page_accessed(page);
1120                                 rss[MM_FILEPAGES]--;
1121                         }
1122                         page_remove_rmap(page, false);
1123                         if (unlikely(page_mapcount(page) < 0))
1124                                 print_bad_pte(vma, addr, ptent, page);
1125                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1126                                 force_flush = 1;
1127                                 addr += PAGE_SIZE;
1128                                 break;
1129                         }
1130                         continue;
1131                 }
1132                 /* If details->check_mapping, we leave swap entries. */
1133                 if (unlikely(details))
1134                         continue;
1135
1136                 entry = pte_to_swp_entry(ptent);
1137                 if (!non_swap_entry(entry))
1138                         rss[MM_SWAPENTS]--;
1139                 else if (is_migration_entry(entry)) {
1140                         struct page *page;
1141
1142                         page = migration_entry_to_page(entry);
1143
1144                         if (PageAnon(page))
1145                                 rss[MM_ANONPAGES]--;
1146                         else
1147                                 rss[MM_FILEPAGES]--;
1148                 }
1149                 if (unlikely(!free_swap_and_cache(entry)))
1150                         print_bad_pte(vma, addr, ptent, NULL);
1151                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1152         } while (pte++, addr += PAGE_SIZE, addr != end);
1153
1154         add_mm_rss_vec(mm, rss);
1155         arch_leave_lazy_mmu_mode();
1156
1157         /* Do the actual TLB flush before dropping ptl */
1158         if (force_flush)
1159                 tlb_flush_mmu_tlbonly(tlb);
1160         pte_unmap_unlock(start_pte, ptl);
1161
1162         /*
1163          * If we forced a TLB flush (either due to running out of
1164          * batch buffers or because we needed to flush dirty TLB
1165          * entries before releasing the ptl), free the batched
1166          * memory too. Restart if we didn't do everything.
1167          */
1168         if (force_flush) {
1169                 force_flush = 0;
1170                 tlb_flush_mmu_free(tlb);
1171
1172                 if (addr != end)
1173                         goto again;
1174         }
1175
1176         return addr;
1177 }
1178
1179 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1180                                 struct vm_area_struct *vma, pud_t *pud,
1181                                 unsigned long addr, unsigned long end,
1182                                 struct zap_details *details)
1183 {
1184         pmd_t *pmd;
1185         unsigned long next;
1186
1187         pmd = pmd_offset(pud, addr);
1188         do {
1189                 next = pmd_addr_end(addr, end);
1190                 if (pmd_trans_huge(*pmd)) {
1191                         if (next - addr != HPAGE_PMD_SIZE) {
1192 #ifdef CONFIG_DEBUG_VM
1193                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1194                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1195                                                 __func__, addr, end,
1196                                                 vma->vm_start,
1197                                                 vma->vm_end);
1198                                         BUG();
1199                                 }
1200 #endif
1201                                 split_huge_pmd(vma, pmd, addr);
1202                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1203                                 goto next;
1204                         /* fall through */
1205                 }
1206                 /*
1207                  * Here there can be other concurrent MADV_DONTNEED or
1208                  * trans huge page faults running, and if the pmd is
1209                  * none or trans huge it can change under us. This is
1210                  * because MADV_DONTNEED holds the mmap_sem in read
1211                  * mode.
1212                  */
1213                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1214                         goto next;
1215                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1216 next:
1217                 cond_resched();
1218         } while (pmd++, addr = next, addr != end);
1219
1220         return addr;
1221 }
1222
1223 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1224                                 struct vm_area_struct *vma, pgd_t *pgd,
1225                                 unsigned long addr, unsigned long end,
1226                                 struct zap_details *details)
1227 {
1228         pud_t *pud;
1229         unsigned long next;
1230
1231         pud = pud_offset(pgd, addr);
1232         do {
1233                 next = pud_addr_end(addr, end);
1234                 if (pud_none_or_clear_bad(pud))
1235                         continue;
1236                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1237         } while (pud++, addr = next, addr != end);
1238
1239         return addr;
1240 }
1241
1242 static void unmap_page_range(struct mmu_gather *tlb,
1243                              struct vm_area_struct *vma,
1244                              unsigned long addr, unsigned long end,
1245                              struct zap_details *details)
1246 {
1247         pgd_t *pgd;
1248         unsigned long next;
1249
1250         if (details && !details->check_mapping)
1251                 details = NULL;
1252
1253         BUG_ON(addr >= end);
1254         tlb_start_vma(tlb, vma);
1255         pgd = pgd_offset(vma->vm_mm, addr);
1256         do {
1257                 next = pgd_addr_end(addr, end);
1258                 if (pgd_none_or_clear_bad(pgd))
1259                         continue;
1260                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1261         } while (pgd++, addr = next, addr != end);
1262         tlb_end_vma(tlb, vma);
1263 }
1264
1265
1266 static void unmap_single_vma(struct mmu_gather *tlb,
1267                 struct vm_area_struct *vma, unsigned long start_addr,
1268                 unsigned long end_addr,
1269                 struct zap_details *details)
1270 {
1271         unsigned long start = max(vma->vm_start, start_addr);
1272         unsigned long end;
1273
1274         if (start >= vma->vm_end)
1275                 return;
1276         end = min(vma->vm_end, end_addr);
1277         if (end <= vma->vm_start)
1278                 return;
1279
1280         if (vma->vm_file)
1281                 uprobe_munmap(vma, start, end);
1282
1283         if (unlikely(vma->vm_flags & VM_PFNMAP))
1284                 untrack_pfn(vma, 0, 0);
1285
1286         if (start != end) {
1287                 if (unlikely(is_vm_hugetlb_page(vma))) {
1288                         /*
1289                          * It is undesirable to test vma->vm_file as it
1290                          * should be non-null for valid hugetlb area.
1291                          * However, vm_file will be NULL in the error
1292                          * cleanup path of mmap_region. When
1293                          * hugetlbfs ->mmap method fails,
1294                          * mmap_region() nullifies vma->vm_file
1295                          * before calling this function to clean up.
1296                          * Since no pte has actually been setup, it is
1297                          * safe to do nothing in this case.
1298                          */
1299                         if (vma->vm_file) {
1300                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1301                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1302                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1303                         }
1304                 } else
1305                         unmap_page_range(tlb, vma, start, end, details);
1306         }
1307 }
1308
1309 /**
1310  * unmap_vmas - unmap a range of memory covered by a list of vma's
1311  * @tlb: address of the caller's struct mmu_gather
1312  * @vma: the starting vma
1313  * @start_addr: virtual address at which to start unmapping
1314  * @end_addr: virtual address at which to end unmapping
1315  *
1316  * Unmap all pages in the vma list.
1317  *
1318  * Only addresses between `start' and `end' will be unmapped.
1319  *
1320  * The VMA list must be sorted in ascending virtual address order.
1321  *
1322  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1323  * range after unmap_vmas() returns.  So the only responsibility here is to
1324  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1325  * drops the lock and schedules.
1326  */
1327 void unmap_vmas(struct mmu_gather *tlb,
1328                 struct vm_area_struct *vma, unsigned long start_addr,
1329                 unsigned long end_addr)
1330 {
1331         struct mm_struct *mm = vma->vm_mm;
1332
1333         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1334         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1335                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1336         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1337 }
1338
1339 /**
1340  * zap_page_range - remove user pages in a given range
1341  * @vma: vm_area_struct holding the applicable pages
1342  * @start: starting address of pages to zap
1343  * @size: number of bytes to zap
1344  * @details: details of shared cache invalidation
1345  *
1346  * Caller must protect the VMA list
1347  */
1348 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1349                 unsigned long size, struct zap_details *details)
1350 {
1351         struct mm_struct *mm = vma->vm_mm;
1352         struct mmu_gather tlb;
1353         unsigned long end = start + size;
1354
1355         lru_add_drain();
1356         tlb_gather_mmu(&tlb, mm, start, end);
1357         update_hiwater_rss(mm);
1358         mmu_notifier_invalidate_range_start(mm, start, end);
1359         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1360                 unmap_single_vma(&tlb, vma, start, end, details);
1361         mmu_notifier_invalidate_range_end(mm, start, end);
1362         tlb_finish_mmu(&tlb, start, end);
1363 }
1364
1365 /**
1366  * zap_page_range_single - remove user pages in a given range
1367  * @vma: vm_area_struct holding the applicable pages
1368  * @address: starting address of pages to zap
1369  * @size: number of bytes to zap
1370  * @details: details of shared cache invalidation
1371  *
1372  * The range must fit into one VMA.
1373  */
1374 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1375                 unsigned long size, struct zap_details *details)
1376 {
1377         struct mm_struct *mm = vma->vm_mm;
1378         struct mmu_gather tlb;
1379         unsigned long end = address + size;
1380
1381         lru_add_drain();
1382         tlb_gather_mmu(&tlb, mm, address, end);
1383         update_hiwater_rss(mm);
1384         mmu_notifier_invalidate_range_start(mm, address, end);
1385         unmap_single_vma(&tlb, vma, address, end, details);
1386         mmu_notifier_invalidate_range_end(mm, address, end);
1387         tlb_finish_mmu(&tlb, address, end);
1388 }
1389
1390 /**
1391  * zap_vma_ptes - remove ptes mapping the vma
1392  * @vma: vm_area_struct holding ptes to be zapped
1393  * @address: starting address of pages to zap
1394  * @size: number of bytes to zap
1395  *
1396  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1397  *
1398  * The entire address range must be fully contained within the vma.
1399  *
1400  * Returns 0 if successful.
1401  */
1402 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1403                 unsigned long size)
1404 {
1405         if (address < vma->vm_start || address + size > vma->vm_end ||
1406                         !(vma->vm_flags & VM_PFNMAP))
1407                 return -1;
1408         zap_page_range_single(vma, address, size, NULL);
1409         return 0;
1410 }
1411 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1412
1413 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1414                         spinlock_t **ptl)
1415 {
1416         pgd_t * pgd = pgd_offset(mm, addr);
1417         pud_t * pud = pud_alloc(mm, pgd, addr);
1418         if (pud) {
1419                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1420                 if (pmd) {
1421                         VM_BUG_ON(pmd_trans_huge(*pmd));
1422                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1423                 }
1424         }
1425         return NULL;
1426 }
1427
1428 /*
1429  * This is the old fallback for page remapping.
1430  *
1431  * For historical reasons, it only allows reserved pages. Only
1432  * old drivers should use this, and they needed to mark their
1433  * pages reserved for the old functions anyway.
1434  */
1435 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1436                         struct page *page, pgprot_t prot)
1437 {
1438         struct mm_struct *mm = vma->vm_mm;
1439         int retval;
1440         pte_t *pte;
1441         spinlock_t *ptl;
1442
1443         retval = -EINVAL;
1444         if (PageAnon(page))
1445                 goto out;
1446         retval = -ENOMEM;
1447         flush_dcache_page(page);
1448         pte = get_locked_pte(mm, addr, &ptl);
1449         if (!pte)
1450                 goto out;
1451         retval = -EBUSY;
1452         if (!pte_none(*pte))
1453                 goto out_unlock;
1454
1455         /* Ok, finally just insert the thing.. */
1456         get_page(page);
1457         inc_mm_counter_fast(mm, MM_FILEPAGES);
1458         page_add_file_rmap(page);
1459         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1460
1461         retval = 0;
1462         pte_unmap_unlock(pte, ptl);
1463         return retval;
1464 out_unlock:
1465         pte_unmap_unlock(pte, ptl);
1466 out:
1467         return retval;
1468 }
1469
1470 /**
1471  * vm_insert_page - insert single page into user vma
1472  * @vma: user vma to map to
1473  * @addr: target user address of this page
1474  * @page: source kernel page
1475  *
1476  * This allows drivers to insert individual pages they've allocated
1477  * into a user vma.
1478  *
1479  * The page has to be a nice clean _individual_ kernel allocation.
1480  * If you allocate a compound page, you need to have marked it as
1481  * such (__GFP_COMP), or manually just split the page up yourself
1482  * (see split_page()).
1483  *
1484  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1485  * took an arbitrary page protection parameter. This doesn't allow
1486  * that. Your vma protection will have to be set up correctly, which
1487  * means that if you want a shared writable mapping, you'd better
1488  * ask for a shared writable mapping!
1489  *
1490  * The page does not need to be reserved.
1491  *
1492  * Usually this function is called from f_op->mmap() handler
1493  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1494  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1495  * function from other places, for example from page-fault handler.
1496  */
1497 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1498                         struct page *page)
1499 {
1500         if (addr < vma->vm_start || addr >= vma->vm_end)
1501                 return -EFAULT;
1502         if (!page_count(page))
1503                 return -EINVAL;
1504         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1505                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1506                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1507                 vma->vm_flags |= VM_MIXEDMAP;
1508         }
1509         return insert_page(vma, addr, page, vma->vm_page_prot);
1510 }
1511 EXPORT_SYMBOL(vm_insert_page);
1512
1513 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1514                         unsigned long pfn, pgprot_t prot)
1515 {
1516         struct mm_struct *mm = vma->vm_mm;
1517         int retval;
1518         pte_t *pte, entry;
1519         spinlock_t *ptl;
1520
1521         retval = -ENOMEM;
1522         pte = get_locked_pte(mm, addr, &ptl);
1523         if (!pte)
1524                 goto out;
1525         retval = -EBUSY;
1526         if (!pte_none(*pte))
1527                 goto out_unlock;
1528
1529         /* Ok, finally just insert the thing.. */
1530         entry = pte_mkspecial(pfn_pte(pfn, prot));
1531         set_pte_at(mm, addr, pte, entry);
1532         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1533
1534         retval = 0;
1535 out_unlock:
1536         pte_unmap_unlock(pte, ptl);
1537 out:
1538         return retval;
1539 }
1540
1541 /**
1542  * vm_insert_pfn - insert single pfn into user vma
1543  * @vma: user vma to map to
1544  * @addr: target user address of this page
1545  * @pfn: source kernel pfn
1546  *
1547  * Similar to vm_insert_page, this allows drivers to insert individual pages
1548  * they've allocated into a user vma. Same comments apply.
1549  *
1550  * This function should only be called from a vm_ops->fault handler, and
1551  * in that case the handler should return NULL.
1552  *
1553  * vma cannot be a COW mapping.
1554  *
1555  * As this is called only for pages that do not currently exist, we
1556  * do not need to flush old virtual caches or the TLB.
1557  */
1558 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1559                         unsigned long pfn)
1560 {
1561         int ret;
1562         pgprot_t pgprot = vma->vm_page_prot;
1563         /*
1564          * Technically, architectures with pte_special can avoid all these
1565          * restrictions (same for remap_pfn_range).  However we would like
1566          * consistency in testing and feature parity among all, so we should
1567          * try to keep these invariants in place for everybody.
1568          */
1569         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1570         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1571                                                 (VM_PFNMAP|VM_MIXEDMAP));
1572         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1573         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1574
1575         if (addr < vma->vm_start || addr >= vma->vm_end)
1576                 return -EFAULT;
1577         if (track_pfn_insert(vma, &pgprot, pfn))
1578                 return -EINVAL;
1579
1580         ret = insert_pfn(vma, addr, pfn, pgprot);
1581
1582         return ret;
1583 }
1584 EXPORT_SYMBOL(vm_insert_pfn);
1585
1586 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1587                         unsigned long pfn)
1588 {
1589         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1590
1591         if (addr < vma->vm_start || addr >= vma->vm_end)
1592                 return -EFAULT;
1593
1594         /*
1595          * If we don't have pte special, then we have to use the pfn_valid()
1596          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1597          * refcount the page if pfn_valid is true (hence insert_page rather
1598          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1599          * without pte special, it would there be refcounted as a normal page.
1600          */
1601         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1602                 struct page *page;
1603
1604                 page = pfn_to_page(pfn);
1605                 return insert_page(vma, addr, page, vma->vm_page_prot);
1606         }
1607         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1608 }
1609 EXPORT_SYMBOL(vm_insert_mixed);
1610
1611 /*
1612  * maps a range of physical memory into the requested pages. the old
1613  * mappings are removed. any references to nonexistent pages results
1614  * in null mappings (currently treated as "copy-on-access")
1615  */
1616 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1617                         unsigned long addr, unsigned long end,
1618                         unsigned long pfn, pgprot_t prot)
1619 {
1620         pte_t *pte;
1621         spinlock_t *ptl;
1622
1623         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1624         if (!pte)
1625                 return -ENOMEM;
1626         arch_enter_lazy_mmu_mode();
1627         do {
1628                 BUG_ON(!pte_none(*pte));
1629                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1630                 pfn++;
1631         } while (pte++, addr += PAGE_SIZE, addr != end);
1632         arch_leave_lazy_mmu_mode();
1633         pte_unmap_unlock(pte - 1, ptl);
1634         return 0;
1635 }
1636
1637 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1638                         unsigned long addr, unsigned long end,
1639                         unsigned long pfn, pgprot_t prot)
1640 {
1641         pmd_t *pmd;
1642         unsigned long next;
1643
1644         pfn -= addr >> PAGE_SHIFT;
1645         pmd = pmd_alloc(mm, pud, addr);
1646         if (!pmd)
1647                 return -ENOMEM;
1648         VM_BUG_ON(pmd_trans_huge(*pmd));
1649         do {
1650                 next = pmd_addr_end(addr, end);
1651                 if (remap_pte_range(mm, pmd, addr, next,
1652                                 pfn + (addr >> PAGE_SHIFT), prot))
1653                         return -ENOMEM;
1654         } while (pmd++, addr = next, addr != end);
1655         return 0;
1656 }
1657
1658 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1659                         unsigned long addr, unsigned long end,
1660                         unsigned long pfn, pgprot_t prot)
1661 {
1662         pud_t *pud;
1663         unsigned long next;
1664
1665         pfn -= addr >> PAGE_SHIFT;
1666         pud = pud_alloc(mm, pgd, addr);
1667         if (!pud)
1668                 return -ENOMEM;
1669         do {
1670                 next = pud_addr_end(addr, end);
1671                 if (remap_pmd_range(mm, pud, addr, next,
1672                                 pfn + (addr >> PAGE_SHIFT), prot))
1673                         return -ENOMEM;
1674         } while (pud++, addr = next, addr != end);
1675         return 0;
1676 }
1677
1678 /**
1679  * remap_pfn_range - remap kernel memory to userspace
1680  * @vma: user vma to map to
1681  * @addr: target user address to start at
1682  * @pfn: physical address of kernel memory
1683  * @size: size of map area
1684  * @prot: page protection flags for this mapping
1685  *
1686  *  Note: this is only safe if the mm semaphore is held when called.
1687  */
1688 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1689                     unsigned long pfn, unsigned long size, pgprot_t prot)
1690 {
1691         pgd_t *pgd;
1692         unsigned long next;
1693         unsigned long end = addr + PAGE_ALIGN(size);
1694         struct mm_struct *mm = vma->vm_mm;
1695         int err;
1696
1697         /*
1698          * Physically remapped pages are special. Tell the
1699          * rest of the world about it:
1700          *   VM_IO tells people not to look at these pages
1701          *      (accesses can have side effects).
1702          *   VM_PFNMAP tells the core MM that the base pages are just
1703          *      raw PFN mappings, and do not have a "struct page" associated
1704          *      with them.
1705          *   VM_DONTEXPAND
1706          *      Disable vma merging and expanding with mremap().
1707          *   VM_DONTDUMP
1708          *      Omit vma from core dump, even when VM_IO turned off.
1709          *
1710          * There's a horrible special case to handle copy-on-write
1711          * behaviour that some programs depend on. We mark the "original"
1712          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1713          * See vm_normal_page() for details.
1714          */
1715         if (is_cow_mapping(vma->vm_flags)) {
1716                 if (addr != vma->vm_start || end != vma->vm_end)
1717                         return -EINVAL;
1718                 vma->vm_pgoff = pfn;
1719         }
1720
1721         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1722         if (err)
1723                 return -EINVAL;
1724
1725         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1726
1727         BUG_ON(addr >= end);
1728         pfn -= addr >> PAGE_SHIFT;
1729         pgd = pgd_offset(mm, addr);
1730         flush_cache_range(vma, addr, end);
1731         do {
1732                 next = pgd_addr_end(addr, end);
1733                 err = remap_pud_range(mm, pgd, addr, next,
1734                                 pfn + (addr >> PAGE_SHIFT), prot);
1735                 if (err)
1736                         break;
1737         } while (pgd++, addr = next, addr != end);
1738
1739         if (err)
1740                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1741
1742         return err;
1743 }
1744 EXPORT_SYMBOL(remap_pfn_range);
1745
1746 /**
1747  * vm_iomap_memory - remap memory to userspace
1748  * @vma: user vma to map to
1749  * @start: start of area
1750  * @len: size of area
1751  *
1752  * This is a simplified io_remap_pfn_range() for common driver use. The
1753  * driver just needs to give us the physical memory range to be mapped,
1754  * we'll figure out the rest from the vma information.
1755  *
1756  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1757  * whatever write-combining details or similar.
1758  */
1759 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1760 {
1761         unsigned long vm_len, pfn, pages;
1762
1763         /* Check that the physical memory area passed in looks valid */
1764         if (start + len < start)
1765                 return -EINVAL;
1766         /*
1767          * You *really* shouldn't map things that aren't page-aligned,
1768          * but we've historically allowed it because IO memory might
1769          * just have smaller alignment.
1770          */
1771         len += start & ~PAGE_MASK;
1772         pfn = start >> PAGE_SHIFT;
1773         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1774         if (pfn + pages < pfn)
1775                 return -EINVAL;
1776
1777         /* We start the mapping 'vm_pgoff' pages into the area */
1778         if (vma->vm_pgoff > pages)
1779                 return -EINVAL;
1780         pfn += vma->vm_pgoff;
1781         pages -= vma->vm_pgoff;
1782
1783         /* Can we fit all of the mapping? */
1784         vm_len = vma->vm_end - vma->vm_start;
1785         if (vm_len >> PAGE_SHIFT > pages)
1786                 return -EINVAL;
1787
1788         /* Ok, let it rip */
1789         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1790 }
1791 EXPORT_SYMBOL(vm_iomap_memory);
1792
1793 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1794                                      unsigned long addr, unsigned long end,
1795                                      pte_fn_t fn, void *data)
1796 {
1797         pte_t *pte;
1798         int err;
1799         pgtable_t token;
1800         spinlock_t *uninitialized_var(ptl);
1801
1802         pte = (mm == &init_mm) ?
1803                 pte_alloc_kernel(pmd, addr) :
1804                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1805         if (!pte)
1806                 return -ENOMEM;
1807
1808         BUG_ON(pmd_huge(*pmd));
1809
1810         arch_enter_lazy_mmu_mode();
1811
1812         token = pmd_pgtable(*pmd);
1813
1814         do {
1815                 err = fn(pte++, token, addr, data);
1816                 if (err)
1817                         break;
1818         } while (addr += PAGE_SIZE, addr != end);
1819
1820         arch_leave_lazy_mmu_mode();
1821
1822         if (mm != &init_mm)
1823                 pte_unmap_unlock(pte-1, ptl);
1824         return err;
1825 }
1826
1827 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1828                                      unsigned long addr, unsigned long end,
1829                                      pte_fn_t fn, void *data)
1830 {
1831         pmd_t *pmd;
1832         unsigned long next;
1833         int err;
1834
1835         BUG_ON(pud_huge(*pud));
1836
1837         pmd = pmd_alloc(mm, pud, addr);
1838         if (!pmd)
1839                 return -ENOMEM;
1840         do {
1841                 next = pmd_addr_end(addr, end);
1842                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1843                 if (err)
1844                         break;
1845         } while (pmd++, addr = next, addr != end);
1846         return err;
1847 }
1848
1849 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1850                                      unsigned long addr, unsigned long end,
1851                                      pte_fn_t fn, void *data)
1852 {
1853         pud_t *pud;
1854         unsigned long next;
1855         int err;
1856
1857         pud = pud_alloc(mm, pgd, addr);
1858         if (!pud)
1859                 return -ENOMEM;
1860         do {
1861                 next = pud_addr_end(addr, end);
1862                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1863                 if (err)
1864                         break;
1865         } while (pud++, addr = next, addr != end);
1866         return err;
1867 }
1868
1869 /*
1870  * Scan a region of virtual memory, filling in page tables as necessary
1871  * and calling a provided function on each leaf page table.
1872  */
1873 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1874                         unsigned long size, pte_fn_t fn, void *data)
1875 {
1876         pgd_t *pgd;
1877         unsigned long next;
1878         unsigned long end = addr + size;
1879         int err;
1880
1881         BUG_ON(addr >= end);
1882         pgd = pgd_offset(mm, addr);
1883         do {
1884                 next = pgd_addr_end(addr, end);
1885                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1886                 if (err)
1887                         break;
1888         } while (pgd++, addr = next, addr != end);
1889
1890         return err;
1891 }
1892 EXPORT_SYMBOL_GPL(apply_to_page_range);
1893
1894 /*
1895  * handle_pte_fault chooses page fault handler according to an entry which was
1896  * read non-atomically.  Before making any commitment, on those architectures
1897  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1898  * parts, do_swap_page must check under lock before unmapping the pte and
1899  * proceeding (but do_wp_page is only called after already making such a check;
1900  * and do_anonymous_page can safely check later on).
1901  */
1902 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1903                                 pte_t *page_table, pte_t orig_pte)
1904 {
1905         int same = 1;
1906 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1907         if (sizeof(pte_t) > sizeof(unsigned long)) {
1908                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1909                 spin_lock(ptl);
1910                 same = pte_same(*page_table, orig_pte);
1911                 spin_unlock(ptl);
1912         }
1913 #endif
1914         pte_unmap(page_table);
1915         return same;
1916 }
1917
1918 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1919 {
1920         debug_dma_assert_idle(src);
1921
1922         /*
1923          * If the source page was a PFN mapping, we don't have
1924          * a "struct page" for it. We do a best-effort copy by
1925          * just copying from the original user address. If that
1926          * fails, we just zero-fill it. Live with it.
1927          */
1928         if (unlikely(!src)) {
1929                 void *kaddr = kmap_atomic(dst);
1930                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1931
1932                 /*
1933                  * This really shouldn't fail, because the page is there
1934                  * in the page tables. But it might just be unreadable,
1935                  * in which case we just give up and fill the result with
1936                  * zeroes.
1937                  */
1938                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1939                         clear_page(kaddr);
1940                 kunmap_atomic(kaddr);
1941                 flush_dcache_page(dst);
1942         } else
1943                 copy_user_highpage(dst, src, va, vma);
1944 }
1945
1946 /*
1947  * Notify the address space that the page is about to become writable so that
1948  * it can prohibit this or wait for the page to get into an appropriate state.
1949  *
1950  * We do this without the lock held, so that it can sleep if it needs to.
1951  */
1952 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1953                unsigned long address)
1954 {
1955         struct vm_fault vmf;
1956         int ret;
1957
1958         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1959         vmf.pgoff = page->index;
1960         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1961         vmf.page = page;
1962         vmf.cow_page = NULL;
1963
1964         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1965         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1966                 return ret;
1967         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1968                 lock_page(page);
1969                 if (!page->mapping) {
1970                         unlock_page(page);
1971                         return 0; /* retry */
1972                 }
1973                 ret |= VM_FAULT_LOCKED;
1974         } else
1975                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1976         return ret;
1977 }
1978
1979 /*
1980  * Handle write page faults for pages that can be reused in the current vma
1981  *
1982  * This can happen either due to the mapping being with the VM_SHARED flag,
1983  * or due to us being the last reference standing to the page. In either
1984  * case, all we need to do here is to mark the page as writable and update
1985  * any related book-keeping.
1986  */
1987 static inline int wp_page_reuse(struct mm_struct *mm,
1988                         struct vm_area_struct *vma, unsigned long address,
1989                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
1990                         struct page *page, int page_mkwrite,
1991                         int dirty_shared)
1992         __releases(ptl)
1993 {
1994         pte_t entry;
1995         /*
1996          * Clear the pages cpupid information as the existing
1997          * information potentially belongs to a now completely
1998          * unrelated process.
1999          */
2000         if (page)
2001                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2002
2003         flush_cache_page(vma, address, pte_pfn(orig_pte));
2004         entry = pte_mkyoung(orig_pte);
2005         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2006         if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2007                 update_mmu_cache(vma, address, page_table);
2008         pte_unmap_unlock(page_table, ptl);
2009
2010         if (dirty_shared) {
2011                 struct address_space *mapping;
2012                 int dirtied;
2013
2014                 if (!page_mkwrite)
2015                         lock_page(page);
2016
2017                 dirtied = set_page_dirty(page);
2018                 VM_BUG_ON_PAGE(PageAnon(page), page);
2019                 mapping = page->mapping;
2020                 unlock_page(page);
2021                 page_cache_release(page);
2022
2023                 if ((dirtied || page_mkwrite) && mapping) {
2024                         /*
2025                          * Some device drivers do not set page.mapping
2026                          * but still dirty their pages
2027                          */
2028                         balance_dirty_pages_ratelimited(mapping);
2029                 }
2030
2031                 if (!page_mkwrite)
2032                         file_update_time(vma->vm_file);
2033         }
2034
2035         return VM_FAULT_WRITE;
2036 }
2037
2038 /*
2039  * Handle the case of a page which we actually need to copy to a new page.
2040  *
2041  * Called with mmap_sem locked and the old page referenced, but
2042  * without the ptl held.
2043  *
2044  * High level logic flow:
2045  *
2046  * - Allocate a page, copy the content of the old page to the new one.
2047  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2048  * - Take the PTL. If the pte changed, bail out and release the allocated page
2049  * - If the pte is still the way we remember it, update the page table and all
2050  *   relevant references. This includes dropping the reference the page-table
2051  *   held to the old page, as well as updating the rmap.
2052  * - In any case, unlock the PTL and drop the reference we took to the old page.
2053  */
2054 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2055                         unsigned long address, pte_t *page_table, pmd_t *pmd,
2056                         pte_t orig_pte, struct page *old_page)
2057 {
2058         struct page *new_page = NULL;
2059         spinlock_t *ptl = NULL;
2060         pte_t entry;
2061         int page_copied = 0;
2062         const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
2063         const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
2064         struct mem_cgroup *memcg;
2065
2066         if (unlikely(anon_vma_prepare(vma)))
2067                 goto oom;
2068
2069         if (is_zero_pfn(pte_pfn(orig_pte))) {
2070                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2071                 if (!new_page)
2072                         goto oom;
2073         } else {
2074                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2075                 if (!new_page)
2076                         goto oom;
2077                 cow_user_page(new_page, old_page, address, vma);
2078         }
2079
2080         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2081                 goto oom_free_new;
2082
2083         __SetPageUptodate(new_page);
2084
2085         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2086
2087         /*
2088          * Re-check the pte - we dropped the lock
2089          */
2090         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2091         if (likely(pte_same(*page_table, orig_pte))) {
2092                 if (old_page) {
2093                         if (!PageAnon(old_page)) {
2094                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2095                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2096                         }
2097                 } else {
2098                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2099                 }
2100                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2101                 entry = mk_pte(new_page, vma->vm_page_prot);
2102                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2103                 /*
2104                  * Clear the pte entry and flush it first, before updating the
2105                  * pte with the new entry. This will avoid a race condition
2106                  * seen in the presence of one thread doing SMC and another
2107                  * thread doing COW.
2108                  */
2109                 ptep_clear_flush_notify(vma, address, page_table);
2110                 page_add_new_anon_rmap(new_page, vma, address, false);
2111                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2112                 lru_cache_add_active_or_unevictable(new_page, vma);
2113                 /*
2114                  * We call the notify macro here because, when using secondary
2115                  * mmu page tables (such as kvm shadow page tables), we want the
2116                  * new page to be mapped directly into the secondary page table.
2117                  */
2118                 set_pte_at_notify(mm, address, page_table, entry);
2119                 update_mmu_cache(vma, address, page_table);
2120                 if (old_page) {
2121                         /*
2122                          * Only after switching the pte to the new page may
2123                          * we remove the mapcount here. Otherwise another
2124                          * process may come and find the rmap count decremented
2125                          * before the pte is switched to the new page, and
2126                          * "reuse" the old page writing into it while our pte
2127                          * here still points into it and can be read by other
2128                          * threads.
2129                          *
2130                          * The critical issue is to order this
2131                          * page_remove_rmap with the ptp_clear_flush above.
2132                          * Those stores are ordered by (if nothing else,)
2133                          * the barrier present in the atomic_add_negative
2134                          * in page_remove_rmap.
2135                          *
2136                          * Then the TLB flush in ptep_clear_flush ensures that
2137                          * no process can access the old page before the
2138                          * decremented mapcount is visible. And the old page
2139                          * cannot be reused until after the decremented
2140                          * mapcount is visible. So transitively, TLBs to
2141                          * old page will be flushed before it can be reused.
2142                          */
2143                         page_remove_rmap(old_page, false);
2144                 }
2145
2146                 /* Free the old page.. */
2147                 new_page = old_page;
2148                 page_copied = 1;
2149         } else {
2150                 mem_cgroup_cancel_charge(new_page, memcg, false);
2151         }
2152
2153         if (new_page)
2154                 page_cache_release(new_page);
2155
2156         pte_unmap_unlock(page_table, ptl);
2157         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2158         if (old_page) {
2159                 /*
2160                  * Don't let another task, with possibly unlocked vma,
2161                  * keep the mlocked page.
2162                  */
2163                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2164                         lock_page(old_page);    /* LRU manipulation */
2165                         if (PageMlocked(old_page))
2166                                 munlock_vma_page(old_page);
2167                         unlock_page(old_page);
2168                 }
2169                 page_cache_release(old_page);
2170         }
2171         return page_copied ? VM_FAULT_WRITE : 0;
2172 oom_free_new:
2173         page_cache_release(new_page);
2174 oom:
2175         if (old_page)
2176                 page_cache_release(old_page);
2177         return VM_FAULT_OOM;
2178 }
2179
2180 /*
2181  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2182  * mapping
2183  */
2184 static int wp_pfn_shared(struct mm_struct *mm,
2185                         struct vm_area_struct *vma, unsigned long address,
2186                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2187                         pmd_t *pmd)
2188 {
2189         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2190                 struct vm_fault vmf = {
2191                         .page = NULL,
2192                         .pgoff = linear_page_index(vma, address),
2193                         .virtual_address = (void __user *)(address & PAGE_MASK),
2194                         .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2195                 };
2196                 int ret;
2197
2198                 pte_unmap_unlock(page_table, ptl);
2199                 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2200                 if (ret & VM_FAULT_ERROR)
2201                         return ret;
2202                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2203                 /*
2204                  * We might have raced with another page fault while we
2205                  * released the pte_offset_map_lock.
2206                  */
2207                 if (!pte_same(*page_table, orig_pte)) {
2208                         pte_unmap_unlock(page_table, ptl);
2209                         return 0;
2210                 }
2211         }
2212         return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2213                              NULL, 0, 0);
2214 }
2215
2216 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2217                           unsigned long address, pte_t *page_table,
2218                           pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2219                           struct page *old_page)
2220         __releases(ptl)
2221 {
2222         int page_mkwrite = 0;
2223
2224         page_cache_get(old_page);
2225
2226         /*
2227          * Only catch write-faults on shared writable pages,
2228          * read-only shared pages can get COWed by
2229          * get_user_pages(.write=1, .force=1).
2230          */
2231         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2232                 int tmp;
2233
2234                 pte_unmap_unlock(page_table, ptl);
2235                 tmp = do_page_mkwrite(vma, old_page, address);
2236                 if (unlikely(!tmp || (tmp &
2237                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2238                         page_cache_release(old_page);
2239                         return tmp;
2240                 }
2241                 /*
2242                  * Since we dropped the lock we need to revalidate
2243                  * the PTE as someone else may have changed it.  If
2244                  * they did, we just return, as we can count on the
2245                  * MMU to tell us if they didn't also make it writable.
2246                  */
2247                 page_table = pte_offset_map_lock(mm, pmd, address,
2248                                                  &ptl);
2249                 if (!pte_same(*page_table, orig_pte)) {
2250                         unlock_page(old_page);
2251                         pte_unmap_unlock(page_table, ptl);
2252                         page_cache_release(old_page);
2253                         return 0;
2254                 }
2255                 page_mkwrite = 1;
2256         }
2257
2258         return wp_page_reuse(mm, vma, address, page_table, ptl,
2259                              orig_pte, old_page, page_mkwrite, 1);
2260 }
2261
2262 /*
2263  * This routine handles present pages, when users try to write
2264  * to a shared page. It is done by copying the page to a new address
2265  * and decrementing the shared-page counter for the old page.
2266  *
2267  * Note that this routine assumes that the protection checks have been
2268  * done by the caller (the low-level page fault routine in most cases).
2269  * Thus we can safely just mark it writable once we've done any necessary
2270  * COW.
2271  *
2272  * We also mark the page dirty at this point even though the page will
2273  * change only once the write actually happens. This avoids a few races,
2274  * and potentially makes it more efficient.
2275  *
2276  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2277  * but allow concurrent faults), with pte both mapped and locked.
2278  * We return with mmap_sem still held, but pte unmapped and unlocked.
2279  */
2280 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2281                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2282                 spinlock_t *ptl, pte_t orig_pte)
2283         __releases(ptl)
2284 {
2285         struct page *old_page;
2286
2287         old_page = vm_normal_page(vma, address, orig_pte);
2288         if (!old_page) {
2289                 /*
2290                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2291                  * VM_PFNMAP VMA.
2292                  *
2293                  * We should not cow pages in a shared writeable mapping.
2294                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2295                  */
2296                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2297                                      (VM_WRITE|VM_SHARED))
2298                         return wp_pfn_shared(mm, vma, address, page_table, ptl,
2299                                              orig_pte, pmd);
2300
2301                 pte_unmap_unlock(page_table, ptl);
2302                 return wp_page_copy(mm, vma, address, page_table, pmd,
2303                                     orig_pte, old_page);
2304         }
2305
2306         /*
2307          * Take out anonymous pages first, anonymous shared vmas are
2308          * not dirty accountable.
2309          */
2310         if (PageAnon(old_page) && !PageKsm(old_page)) {
2311                 if (!trylock_page(old_page)) {
2312                         page_cache_get(old_page);
2313                         pte_unmap_unlock(page_table, ptl);
2314                         lock_page(old_page);
2315                         page_table = pte_offset_map_lock(mm, pmd, address,
2316                                                          &ptl);
2317                         if (!pte_same(*page_table, orig_pte)) {
2318                                 unlock_page(old_page);
2319                                 pte_unmap_unlock(page_table, ptl);
2320                                 page_cache_release(old_page);
2321                                 return 0;
2322                         }
2323                         page_cache_release(old_page);
2324                 }
2325                 if (reuse_swap_page(old_page)) {
2326                         /*
2327                          * The page is all ours.  Move it to our anon_vma so
2328                          * the rmap code will not search our parent or siblings.
2329                          * Protected against the rmap code by the page lock.
2330                          */
2331                         page_move_anon_rmap(old_page, vma, address);
2332                         unlock_page(old_page);
2333                         return wp_page_reuse(mm, vma, address, page_table, ptl,
2334                                              orig_pte, old_page, 0, 0);
2335                 }
2336                 unlock_page(old_page);
2337         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2338                                         (VM_WRITE|VM_SHARED))) {
2339                 return wp_page_shared(mm, vma, address, page_table, pmd,
2340                                       ptl, orig_pte, old_page);
2341         }
2342
2343         /*
2344          * Ok, we need to copy. Oh, well..
2345          */
2346         page_cache_get(old_page);
2347
2348         pte_unmap_unlock(page_table, ptl);
2349         return wp_page_copy(mm, vma, address, page_table, pmd,
2350                             orig_pte, old_page);
2351 }
2352
2353 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2354                 unsigned long start_addr, unsigned long end_addr,
2355                 struct zap_details *details)
2356 {
2357         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2358 }
2359
2360 static inline void unmap_mapping_range_tree(struct rb_root *root,
2361                                             struct zap_details *details)
2362 {
2363         struct vm_area_struct *vma;
2364         pgoff_t vba, vea, zba, zea;
2365
2366         vma_interval_tree_foreach(vma, root,
2367                         details->first_index, details->last_index) {
2368
2369                 vba = vma->vm_pgoff;
2370                 vea = vba + vma_pages(vma) - 1;
2371                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2372                 zba = details->first_index;
2373                 if (zba < vba)
2374                         zba = vba;
2375                 zea = details->last_index;
2376                 if (zea > vea)
2377                         zea = vea;
2378
2379                 unmap_mapping_range_vma(vma,
2380                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2381                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2382                                 details);
2383         }
2384 }
2385
2386 /**
2387  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2388  * address_space corresponding to the specified page range in the underlying
2389  * file.
2390  *
2391  * @mapping: the address space containing mmaps to be unmapped.
2392  * @holebegin: byte in first page to unmap, relative to the start of
2393  * the underlying file.  This will be rounded down to a PAGE_SIZE
2394  * boundary.  Note that this is different from truncate_pagecache(), which
2395  * must keep the partial page.  In contrast, we must get rid of
2396  * partial pages.
2397  * @holelen: size of prospective hole in bytes.  This will be rounded
2398  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2399  * end of the file.
2400  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2401  * but 0 when invalidating pagecache, don't throw away private data.
2402  */
2403 void unmap_mapping_range(struct address_space *mapping,
2404                 loff_t const holebegin, loff_t const holelen, int even_cows)
2405 {
2406         struct zap_details details;
2407         pgoff_t hba = holebegin >> PAGE_SHIFT;
2408         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2409
2410         /* Check for overflow. */
2411         if (sizeof(holelen) > sizeof(hlen)) {
2412                 long long holeend =
2413                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2414                 if (holeend & ~(long long)ULONG_MAX)
2415                         hlen = ULONG_MAX - hba + 1;
2416         }
2417
2418         details.check_mapping = even_cows? NULL: mapping;
2419         details.first_index = hba;
2420         details.last_index = hba + hlen - 1;
2421         if (details.last_index < details.first_index)
2422                 details.last_index = ULONG_MAX;
2423
2424
2425         /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2426         i_mmap_lock_write(mapping);
2427         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2428                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2429         i_mmap_unlock_write(mapping);
2430 }
2431 EXPORT_SYMBOL(unmap_mapping_range);
2432
2433 /*
2434  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2435  * but allow concurrent faults), and pte mapped but not yet locked.
2436  * We return with pte unmapped and unlocked.
2437  *
2438  * We return with the mmap_sem locked or unlocked in the same cases
2439  * as does filemap_fault().
2440  */
2441 int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2442                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2443                 unsigned int flags, pte_t orig_pte)
2444 {
2445         spinlock_t *ptl;
2446         struct page *page, *swapcache;
2447         struct mem_cgroup *memcg;
2448         swp_entry_t entry;
2449         pte_t pte;
2450         int locked;
2451         int exclusive = 0;
2452         int ret = 0;
2453
2454         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2455                 goto out;
2456
2457         entry = pte_to_swp_entry(orig_pte);
2458         if (unlikely(non_swap_entry(entry))) {
2459                 if (is_migration_entry(entry)) {
2460                         migration_entry_wait(mm, pmd, address);
2461                 } else if (is_hwpoison_entry(entry)) {
2462                         ret = VM_FAULT_HWPOISON;
2463                 } else {
2464                         print_bad_pte(vma, address, orig_pte, NULL);
2465                         ret = VM_FAULT_SIGBUS;
2466                 }
2467                 goto out;
2468         }
2469         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2470         page = lookup_swap_cache(entry);
2471         if (!page) {
2472                 page = swapin_readahead(entry,
2473                                         GFP_HIGHUSER_MOVABLE, vma, address);
2474                 if (!page) {
2475                         /*
2476                          * Back out if somebody else faulted in this pte
2477                          * while we released the pte lock.
2478                          */
2479                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2480                         if (likely(pte_same(*page_table, orig_pte)))
2481                                 ret = VM_FAULT_OOM;
2482                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2483                         goto unlock;
2484                 }
2485
2486                 /* Had to read the page from swap area: Major fault */
2487                 ret = VM_FAULT_MAJOR;
2488                 count_vm_event(PGMAJFAULT);
2489                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2490         } else if (PageHWPoison(page)) {
2491                 /*
2492                  * hwpoisoned dirty swapcache pages are kept for killing
2493                  * owner processes (which may be unknown at hwpoison time)
2494                  */
2495                 ret = VM_FAULT_HWPOISON;
2496                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2497                 swapcache = page;
2498                 goto out_release;
2499         }
2500
2501         swapcache = page;
2502         locked = lock_page_or_retry(page, mm, flags);
2503
2504         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2505         if (!locked) {
2506                 ret |= VM_FAULT_RETRY;
2507                 goto out_release;
2508         }
2509
2510         /*
2511          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2512          * release the swapcache from under us.  The page pin, and pte_same
2513          * test below, are not enough to exclude that.  Even if it is still
2514          * swapcache, we need to check that the page's swap has not changed.
2515          */
2516         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2517                 goto out_page;
2518
2519         page = ksm_might_need_to_copy(page, vma, address);
2520         if (unlikely(!page)) {
2521                 ret = VM_FAULT_OOM;
2522                 page = swapcache;
2523                 goto out_page;
2524         }
2525
2526         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2527                 ret = VM_FAULT_OOM;
2528                 goto out_page;
2529         }
2530
2531         /*
2532          * Back out if somebody else already faulted in this pte.
2533          */
2534         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2535         if (unlikely(!pte_same(*page_table, orig_pte)))
2536                 goto out_nomap;
2537
2538         if (unlikely(!PageUptodate(page))) {
2539                 ret = VM_FAULT_SIGBUS;
2540                 goto out_nomap;
2541         }
2542
2543         /*
2544          * The page isn't present yet, go ahead with the fault.
2545          *
2546          * Be careful about the sequence of operations here.
2547          * To get its accounting right, reuse_swap_page() must be called
2548          * while the page is counted on swap but not yet in mapcount i.e.
2549          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2550          * must be called after the swap_free(), or it will never succeed.
2551          */
2552
2553         inc_mm_counter_fast(mm, MM_ANONPAGES);
2554         dec_mm_counter_fast(mm, MM_SWAPENTS);
2555         pte = mk_pte(page, vma->vm_page_prot);
2556         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2557                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2558                 flags &= ~FAULT_FLAG_WRITE;
2559                 ret |= VM_FAULT_WRITE;
2560                 exclusive = RMAP_EXCLUSIVE;
2561         }
2562         flush_icache_page(vma, page);
2563         if (pte_swp_soft_dirty(orig_pte))
2564                 pte = pte_mksoft_dirty(pte);
2565         set_pte_at(mm, address, page_table, pte);
2566         if (page == swapcache) {
2567                 do_page_add_anon_rmap(page, vma, address, exclusive);
2568                 mem_cgroup_commit_charge(page, memcg, true, false);
2569         } else { /* ksm created a completely new copy */
2570                 page_add_new_anon_rmap(page, vma, address, false);
2571                 mem_cgroup_commit_charge(page, memcg, false, false);
2572                 lru_cache_add_active_or_unevictable(page, vma);
2573         }
2574
2575         swap_free(entry);
2576         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2577                 try_to_free_swap(page);
2578         unlock_page(page);
2579         if (page != swapcache) {
2580                 /*
2581                  * Hold the lock to avoid the swap entry to be reused
2582                  * until we take the PT lock for the pte_same() check
2583                  * (to avoid false positives from pte_same). For
2584                  * further safety release the lock after the swap_free
2585                  * so that the swap count won't change under a
2586                  * parallel locked swapcache.
2587                  */
2588                 unlock_page(swapcache);
2589                 page_cache_release(swapcache);
2590         }
2591
2592         if (flags & FAULT_FLAG_WRITE) {
2593                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2594                 if (ret & VM_FAULT_ERROR)
2595                         ret &= VM_FAULT_ERROR;
2596                 goto out;
2597         }
2598
2599         /* No need to invalidate - it was non-present before */
2600         update_mmu_cache(vma, address, page_table);
2601 unlock:
2602         pte_unmap_unlock(page_table, ptl);
2603 out:
2604         return ret;
2605 out_nomap:
2606         mem_cgroup_cancel_charge(page, memcg, false);
2607         pte_unmap_unlock(page_table, ptl);
2608 out_page:
2609         unlock_page(page);
2610 out_release:
2611         page_cache_release(page);
2612         if (page != swapcache) {
2613                 unlock_page(swapcache);
2614                 page_cache_release(swapcache);
2615         }
2616         return ret;
2617 }
2618
2619 /*
2620  * This is like a special single-page "expand_{down|up}wards()",
2621  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2622  * doesn't hit another vma.
2623  */
2624 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2625 {
2626         address &= PAGE_MASK;
2627         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2628                 struct vm_area_struct *prev = vma->vm_prev;
2629
2630                 /*
2631                  * Is there a mapping abutting this one below?
2632                  *
2633                  * That's only ok if it's the same stack mapping
2634                  * that has gotten split..
2635                  */
2636                 if (prev && prev->vm_end == address)
2637                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2638
2639                 return expand_downwards(vma, address - PAGE_SIZE);
2640         }
2641         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2642                 struct vm_area_struct *next = vma->vm_next;
2643
2644                 /* As VM_GROWSDOWN but s/below/above/ */
2645                 if (next && next->vm_start == address + PAGE_SIZE)
2646                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2647
2648                 return expand_upwards(vma, address + PAGE_SIZE);
2649         }
2650         return 0;
2651 }
2652
2653 /*
2654  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2655  * but allow concurrent faults), and pte mapped but not yet locked.
2656  * We return with mmap_sem still held, but pte unmapped and unlocked.
2657  */
2658 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2659                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2660                 unsigned int flags)
2661 {
2662         struct mem_cgroup *memcg;
2663         struct page *page;
2664         spinlock_t *ptl;
2665         pte_t entry;
2666
2667         pte_unmap(page_table);
2668
2669         /* File mapping without ->vm_ops ? */
2670         if (vma->vm_flags & VM_SHARED)
2671                 return VM_FAULT_SIGBUS;
2672
2673         /* Check if we need to add a guard page to the stack */
2674         if (check_stack_guard_page(vma, address) < 0)
2675                 return VM_FAULT_SIGSEGV;
2676
2677         /* Use the zero-page for reads */
2678         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2679                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2680                                                 vma->vm_page_prot));
2681                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2682                 if (!pte_none(*page_table))
2683                         goto unlock;
2684                 /* Deliver the page fault to userland, check inside PT lock */
2685                 if (userfaultfd_missing(vma)) {
2686                         pte_unmap_unlock(page_table, ptl);
2687                         return handle_userfault(vma, address, flags,
2688                                                 VM_UFFD_MISSING);
2689                 }
2690                 goto setpte;
2691         }
2692
2693         /* Allocate our own private page. */
2694         if (unlikely(anon_vma_prepare(vma)))
2695                 goto oom;
2696         page = alloc_zeroed_user_highpage_movable(vma, address);
2697         if (!page)
2698                 goto oom;
2699
2700         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2701                 goto oom_free_page;
2702
2703         /*
2704          * The memory barrier inside __SetPageUptodate makes sure that
2705          * preceeding stores to the page contents become visible before
2706          * the set_pte_at() write.
2707          */
2708         __SetPageUptodate(page);
2709
2710         entry = mk_pte(page, vma->vm_page_prot);
2711         if (vma->vm_flags & VM_WRITE)
2712                 entry = pte_mkwrite(pte_mkdirty(entry));
2713
2714         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2715         if (!pte_none(*page_table))
2716                 goto release;
2717
2718         /* Deliver the page fault to userland, check inside PT lock */
2719         if (userfaultfd_missing(vma)) {
2720                 pte_unmap_unlock(page_table, ptl);
2721                 mem_cgroup_cancel_charge(page, memcg, false);
2722                 page_cache_release(page);
2723                 return handle_userfault(vma, address, flags,
2724                                         VM_UFFD_MISSING);
2725         }
2726
2727         inc_mm_counter_fast(mm, MM_ANONPAGES);
2728         page_add_new_anon_rmap(page, vma, address, false);
2729         mem_cgroup_commit_charge(page, memcg, false, false);
2730         lru_cache_add_active_or_unevictable(page, vma);
2731 setpte:
2732         set_pte_at(mm, address, page_table, entry);
2733
2734         /* No need to invalidate - it was non-present before */
2735         update_mmu_cache(vma, address, page_table);
2736 unlock:
2737         pte_unmap_unlock(page_table, ptl);
2738         return 0;
2739 release:
2740         mem_cgroup_cancel_charge(page, memcg, false);
2741         page_cache_release(page);
2742         goto unlock;
2743 oom_free_page:
2744         page_cache_release(page);
2745 oom:
2746         return VM_FAULT_OOM;
2747 }
2748
2749 /*
2750  * The mmap_sem must have been held on entry, and may have been
2751  * released depending on flags and vma->vm_ops->fault() return value.
2752  * See filemap_fault() and __lock_page_retry().
2753  */
2754 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2755                         pgoff_t pgoff, unsigned int flags,
2756                         struct page *cow_page, struct page **page)
2757 {
2758         struct vm_fault vmf;
2759         int ret;
2760
2761         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2762         vmf.pgoff = pgoff;
2763         vmf.flags = flags;
2764         vmf.page = NULL;
2765         vmf.cow_page = cow_page;
2766
2767         ret = vma->vm_ops->fault(vma, &vmf);
2768         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2769                 return ret;
2770         if (!vmf.page)
2771                 goto out;
2772
2773         if (unlikely(PageHWPoison(vmf.page))) {
2774                 if (ret & VM_FAULT_LOCKED)
2775                         unlock_page(vmf.page);
2776                 page_cache_release(vmf.page);
2777                 return VM_FAULT_HWPOISON;
2778         }
2779
2780         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2781                 lock_page(vmf.page);
2782         else
2783                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2784
2785  out:
2786         *page = vmf.page;
2787         return ret;
2788 }
2789
2790 /**
2791  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2792  *
2793  * @vma: virtual memory area
2794  * @address: user virtual address
2795  * @page: page to map
2796  * @pte: pointer to target page table entry
2797  * @write: true, if new entry is writable
2798  * @anon: true, if it's anonymous page
2799  *
2800  * Caller must hold page table lock relevant for @pte.
2801  *
2802  * Target users are page handler itself and implementations of
2803  * vm_ops->map_pages.
2804  */
2805 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2806                 struct page *page, pte_t *pte, bool write, bool anon)
2807 {
2808         pte_t entry;
2809
2810         flush_icache_page(vma, page);
2811         entry = mk_pte(page, vma->vm_page_prot);
2812         if (write)
2813                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2814         if (anon) {
2815                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2816                 page_add_new_anon_rmap(page, vma, address, false);
2817         } else {
2818                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2819                 page_add_file_rmap(page);
2820         }
2821         set_pte_at(vma->vm_mm, address, pte, entry);
2822
2823         /* no need to invalidate: a not-present page won't be cached */
2824         update_mmu_cache(vma, address, pte);
2825 }
2826
2827 static unsigned long fault_around_bytes __read_mostly =
2828         rounddown_pow_of_two(65536);
2829
2830 #ifdef CONFIG_DEBUG_FS
2831 static int fault_around_bytes_get(void *data, u64 *val)
2832 {
2833         *val = fault_around_bytes;
2834         return 0;
2835 }
2836
2837 /*
2838  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2839  * rounded down to nearest page order. It's what do_fault_around() expects to
2840  * see.
2841  */
2842 static int fault_around_bytes_set(void *data, u64 val)
2843 {
2844         if (val / PAGE_SIZE > PTRS_PER_PTE)
2845                 return -EINVAL;
2846         if (val > PAGE_SIZE)
2847                 fault_around_bytes = rounddown_pow_of_two(val);
2848         else
2849                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2850         return 0;
2851 }
2852 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2853                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2854
2855 static int __init fault_around_debugfs(void)
2856 {
2857         void *ret;
2858
2859         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2860                         &fault_around_bytes_fops);
2861         if (!ret)
2862                 pr_warn("Failed to create fault_around_bytes in debugfs");
2863         return 0;
2864 }
2865 late_initcall(fault_around_debugfs);
2866 #endif
2867
2868 /*
2869  * do_fault_around() tries to map few pages around the fault address. The hope
2870  * is that the pages will be needed soon and this will lower the number of
2871  * faults to handle.
2872  *
2873  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2874  * not ready to be mapped: not up-to-date, locked, etc.
2875  *
2876  * This function is called with the page table lock taken. In the split ptlock
2877  * case the page table lock only protects only those entries which belong to
2878  * the page table corresponding to the fault address.
2879  *
2880  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2881  * only once.
2882  *
2883  * fault_around_pages() defines how many pages we'll try to map.
2884  * do_fault_around() expects it to return a power of two less than or equal to
2885  * PTRS_PER_PTE.
2886  *
2887  * The virtual address of the area that we map is naturally aligned to the
2888  * fault_around_pages() value (and therefore to page order).  This way it's
2889  * easier to guarantee that we don't cross page table boundaries.
2890  */
2891 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2892                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2893 {
2894         unsigned long start_addr, nr_pages, mask;
2895         pgoff_t max_pgoff;
2896         struct vm_fault vmf;
2897         int off;
2898
2899         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2900         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2901
2902         start_addr = max(address & mask, vma->vm_start);
2903         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2904         pte -= off;
2905         pgoff -= off;
2906
2907         /*
2908          *  max_pgoff is either end of page table or end of vma
2909          *  or fault_around_pages() from pgoff, depending what is nearest.
2910          */
2911         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2912                 PTRS_PER_PTE - 1;
2913         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2914                         pgoff + nr_pages - 1);
2915
2916         /* Check if it makes any sense to call ->map_pages */
2917         while (!pte_none(*pte)) {
2918                 if (++pgoff > max_pgoff)
2919                         return;
2920                 start_addr += PAGE_SIZE;
2921                 if (start_addr >= vma->vm_end)
2922                         return;
2923                 pte++;
2924         }
2925
2926         vmf.virtual_address = (void __user *) start_addr;
2927         vmf.pte = pte;
2928         vmf.pgoff = pgoff;
2929         vmf.max_pgoff = max_pgoff;
2930         vmf.flags = flags;
2931         vma->vm_ops->map_pages(vma, &vmf);
2932 }
2933
2934 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2935                 unsigned long address, pmd_t *pmd,
2936                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2937 {
2938         struct page *fault_page;
2939         spinlock_t *ptl;
2940         pte_t *pte;
2941         int ret = 0;
2942
2943         /*
2944          * Let's call ->map_pages() first and use ->fault() as fallback
2945          * if page by the offset is not ready to be mapped (cold cache or
2946          * something).
2947          */
2948         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2949                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2950                 do_fault_around(vma, address, pte, pgoff, flags);
2951                 if (!pte_same(*pte, orig_pte))
2952                         goto unlock_out;
2953                 pte_unmap_unlock(pte, ptl);
2954         }
2955
2956         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2957         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2958                 return ret;
2959
2960         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2961         if (unlikely(!pte_same(*pte, orig_pte))) {
2962                 pte_unmap_unlock(pte, ptl);
2963                 unlock_page(fault_page);
2964                 page_cache_release(fault_page);
2965                 return ret;
2966         }
2967         do_set_pte(vma, address, fault_page, pte, false, false);
2968         unlock_page(fault_page);
2969 unlock_out:
2970         pte_unmap_unlock(pte, ptl);
2971         return ret;
2972 }
2973
2974 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2975                 unsigned long address, pmd_t *pmd,
2976                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2977 {
2978         struct page *fault_page, *new_page;
2979         struct mem_cgroup *memcg;
2980         spinlock_t *ptl;
2981         pte_t *pte;
2982         int ret;
2983
2984         if (unlikely(anon_vma_prepare(vma)))
2985                 return VM_FAULT_OOM;
2986
2987         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2988         if (!new_page)
2989                 return VM_FAULT_OOM;
2990
2991         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
2992                 page_cache_release(new_page);
2993                 return VM_FAULT_OOM;
2994         }
2995
2996         ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
2997         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2998                 goto uncharge_out;
2999
3000         if (fault_page)
3001                 copy_user_highpage(new_page, fault_page, address, vma);
3002         __SetPageUptodate(new_page);
3003
3004         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3005         if (unlikely(!pte_same(*pte, orig_pte))) {
3006                 pte_unmap_unlock(pte, ptl);
3007                 if (fault_page) {
3008                         unlock_page(fault_page);
3009                         page_cache_release(fault_page);
3010                 } else {
3011                         /*
3012                          * The fault handler has no page to lock, so it holds
3013                          * i_mmap_lock for write to protect against truncate.
3014                          */
3015                         i_mmap_unlock_write(vma->vm_file->f_mapping);
3016                 }
3017                 goto uncharge_out;
3018         }
3019         do_set_pte(vma, address, new_page, pte, true, true);
3020         mem_cgroup_commit_charge(new_page, memcg, false, false);
3021         lru_cache_add_active_or_unevictable(new_page, vma);
3022         pte_unmap_unlock(pte, ptl);
3023         if (fault_page) {
3024                 unlock_page(fault_page);
3025                 page_cache_release(fault_page);
3026         } else {
3027                 /*
3028                  * The fault handler has no page to lock, so it holds
3029                  * i_mmap_lock for write to protect against truncate.
3030                  */
3031                 i_mmap_unlock_write(vma->vm_file->f_mapping);
3032         }
3033         return ret;
3034 uncharge_out:
3035         mem_cgroup_cancel_charge(new_page, memcg, false);
3036         page_cache_release(new_page);
3037         return ret;
3038 }
3039
3040 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3041                 unsigned long address, pmd_t *pmd,
3042                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3043 {
3044         struct page *fault_page;
3045         struct address_space *mapping;
3046         spinlock_t *ptl;
3047         pte_t *pte;
3048         int dirtied = 0;
3049         int ret, tmp;
3050
3051         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3052         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3053                 return ret;
3054
3055         /*
3056          * Check if the backing address space wants to know that the page is
3057          * about to become writable
3058          */
3059         if (vma->vm_ops->page_mkwrite) {
3060                 unlock_page(fault_page);
3061                 tmp = do_page_mkwrite(vma, fault_page, address);
3062                 if (unlikely(!tmp ||
3063                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3064                         page_cache_release(fault_page);
3065                         return tmp;
3066                 }
3067         }
3068
3069         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3070         if (unlikely(!pte_same(*pte, orig_pte))) {
3071                 pte_unmap_unlock(pte, ptl);
3072                 unlock_page(fault_page);
3073                 page_cache_release(fault_page);
3074                 return ret;
3075         }
3076         do_set_pte(vma, address, fault_page, pte, true, false);
3077         pte_unmap_unlock(pte, ptl);
3078
3079         if (set_page_dirty(fault_page))
3080                 dirtied = 1;
3081         /*
3082          * Take a local copy of the address_space - page.mapping may be zeroed
3083          * by truncate after unlock_page().   The address_space itself remains
3084          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3085          * release semantics to prevent the compiler from undoing this copying.
3086          */
3087         mapping = page_rmapping(fault_page);
3088         unlock_page(fault_page);
3089         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3090                 /*
3091                  * Some device drivers do not set page.mapping but still
3092                  * dirty their pages
3093                  */
3094                 balance_dirty_pages_ratelimited(mapping);
3095         }
3096
3097         if (!vma->vm_ops->page_mkwrite)
3098                 file_update_time(vma->vm_file);
3099
3100         return ret;
3101 }
3102
3103 /*
3104  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3105  * but allow concurrent faults).
3106  * The mmap_sem may have been released depending on flags and our
3107  * return value.  See filemap_fault() and __lock_page_or_retry().
3108  */
3109 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3110                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3111                 unsigned int flags, pte_t orig_pte)
3112 {
3113         pgoff_t pgoff = (((address & PAGE_MASK)
3114                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3115
3116         pte_unmap(page_table);
3117         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3118         if (!vma->vm_ops->fault)
3119                 return VM_FAULT_SIGBUS;
3120         if (!(flags & FAULT_FLAG_WRITE))
3121                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3122                                 orig_pte);
3123         if (!(vma->vm_flags & VM_SHARED))
3124                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3125                                 orig_pte);
3126         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3127 }
3128
3129 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3130                                 unsigned long addr, int page_nid,
3131                                 int *flags)
3132 {
3133         get_page(page);
3134
3135         count_vm_numa_event(NUMA_HINT_FAULTS);
3136         if (page_nid == numa_node_id()) {
3137                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3138                 *flags |= TNF_FAULT_LOCAL;
3139         }
3140
3141         return mpol_misplaced(page, vma, addr);
3142 }
3143
3144 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3145                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3146 {
3147         struct page *page = NULL;
3148         spinlock_t *ptl;
3149         int page_nid = -1;
3150         int last_cpupid;
3151         int target_nid;
3152         bool migrated = false;
3153         bool was_writable = pte_write(pte);
3154         int flags = 0;
3155
3156         /* A PROT_NONE fault should not end up here */
3157         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3158
3159         /*
3160         * The "pte" at this point cannot be used safely without
3161         * validation through pte_unmap_same(). It's of NUMA type but
3162         * the pfn may be screwed if the read is non atomic.
3163         *
3164         * We can safely just do a "set_pte_at()", because the old
3165         * page table entry is not accessible, so there would be no
3166         * concurrent hardware modifications to the PTE.
3167         */
3168         ptl = pte_lockptr(mm, pmd);
3169         spin_lock(ptl);
3170         if (unlikely(!pte_same(*ptep, pte))) {
3171                 pte_unmap_unlock(ptep, ptl);
3172                 goto out;
3173         }
3174
3175         /* Make it present again */
3176         pte = pte_modify(pte, vma->vm_page_prot);
3177         pte = pte_mkyoung(pte);
3178         if (was_writable)
3179                 pte = pte_mkwrite(pte);
3180         set_pte_at(mm, addr, ptep, pte);
3181         update_mmu_cache(vma, addr, ptep);
3182
3183         page = vm_normal_page(vma, addr, pte);
3184         if (!page) {
3185                 pte_unmap_unlock(ptep, ptl);
3186                 return 0;
3187         }
3188
3189         /* TODO: handle PTE-mapped THP */
3190         if (PageCompound(page)) {
3191                 pte_unmap_unlock(ptep, ptl);
3192                 return 0;
3193         }
3194
3195         /*
3196          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3197          * much anyway since they can be in shared cache state. This misses
3198          * the case where a mapping is writable but the process never writes
3199          * to it but pte_write gets cleared during protection updates and
3200          * pte_dirty has unpredictable behaviour between PTE scan updates,
3201          * background writeback, dirty balancing and application behaviour.
3202          */
3203         if (!(vma->vm_flags & VM_WRITE))
3204                 flags |= TNF_NO_GROUP;
3205
3206         /*
3207          * Flag if the page is shared between multiple address spaces. This
3208          * is later used when determining whether to group tasks together
3209          */
3210         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3211                 flags |= TNF_SHARED;
3212
3213         last_cpupid = page_cpupid_last(page);
3214         page_nid = page_to_nid(page);
3215         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3216         pte_unmap_unlock(ptep, ptl);
3217         if (target_nid == -1) {
3218                 put_page(page);
3219                 goto out;
3220         }
3221
3222         /* Migrate to the requested node */
3223         migrated = migrate_misplaced_page(page, vma, target_nid);
3224         if (migrated) {
3225                 page_nid = target_nid;
3226                 flags |= TNF_MIGRATED;
3227         } else
3228                 flags |= TNF_MIGRATE_FAIL;
3229
3230 out:
3231         if (page_nid != -1)
3232                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3233         return 0;
3234 }
3235
3236 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3237                         unsigned long address, pmd_t *pmd, unsigned int flags)
3238 {
3239         if (vma_is_anonymous(vma))
3240                 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3241         if (vma->vm_ops->pmd_fault)
3242                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3243         return VM_FAULT_FALLBACK;
3244 }
3245
3246 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3247                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3248                         unsigned int flags)
3249 {
3250         if (vma_is_anonymous(vma))
3251                 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3252         if (vma->vm_ops->pmd_fault)
3253                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3254         return VM_FAULT_FALLBACK;
3255 }
3256
3257 /*
3258  * These routines also need to handle stuff like marking pages dirty
3259  * and/or accessed for architectures that don't do it in hardware (most
3260  * RISC architectures).  The early dirtying is also good on the i386.
3261  *
3262  * There is also a hook called "update_mmu_cache()" that architectures
3263  * with external mmu caches can use to update those (ie the Sparc or
3264  * PowerPC hashed page tables that act as extended TLBs).
3265  *
3266  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3267  * but allow concurrent faults), and pte mapped but not yet locked.
3268  * We return with pte unmapped and unlocked.
3269  *
3270  * The mmap_sem may have been released depending on flags and our
3271  * return value.  See filemap_fault() and __lock_page_or_retry().
3272  */
3273 static int handle_pte_fault(struct mm_struct *mm,
3274                      struct vm_area_struct *vma, unsigned long address,
3275                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3276 {
3277         pte_t entry;
3278         spinlock_t *ptl;
3279
3280         /*
3281          * some architectures can have larger ptes than wordsize,
3282          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3283          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3284          * The code below just needs a consistent view for the ifs and
3285          * we later double check anyway with the ptl lock held. So here
3286          * a barrier will do.
3287          */
3288         entry = *pte;
3289         barrier();
3290         if (!pte_present(entry)) {
3291                 if (pte_none(entry)) {
3292                         if (vma_is_anonymous(vma))
3293                                 return do_anonymous_page(mm, vma, address,
3294                                                          pte, pmd, flags);
3295                         else
3296                                 return do_fault(mm, vma, address, pte, pmd,
3297                                                 flags, entry);
3298                 }
3299                 return do_swap_page(mm, vma, address,
3300                                         pte, pmd, flags, entry);
3301         }
3302
3303         if (pte_protnone(entry))
3304                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3305
3306         ptl = pte_lockptr(mm, pmd);
3307         spin_lock(ptl);
3308         if (unlikely(!pte_same(*pte, entry)))
3309                 goto unlock;
3310         if (flags & FAULT_FLAG_WRITE) {
3311                 if (!pte_write(entry))
3312                         return do_wp_page(mm, vma, address,
3313                                         pte, pmd, ptl, entry);
3314                 entry = pte_mkdirty(entry);
3315         }
3316         entry = pte_mkyoung(entry);
3317         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3318                 update_mmu_cache(vma, address, pte);
3319         } else {
3320                 /*
3321                  * This is needed only for protection faults but the arch code
3322                  * is not yet telling us if this is a protection fault or not.
3323                  * This still avoids useless tlb flushes for .text page faults
3324                  * with threads.
3325                  */
3326                 if (flags & FAULT_FLAG_WRITE)
3327                         flush_tlb_fix_spurious_fault(vma, address);
3328         }
3329 unlock:
3330         pte_unmap_unlock(pte, ptl);
3331         return 0;
3332 }
3333
3334 /*
3335  * By the time we get here, we already hold the mm semaphore
3336  *
3337  * The mmap_sem may have been released depending on flags and our
3338  * return value.  See filemap_fault() and __lock_page_or_retry().
3339  */
3340 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3341                              unsigned long address, unsigned int flags)
3342 {
3343         pgd_t *pgd;
3344         pud_t *pud;
3345         pmd_t *pmd;
3346         pte_t *pte;
3347
3348         if (unlikely(is_vm_hugetlb_page(vma)))
3349                 return hugetlb_fault(mm, vma, address, flags);
3350
3351         pgd = pgd_offset(mm, address);
3352         pud = pud_alloc(mm, pgd, address);
3353         if (!pud)
3354                 return VM_FAULT_OOM;
3355         pmd = pmd_alloc(mm, pud, address);
3356         if (!pmd)
3357                 return VM_FAULT_OOM;
3358         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3359                 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3360                 if (!(ret & VM_FAULT_FALLBACK))
3361                         return ret;
3362         } else {
3363                 pmd_t orig_pmd = *pmd;
3364                 int ret;
3365
3366                 barrier();
3367                 if (pmd_trans_huge(orig_pmd)) {
3368                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3369
3370                         if (pmd_protnone(orig_pmd))
3371                                 return do_huge_pmd_numa_page(mm, vma, address,
3372                                                              orig_pmd, pmd);
3373
3374                         if (dirty && !pmd_write(orig_pmd)) {
3375                                 ret = wp_huge_pmd(mm, vma, address, pmd,
3376                                                         orig_pmd, flags);
3377                                 if (!(ret & VM_FAULT_FALLBACK))
3378                                         return ret;
3379                         } else {
3380                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3381                                                       orig_pmd, dirty);
3382                                 return 0;
3383                         }
3384                 }
3385         }
3386
3387         /*
3388          * Use __pte_alloc instead of pte_alloc_map, because we can't
3389          * run pte_offset_map on the pmd, if an huge pmd could
3390          * materialize from under us from a different thread.
3391          */
3392         if (unlikely(pmd_none(*pmd)) &&
3393             unlikely(__pte_alloc(mm, vma, pmd, address)))
3394                 return VM_FAULT_OOM;
3395         /* if an huge pmd materialized from under us just retry later */
3396         if (unlikely(pmd_trans_huge(*pmd)))
3397                 return 0;
3398         /*
3399          * A regular pmd is established and it can't morph into a huge pmd
3400          * from under us anymore at this point because we hold the mmap_sem
3401          * read mode and khugepaged takes it in write mode. So now it's
3402          * safe to run pte_offset_map().
3403          */
3404         pte = pte_offset_map(pmd, address);
3405
3406         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3407 }
3408
3409 /*
3410  * By the time we get here, we already hold the mm semaphore
3411  *
3412  * The mmap_sem may have been released depending on flags and our
3413  * return value.  See filemap_fault() and __lock_page_or_retry().
3414  */
3415 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3416                     unsigned long address, unsigned int flags)
3417 {
3418         int ret;
3419
3420         __set_current_state(TASK_RUNNING);
3421
3422         count_vm_event(PGFAULT);
3423         mem_cgroup_count_vm_event(mm, PGFAULT);
3424
3425         /* do counter updates before entering really critical section. */
3426         check_sync_rss_stat(current);
3427
3428         /*
3429          * Enable the memcg OOM handling for faults triggered in user
3430          * space.  Kernel faults are handled more gracefully.
3431          */
3432         if (flags & FAULT_FLAG_USER)
3433                 mem_cgroup_oom_enable();
3434
3435         ret = __handle_mm_fault(mm, vma, address, flags);
3436
3437         if (flags & FAULT_FLAG_USER) {
3438                 mem_cgroup_oom_disable();
3439                 /*
3440                  * The task may have entered a memcg OOM situation but
3441                  * if the allocation error was handled gracefully (no
3442                  * VM_FAULT_OOM), there is no need to kill anything.
3443                  * Just clean up the OOM state peacefully.
3444                  */
3445                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3446                         mem_cgroup_oom_synchronize(false);
3447         }
3448
3449         return ret;
3450 }
3451 EXPORT_SYMBOL_GPL(handle_mm_fault);
3452
3453 #ifndef __PAGETABLE_PUD_FOLDED
3454 /*
3455  * Allocate page upper directory.
3456  * We've already handled the fast-path in-line.
3457  */
3458 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3459 {
3460         pud_t *new = pud_alloc_one(mm, address);
3461         if (!new)
3462                 return -ENOMEM;
3463
3464         smp_wmb(); /* See comment in __pte_alloc */
3465
3466         spin_lock(&mm->page_table_lock);
3467         if (pgd_present(*pgd))          /* Another has populated it */
3468                 pud_free(mm, new);
3469         else
3470                 pgd_populate(mm, pgd, new);
3471         spin_unlock(&mm->page_table_lock);
3472         return 0;
3473 }
3474 #endif /* __PAGETABLE_PUD_FOLDED */
3475
3476 #ifndef __PAGETABLE_PMD_FOLDED
3477 /*
3478  * Allocate page middle directory.
3479  * We've already handled the fast-path in-line.
3480  */
3481 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3482 {
3483         pmd_t *new = pmd_alloc_one(mm, address);
3484         if (!new)
3485                 return -ENOMEM;
3486
3487         smp_wmb(); /* See comment in __pte_alloc */
3488
3489         spin_lock(&mm->page_table_lock);
3490 #ifndef __ARCH_HAS_4LEVEL_HACK
3491         if (!pud_present(*pud)) {
3492                 mm_inc_nr_pmds(mm);
3493                 pud_populate(mm, pud, new);
3494         } else  /* Another has populated it */
3495                 pmd_free(mm, new);
3496 #else
3497         if (!pgd_present(*pud)) {
3498                 mm_inc_nr_pmds(mm);
3499                 pgd_populate(mm, pud, new);
3500         } else /* Another has populated it */
3501                 pmd_free(mm, new);
3502 #endif /* __ARCH_HAS_4LEVEL_HACK */
3503         spin_unlock(&mm->page_table_lock);
3504         return 0;
3505 }
3506 #endif /* __PAGETABLE_PMD_FOLDED */
3507
3508 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3509                 pte_t **ptepp, spinlock_t **ptlp)
3510 {
3511         pgd_t *pgd;
3512         pud_t *pud;
3513         pmd_t *pmd;
3514         pte_t *ptep;
3515
3516         pgd = pgd_offset(mm, address);
3517         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3518                 goto out;
3519
3520         pud = pud_offset(pgd, address);
3521         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3522                 goto out;
3523
3524         pmd = pmd_offset(pud, address);
3525         VM_BUG_ON(pmd_trans_huge(*pmd));
3526         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3527                 goto out;
3528
3529         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3530         if (pmd_huge(*pmd))
3531                 goto out;
3532
3533         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3534         if (!ptep)
3535                 goto out;
3536         if (!pte_present(*ptep))
3537                 goto unlock;
3538         *ptepp = ptep;
3539         return 0;
3540 unlock:
3541         pte_unmap_unlock(ptep, *ptlp);
3542 out:
3543         return -EINVAL;
3544 }
3545
3546 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3547                              pte_t **ptepp, spinlock_t **ptlp)
3548 {
3549         int res;
3550
3551         /* (void) is needed to make gcc happy */
3552         (void) __cond_lock(*ptlp,
3553                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3554         return res;
3555 }
3556
3557 /**
3558  * follow_pfn - look up PFN at a user virtual address
3559  * @vma: memory mapping
3560  * @address: user virtual address
3561  * @pfn: location to store found PFN
3562  *
3563  * Only IO mappings and raw PFN mappings are allowed.
3564  *
3565  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3566  */
3567 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3568         unsigned long *pfn)
3569 {
3570         int ret = -EINVAL;
3571         spinlock_t *ptl;
3572         pte_t *ptep;
3573
3574         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3575                 return ret;
3576
3577         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3578         if (ret)
3579                 return ret;
3580         *pfn = pte_pfn(*ptep);
3581         pte_unmap_unlock(ptep, ptl);
3582         return 0;
3583 }
3584 EXPORT_SYMBOL(follow_pfn);
3585
3586 #ifdef CONFIG_HAVE_IOREMAP_PROT
3587 int follow_phys(struct vm_area_struct *vma,
3588                 unsigned long address, unsigned int flags,
3589                 unsigned long *prot, resource_size_t *phys)
3590 {
3591         int ret = -EINVAL;
3592         pte_t *ptep, pte;
3593         spinlock_t *ptl;
3594
3595         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3596                 goto out;
3597
3598         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3599                 goto out;
3600         pte = *ptep;
3601
3602         if ((flags & FOLL_WRITE) && !pte_write(pte))
3603                 goto unlock;
3604
3605         *prot = pgprot_val(pte_pgprot(pte));
3606         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3607
3608         ret = 0;
3609 unlock:
3610         pte_unmap_unlock(ptep, ptl);
3611 out:
3612         return ret;
3613 }
3614
3615 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3616                         void *buf, int len, int write)
3617 {
3618         resource_size_t phys_addr;
3619         unsigned long prot = 0;
3620         void __iomem *maddr;
3621         int offset = addr & (PAGE_SIZE-1);
3622
3623         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3624                 return -EINVAL;
3625
3626         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3627         if (write)
3628                 memcpy_toio(maddr + offset, buf, len);
3629         else
3630                 memcpy_fromio(buf, maddr + offset, len);
3631         iounmap(maddr);
3632
3633         return len;
3634 }
3635 EXPORT_SYMBOL_GPL(generic_access_phys);
3636 #endif
3637
3638 /*
3639  * Access another process' address space as given in mm.  If non-NULL, use the
3640  * given task for page fault accounting.
3641  */
3642 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3643                 unsigned long addr, void *buf, int len, int write)
3644 {
3645         struct vm_area_struct *vma;
3646         void *old_buf = buf;
3647
3648         down_read(&mm->mmap_sem);
3649         /* ignore errors, just check how much was successfully transferred */
3650         while (len) {
3651                 int bytes, ret, offset;
3652                 void *maddr;
3653                 struct page *page = NULL;
3654
3655                 ret = get_user_pages(tsk, mm, addr, 1,
3656                                 write, 1, &page, &vma);
3657                 if (ret <= 0) {
3658 #ifndef CONFIG_HAVE_IOREMAP_PROT
3659                         break;
3660 #else
3661                         /*
3662                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3663                          * we can access using slightly different code.
3664                          */
3665                         vma = find_vma(mm, addr);
3666                         if (!vma || vma->vm_start > addr)
3667                                 break;
3668                         if (vma->vm_ops && vma->vm_ops->access)
3669                                 ret = vma->vm_ops->access(vma, addr, buf,
3670                                                           len, write);
3671                         if (ret <= 0)
3672                                 break;
3673                         bytes = ret;
3674 #endif
3675                 } else {
3676                         bytes = len;
3677                         offset = addr & (PAGE_SIZE-1);
3678                         if (bytes > PAGE_SIZE-offset)
3679                                 bytes = PAGE_SIZE-offset;
3680
3681                         maddr = kmap(page);
3682                         if (write) {
3683                                 copy_to_user_page(vma, page, addr,
3684                                                   maddr + offset, buf, bytes);
3685                                 set_page_dirty_lock(page);
3686                         } else {
3687                                 copy_from_user_page(vma, page, addr,
3688                                                     buf, maddr + offset, bytes);
3689                         }
3690                         kunmap(page);
3691                         page_cache_release(page);
3692                 }
3693                 len -= bytes;
3694                 buf += bytes;
3695                 addr += bytes;
3696         }
3697         up_read(&mm->mmap_sem);
3698
3699         return buf - old_buf;
3700 }
3701
3702 /**
3703  * access_remote_vm - access another process' address space
3704  * @mm:         the mm_struct of the target address space
3705  * @addr:       start address to access
3706  * @buf:        source or destination buffer
3707  * @len:        number of bytes to transfer
3708  * @write:      whether the access is a write
3709  *
3710  * The caller must hold a reference on @mm.
3711  */
3712 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3713                 void *buf, int len, int write)
3714 {
3715         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3716 }
3717
3718 /*
3719  * Access another process' address space.
3720  * Source/target buffer must be kernel space,
3721  * Do not walk the page table directly, use get_user_pages
3722  */
3723 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3724                 void *buf, int len, int write)
3725 {
3726         struct mm_struct *mm;
3727         int ret;
3728
3729         mm = get_task_mm(tsk);
3730         if (!mm)
3731                 return 0;
3732
3733         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3734         mmput(mm);
3735
3736         return ret;
3737 }
3738
3739 /*
3740  * Print the name of a VMA.
3741  */
3742 void print_vma_addr(char *prefix, unsigned long ip)
3743 {
3744         struct mm_struct *mm = current->mm;
3745         struct vm_area_struct *vma;
3746
3747         /*
3748          * Do not print if we are in atomic
3749          * contexts (in exception stacks, etc.):
3750          */
3751         if (preempt_count())
3752                 return;
3753
3754         down_read(&mm->mmap_sem);
3755         vma = find_vma(mm, ip);
3756         if (vma && vma->vm_file) {
3757                 struct file *f = vma->vm_file;
3758                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3759                 if (buf) {
3760                         char *p;
3761
3762                         p = file_path(f, buf, PAGE_SIZE);
3763                         if (IS_ERR(p))
3764                                 p = "?";
3765                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3766                                         vma->vm_start,
3767                                         vma->vm_end - vma->vm_start);
3768                         free_page((unsigned long)buf);
3769                 }
3770         }
3771         up_read(&mm->mmap_sem);
3772 }
3773
3774 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3775 void __might_fault(const char *file, int line)
3776 {
3777         /*
3778          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3779          * holding the mmap_sem, this is safe because kernel memory doesn't
3780          * get paged out, therefore we'll never actually fault, and the
3781          * below annotations will generate false positives.
3782          */
3783         if (segment_eq(get_fs(), KERNEL_DS))
3784                 return;
3785         if (pagefault_disabled())
3786                 return;
3787         __might_sleep(file, line, 0);
3788 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3789         if (current->mm)
3790                 might_lock_read(&current->mm->mmap_sem);
3791 #endif
3792 }
3793 EXPORT_SYMBOL(__might_fault);
3794 #endif
3795
3796 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3797 static void clear_gigantic_page(struct page *page,
3798                                 unsigned long addr,
3799                                 unsigned int pages_per_huge_page)
3800 {
3801         int i;
3802         struct page *p = page;
3803
3804         might_sleep();
3805         for (i = 0; i < pages_per_huge_page;
3806              i++, p = mem_map_next(p, page, i)) {
3807                 cond_resched();
3808                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3809         }
3810 }
3811 void clear_huge_page(struct page *page,
3812                      unsigned long addr, unsigned int pages_per_huge_page)
3813 {
3814         int i;
3815
3816         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3817                 clear_gigantic_page(page, addr, pages_per_huge_page);
3818                 return;
3819         }
3820
3821         might_sleep();
3822         for (i = 0; i < pages_per_huge_page; i++) {
3823                 cond_resched();
3824                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3825         }
3826 }
3827
3828 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3829                                     unsigned long addr,
3830                                     struct vm_area_struct *vma,
3831                                     unsigned int pages_per_huge_page)
3832 {
3833         int i;
3834         struct page *dst_base = dst;
3835         struct page *src_base = src;
3836
3837         for (i = 0; i < pages_per_huge_page; ) {
3838                 cond_resched();
3839                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3840
3841                 i++;
3842                 dst = mem_map_next(dst, dst_base, i);
3843                 src = mem_map_next(src, src_base, i);
3844         }
3845 }
3846
3847 void copy_user_huge_page(struct page *dst, struct page *src,
3848                          unsigned long addr, struct vm_area_struct *vma,
3849                          unsigned int pages_per_huge_page)
3850 {
3851         int i;
3852
3853         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3854                 copy_user_gigantic_page(dst, src, addr, vma,
3855                                         pages_per_huge_page);
3856                 return;
3857         }
3858
3859         might_sleep();
3860         for (i = 0; i < pages_per_huge_page; i++) {
3861                 cond_resched();
3862                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3863         }
3864 }
3865 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3866
3867 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3868
3869 static struct kmem_cache *page_ptl_cachep;
3870
3871 void __init ptlock_cache_init(void)
3872 {
3873         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3874                         SLAB_PANIC, NULL);
3875 }
3876
3877 bool ptlock_alloc(struct page *page)
3878 {
3879         spinlock_t *ptl;
3880
3881         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3882         if (!ptl)
3883                 return false;
3884         page->ptl = ptl;
3885         return true;
3886 }
3887
3888 void ptlock_free(struct page *page)
3889 {
3890         kmem_cache_free(page_ptl_cachep, page->ptl);
3891 }
3892 #endif