]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/shmem.c
fs/ncpfs/dir.c: remove unnecessary new_valid_dev() check
[karo-tx-linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89  * inode->i_private (with i_mutex making sure that it has only one user at
90  * a time): we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94         pgoff_t start;          /* start of range currently being fallocated */
95         pgoff_t next;           /* the next page offset to be fallocated */
96         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
97         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102         SGP_READ,       /* don't exceed i_size, don't allocate page */
103         SGP_CACHE,      /* don't exceed i_size, may allocate page */
104         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
105         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
106         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112         return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123                                 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128         struct page **pagep, enum sgp_type sgp, int *fault_type)
129 {
130         return shmem_getpage_gfp(inode, index, pagep, sgp,
131                         mapping_gfp_mask(inode->i_mapping), fault_type);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136         return sb->s_fs_info;
137 }
138
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147         return (flags & VM_NORESERVE) ?
148                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153         if (!(flags & VM_NORESERVE))
154                 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158                 loff_t oldsize, loff_t newsize)
159 {
160         if (!(flags & VM_NORESERVE)) {
161                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162                         return security_vm_enough_memory_mm(current->mm,
163                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
164                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166         }
167         return 0;
168 }
169
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow huge sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178         return (flags & VM_NORESERVE) ?
179                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
180 }
181
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184         if (flags & VM_NORESERVE)
185                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186 }
187
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202         if (sbinfo->max_inodes) {
203                 spin_lock(&sbinfo->stat_lock);
204                 if (!sbinfo->free_inodes) {
205                         spin_unlock(&sbinfo->stat_lock);
206                         return -ENOSPC;
207                 }
208                 sbinfo->free_inodes--;
209                 spin_unlock(&sbinfo->stat_lock);
210         }
211         return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217         if (sbinfo->max_inodes) {
218                 spin_lock(&sbinfo->stat_lock);
219                 sbinfo->free_inodes++;
220                 spin_unlock(&sbinfo->stat_lock);
221         }
222 }
223
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238         struct shmem_inode_info *info = SHMEM_I(inode);
239         long freed;
240
241         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242         if (freed > 0) {
243                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244                 if (sbinfo->max_blocks)
245                         percpu_counter_add(&sbinfo->used_blocks, -freed);
246                 info->alloced -= freed;
247                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248                 shmem_unacct_blocks(info->flags, freed);
249         }
250 }
251
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256                         pgoff_t index, void *expected, void *replacement)
257 {
258         void **pslot;
259         void *item;
260
261         VM_BUG_ON(!expected);
262         VM_BUG_ON(!replacement);
263         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264         if (!pslot)
265                 return -ENOENT;
266         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267         if (item != expected)
268                 return -ENOENT;
269         radix_tree_replace_slot(pslot, replacement);
270         return 0;
271 }
272
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281                                pgoff_t index, swp_entry_t swap)
282 {
283         void *item;
284
285         rcu_read_lock();
286         item = radix_tree_lookup(&mapping->page_tree, index);
287         rcu_read_unlock();
288         return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295                                    struct address_space *mapping,
296                                    pgoff_t index, void *expected)
297 {
298         int error;
299
300         VM_BUG_ON_PAGE(!PageLocked(page), page);
301         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303         page_cache_get(page);
304         page->mapping = mapping;
305         page->index = index;
306
307         spin_lock_irq(&mapping->tree_lock);
308         if (!expected)
309                 error = radix_tree_insert(&mapping->page_tree, index, page);
310         else
311                 error = shmem_radix_tree_replace(mapping, index, expected,
312                                                                  page);
313         if (!error) {
314                 mapping->nrpages++;
315                 __inc_zone_page_state(page, NR_FILE_PAGES);
316                 __inc_zone_page_state(page, NR_SHMEM);
317                 spin_unlock_irq(&mapping->tree_lock);
318         } else {
319                 page->mapping = NULL;
320                 spin_unlock_irq(&mapping->tree_lock);
321                 page_cache_release(page);
322         }
323         return error;
324 }
325
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331         struct address_space *mapping = page->mapping;
332         int error;
333
334         spin_lock_irq(&mapping->tree_lock);
335         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336         page->mapping = NULL;
337         mapping->nrpages--;
338         __dec_zone_page_state(page, NR_FILE_PAGES);
339         __dec_zone_page_state(page, NR_SHMEM);
340         spin_unlock_irq(&mapping->tree_lock);
341         page_cache_release(page);
342         BUG_ON(error);
343 }
344
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349                            pgoff_t index, void *radswap)
350 {
351         void *old;
352
353         spin_lock_irq(&mapping->tree_lock);
354         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355         spin_unlock_irq(&mapping->tree_lock);
356         if (old != radswap)
357                 return -ENOENT;
358         free_swap_and_cache(radix_to_swp_entry(radswap));
359         return 0;
360 }
361
362 /*
363  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364  */
365 void shmem_unlock_mapping(struct address_space *mapping)
366 {
367         struct pagevec pvec;
368         pgoff_t indices[PAGEVEC_SIZE];
369         pgoff_t index = 0;
370
371         pagevec_init(&pvec, 0);
372         /*
373          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374          */
375         while (!mapping_unevictable(mapping)) {
376                 /*
377                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379                  */
380                 pvec.nr = find_get_entries(mapping, index,
381                                            PAGEVEC_SIZE, pvec.pages, indices);
382                 if (!pvec.nr)
383                         break;
384                 index = indices[pvec.nr - 1] + 1;
385                 pagevec_remove_exceptionals(&pvec);
386                 check_move_unevictable_pages(pvec.pages, pvec.nr);
387                 pagevec_release(&pvec);
388                 cond_resched();
389         }
390 }
391
392 /*
393  * Remove range of pages and swap entries from radix tree, and free them.
394  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
395  */
396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397                                                                  bool unfalloc)
398 {
399         struct address_space *mapping = inode->i_mapping;
400         struct shmem_inode_info *info = SHMEM_I(inode);
401         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
402         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
405         struct pagevec pvec;
406         pgoff_t indices[PAGEVEC_SIZE];
407         long nr_swaps_freed = 0;
408         pgoff_t index;
409         int i;
410
411         if (lend == -1)
412                 end = -1;       /* unsigned, so actually very big */
413
414         pagevec_init(&pvec, 0);
415         index = start;
416         while (index < end) {
417                 pvec.nr = find_get_entries(mapping, index,
418                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
419                         pvec.pages, indices);
420                 if (!pvec.nr)
421                         break;
422                 for (i = 0; i < pagevec_count(&pvec); i++) {
423                         struct page *page = pvec.pages[i];
424
425                         index = indices[i];
426                         if (index >= end)
427                                 break;
428
429                         if (radix_tree_exceptional_entry(page)) {
430                                 if (unfalloc)
431                                         continue;
432                                 nr_swaps_freed += !shmem_free_swap(mapping,
433                                                                 index, page);
434                                 continue;
435                         }
436
437                         if (!trylock_page(page))
438                                 continue;
439                         if (!unfalloc || !PageUptodate(page)) {
440                                 if (page->mapping == mapping) {
441                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
442                                         truncate_inode_page(mapping, page);
443                                 }
444                         }
445                         unlock_page(page);
446                 }
447                 pagevec_remove_exceptionals(&pvec);
448                 pagevec_release(&pvec);
449                 cond_resched();
450                 index++;
451         }
452
453         if (partial_start) {
454                 struct page *page = NULL;
455                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
456                 if (page) {
457                         unsigned int top = PAGE_CACHE_SIZE;
458                         if (start > end) {
459                                 top = partial_end;
460                                 partial_end = 0;
461                         }
462                         zero_user_segment(page, partial_start, top);
463                         set_page_dirty(page);
464                         unlock_page(page);
465                         page_cache_release(page);
466                 }
467         }
468         if (partial_end) {
469                 struct page *page = NULL;
470                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
471                 if (page) {
472                         zero_user_segment(page, 0, partial_end);
473                         set_page_dirty(page);
474                         unlock_page(page);
475                         page_cache_release(page);
476                 }
477         }
478         if (start >= end)
479                 return;
480
481         index = start;
482         while (index < end) {
483                 cond_resched();
484
485                 pvec.nr = find_get_entries(mapping, index,
486                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
487                                 pvec.pages, indices);
488                 if (!pvec.nr) {
489                         /* If all gone or hole-punch or unfalloc, we're done */
490                         if (index == start || end != -1)
491                                 break;
492                         /* But if truncating, restart to make sure all gone */
493                         index = start;
494                         continue;
495                 }
496                 for (i = 0; i < pagevec_count(&pvec); i++) {
497                         struct page *page = pvec.pages[i];
498
499                         index = indices[i];
500                         if (index >= end)
501                                 break;
502
503                         if (radix_tree_exceptional_entry(page)) {
504                                 if (unfalloc)
505                                         continue;
506                                 if (shmem_free_swap(mapping, index, page)) {
507                                         /* Swap was replaced by page: retry */
508                                         index--;
509                                         break;
510                                 }
511                                 nr_swaps_freed++;
512                                 continue;
513                         }
514
515                         lock_page(page);
516                         if (!unfalloc || !PageUptodate(page)) {
517                                 if (page->mapping == mapping) {
518                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
519                                         truncate_inode_page(mapping, page);
520                                 } else {
521                                         /* Page was replaced by swap: retry */
522                                         unlock_page(page);
523                                         index--;
524                                         break;
525                                 }
526                         }
527                         unlock_page(page);
528                 }
529                 pagevec_remove_exceptionals(&pvec);
530                 pagevec_release(&pvec);
531                 index++;
532         }
533
534         spin_lock(&info->lock);
535         info->swapped -= nr_swaps_freed;
536         shmem_recalc_inode(inode);
537         spin_unlock(&info->lock);
538 }
539
540 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
541 {
542         shmem_undo_range(inode, lstart, lend, false);
543         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
544 }
545 EXPORT_SYMBOL_GPL(shmem_truncate_range);
546
547 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
548                          struct kstat *stat)
549 {
550         struct inode *inode = dentry->d_inode;
551         struct shmem_inode_info *info = SHMEM_I(inode);
552
553         spin_lock(&info->lock);
554         shmem_recalc_inode(inode);
555         spin_unlock(&info->lock);
556
557         generic_fillattr(inode, stat);
558
559         return 0;
560 }
561
562 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
563 {
564         struct inode *inode = d_inode(dentry);
565         struct shmem_inode_info *info = SHMEM_I(inode);
566         int error;
567
568         error = inode_change_ok(inode, attr);
569         if (error)
570                 return error;
571
572         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
573                 loff_t oldsize = inode->i_size;
574                 loff_t newsize = attr->ia_size;
575
576                 /* protected by i_mutex */
577                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
578                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
579                         return -EPERM;
580
581                 if (newsize != oldsize) {
582                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
583                                         oldsize, newsize);
584                         if (error)
585                                 return error;
586                         i_size_write(inode, newsize);
587                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
588                 }
589                 if (newsize <= oldsize) {
590                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
591                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
592                         shmem_truncate_range(inode, newsize, (loff_t)-1);
593                         /* unmap again to remove racily COWed private pages */
594                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
595                 }
596         }
597
598         setattr_copy(inode, attr);
599         if (attr->ia_valid & ATTR_MODE)
600                 error = posix_acl_chmod(inode, inode->i_mode);
601         return error;
602 }
603
604 static void shmem_evict_inode(struct inode *inode)
605 {
606         struct shmem_inode_info *info = SHMEM_I(inode);
607
608         if (inode->i_mapping->a_ops == &shmem_aops) {
609                 shmem_unacct_size(info->flags, inode->i_size);
610                 inode->i_size = 0;
611                 shmem_truncate_range(inode, 0, (loff_t)-1);
612                 if (!list_empty(&info->swaplist)) {
613                         mutex_lock(&shmem_swaplist_mutex);
614                         list_del_init(&info->swaplist);
615                         mutex_unlock(&shmem_swaplist_mutex);
616                 }
617         } else
618                 kfree(info->symlink);
619
620         simple_xattrs_free(&info->xattrs);
621         WARN_ON(inode->i_blocks);
622         shmem_free_inode(inode->i_sb);
623         clear_inode(inode);
624 }
625
626 /*
627  * If swap found in inode, free it and move page from swapcache to filecache.
628  */
629 static int shmem_unuse_inode(struct shmem_inode_info *info,
630                              swp_entry_t swap, struct page **pagep)
631 {
632         struct address_space *mapping = info->vfs_inode.i_mapping;
633         void *radswap;
634         pgoff_t index;
635         gfp_t gfp;
636         int error = 0;
637
638         radswap = swp_to_radix_entry(swap);
639         index = radix_tree_locate_item(&mapping->page_tree, radswap);
640         if (index == -1)
641                 return -EAGAIN; /* tell shmem_unuse we found nothing */
642
643         /*
644          * Move _head_ to start search for next from here.
645          * But be careful: shmem_evict_inode checks list_empty without taking
646          * mutex, and there's an instant in list_move_tail when info->swaplist
647          * would appear empty, if it were the only one on shmem_swaplist.
648          */
649         if (shmem_swaplist.next != &info->swaplist)
650                 list_move_tail(&shmem_swaplist, &info->swaplist);
651
652         gfp = mapping_gfp_mask(mapping);
653         if (shmem_should_replace_page(*pagep, gfp)) {
654                 mutex_unlock(&shmem_swaplist_mutex);
655                 error = shmem_replace_page(pagep, gfp, info, index);
656                 mutex_lock(&shmem_swaplist_mutex);
657                 /*
658                  * We needed to drop mutex to make that restrictive page
659                  * allocation, but the inode might have been freed while we
660                  * dropped it: although a racing shmem_evict_inode() cannot
661                  * complete without emptying the radix_tree, our page lock
662                  * on this swapcache page is not enough to prevent that -
663                  * free_swap_and_cache() of our swap entry will only
664                  * trylock_page(), removing swap from radix_tree whatever.
665                  *
666                  * We must not proceed to shmem_add_to_page_cache() if the
667                  * inode has been freed, but of course we cannot rely on
668                  * inode or mapping or info to check that.  However, we can
669                  * safely check if our swap entry is still in use (and here
670                  * it can't have got reused for another page): if it's still
671                  * in use, then the inode cannot have been freed yet, and we
672                  * can safely proceed (if it's no longer in use, that tells
673                  * nothing about the inode, but we don't need to unuse swap).
674                  */
675                 if (!page_swapcount(*pagep))
676                         error = -ENOENT;
677         }
678
679         /*
680          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
681          * but also to hold up shmem_evict_inode(): so inode cannot be freed
682          * beneath us (pagelock doesn't help until the page is in pagecache).
683          */
684         if (!error)
685                 error = shmem_add_to_page_cache(*pagep, mapping, index,
686                                                 radswap);
687         if (error != -ENOMEM) {
688                 /*
689                  * Truncation and eviction use free_swap_and_cache(), which
690                  * only does trylock page: if we raced, best clean up here.
691                  */
692                 delete_from_swap_cache(*pagep);
693                 set_page_dirty(*pagep);
694                 if (!error) {
695                         spin_lock(&info->lock);
696                         info->swapped--;
697                         spin_unlock(&info->lock);
698                         swap_free(swap);
699                 }
700         }
701         return error;
702 }
703
704 /*
705  * Search through swapped inodes to find and replace swap by page.
706  */
707 int shmem_unuse(swp_entry_t swap, struct page *page)
708 {
709         struct list_head *this, *next;
710         struct shmem_inode_info *info;
711         struct mem_cgroup *memcg;
712         int error = 0;
713
714         /*
715          * There's a faint possibility that swap page was replaced before
716          * caller locked it: caller will come back later with the right page.
717          */
718         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
719                 goto out;
720
721         /*
722          * Charge page using GFP_KERNEL while we can wait, before taking
723          * the shmem_swaplist_mutex which might hold up shmem_writepage().
724          * Charged back to the user (not to caller) when swap account is used.
725          */
726         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
727                         false);
728         if (error)
729                 goto out;
730         /* No radix_tree_preload: swap entry keeps a place for page in tree */
731         error = -EAGAIN;
732
733         mutex_lock(&shmem_swaplist_mutex);
734         list_for_each_safe(this, next, &shmem_swaplist) {
735                 info = list_entry(this, struct shmem_inode_info, swaplist);
736                 if (info->swapped)
737                         error = shmem_unuse_inode(info, swap, &page);
738                 else
739                         list_del_init(&info->swaplist);
740                 cond_resched();
741                 if (error != -EAGAIN)
742                         break;
743                 /* found nothing in this: move on to search the next */
744         }
745         mutex_unlock(&shmem_swaplist_mutex);
746
747         if (error) {
748                 if (error != -ENOMEM)
749                         error = 0;
750                 mem_cgroup_cancel_charge(page, memcg, false);
751         } else
752                 mem_cgroup_commit_charge(page, memcg, true, false);
753 out:
754         unlock_page(page);
755         page_cache_release(page);
756         return error;
757 }
758
759 /*
760  * Move the page from the page cache to the swap cache.
761  */
762 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
763 {
764         struct shmem_inode_info *info;
765         struct address_space *mapping;
766         struct inode *inode;
767         swp_entry_t swap;
768         pgoff_t index;
769
770         BUG_ON(!PageLocked(page));
771         mapping = page->mapping;
772         index = page->index;
773         inode = mapping->host;
774         info = SHMEM_I(inode);
775         if (info->flags & VM_LOCKED)
776                 goto redirty;
777         if (!total_swap_pages)
778                 goto redirty;
779
780         /*
781          * Our capabilities prevent regular writeback or sync from ever calling
782          * shmem_writepage; but a stacking filesystem might use ->writepage of
783          * its underlying filesystem, in which case tmpfs should write out to
784          * swap only in response to memory pressure, and not for the writeback
785          * threads or sync.
786          */
787         if (!wbc->for_reclaim) {
788                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
789                 goto redirty;
790         }
791
792         /*
793          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
794          * value into swapfile.c, the only way we can correctly account for a
795          * fallocated page arriving here is now to initialize it and write it.
796          *
797          * That's okay for a page already fallocated earlier, but if we have
798          * not yet completed the fallocation, then (a) we want to keep track
799          * of this page in case we have to undo it, and (b) it may not be a
800          * good idea to continue anyway, once we're pushing into swap.  So
801          * reactivate the page, and let shmem_fallocate() quit when too many.
802          */
803         if (!PageUptodate(page)) {
804                 if (inode->i_private) {
805                         struct shmem_falloc *shmem_falloc;
806                         spin_lock(&inode->i_lock);
807                         shmem_falloc = inode->i_private;
808                         if (shmem_falloc &&
809                             !shmem_falloc->waitq &&
810                             index >= shmem_falloc->start &&
811                             index < shmem_falloc->next)
812                                 shmem_falloc->nr_unswapped++;
813                         else
814                                 shmem_falloc = NULL;
815                         spin_unlock(&inode->i_lock);
816                         if (shmem_falloc)
817                                 goto redirty;
818                 }
819                 clear_highpage(page);
820                 flush_dcache_page(page);
821                 SetPageUptodate(page);
822         }
823
824         swap = get_swap_page();
825         if (!swap.val)
826                 goto redirty;
827
828         /*
829          * Add inode to shmem_unuse()'s list of swapped-out inodes,
830          * if it's not already there.  Do it now before the page is
831          * moved to swap cache, when its pagelock no longer protects
832          * the inode from eviction.  But don't unlock the mutex until
833          * we've incremented swapped, because shmem_unuse_inode() will
834          * prune a !swapped inode from the swaplist under this mutex.
835          */
836         mutex_lock(&shmem_swaplist_mutex);
837         if (list_empty(&info->swaplist))
838                 list_add_tail(&info->swaplist, &shmem_swaplist);
839
840         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
841                 swap_shmem_alloc(swap);
842                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
843
844                 spin_lock(&info->lock);
845                 info->swapped++;
846                 shmem_recalc_inode(inode);
847                 spin_unlock(&info->lock);
848
849                 mutex_unlock(&shmem_swaplist_mutex);
850                 BUG_ON(page_mapped(page));
851                 swap_writepage(page, wbc);
852                 return 0;
853         }
854
855         mutex_unlock(&shmem_swaplist_mutex);
856         swapcache_free(swap);
857 redirty:
858         set_page_dirty(page);
859         if (wbc->for_reclaim)
860                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
861         unlock_page(page);
862         return 0;
863 }
864
865 #ifdef CONFIG_NUMA
866 #ifdef CONFIG_TMPFS
867 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
868 {
869         char buffer[64];
870
871         if (!mpol || mpol->mode == MPOL_DEFAULT)
872                 return;         /* show nothing */
873
874         mpol_to_str(buffer, sizeof(buffer), mpol);
875
876         seq_printf(seq, ",mpol=%s", buffer);
877 }
878
879 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
880 {
881         struct mempolicy *mpol = NULL;
882         if (sbinfo->mpol) {
883                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
884                 mpol = sbinfo->mpol;
885                 mpol_get(mpol);
886                 spin_unlock(&sbinfo->stat_lock);
887         }
888         return mpol;
889 }
890 #endif /* CONFIG_TMPFS */
891
892 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
893                         struct shmem_inode_info *info, pgoff_t index)
894 {
895         struct vm_area_struct pvma;
896         struct page *page;
897
898         /* Create a pseudo vma that just contains the policy */
899         pvma.vm_start = 0;
900         /* Bias interleave by inode number to distribute better across nodes */
901         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
902         pvma.vm_ops = NULL;
903         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
904
905         page = swapin_readahead(swap, gfp, &pvma, 0);
906
907         /* Drop reference taken by mpol_shared_policy_lookup() */
908         mpol_cond_put(pvma.vm_policy);
909
910         return page;
911 }
912
913 static struct page *shmem_alloc_page(gfp_t gfp,
914                         struct shmem_inode_info *info, pgoff_t index)
915 {
916         struct vm_area_struct pvma;
917         struct page *page;
918
919         /* Create a pseudo vma that just contains the policy */
920         pvma.vm_start = 0;
921         /* Bias interleave by inode number to distribute better across nodes */
922         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
923         pvma.vm_ops = NULL;
924         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
925
926         page = alloc_page_vma(gfp, &pvma, 0);
927
928         /* Drop reference taken by mpol_shared_policy_lookup() */
929         mpol_cond_put(pvma.vm_policy);
930
931         return page;
932 }
933 #else /* !CONFIG_NUMA */
934 #ifdef CONFIG_TMPFS
935 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
936 {
937 }
938 #endif /* CONFIG_TMPFS */
939
940 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
941                         struct shmem_inode_info *info, pgoff_t index)
942 {
943         return swapin_readahead(swap, gfp, NULL, 0);
944 }
945
946 static inline struct page *shmem_alloc_page(gfp_t gfp,
947                         struct shmem_inode_info *info, pgoff_t index)
948 {
949         return alloc_page(gfp);
950 }
951 #endif /* CONFIG_NUMA */
952
953 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
954 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
955 {
956         return NULL;
957 }
958 #endif
959
960 /*
961  * When a page is moved from swapcache to shmem filecache (either by the
962  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
963  * shmem_unuse_inode()), it may have been read in earlier from swap, in
964  * ignorance of the mapping it belongs to.  If that mapping has special
965  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
966  * we may need to copy to a suitable page before moving to filecache.
967  *
968  * In a future release, this may well be extended to respect cpuset and
969  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
970  * but for now it is a simple matter of zone.
971  */
972 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
973 {
974         return page_zonenum(page) > gfp_zone(gfp);
975 }
976
977 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
978                                 struct shmem_inode_info *info, pgoff_t index)
979 {
980         struct page *oldpage, *newpage;
981         struct address_space *swap_mapping;
982         pgoff_t swap_index;
983         int error;
984
985         oldpage = *pagep;
986         swap_index = page_private(oldpage);
987         swap_mapping = page_mapping(oldpage);
988
989         /*
990          * We have arrived here because our zones are constrained, so don't
991          * limit chance of success by further cpuset and node constraints.
992          */
993         gfp &= ~GFP_CONSTRAINT_MASK;
994         newpage = shmem_alloc_page(gfp, info, index);
995         if (!newpage)
996                 return -ENOMEM;
997
998         page_cache_get(newpage);
999         copy_highpage(newpage, oldpage);
1000         flush_dcache_page(newpage);
1001
1002         __SetPageLocked(newpage);
1003         SetPageUptodate(newpage);
1004         SetPageSwapBacked(newpage);
1005         set_page_private(newpage, swap_index);
1006         SetPageSwapCache(newpage);
1007
1008         /*
1009          * Our caller will very soon move newpage out of swapcache, but it's
1010          * a nice clean interface for us to replace oldpage by newpage there.
1011          */
1012         spin_lock_irq(&swap_mapping->tree_lock);
1013         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1014                                                                    newpage);
1015         if (!error) {
1016                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1017                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1018         }
1019         spin_unlock_irq(&swap_mapping->tree_lock);
1020
1021         if (unlikely(error)) {
1022                 /*
1023                  * Is this possible?  I think not, now that our callers check
1024                  * both PageSwapCache and page_private after getting page lock;
1025                  * but be defensive.  Reverse old to newpage for clear and free.
1026                  */
1027                 oldpage = newpage;
1028         } else {
1029                 mem_cgroup_replace_page(oldpage, newpage);
1030                 lru_cache_add_anon(newpage);
1031                 *pagep = newpage;
1032         }
1033
1034         ClearPageSwapCache(oldpage);
1035         set_page_private(oldpage, 0);
1036
1037         unlock_page(oldpage);
1038         page_cache_release(oldpage);
1039         page_cache_release(oldpage);
1040         return error;
1041 }
1042
1043 /*
1044  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1045  *
1046  * If we allocate a new one we do not mark it dirty. That's up to the
1047  * vm. If we swap it in we mark it dirty since we also free the swap
1048  * entry since a page cannot live in both the swap and page cache
1049  */
1050 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1051         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1052 {
1053         struct address_space *mapping = inode->i_mapping;
1054         struct shmem_inode_info *info;
1055         struct shmem_sb_info *sbinfo;
1056         struct mem_cgroup *memcg;
1057         struct page *page;
1058         swp_entry_t swap;
1059         int error;
1060         int once = 0;
1061         int alloced = 0;
1062
1063         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1064                 return -EFBIG;
1065 repeat:
1066         swap.val = 0;
1067         page = find_lock_entry(mapping, index);
1068         if (radix_tree_exceptional_entry(page)) {
1069                 swap = radix_to_swp_entry(page);
1070                 page = NULL;
1071         }
1072
1073         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1074             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1075                 error = -EINVAL;
1076                 goto failed;
1077         }
1078
1079         if (page && sgp == SGP_WRITE)
1080                 mark_page_accessed(page);
1081
1082         /* fallocated page? */
1083         if (page && !PageUptodate(page)) {
1084                 if (sgp != SGP_READ)
1085                         goto clear;
1086                 unlock_page(page);
1087                 page_cache_release(page);
1088                 page = NULL;
1089         }
1090         if (page || (sgp == SGP_READ && !swap.val)) {
1091                 *pagep = page;
1092                 return 0;
1093         }
1094
1095         /*
1096          * Fast cache lookup did not find it:
1097          * bring it back from swap or allocate.
1098          */
1099         info = SHMEM_I(inode);
1100         sbinfo = SHMEM_SB(inode->i_sb);
1101
1102         if (swap.val) {
1103                 /* Look it up and read it in.. */
1104                 page = lookup_swap_cache(swap);
1105                 if (!page) {
1106                         /* here we actually do the io */
1107                         if (fault_type)
1108                                 *fault_type |= VM_FAULT_MAJOR;
1109                         page = shmem_swapin(swap, gfp, info, index);
1110                         if (!page) {
1111                                 error = -ENOMEM;
1112                                 goto failed;
1113                         }
1114                 }
1115
1116                 /* We have to do this with page locked to prevent races */
1117                 lock_page(page);
1118                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1119                     !shmem_confirm_swap(mapping, index, swap)) {
1120                         error = -EEXIST;        /* try again */
1121                         goto unlock;
1122                 }
1123                 if (!PageUptodate(page)) {
1124                         error = -EIO;
1125                         goto failed;
1126                 }
1127                 wait_on_page_writeback(page);
1128
1129                 if (shmem_should_replace_page(page, gfp)) {
1130                         error = shmem_replace_page(&page, gfp, info, index);
1131                         if (error)
1132                                 goto failed;
1133                 }
1134
1135                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1136                                 false);
1137                 if (!error) {
1138                         error = shmem_add_to_page_cache(page, mapping, index,
1139                                                 swp_to_radix_entry(swap));
1140                         /*
1141                          * We already confirmed swap under page lock, and make
1142                          * no memory allocation here, so usually no possibility
1143                          * of error; but free_swap_and_cache() only trylocks a
1144                          * page, so it is just possible that the entry has been
1145                          * truncated or holepunched since swap was confirmed.
1146                          * shmem_undo_range() will have done some of the
1147                          * unaccounting, now delete_from_swap_cache() will do
1148                          * the rest.
1149                          * Reset swap.val? No, leave it so "failed" goes back to
1150                          * "repeat": reading a hole and writing should succeed.
1151                          */
1152                         if (error) {
1153                                 mem_cgroup_cancel_charge(page, memcg, false);
1154                                 delete_from_swap_cache(page);
1155                         }
1156                 }
1157                 if (error)
1158                         goto failed;
1159
1160                 mem_cgroup_commit_charge(page, memcg, true, false);
1161
1162                 spin_lock(&info->lock);
1163                 info->swapped--;
1164                 shmem_recalc_inode(inode);
1165                 spin_unlock(&info->lock);
1166
1167                 if (sgp == SGP_WRITE)
1168                         mark_page_accessed(page);
1169
1170                 delete_from_swap_cache(page);
1171                 set_page_dirty(page);
1172                 swap_free(swap);
1173
1174         } else {
1175                 if (shmem_acct_block(info->flags)) {
1176                         error = -ENOSPC;
1177                         goto failed;
1178                 }
1179                 if (sbinfo->max_blocks) {
1180                         if (percpu_counter_compare(&sbinfo->used_blocks,
1181                                                 sbinfo->max_blocks) >= 0) {
1182                                 error = -ENOSPC;
1183                                 goto unacct;
1184                         }
1185                         percpu_counter_inc(&sbinfo->used_blocks);
1186                 }
1187
1188                 page = shmem_alloc_page(gfp, info, index);
1189                 if (!page) {
1190                         error = -ENOMEM;
1191                         goto decused;
1192                 }
1193
1194                 __SetPageSwapBacked(page);
1195                 __SetPageLocked(page);
1196                 if (sgp == SGP_WRITE)
1197                         __SetPageReferenced(page);
1198
1199                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1200                                 false);
1201                 if (error)
1202                         goto decused;
1203                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1204                 if (!error) {
1205                         error = shmem_add_to_page_cache(page, mapping, index,
1206                                                         NULL);
1207                         radix_tree_preload_end();
1208                 }
1209                 if (error) {
1210                         mem_cgroup_cancel_charge(page, memcg, false);
1211                         goto decused;
1212                 }
1213                 mem_cgroup_commit_charge(page, memcg, false, false);
1214                 lru_cache_add_anon(page);
1215
1216                 spin_lock(&info->lock);
1217                 info->alloced++;
1218                 inode->i_blocks += BLOCKS_PER_PAGE;
1219                 shmem_recalc_inode(inode);
1220                 spin_unlock(&info->lock);
1221                 alloced = true;
1222
1223                 /*
1224                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1225                  */
1226                 if (sgp == SGP_FALLOC)
1227                         sgp = SGP_WRITE;
1228 clear:
1229                 /*
1230                  * Let SGP_WRITE caller clear ends if write does not fill page;
1231                  * but SGP_FALLOC on a page fallocated earlier must initialize
1232                  * it now, lest undo on failure cancel our earlier guarantee.
1233                  */
1234                 if (sgp != SGP_WRITE) {
1235                         clear_highpage(page);
1236                         flush_dcache_page(page);
1237                         SetPageUptodate(page);
1238                 }
1239                 if (sgp == SGP_DIRTY)
1240                         set_page_dirty(page);
1241         }
1242
1243         /* Perhaps the file has been truncated since we checked */
1244         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1245             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1246                 error = -EINVAL;
1247                 if (alloced)
1248                         goto trunc;
1249                 else
1250                         goto failed;
1251         }
1252         *pagep = page;
1253         return 0;
1254
1255         /*
1256          * Error recovery.
1257          */
1258 trunc:
1259         info = SHMEM_I(inode);
1260         ClearPageDirty(page);
1261         delete_from_page_cache(page);
1262         spin_lock(&info->lock);
1263         info->alloced--;
1264         inode->i_blocks -= BLOCKS_PER_PAGE;
1265         spin_unlock(&info->lock);
1266 decused:
1267         sbinfo = SHMEM_SB(inode->i_sb);
1268         if (sbinfo->max_blocks)
1269                 percpu_counter_add(&sbinfo->used_blocks, -1);
1270 unacct:
1271         shmem_unacct_blocks(info->flags, 1);
1272 failed:
1273         if (swap.val && error != -EINVAL &&
1274             !shmem_confirm_swap(mapping, index, swap))
1275                 error = -EEXIST;
1276 unlock:
1277         if (page) {
1278                 unlock_page(page);
1279                 page_cache_release(page);
1280         }
1281         if (error == -ENOSPC && !once++) {
1282                 info = SHMEM_I(inode);
1283                 spin_lock(&info->lock);
1284                 shmem_recalc_inode(inode);
1285                 spin_unlock(&info->lock);
1286                 goto repeat;
1287         }
1288         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1289                 goto repeat;
1290         return error;
1291 }
1292
1293 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1294 {
1295         struct inode *inode = file_inode(vma->vm_file);
1296         int error;
1297         int ret = VM_FAULT_LOCKED;
1298
1299         /*
1300          * Trinity finds that probing a hole which tmpfs is punching can
1301          * prevent the hole-punch from ever completing: which in turn
1302          * locks writers out with its hold on i_mutex.  So refrain from
1303          * faulting pages into the hole while it's being punched.  Although
1304          * shmem_undo_range() does remove the additions, it may be unable to
1305          * keep up, as each new page needs its own unmap_mapping_range() call,
1306          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1307          *
1308          * It does not matter if we sometimes reach this check just before the
1309          * hole-punch begins, so that one fault then races with the punch:
1310          * we just need to make racing faults a rare case.
1311          *
1312          * The implementation below would be much simpler if we just used a
1313          * standard mutex or completion: but we cannot take i_mutex in fault,
1314          * and bloating every shmem inode for this unlikely case would be sad.
1315          */
1316         if (unlikely(inode->i_private)) {
1317                 struct shmem_falloc *shmem_falloc;
1318
1319                 spin_lock(&inode->i_lock);
1320                 shmem_falloc = inode->i_private;
1321                 if (shmem_falloc &&
1322                     shmem_falloc->waitq &&
1323                     vmf->pgoff >= shmem_falloc->start &&
1324                     vmf->pgoff < shmem_falloc->next) {
1325                         wait_queue_head_t *shmem_falloc_waitq;
1326                         DEFINE_WAIT(shmem_fault_wait);
1327
1328                         ret = VM_FAULT_NOPAGE;
1329                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1330                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1331                                 /* It's polite to up mmap_sem if we can */
1332                                 up_read(&vma->vm_mm->mmap_sem);
1333                                 ret = VM_FAULT_RETRY;
1334                         }
1335
1336                         shmem_falloc_waitq = shmem_falloc->waitq;
1337                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1338                                         TASK_UNINTERRUPTIBLE);
1339                         spin_unlock(&inode->i_lock);
1340                         schedule();
1341
1342                         /*
1343                          * shmem_falloc_waitq points into the shmem_fallocate()
1344                          * stack of the hole-punching task: shmem_falloc_waitq
1345                          * is usually invalid by the time we reach here, but
1346                          * finish_wait() does not dereference it in that case;
1347                          * though i_lock needed lest racing with wake_up_all().
1348                          */
1349                         spin_lock(&inode->i_lock);
1350                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1351                         spin_unlock(&inode->i_lock);
1352                         return ret;
1353                 }
1354                 spin_unlock(&inode->i_lock);
1355         }
1356
1357         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1358         if (error)
1359                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1360
1361         if (ret & VM_FAULT_MAJOR) {
1362                 count_vm_event(PGMAJFAULT);
1363                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1364         }
1365         return ret;
1366 }
1367
1368 #ifdef CONFIG_NUMA
1369 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1370 {
1371         struct inode *inode = file_inode(vma->vm_file);
1372         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1373 }
1374
1375 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1376                                           unsigned long addr)
1377 {
1378         struct inode *inode = file_inode(vma->vm_file);
1379         pgoff_t index;
1380
1381         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1382         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1383 }
1384 #endif
1385
1386 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1387 {
1388         struct inode *inode = file_inode(file);
1389         struct shmem_inode_info *info = SHMEM_I(inode);
1390         int retval = -ENOMEM;
1391
1392         spin_lock(&info->lock);
1393         if (lock && !(info->flags & VM_LOCKED)) {
1394                 if (!user_shm_lock(inode->i_size, user))
1395                         goto out_nomem;
1396                 info->flags |= VM_LOCKED;
1397                 mapping_set_unevictable(file->f_mapping);
1398         }
1399         if (!lock && (info->flags & VM_LOCKED) && user) {
1400                 user_shm_unlock(inode->i_size, user);
1401                 info->flags &= ~VM_LOCKED;
1402                 mapping_clear_unevictable(file->f_mapping);
1403         }
1404         retval = 0;
1405
1406 out_nomem:
1407         spin_unlock(&info->lock);
1408         return retval;
1409 }
1410
1411 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1412 {
1413         file_accessed(file);
1414         vma->vm_ops = &shmem_vm_ops;
1415         return 0;
1416 }
1417
1418 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1419                                      umode_t mode, dev_t dev, unsigned long flags)
1420 {
1421         struct inode *inode;
1422         struct shmem_inode_info *info;
1423         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1424
1425         if (shmem_reserve_inode(sb))
1426                 return NULL;
1427
1428         inode = new_inode(sb);
1429         if (inode) {
1430                 inode->i_ino = get_next_ino();
1431                 inode_init_owner(inode, dir, mode);
1432                 inode->i_blocks = 0;
1433                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1434                 inode->i_generation = get_seconds();
1435                 info = SHMEM_I(inode);
1436                 memset(info, 0, (char *)inode - (char *)info);
1437                 spin_lock_init(&info->lock);
1438                 info->seals = F_SEAL_SEAL;
1439                 info->flags = flags & VM_NORESERVE;
1440                 INIT_LIST_HEAD(&info->swaplist);
1441                 simple_xattrs_init(&info->xattrs);
1442                 cache_no_acl(inode);
1443
1444                 switch (mode & S_IFMT) {
1445                 default:
1446                         inode->i_op = &shmem_special_inode_operations;
1447                         init_special_inode(inode, mode, dev);
1448                         break;
1449                 case S_IFREG:
1450                         inode->i_mapping->a_ops = &shmem_aops;
1451                         inode->i_op = &shmem_inode_operations;
1452                         inode->i_fop = &shmem_file_operations;
1453                         mpol_shared_policy_init(&info->policy,
1454                                                  shmem_get_sbmpol(sbinfo));
1455                         break;
1456                 case S_IFDIR:
1457                         inc_nlink(inode);
1458                         /* Some things misbehave if size == 0 on a directory */
1459                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1460                         inode->i_op = &shmem_dir_inode_operations;
1461                         inode->i_fop = &simple_dir_operations;
1462                         break;
1463                 case S_IFLNK:
1464                         /*
1465                          * Must not load anything in the rbtree,
1466                          * mpol_free_shared_policy will not be called.
1467                          */
1468                         mpol_shared_policy_init(&info->policy, NULL);
1469                         break;
1470                 }
1471         } else
1472                 shmem_free_inode(sb);
1473         return inode;
1474 }
1475
1476 bool shmem_mapping(struct address_space *mapping)
1477 {
1478         if (!mapping->host)
1479                 return false;
1480
1481         return mapping->host->i_sb->s_op == &shmem_ops;
1482 }
1483
1484 #ifdef CONFIG_TMPFS
1485 static const struct inode_operations shmem_symlink_inode_operations;
1486 static const struct inode_operations shmem_short_symlink_operations;
1487
1488 #ifdef CONFIG_TMPFS_XATTR
1489 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1490 #else
1491 #define shmem_initxattrs NULL
1492 #endif
1493
1494 static int
1495 shmem_write_begin(struct file *file, struct address_space *mapping,
1496                         loff_t pos, unsigned len, unsigned flags,
1497                         struct page **pagep, void **fsdata)
1498 {
1499         struct inode *inode = mapping->host;
1500         struct shmem_inode_info *info = SHMEM_I(inode);
1501         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1502
1503         /* i_mutex is held by caller */
1504         if (unlikely(info->seals)) {
1505                 if (info->seals & F_SEAL_WRITE)
1506                         return -EPERM;
1507                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1508                         return -EPERM;
1509         }
1510
1511         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1512 }
1513
1514 static int
1515 shmem_write_end(struct file *file, struct address_space *mapping,
1516                         loff_t pos, unsigned len, unsigned copied,
1517                         struct page *page, void *fsdata)
1518 {
1519         struct inode *inode = mapping->host;
1520
1521         if (pos + copied > inode->i_size)
1522                 i_size_write(inode, pos + copied);
1523
1524         if (!PageUptodate(page)) {
1525                 if (copied < PAGE_CACHE_SIZE) {
1526                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1527                         zero_user_segments(page, 0, from,
1528                                         from + copied, PAGE_CACHE_SIZE);
1529                 }
1530                 SetPageUptodate(page);
1531         }
1532         set_page_dirty(page);
1533         unlock_page(page);
1534         page_cache_release(page);
1535
1536         return copied;
1537 }
1538
1539 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1540 {
1541         struct file *file = iocb->ki_filp;
1542         struct inode *inode = file_inode(file);
1543         struct address_space *mapping = inode->i_mapping;
1544         pgoff_t index;
1545         unsigned long offset;
1546         enum sgp_type sgp = SGP_READ;
1547         int error = 0;
1548         ssize_t retval = 0;
1549         loff_t *ppos = &iocb->ki_pos;
1550
1551         /*
1552          * Might this read be for a stacking filesystem?  Then when reading
1553          * holes of a sparse file, we actually need to allocate those pages,
1554          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1555          */
1556         if (!iter_is_iovec(to))
1557                 sgp = SGP_DIRTY;
1558
1559         index = *ppos >> PAGE_CACHE_SHIFT;
1560         offset = *ppos & ~PAGE_CACHE_MASK;
1561
1562         for (;;) {
1563                 struct page *page = NULL;
1564                 pgoff_t end_index;
1565                 unsigned long nr, ret;
1566                 loff_t i_size = i_size_read(inode);
1567
1568                 end_index = i_size >> PAGE_CACHE_SHIFT;
1569                 if (index > end_index)
1570                         break;
1571                 if (index == end_index) {
1572                         nr = i_size & ~PAGE_CACHE_MASK;
1573                         if (nr <= offset)
1574                                 break;
1575                 }
1576
1577                 error = shmem_getpage(inode, index, &page, sgp, NULL);
1578                 if (error) {
1579                         if (error == -EINVAL)
1580                                 error = 0;
1581                         break;
1582                 }
1583                 if (page)
1584                         unlock_page(page);
1585
1586                 /*
1587                  * We must evaluate after, since reads (unlike writes)
1588                  * are called without i_mutex protection against truncate
1589                  */
1590                 nr = PAGE_CACHE_SIZE;
1591                 i_size = i_size_read(inode);
1592                 end_index = i_size >> PAGE_CACHE_SHIFT;
1593                 if (index == end_index) {
1594                         nr = i_size & ~PAGE_CACHE_MASK;
1595                         if (nr <= offset) {
1596                                 if (page)
1597                                         page_cache_release(page);
1598                                 break;
1599                         }
1600                 }
1601                 nr -= offset;
1602
1603                 if (page) {
1604                         /*
1605                          * If users can be writing to this page using arbitrary
1606                          * virtual addresses, take care about potential aliasing
1607                          * before reading the page on the kernel side.
1608                          */
1609                         if (mapping_writably_mapped(mapping))
1610                                 flush_dcache_page(page);
1611                         /*
1612                          * Mark the page accessed if we read the beginning.
1613                          */
1614                         if (!offset)
1615                                 mark_page_accessed(page);
1616                 } else {
1617                         page = ZERO_PAGE(0);
1618                         page_cache_get(page);
1619                 }
1620
1621                 /*
1622                  * Ok, we have the page, and it's up-to-date, so
1623                  * now we can copy it to user space...
1624                  */
1625                 ret = copy_page_to_iter(page, offset, nr, to);
1626                 retval += ret;
1627                 offset += ret;
1628                 index += offset >> PAGE_CACHE_SHIFT;
1629                 offset &= ~PAGE_CACHE_MASK;
1630
1631                 page_cache_release(page);
1632                 if (!iov_iter_count(to))
1633                         break;
1634                 if (ret < nr) {
1635                         error = -EFAULT;
1636                         break;
1637                 }
1638                 cond_resched();
1639         }
1640
1641         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1642         file_accessed(file);
1643         return retval ? retval : error;
1644 }
1645
1646 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1647                                 struct pipe_inode_info *pipe, size_t len,
1648                                 unsigned int flags)
1649 {
1650         struct address_space *mapping = in->f_mapping;
1651         struct inode *inode = mapping->host;
1652         unsigned int loff, nr_pages, req_pages;
1653         struct page *pages[PIPE_DEF_BUFFERS];
1654         struct partial_page partial[PIPE_DEF_BUFFERS];
1655         struct page *page;
1656         pgoff_t index, end_index;
1657         loff_t isize, left;
1658         int error, page_nr;
1659         struct splice_pipe_desc spd = {
1660                 .pages = pages,
1661                 .partial = partial,
1662                 .nr_pages_max = PIPE_DEF_BUFFERS,
1663                 .flags = flags,
1664                 .ops = &page_cache_pipe_buf_ops,
1665                 .spd_release = spd_release_page,
1666         };
1667
1668         isize = i_size_read(inode);
1669         if (unlikely(*ppos >= isize))
1670                 return 0;
1671
1672         left = isize - *ppos;
1673         if (unlikely(left < len))
1674                 len = left;
1675
1676         if (splice_grow_spd(pipe, &spd))
1677                 return -ENOMEM;
1678
1679         index = *ppos >> PAGE_CACHE_SHIFT;
1680         loff = *ppos & ~PAGE_CACHE_MASK;
1681         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1682         nr_pages = min(req_pages, spd.nr_pages_max);
1683
1684         spd.nr_pages = find_get_pages_contig(mapping, index,
1685                                                 nr_pages, spd.pages);
1686         index += spd.nr_pages;
1687         error = 0;
1688
1689         while (spd.nr_pages < nr_pages) {
1690                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1691                 if (error)
1692                         break;
1693                 unlock_page(page);
1694                 spd.pages[spd.nr_pages++] = page;
1695                 index++;
1696         }
1697
1698         index = *ppos >> PAGE_CACHE_SHIFT;
1699         nr_pages = spd.nr_pages;
1700         spd.nr_pages = 0;
1701
1702         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1703                 unsigned int this_len;
1704
1705                 if (!len)
1706                         break;
1707
1708                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1709                 page = spd.pages[page_nr];
1710
1711                 if (!PageUptodate(page) || page->mapping != mapping) {
1712                         error = shmem_getpage(inode, index, &page,
1713                                                         SGP_CACHE, NULL);
1714                         if (error)
1715                                 break;
1716                         unlock_page(page);
1717                         page_cache_release(spd.pages[page_nr]);
1718                         spd.pages[page_nr] = page;
1719                 }
1720
1721                 isize = i_size_read(inode);
1722                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1723                 if (unlikely(!isize || index > end_index))
1724                         break;
1725
1726                 if (end_index == index) {
1727                         unsigned int plen;
1728
1729                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1730                         if (plen <= loff)
1731                                 break;
1732
1733                         this_len = min(this_len, plen - loff);
1734                         len = this_len;
1735                 }
1736
1737                 spd.partial[page_nr].offset = loff;
1738                 spd.partial[page_nr].len = this_len;
1739                 len -= this_len;
1740                 loff = 0;
1741                 spd.nr_pages++;
1742                 index++;
1743         }
1744
1745         while (page_nr < nr_pages)
1746                 page_cache_release(spd.pages[page_nr++]);
1747
1748         if (spd.nr_pages)
1749                 error = splice_to_pipe(pipe, &spd);
1750
1751         splice_shrink_spd(&spd);
1752
1753         if (error > 0) {
1754                 *ppos += error;
1755                 file_accessed(in);
1756         }
1757         return error;
1758 }
1759
1760 /*
1761  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1762  */
1763 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1764                                     pgoff_t index, pgoff_t end, int whence)
1765 {
1766         struct page *page;
1767         struct pagevec pvec;
1768         pgoff_t indices[PAGEVEC_SIZE];
1769         bool done = false;
1770         int i;
1771
1772         pagevec_init(&pvec, 0);
1773         pvec.nr = 1;            /* start small: we may be there already */
1774         while (!done) {
1775                 pvec.nr = find_get_entries(mapping, index,
1776                                         pvec.nr, pvec.pages, indices);
1777                 if (!pvec.nr) {
1778                         if (whence == SEEK_DATA)
1779                                 index = end;
1780                         break;
1781                 }
1782                 for (i = 0; i < pvec.nr; i++, index++) {
1783                         if (index < indices[i]) {
1784                                 if (whence == SEEK_HOLE) {
1785                                         done = true;
1786                                         break;
1787                                 }
1788                                 index = indices[i];
1789                         }
1790                         page = pvec.pages[i];
1791                         if (page && !radix_tree_exceptional_entry(page)) {
1792                                 if (!PageUptodate(page))
1793                                         page = NULL;
1794                         }
1795                         if (index >= end ||
1796                             (page && whence == SEEK_DATA) ||
1797                             (!page && whence == SEEK_HOLE)) {
1798                                 done = true;
1799                                 break;
1800                         }
1801                 }
1802                 pagevec_remove_exceptionals(&pvec);
1803                 pagevec_release(&pvec);
1804                 pvec.nr = PAGEVEC_SIZE;
1805                 cond_resched();
1806         }
1807         return index;
1808 }
1809
1810 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1811 {
1812         struct address_space *mapping = file->f_mapping;
1813         struct inode *inode = mapping->host;
1814         pgoff_t start, end;
1815         loff_t new_offset;
1816
1817         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1818                 return generic_file_llseek_size(file, offset, whence,
1819                                         MAX_LFS_FILESIZE, i_size_read(inode));
1820         mutex_lock(&inode->i_mutex);
1821         /* We're holding i_mutex so we can access i_size directly */
1822
1823         if (offset < 0)
1824                 offset = -EINVAL;
1825         else if (offset >= inode->i_size)
1826                 offset = -ENXIO;
1827         else {
1828                 start = offset >> PAGE_CACHE_SHIFT;
1829                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1830                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1831                 new_offset <<= PAGE_CACHE_SHIFT;
1832                 if (new_offset > offset) {
1833                         if (new_offset < inode->i_size)
1834                                 offset = new_offset;
1835                         else if (whence == SEEK_DATA)
1836                                 offset = -ENXIO;
1837                         else
1838                                 offset = inode->i_size;
1839                 }
1840         }
1841
1842         if (offset >= 0)
1843                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1844         mutex_unlock(&inode->i_mutex);
1845         return offset;
1846 }
1847
1848 /*
1849  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1850  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1851  */
1852 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1853 #define LAST_SCAN               4       /* about 150ms max */
1854
1855 static void shmem_tag_pins(struct address_space *mapping)
1856 {
1857         struct radix_tree_iter iter;
1858         void **slot;
1859         pgoff_t start;
1860         struct page *page;
1861
1862         lru_add_drain();
1863         start = 0;
1864         rcu_read_lock();
1865
1866 restart:
1867         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1868                 page = radix_tree_deref_slot(slot);
1869                 if (!page || radix_tree_exception(page)) {
1870                         if (radix_tree_deref_retry(page))
1871                                 goto restart;
1872                 } else if (page_count(page) - page_mapcount(page) > 1) {
1873                         spin_lock_irq(&mapping->tree_lock);
1874                         radix_tree_tag_set(&mapping->page_tree, iter.index,
1875                                            SHMEM_TAG_PINNED);
1876                         spin_unlock_irq(&mapping->tree_lock);
1877                 }
1878
1879                 if (need_resched()) {
1880                         cond_resched_rcu();
1881                         start = iter.index + 1;
1882                         goto restart;
1883                 }
1884         }
1885         rcu_read_unlock();
1886 }
1887
1888 /*
1889  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1890  * via get_user_pages(), drivers might have some pending I/O without any active
1891  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1892  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1893  * them to be dropped.
1894  * The caller must guarantee that no new user will acquire writable references
1895  * to those pages to avoid races.
1896  */
1897 static int shmem_wait_for_pins(struct address_space *mapping)
1898 {
1899         struct radix_tree_iter iter;
1900         void **slot;
1901         pgoff_t start;
1902         struct page *page;
1903         int error, scan;
1904
1905         shmem_tag_pins(mapping);
1906
1907         error = 0;
1908         for (scan = 0; scan <= LAST_SCAN; scan++) {
1909                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1910                         break;
1911
1912                 if (!scan)
1913                         lru_add_drain_all();
1914                 else if (schedule_timeout_killable((HZ << scan) / 200))
1915                         scan = LAST_SCAN;
1916
1917                 start = 0;
1918                 rcu_read_lock();
1919 restart:
1920                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1921                                            start, SHMEM_TAG_PINNED) {
1922
1923                         page = radix_tree_deref_slot(slot);
1924                         if (radix_tree_exception(page)) {
1925                                 if (radix_tree_deref_retry(page))
1926                                         goto restart;
1927
1928                                 page = NULL;
1929                         }
1930
1931                         if (page &&
1932                             page_count(page) - page_mapcount(page) != 1) {
1933                                 if (scan < LAST_SCAN)
1934                                         goto continue_resched;
1935
1936                                 /*
1937                                  * On the last scan, we clean up all those tags
1938                                  * we inserted; but make a note that we still
1939                                  * found pages pinned.
1940                                  */
1941                                 error = -EBUSY;
1942                         }
1943
1944                         spin_lock_irq(&mapping->tree_lock);
1945                         radix_tree_tag_clear(&mapping->page_tree,
1946                                              iter.index, SHMEM_TAG_PINNED);
1947                         spin_unlock_irq(&mapping->tree_lock);
1948 continue_resched:
1949                         if (need_resched()) {
1950                                 cond_resched_rcu();
1951                                 start = iter.index + 1;
1952                                 goto restart;
1953                         }
1954                 }
1955                 rcu_read_unlock();
1956         }
1957
1958         return error;
1959 }
1960
1961 #define F_ALL_SEALS (F_SEAL_SEAL | \
1962                      F_SEAL_SHRINK | \
1963                      F_SEAL_GROW | \
1964                      F_SEAL_WRITE)
1965
1966 int shmem_add_seals(struct file *file, unsigned int seals)
1967 {
1968         struct inode *inode = file_inode(file);
1969         struct shmem_inode_info *info = SHMEM_I(inode);
1970         int error;
1971
1972         /*
1973          * SEALING
1974          * Sealing allows multiple parties to share a shmem-file but restrict
1975          * access to a specific subset of file operations. Seals can only be
1976          * added, but never removed. This way, mutually untrusted parties can
1977          * share common memory regions with a well-defined policy. A malicious
1978          * peer can thus never perform unwanted operations on a shared object.
1979          *
1980          * Seals are only supported on special shmem-files and always affect
1981          * the whole underlying inode. Once a seal is set, it may prevent some
1982          * kinds of access to the file. Currently, the following seals are
1983          * defined:
1984          *   SEAL_SEAL: Prevent further seals from being set on this file
1985          *   SEAL_SHRINK: Prevent the file from shrinking
1986          *   SEAL_GROW: Prevent the file from growing
1987          *   SEAL_WRITE: Prevent write access to the file
1988          *
1989          * As we don't require any trust relationship between two parties, we
1990          * must prevent seals from being removed. Therefore, sealing a file
1991          * only adds a given set of seals to the file, it never touches
1992          * existing seals. Furthermore, the "setting seals"-operation can be
1993          * sealed itself, which basically prevents any further seal from being
1994          * added.
1995          *
1996          * Semantics of sealing are only defined on volatile files. Only
1997          * anonymous shmem files support sealing. More importantly, seals are
1998          * never written to disk. Therefore, there's no plan to support it on
1999          * other file types.
2000          */
2001
2002         if (file->f_op != &shmem_file_operations)
2003                 return -EINVAL;
2004         if (!(file->f_mode & FMODE_WRITE))
2005                 return -EPERM;
2006         if (seals & ~(unsigned int)F_ALL_SEALS)
2007                 return -EINVAL;
2008
2009         mutex_lock(&inode->i_mutex);
2010
2011         if (info->seals & F_SEAL_SEAL) {
2012                 error = -EPERM;
2013                 goto unlock;
2014         }
2015
2016         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2017                 error = mapping_deny_writable(file->f_mapping);
2018                 if (error)
2019                         goto unlock;
2020
2021                 error = shmem_wait_for_pins(file->f_mapping);
2022                 if (error) {
2023                         mapping_allow_writable(file->f_mapping);
2024                         goto unlock;
2025                 }
2026         }
2027
2028         info->seals |= seals;
2029         error = 0;
2030
2031 unlock:
2032         mutex_unlock(&inode->i_mutex);
2033         return error;
2034 }
2035 EXPORT_SYMBOL_GPL(shmem_add_seals);
2036
2037 int shmem_get_seals(struct file *file)
2038 {
2039         if (file->f_op != &shmem_file_operations)
2040                 return -EINVAL;
2041
2042         return SHMEM_I(file_inode(file))->seals;
2043 }
2044 EXPORT_SYMBOL_GPL(shmem_get_seals);
2045
2046 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2047 {
2048         long error;
2049
2050         switch (cmd) {
2051         case F_ADD_SEALS:
2052                 /* disallow upper 32bit */
2053                 if (arg > UINT_MAX)
2054                         return -EINVAL;
2055
2056                 error = shmem_add_seals(file, arg);
2057                 break;
2058         case F_GET_SEALS:
2059                 error = shmem_get_seals(file);
2060                 break;
2061         default:
2062                 error = -EINVAL;
2063                 break;
2064         }
2065
2066         return error;
2067 }
2068
2069 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2070                                                          loff_t len)
2071 {
2072         struct inode *inode = file_inode(file);
2073         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2074         struct shmem_inode_info *info = SHMEM_I(inode);
2075         struct shmem_falloc shmem_falloc;
2076         pgoff_t start, index, end;
2077         int error;
2078
2079         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2080                 return -EOPNOTSUPP;
2081
2082         mutex_lock(&inode->i_mutex);
2083
2084         if (mode & FALLOC_FL_PUNCH_HOLE) {
2085                 struct address_space *mapping = file->f_mapping;
2086                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2087                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2088                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2089
2090                 /* protected by i_mutex */
2091                 if (info->seals & F_SEAL_WRITE) {
2092                         error = -EPERM;
2093                         goto out;
2094                 }
2095
2096                 shmem_falloc.waitq = &shmem_falloc_waitq;
2097                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2098                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2099                 spin_lock(&inode->i_lock);
2100                 inode->i_private = &shmem_falloc;
2101                 spin_unlock(&inode->i_lock);
2102
2103                 if ((u64)unmap_end > (u64)unmap_start)
2104                         unmap_mapping_range(mapping, unmap_start,
2105                                             1 + unmap_end - unmap_start, 0);
2106                 shmem_truncate_range(inode, offset, offset + len - 1);
2107                 /* No need to unmap again: hole-punching leaves COWed pages */
2108
2109                 spin_lock(&inode->i_lock);
2110                 inode->i_private = NULL;
2111                 wake_up_all(&shmem_falloc_waitq);
2112                 spin_unlock(&inode->i_lock);
2113                 error = 0;
2114                 goto out;
2115         }
2116
2117         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2118         error = inode_newsize_ok(inode, offset + len);
2119         if (error)
2120                 goto out;
2121
2122         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2123                 error = -EPERM;
2124                 goto out;
2125         }
2126
2127         start = offset >> PAGE_CACHE_SHIFT;
2128         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2129         /* Try to avoid a swapstorm if len is impossible to satisfy */
2130         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2131                 error = -ENOSPC;
2132                 goto out;
2133         }
2134
2135         shmem_falloc.waitq = NULL;
2136         shmem_falloc.start = start;
2137         shmem_falloc.next  = start;
2138         shmem_falloc.nr_falloced = 0;
2139         shmem_falloc.nr_unswapped = 0;
2140         spin_lock(&inode->i_lock);
2141         inode->i_private = &shmem_falloc;
2142         spin_unlock(&inode->i_lock);
2143
2144         for (index = start; index < end; index++) {
2145                 struct page *page;
2146
2147                 /*
2148                  * Good, the fallocate(2) manpage permits EINTR: we may have
2149                  * been interrupted because we are using up too much memory.
2150                  */
2151                 if (signal_pending(current))
2152                         error = -EINTR;
2153                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2154                         error = -ENOMEM;
2155                 else
2156                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2157                                                                         NULL);
2158                 if (error) {
2159                         /* Remove the !PageUptodate pages we added */
2160                         shmem_undo_range(inode,
2161                                 (loff_t)start << PAGE_CACHE_SHIFT,
2162                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
2163                         goto undone;
2164                 }
2165
2166                 /*
2167                  * Inform shmem_writepage() how far we have reached.
2168                  * No need for lock or barrier: we have the page lock.
2169                  */
2170                 shmem_falloc.next++;
2171                 if (!PageUptodate(page))
2172                         shmem_falloc.nr_falloced++;
2173
2174                 /*
2175                  * If !PageUptodate, leave it that way so that freeable pages
2176                  * can be recognized if we need to rollback on error later.
2177                  * But set_page_dirty so that memory pressure will swap rather
2178                  * than free the pages we are allocating (and SGP_CACHE pages
2179                  * might still be clean: we now need to mark those dirty too).
2180                  */
2181                 set_page_dirty(page);
2182                 unlock_page(page);
2183                 page_cache_release(page);
2184                 cond_resched();
2185         }
2186
2187         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2188                 i_size_write(inode, offset + len);
2189         inode->i_ctime = CURRENT_TIME;
2190 undone:
2191         spin_lock(&inode->i_lock);
2192         inode->i_private = NULL;
2193         spin_unlock(&inode->i_lock);
2194 out:
2195         mutex_unlock(&inode->i_mutex);
2196         return error;
2197 }
2198
2199 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2200 {
2201         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2202
2203         buf->f_type = TMPFS_MAGIC;
2204         buf->f_bsize = PAGE_CACHE_SIZE;
2205         buf->f_namelen = NAME_MAX;
2206         if (sbinfo->max_blocks) {
2207                 buf->f_blocks = sbinfo->max_blocks;
2208                 buf->f_bavail =
2209                 buf->f_bfree  = sbinfo->max_blocks -
2210                                 percpu_counter_sum(&sbinfo->used_blocks);
2211         }
2212         if (sbinfo->max_inodes) {
2213                 buf->f_files = sbinfo->max_inodes;
2214                 buf->f_ffree = sbinfo->free_inodes;
2215         }
2216         /* else leave those fields 0 like simple_statfs */
2217         return 0;
2218 }
2219
2220 /*
2221  * File creation. Allocate an inode, and we're done..
2222  */
2223 static int
2224 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2225 {
2226         struct inode *inode;
2227         int error = -ENOSPC;
2228
2229         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2230         if (inode) {
2231                 error = simple_acl_create(dir, inode);
2232                 if (error)
2233                         goto out_iput;
2234                 error = security_inode_init_security(inode, dir,
2235                                                      &dentry->d_name,
2236                                                      shmem_initxattrs, NULL);
2237                 if (error && error != -EOPNOTSUPP)
2238                         goto out_iput;
2239
2240                 error = 0;
2241                 dir->i_size += BOGO_DIRENT_SIZE;
2242                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2243                 d_instantiate(dentry, inode);
2244                 dget(dentry); /* Extra count - pin the dentry in core */
2245         }
2246         return error;
2247 out_iput:
2248         iput(inode);
2249         return error;
2250 }
2251
2252 static int
2253 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2254 {
2255         struct inode *inode;
2256         int error = -ENOSPC;
2257
2258         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2259         if (inode) {
2260                 error = security_inode_init_security(inode, dir,
2261                                                      NULL,
2262                                                      shmem_initxattrs, NULL);
2263                 if (error && error != -EOPNOTSUPP)
2264                         goto out_iput;
2265                 error = simple_acl_create(dir, inode);
2266                 if (error)
2267                         goto out_iput;
2268                 d_tmpfile(dentry, inode);
2269         }
2270         return error;
2271 out_iput:
2272         iput(inode);
2273         return error;
2274 }
2275
2276 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2277 {
2278         int error;
2279
2280         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2281                 return error;
2282         inc_nlink(dir);
2283         return 0;
2284 }
2285
2286 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2287                 bool excl)
2288 {
2289         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2290 }
2291
2292 /*
2293  * Link a file..
2294  */
2295 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2296 {
2297         struct inode *inode = d_inode(old_dentry);
2298         int ret;
2299
2300         /*
2301          * No ordinary (disk based) filesystem counts links as inodes;
2302          * but each new link needs a new dentry, pinning lowmem, and
2303          * tmpfs dentries cannot be pruned until they are unlinked.
2304          */
2305         ret = shmem_reserve_inode(inode->i_sb);
2306         if (ret)
2307                 goto out;
2308
2309         dir->i_size += BOGO_DIRENT_SIZE;
2310         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2311         inc_nlink(inode);
2312         ihold(inode);   /* New dentry reference */
2313         dget(dentry);           /* Extra pinning count for the created dentry */
2314         d_instantiate(dentry, inode);
2315 out:
2316         return ret;
2317 }
2318
2319 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2320 {
2321         struct inode *inode = d_inode(dentry);
2322
2323         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2324                 shmem_free_inode(inode->i_sb);
2325
2326         dir->i_size -= BOGO_DIRENT_SIZE;
2327         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2328         drop_nlink(inode);
2329         dput(dentry);   /* Undo the count from "create" - this does all the work */
2330         return 0;
2331 }
2332
2333 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2334 {
2335         if (!simple_empty(dentry))
2336                 return -ENOTEMPTY;
2337
2338         drop_nlink(d_inode(dentry));
2339         drop_nlink(dir);
2340         return shmem_unlink(dir, dentry);
2341 }
2342
2343 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2344 {
2345         bool old_is_dir = d_is_dir(old_dentry);
2346         bool new_is_dir = d_is_dir(new_dentry);
2347
2348         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2349                 if (old_is_dir) {
2350                         drop_nlink(old_dir);
2351                         inc_nlink(new_dir);
2352                 } else {
2353                         drop_nlink(new_dir);
2354                         inc_nlink(old_dir);
2355                 }
2356         }
2357         old_dir->i_ctime = old_dir->i_mtime =
2358         new_dir->i_ctime = new_dir->i_mtime =
2359         d_inode(old_dentry)->i_ctime =
2360         d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2361
2362         return 0;
2363 }
2364
2365 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2366 {
2367         struct dentry *whiteout;
2368         int error;
2369
2370         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2371         if (!whiteout)
2372                 return -ENOMEM;
2373
2374         error = shmem_mknod(old_dir, whiteout,
2375                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2376         dput(whiteout);
2377         if (error)
2378                 return error;
2379
2380         /*
2381          * Cheat and hash the whiteout while the old dentry is still in
2382          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2383          *
2384          * d_lookup() will consistently find one of them at this point,
2385          * not sure which one, but that isn't even important.
2386          */
2387         d_rehash(whiteout);
2388         return 0;
2389 }
2390
2391 /*
2392  * The VFS layer already does all the dentry stuff for rename,
2393  * we just have to decrement the usage count for the target if
2394  * it exists so that the VFS layer correctly free's it when it
2395  * gets overwritten.
2396  */
2397 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2398 {
2399         struct inode *inode = d_inode(old_dentry);
2400         int they_are_dirs = S_ISDIR(inode->i_mode);
2401
2402         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2403                 return -EINVAL;
2404
2405         if (flags & RENAME_EXCHANGE)
2406                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2407
2408         if (!simple_empty(new_dentry))
2409                 return -ENOTEMPTY;
2410
2411         if (flags & RENAME_WHITEOUT) {
2412                 int error;
2413
2414                 error = shmem_whiteout(old_dir, old_dentry);
2415                 if (error)
2416                         return error;
2417         }
2418
2419         if (d_really_is_positive(new_dentry)) {
2420                 (void) shmem_unlink(new_dir, new_dentry);
2421                 if (they_are_dirs) {
2422                         drop_nlink(d_inode(new_dentry));
2423                         drop_nlink(old_dir);
2424                 }
2425         } else if (they_are_dirs) {
2426                 drop_nlink(old_dir);
2427                 inc_nlink(new_dir);
2428         }
2429
2430         old_dir->i_size -= BOGO_DIRENT_SIZE;
2431         new_dir->i_size += BOGO_DIRENT_SIZE;
2432         old_dir->i_ctime = old_dir->i_mtime =
2433         new_dir->i_ctime = new_dir->i_mtime =
2434         inode->i_ctime = CURRENT_TIME;
2435         return 0;
2436 }
2437
2438 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2439 {
2440         int error;
2441         int len;
2442         struct inode *inode;
2443         struct page *page;
2444         char *kaddr;
2445         struct shmem_inode_info *info;
2446
2447         len = strlen(symname) + 1;
2448         if (len > PAGE_CACHE_SIZE)
2449                 return -ENAMETOOLONG;
2450
2451         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2452         if (!inode)
2453                 return -ENOSPC;
2454
2455         error = security_inode_init_security(inode, dir, &dentry->d_name,
2456                                              shmem_initxattrs, NULL);
2457         if (error) {
2458                 if (error != -EOPNOTSUPP) {
2459                         iput(inode);
2460                         return error;
2461                 }
2462                 error = 0;
2463         }
2464
2465         info = SHMEM_I(inode);
2466         inode->i_size = len-1;
2467         if (len <= SHORT_SYMLINK_LEN) {
2468                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2469                 if (!info->symlink) {
2470                         iput(inode);
2471                         return -ENOMEM;
2472                 }
2473                 inode->i_op = &shmem_short_symlink_operations;
2474                 inode->i_link = info->symlink;
2475         } else {
2476                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2477                 if (error) {
2478                         iput(inode);
2479                         return error;
2480                 }
2481                 inode->i_mapping->a_ops = &shmem_aops;
2482                 inode->i_op = &shmem_symlink_inode_operations;
2483                 kaddr = kmap_atomic(page);
2484                 memcpy(kaddr, symname, len);
2485                 kunmap_atomic(kaddr);
2486                 SetPageUptodate(page);
2487                 set_page_dirty(page);
2488                 unlock_page(page);
2489                 page_cache_release(page);
2490         }
2491         dir->i_size += BOGO_DIRENT_SIZE;
2492         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2493         d_instantiate(dentry, inode);
2494         dget(dentry);
2495         return 0;
2496 }
2497
2498 static const char *shmem_follow_link(struct dentry *dentry, void **cookie)
2499 {
2500         struct page *page = NULL;
2501         int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL);
2502         if (error)
2503                 return ERR_PTR(error);
2504         unlock_page(page);
2505         *cookie = page;
2506         return kmap(page);
2507 }
2508
2509 static void shmem_put_link(struct inode *unused, void *cookie)
2510 {
2511         struct page *page = cookie;
2512         kunmap(page);
2513         mark_page_accessed(page);
2514         page_cache_release(page);
2515 }
2516
2517 #ifdef CONFIG_TMPFS_XATTR
2518 /*
2519  * Superblocks without xattr inode operations may get some security.* xattr
2520  * support from the LSM "for free". As soon as we have any other xattrs
2521  * like ACLs, we also need to implement the security.* handlers at
2522  * filesystem level, though.
2523  */
2524
2525 /*
2526  * Callback for security_inode_init_security() for acquiring xattrs.
2527  */
2528 static int shmem_initxattrs(struct inode *inode,
2529                             const struct xattr *xattr_array,
2530                             void *fs_info)
2531 {
2532         struct shmem_inode_info *info = SHMEM_I(inode);
2533         const struct xattr *xattr;
2534         struct simple_xattr *new_xattr;
2535         size_t len;
2536
2537         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2538                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2539                 if (!new_xattr)
2540                         return -ENOMEM;
2541
2542                 len = strlen(xattr->name) + 1;
2543                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2544                                           GFP_KERNEL);
2545                 if (!new_xattr->name) {
2546                         kfree(new_xattr);
2547                         return -ENOMEM;
2548                 }
2549
2550                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2551                        XATTR_SECURITY_PREFIX_LEN);
2552                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2553                        xattr->name, len);
2554
2555                 simple_xattr_list_add(&info->xattrs, new_xattr);
2556         }
2557
2558         return 0;
2559 }
2560
2561 static const struct xattr_handler *shmem_xattr_handlers[] = {
2562 #ifdef CONFIG_TMPFS_POSIX_ACL
2563         &posix_acl_access_xattr_handler,
2564         &posix_acl_default_xattr_handler,
2565 #endif
2566         NULL
2567 };
2568
2569 static int shmem_xattr_validate(const char *name)
2570 {
2571         struct { const char *prefix; size_t len; } arr[] = {
2572                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2573                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2574         };
2575         int i;
2576
2577         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2578                 size_t preflen = arr[i].len;
2579                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2580                         if (!name[preflen])
2581                                 return -EINVAL;
2582                         return 0;
2583                 }
2584         }
2585         return -EOPNOTSUPP;
2586 }
2587
2588 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2589                               void *buffer, size_t size)
2590 {
2591         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2592         int err;
2593
2594         /*
2595          * If this is a request for a synthetic attribute in the system.*
2596          * namespace use the generic infrastructure to resolve a handler
2597          * for it via sb->s_xattr.
2598          */
2599         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2600                 return generic_getxattr(dentry, name, buffer, size);
2601
2602         err = shmem_xattr_validate(name);
2603         if (err)
2604                 return err;
2605
2606         return simple_xattr_get(&info->xattrs, name, buffer, size);
2607 }
2608
2609 static int shmem_setxattr(struct dentry *dentry, const char *name,
2610                           const void *value, size_t size, int flags)
2611 {
2612         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2613         int err;
2614
2615         /*
2616          * If this is a request for a synthetic attribute in the system.*
2617          * namespace use the generic infrastructure to resolve a handler
2618          * for it via sb->s_xattr.
2619          */
2620         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2621                 return generic_setxattr(dentry, name, value, size, flags);
2622
2623         err = shmem_xattr_validate(name);
2624         if (err)
2625                 return err;
2626
2627         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2628 }
2629
2630 static int shmem_removexattr(struct dentry *dentry, const char *name)
2631 {
2632         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2633         int err;
2634
2635         /*
2636          * If this is a request for a synthetic attribute in the system.*
2637          * namespace use the generic infrastructure to resolve a handler
2638          * for it via sb->s_xattr.
2639          */
2640         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2641                 return generic_removexattr(dentry, name);
2642
2643         err = shmem_xattr_validate(name);
2644         if (err)
2645                 return err;
2646
2647         return simple_xattr_remove(&info->xattrs, name);
2648 }
2649
2650 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2651 {
2652         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2653         return simple_xattr_list(&info->xattrs, buffer, size);
2654 }
2655 #endif /* CONFIG_TMPFS_XATTR */
2656
2657 static const struct inode_operations shmem_short_symlink_operations = {
2658         .readlink       = generic_readlink,
2659         .follow_link    = simple_follow_link,
2660 #ifdef CONFIG_TMPFS_XATTR
2661         .setxattr       = shmem_setxattr,
2662         .getxattr       = shmem_getxattr,
2663         .listxattr      = shmem_listxattr,
2664         .removexattr    = shmem_removexattr,
2665 #endif
2666 };
2667
2668 static const struct inode_operations shmem_symlink_inode_operations = {
2669         .readlink       = generic_readlink,
2670         .follow_link    = shmem_follow_link,
2671         .put_link       = shmem_put_link,
2672 #ifdef CONFIG_TMPFS_XATTR
2673         .setxattr       = shmem_setxattr,
2674         .getxattr       = shmem_getxattr,
2675         .listxattr      = shmem_listxattr,
2676         .removexattr    = shmem_removexattr,
2677 #endif
2678 };
2679
2680 static struct dentry *shmem_get_parent(struct dentry *child)
2681 {
2682         return ERR_PTR(-ESTALE);
2683 }
2684
2685 static int shmem_match(struct inode *ino, void *vfh)
2686 {
2687         __u32 *fh = vfh;
2688         __u64 inum = fh[2];
2689         inum = (inum << 32) | fh[1];
2690         return ino->i_ino == inum && fh[0] == ino->i_generation;
2691 }
2692
2693 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2694                 struct fid *fid, int fh_len, int fh_type)
2695 {
2696         struct inode *inode;
2697         struct dentry *dentry = NULL;
2698         u64 inum;
2699
2700         if (fh_len < 3)
2701                 return NULL;
2702
2703         inum = fid->raw[2];
2704         inum = (inum << 32) | fid->raw[1];
2705
2706         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2707                         shmem_match, fid->raw);
2708         if (inode) {
2709                 dentry = d_find_alias(inode);
2710                 iput(inode);
2711         }
2712
2713         return dentry;
2714 }
2715
2716 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2717                                 struct inode *parent)
2718 {
2719         if (*len < 3) {
2720                 *len = 3;
2721                 return FILEID_INVALID;
2722         }
2723
2724         if (inode_unhashed(inode)) {
2725                 /* Unfortunately insert_inode_hash is not idempotent,
2726                  * so as we hash inodes here rather than at creation
2727                  * time, we need a lock to ensure we only try
2728                  * to do it once
2729                  */
2730                 static DEFINE_SPINLOCK(lock);
2731                 spin_lock(&lock);
2732                 if (inode_unhashed(inode))
2733                         __insert_inode_hash(inode,
2734                                             inode->i_ino + inode->i_generation);
2735                 spin_unlock(&lock);
2736         }
2737
2738         fh[0] = inode->i_generation;
2739         fh[1] = inode->i_ino;
2740         fh[2] = ((__u64)inode->i_ino) >> 32;
2741
2742         *len = 3;
2743         return 1;
2744 }
2745
2746 static const struct export_operations shmem_export_ops = {
2747         .get_parent     = shmem_get_parent,
2748         .encode_fh      = shmem_encode_fh,
2749         .fh_to_dentry   = shmem_fh_to_dentry,
2750 };
2751
2752 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2753                                bool remount)
2754 {
2755         char *this_char, *value, *rest;
2756         struct mempolicy *mpol = NULL;
2757         uid_t uid;
2758         gid_t gid;
2759
2760         while (options != NULL) {
2761                 this_char = options;
2762                 for (;;) {
2763                         /*
2764                          * NUL-terminate this option: unfortunately,
2765                          * mount options form a comma-separated list,
2766                          * but mpol's nodelist may also contain commas.
2767                          */
2768                         options = strchr(options, ',');
2769                         if (options == NULL)
2770                                 break;
2771                         options++;
2772                         if (!isdigit(*options)) {
2773                                 options[-1] = '\0';
2774                                 break;
2775                         }
2776                 }
2777                 if (!*this_char)
2778                         continue;
2779                 if ((value = strchr(this_char,'=')) != NULL) {
2780                         *value++ = 0;
2781                 } else {
2782                         printk(KERN_ERR
2783                             "tmpfs: No value for mount option '%s'\n",
2784                             this_char);
2785                         goto error;
2786                 }
2787
2788                 if (!strcmp(this_char,"size")) {
2789                         unsigned long long size;
2790                         size = memparse(value,&rest);
2791                         if (*rest == '%') {
2792                                 size <<= PAGE_SHIFT;
2793                                 size *= totalram_pages;
2794                                 do_div(size, 100);
2795                                 rest++;
2796                         }
2797                         if (*rest)
2798                                 goto bad_val;
2799                         sbinfo->max_blocks =
2800                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2801                 } else if (!strcmp(this_char,"nr_blocks")) {
2802                         sbinfo->max_blocks = memparse(value, &rest);
2803                         if (*rest)
2804                                 goto bad_val;
2805                 } else if (!strcmp(this_char,"nr_inodes")) {
2806                         sbinfo->max_inodes = memparse(value, &rest);
2807                         if (*rest)
2808                                 goto bad_val;
2809                 } else if (!strcmp(this_char,"mode")) {
2810                         if (remount)
2811                                 continue;
2812                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2813                         if (*rest)
2814                                 goto bad_val;
2815                 } else if (!strcmp(this_char,"uid")) {
2816                         if (remount)
2817                                 continue;
2818                         uid = simple_strtoul(value, &rest, 0);
2819                         if (*rest)
2820                                 goto bad_val;
2821                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2822                         if (!uid_valid(sbinfo->uid))
2823                                 goto bad_val;
2824                 } else if (!strcmp(this_char,"gid")) {
2825                         if (remount)
2826                                 continue;
2827                         gid = simple_strtoul(value, &rest, 0);
2828                         if (*rest)
2829                                 goto bad_val;
2830                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2831                         if (!gid_valid(sbinfo->gid))
2832                                 goto bad_val;
2833                 } else if (!strcmp(this_char,"mpol")) {
2834                         mpol_put(mpol);
2835                         mpol = NULL;
2836                         if (mpol_parse_str(value, &mpol))
2837                                 goto bad_val;
2838                 } else {
2839                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2840                                this_char);
2841                         goto error;
2842                 }
2843         }
2844         sbinfo->mpol = mpol;
2845         return 0;
2846
2847 bad_val:
2848         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2849                value, this_char);
2850 error:
2851         mpol_put(mpol);
2852         return 1;
2853
2854 }
2855
2856 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2857 {
2858         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2859         struct shmem_sb_info config = *sbinfo;
2860         unsigned long inodes;
2861         int error = -EINVAL;
2862
2863         config.mpol = NULL;
2864         if (shmem_parse_options(data, &config, true))
2865                 return error;
2866
2867         spin_lock(&sbinfo->stat_lock);
2868         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2869         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2870                 goto out;
2871         if (config.max_inodes < inodes)
2872                 goto out;
2873         /*
2874          * Those tests disallow limited->unlimited while any are in use;
2875          * but we must separately disallow unlimited->limited, because
2876          * in that case we have no record of how much is already in use.
2877          */
2878         if (config.max_blocks && !sbinfo->max_blocks)
2879                 goto out;
2880         if (config.max_inodes && !sbinfo->max_inodes)
2881                 goto out;
2882
2883         error = 0;
2884         sbinfo->max_blocks  = config.max_blocks;
2885         sbinfo->max_inodes  = config.max_inodes;
2886         sbinfo->free_inodes = config.max_inodes - inodes;
2887
2888         /*
2889          * Preserve previous mempolicy unless mpol remount option was specified.
2890          */
2891         if (config.mpol) {
2892                 mpol_put(sbinfo->mpol);
2893                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2894         }
2895 out:
2896         spin_unlock(&sbinfo->stat_lock);
2897         return error;
2898 }
2899
2900 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2901 {
2902         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2903
2904         if (sbinfo->max_blocks != shmem_default_max_blocks())
2905                 seq_printf(seq, ",size=%luk",
2906                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2907         if (sbinfo->max_inodes != shmem_default_max_inodes())
2908                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2909         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2910                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2911         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2912                 seq_printf(seq, ",uid=%u",
2913                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2914         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2915                 seq_printf(seq, ",gid=%u",
2916                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2917         shmem_show_mpol(seq, sbinfo->mpol);
2918         return 0;
2919 }
2920
2921 #define MFD_NAME_PREFIX "memfd:"
2922 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2923 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2924
2925 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2926
2927 SYSCALL_DEFINE2(memfd_create,
2928                 const char __user *, uname,
2929                 unsigned int, flags)
2930 {
2931         struct shmem_inode_info *info;
2932         struct file *file;
2933         int fd, error;
2934         char *name;
2935         long len;
2936
2937         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2938                 return -EINVAL;
2939
2940         /* length includes terminating zero */
2941         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2942         if (len <= 0)
2943                 return -EFAULT;
2944         if (len > MFD_NAME_MAX_LEN + 1)
2945                 return -EINVAL;
2946
2947         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2948         if (!name)
2949                 return -ENOMEM;
2950
2951         strcpy(name, MFD_NAME_PREFIX);
2952         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2953                 error = -EFAULT;
2954                 goto err_name;
2955         }
2956
2957         /* terminating-zero may have changed after strnlen_user() returned */
2958         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2959                 error = -EFAULT;
2960                 goto err_name;
2961         }
2962
2963         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2964         if (fd < 0) {
2965                 error = fd;
2966                 goto err_name;
2967         }
2968
2969         file = shmem_file_setup(name, 0, VM_NORESERVE);
2970         if (IS_ERR(file)) {
2971                 error = PTR_ERR(file);
2972                 goto err_fd;
2973         }
2974         info = SHMEM_I(file_inode(file));
2975         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2976         file->f_flags |= O_RDWR | O_LARGEFILE;
2977         if (flags & MFD_ALLOW_SEALING)
2978                 info->seals &= ~F_SEAL_SEAL;
2979
2980         fd_install(fd, file);
2981         kfree(name);
2982         return fd;
2983
2984 err_fd:
2985         put_unused_fd(fd);
2986 err_name:
2987         kfree(name);
2988         return error;
2989 }
2990
2991 #endif /* CONFIG_TMPFS */
2992
2993 static void shmem_put_super(struct super_block *sb)
2994 {
2995         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2996
2997         percpu_counter_destroy(&sbinfo->used_blocks);
2998         mpol_put(sbinfo->mpol);
2999         kfree(sbinfo);
3000         sb->s_fs_info = NULL;
3001 }
3002
3003 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3004 {
3005         struct inode *inode;
3006         struct shmem_sb_info *sbinfo;
3007         int err = -ENOMEM;
3008
3009         /* Round up to L1_CACHE_BYTES to resist false sharing */
3010         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3011                                 L1_CACHE_BYTES), GFP_KERNEL);
3012         if (!sbinfo)
3013                 return -ENOMEM;
3014
3015         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3016         sbinfo->uid = current_fsuid();
3017         sbinfo->gid = current_fsgid();
3018         sb->s_fs_info = sbinfo;
3019
3020 #ifdef CONFIG_TMPFS
3021         /*
3022          * Per default we only allow half of the physical ram per
3023          * tmpfs instance, limiting inodes to one per page of lowmem;
3024          * but the internal instance is left unlimited.
3025          */
3026         if (!(sb->s_flags & MS_KERNMOUNT)) {
3027                 sbinfo->max_blocks = shmem_default_max_blocks();
3028                 sbinfo->max_inodes = shmem_default_max_inodes();
3029                 if (shmem_parse_options(data, sbinfo, false)) {
3030                         err = -EINVAL;
3031                         goto failed;
3032                 }
3033         } else {
3034                 sb->s_flags |= MS_NOUSER;
3035         }
3036         sb->s_export_op = &shmem_export_ops;
3037         sb->s_flags |= MS_NOSEC;
3038 #else
3039         sb->s_flags |= MS_NOUSER;
3040 #endif
3041
3042         spin_lock_init(&sbinfo->stat_lock);
3043         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3044                 goto failed;
3045         sbinfo->free_inodes = sbinfo->max_inodes;
3046
3047         sb->s_maxbytes = MAX_LFS_FILESIZE;
3048         sb->s_blocksize = PAGE_CACHE_SIZE;
3049         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3050         sb->s_magic = TMPFS_MAGIC;
3051         sb->s_op = &shmem_ops;
3052         sb->s_time_gran = 1;
3053 #ifdef CONFIG_TMPFS_XATTR
3054         sb->s_xattr = shmem_xattr_handlers;
3055 #endif
3056 #ifdef CONFIG_TMPFS_POSIX_ACL
3057         sb->s_flags |= MS_POSIXACL;
3058 #endif
3059
3060         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3061         if (!inode)
3062                 goto failed;
3063         inode->i_uid = sbinfo->uid;
3064         inode->i_gid = sbinfo->gid;
3065         sb->s_root = d_make_root(inode);
3066         if (!sb->s_root)
3067                 goto failed;
3068         return 0;
3069
3070 failed:
3071         shmem_put_super(sb);
3072         return err;
3073 }
3074
3075 static struct kmem_cache *shmem_inode_cachep;
3076
3077 static struct inode *shmem_alloc_inode(struct super_block *sb)
3078 {
3079         struct shmem_inode_info *info;
3080         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3081         if (!info)
3082                 return NULL;
3083         return &info->vfs_inode;
3084 }
3085
3086 static void shmem_destroy_callback(struct rcu_head *head)
3087 {
3088         struct inode *inode = container_of(head, struct inode, i_rcu);
3089         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3090 }
3091
3092 static void shmem_destroy_inode(struct inode *inode)
3093 {
3094         if (S_ISREG(inode->i_mode))
3095                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3096         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3097 }
3098
3099 static void shmem_init_inode(void *foo)
3100 {
3101         struct shmem_inode_info *info = foo;
3102         inode_init_once(&info->vfs_inode);
3103 }
3104
3105 static int shmem_init_inodecache(void)
3106 {
3107         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3108                                 sizeof(struct shmem_inode_info),
3109                                 0, SLAB_PANIC, shmem_init_inode);
3110         return 0;
3111 }
3112
3113 static void shmem_destroy_inodecache(void)
3114 {
3115         kmem_cache_destroy(shmem_inode_cachep);
3116 }
3117
3118 static const struct address_space_operations shmem_aops = {
3119         .writepage      = shmem_writepage,
3120         .set_page_dirty = __set_page_dirty_no_writeback,
3121 #ifdef CONFIG_TMPFS
3122         .write_begin    = shmem_write_begin,
3123         .write_end      = shmem_write_end,
3124 #endif
3125 #ifdef CONFIG_MIGRATION
3126         .migratepage    = migrate_page,
3127 #endif
3128         .error_remove_page = generic_error_remove_page,
3129 };
3130
3131 static const struct file_operations shmem_file_operations = {
3132         .mmap           = shmem_mmap,
3133 #ifdef CONFIG_TMPFS
3134         .llseek         = shmem_file_llseek,
3135         .read_iter      = shmem_file_read_iter,
3136         .write_iter     = generic_file_write_iter,
3137         .fsync          = noop_fsync,
3138         .splice_read    = shmem_file_splice_read,
3139         .splice_write   = iter_file_splice_write,
3140         .fallocate      = shmem_fallocate,
3141 #endif
3142 };
3143
3144 static const struct inode_operations shmem_inode_operations = {
3145         .getattr        = shmem_getattr,
3146         .setattr        = shmem_setattr,
3147 #ifdef CONFIG_TMPFS_XATTR
3148         .setxattr       = shmem_setxattr,
3149         .getxattr       = shmem_getxattr,
3150         .listxattr      = shmem_listxattr,
3151         .removexattr    = shmem_removexattr,
3152         .set_acl        = simple_set_acl,
3153 #endif
3154 };
3155
3156 static const struct inode_operations shmem_dir_inode_operations = {
3157 #ifdef CONFIG_TMPFS
3158         .create         = shmem_create,
3159         .lookup         = simple_lookup,
3160         .link           = shmem_link,
3161         .unlink         = shmem_unlink,
3162         .symlink        = shmem_symlink,
3163         .mkdir          = shmem_mkdir,
3164         .rmdir          = shmem_rmdir,
3165         .mknod          = shmem_mknod,
3166         .rename2        = shmem_rename2,
3167         .tmpfile        = shmem_tmpfile,
3168 #endif
3169 #ifdef CONFIG_TMPFS_XATTR
3170         .setxattr       = shmem_setxattr,
3171         .getxattr       = shmem_getxattr,
3172         .listxattr      = shmem_listxattr,
3173         .removexattr    = shmem_removexattr,
3174 #endif
3175 #ifdef CONFIG_TMPFS_POSIX_ACL
3176         .setattr        = shmem_setattr,
3177         .set_acl        = simple_set_acl,
3178 #endif
3179 };
3180
3181 static const struct inode_operations shmem_special_inode_operations = {
3182 #ifdef CONFIG_TMPFS_XATTR
3183         .setxattr       = shmem_setxattr,
3184         .getxattr       = shmem_getxattr,
3185         .listxattr      = shmem_listxattr,
3186         .removexattr    = shmem_removexattr,
3187 #endif
3188 #ifdef CONFIG_TMPFS_POSIX_ACL
3189         .setattr        = shmem_setattr,
3190         .set_acl        = simple_set_acl,
3191 #endif
3192 };
3193
3194 static const struct super_operations shmem_ops = {
3195         .alloc_inode    = shmem_alloc_inode,
3196         .destroy_inode  = shmem_destroy_inode,
3197 #ifdef CONFIG_TMPFS
3198         .statfs         = shmem_statfs,
3199         .remount_fs     = shmem_remount_fs,
3200         .show_options   = shmem_show_options,
3201 #endif
3202         .evict_inode    = shmem_evict_inode,
3203         .drop_inode     = generic_delete_inode,
3204         .put_super      = shmem_put_super,
3205 };
3206
3207 static const struct vm_operations_struct shmem_vm_ops = {
3208         .fault          = shmem_fault,
3209         .map_pages      = filemap_map_pages,
3210 #ifdef CONFIG_NUMA
3211         .set_policy     = shmem_set_policy,
3212         .get_policy     = shmem_get_policy,
3213 #endif
3214 };
3215
3216 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3217         int flags, const char *dev_name, void *data)
3218 {
3219         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3220 }
3221
3222 static struct file_system_type shmem_fs_type = {
3223         .owner          = THIS_MODULE,
3224         .name           = "tmpfs",
3225         .mount          = shmem_mount,
3226         .kill_sb        = kill_litter_super,
3227         .fs_flags       = FS_USERNS_MOUNT,
3228 };
3229
3230 int __init shmem_init(void)
3231 {
3232         int error;
3233
3234         /* If rootfs called this, don't re-init */
3235         if (shmem_inode_cachep)
3236                 return 0;
3237
3238         error = shmem_init_inodecache();
3239         if (error)
3240                 goto out3;
3241
3242         error = register_filesystem(&shmem_fs_type);
3243         if (error) {
3244                 printk(KERN_ERR "Could not register tmpfs\n");
3245                 goto out2;
3246         }
3247
3248         shm_mnt = kern_mount(&shmem_fs_type);
3249         if (IS_ERR(shm_mnt)) {
3250                 error = PTR_ERR(shm_mnt);
3251                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3252                 goto out1;
3253         }
3254         return 0;
3255
3256 out1:
3257         unregister_filesystem(&shmem_fs_type);
3258 out2:
3259         shmem_destroy_inodecache();
3260 out3:
3261         shm_mnt = ERR_PTR(error);
3262         return error;
3263 }
3264
3265 #else /* !CONFIG_SHMEM */
3266
3267 /*
3268  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3269  *
3270  * This is intended for small system where the benefits of the full
3271  * shmem code (swap-backed and resource-limited) are outweighed by
3272  * their complexity. On systems without swap this code should be
3273  * effectively equivalent, but much lighter weight.
3274  */
3275
3276 static struct file_system_type shmem_fs_type = {
3277         .name           = "tmpfs",
3278         .mount          = ramfs_mount,
3279         .kill_sb        = kill_litter_super,
3280         .fs_flags       = FS_USERNS_MOUNT,
3281 };
3282
3283 int __init shmem_init(void)
3284 {
3285         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3286
3287         shm_mnt = kern_mount(&shmem_fs_type);
3288         BUG_ON(IS_ERR(shm_mnt));
3289
3290         return 0;
3291 }
3292
3293 int shmem_unuse(swp_entry_t swap, struct page *page)
3294 {
3295         return 0;
3296 }
3297
3298 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3299 {
3300         return 0;
3301 }
3302
3303 void shmem_unlock_mapping(struct address_space *mapping)
3304 {
3305 }
3306
3307 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3308 {
3309         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3310 }
3311 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3312
3313 #define shmem_vm_ops                            generic_file_vm_ops
3314 #define shmem_file_operations                   ramfs_file_operations
3315 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3316 #define shmem_acct_size(flags, size)            0
3317 #define shmem_unacct_size(flags, size)          do {} while (0)
3318
3319 #endif /* CONFIG_SHMEM */
3320
3321 /* common code */
3322
3323 static struct dentry_operations anon_ops = {
3324         .d_dname = simple_dname
3325 };
3326
3327 static struct file *__shmem_file_setup(const char *name, loff_t size,
3328                                        unsigned long flags, unsigned int i_flags)
3329 {
3330         struct file *res;
3331         struct inode *inode;
3332         struct path path;
3333         struct super_block *sb;
3334         struct qstr this;
3335
3336         if (IS_ERR(shm_mnt))
3337                 return ERR_CAST(shm_mnt);
3338
3339         if (size < 0 || size > MAX_LFS_FILESIZE)
3340                 return ERR_PTR(-EINVAL);
3341
3342         if (shmem_acct_size(flags, size))
3343                 return ERR_PTR(-ENOMEM);
3344
3345         res = ERR_PTR(-ENOMEM);
3346         this.name = name;
3347         this.len = strlen(name);
3348         this.hash = 0; /* will go */
3349         sb = shm_mnt->mnt_sb;
3350         path.mnt = mntget(shm_mnt);
3351         path.dentry = d_alloc_pseudo(sb, &this);
3352         if (!path.dentry)
3353                 goto put_memory;
3354         d_set_d_op(path.dentry, &anon_ops);
3355
3356         res = ERR_PTR(-ENOSPC);
3357         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3358         if (!inode)
3359                 goto put_memory;
3360
3361         inode->i_flags |= i_flags;
3362         d_instantiate(path.dentry, inode);
3363         inode->i_size = size;
3364         clear_nlink(inode);     /* It is unlinked */
3365         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3366         if (IS_ERR(res))
3367                 goto put_path;
3368
3369         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3370                   &shmem_file_operations);
3371         if (IS_ERR(res))
3372                 goto put_path;
3373
3374         return res;
3375
3376 put_memory:
3377         shmem_unacct_size(flags, size);
3378 put_path:
3379         path_put(&path);
3380         return res;
3381 }
3382
3383 /**
3384  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3385  *      kernel internal.  There will be NO LSM permission checks against the
3386  *      underlying inode.  So users of this interface must do LSM checks at a
3387  *      higher layer.  The users are the big_key and shm implementations.  LSM
3388  *      checks are provided at the key or shm level rather than the inode.
3389  * @name: name for dentry (to be seen in /proc/<pid>/maps
3390  * @size: size to be set for the file
3391  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3392  */
3393 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3394 {
3395         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3396 }
3397
3398 /**
3399  * shmem_file_setup - get an unlinked file living in tmpfs
3400  * @name: name for dentry (to be seen in /proc/<pid>/maps
3401  * @size: size to be set for the file
3402  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3403  */
3404 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3405 {
3406         return __shmem_file_setup(name, size, flags, 0);
3407 }
3408 EXPORT_SYMBOL_GPL(shmem_file_setup);
3409
3410 /**
3411  * shmem_zero_setup - setup a shared anonymous mapping
3412  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3413  */
3414 int shmem_zero_setup(struct vm_area_struct *vma)
3415 {
3416         struct file *file;
3417         loff_t size = vma->vm_end - vma->vm_start;
3418
3419         /*
3420          * Cloning a new file under mmap_sem leads to a lock ordering conflict
3421          * between XFS directory reading and selinux: since this file is only
3422          * accessible to the user through its mapping, use S_PRIVATE flag to
3423          * bypass file security, in the same way as shmem_kernel_file_setup().
3424          */
3425         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3426         if (IS_ERR(file))
3427                 return PTR_ERR(file);
3428
3429         if (vma->vm_file)
3430                 fput(vma->vm_file);
3431         vma->vm_file = file;
3432         vma->vm_ops = &shmem_vm_ops;
3433         return 0;
3434 }
3435
3436 /**
3437  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3438  * @mapping:    the page's address_space
3439  * @index:      the page index
3440  * @gfp:        the page allocator flags to use if allocating
3441  *
3442  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3443  * with any new page allocations done using the specified allocation flags.
3444  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3445  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3446  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3447  *
3448  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3449  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3450  */
3451 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3452                                          pgoff_t index, gfp_t gfp)
3453 {
3454 #ifdef CONFIG_SHMEM
3455         struct inode *inode = mapping->host;
3456         struct page *page;
3457         int error;
3458
3459         BUG_ON(mapping->a_ops != &shmem_aops);
3460         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3461         if (error)
3462                 page = ERR_PTR(error);
3463         else
3464                 unlock_page(page);
3465         return page;
3466 #else
3467         /*
3468          * The tiny !SHMEM case uses ramfs without swap
3469          */
3470         return read_cache_page_gfp(mapping, index, gfp);
3471 #endif
3472 }
3473 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);