]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/swap_state.c
fs/ncpfs/dir.c: remove unnecessary new_valid_dev() check
[karo-tx-linux.git] / mm / swap_state.c
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20
21 #include <asm/pgtable.h>
22
23 /*
24  * swapper_space is a fiction, retained to simplify the path through
25  * vmscan's shrink_page_list.
26  */
27 static const struct address_space_operations swap_aops = {
28         .writepage      = swap_writepage,
29         .set_page_dirty = swap_set_page_dirty,
30 #ifdef CONFIG_MIGRATION
31         .migratepage    = migrate_page,
32 #endif
33 };
34
35 struct address_space swapper_spaces[MAX_SWAPFILES] = {
36         [0 ... MAX_SWAPFILES - 1] = {
37                 .page_tree      = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
38                 .i_mmap_writable = ATOMIC_INIT(0),
39                 .a_ops          = &swap_aops,
40         }
41 };
42
43 #define INC_CACHE_INFO(x)       do { swap_cache_info.x++; } while (0)
44
45 static struct {
46         unsigned long add_total;
47         unsigned long del_total;
48         unsigned long find_success;
49         unsigned long find_total;
50 } swap_cache_info;
51
52 unsigned long total_swapcache_pages(void)
53 {
54         int i;
55         unsigned long ret = 0;
56
57         for (i = 0; i < MAX_SWAPFILES; i++)
58                 ret += swapper_spaces[i].nrpages;
59         return ret;
60 }
61
62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
63
64 void show_swap_cache_info(void)
65 {
66         printk("%lu pages in swap cache\n", total_swapcache_pages());
67         printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
68                 swap_cache_info.add_total, swap_cache_info.del_total,
69                 swap_cache_info.find_success, swap_cache_info.find_total);
70         printk("Free swap  = %ldkB\n",
71                 get_nr_swap_pages() << (PAGE_SHIFT - 10));
72         printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
73 }
74
75 /*
76  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
77  * but sets SwapCache flag and private instead of mapping and index.
78  */
79 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
80 {
81         int error;
82         struct address_space *address_space;
83
84         VM_BUG_ON_PAGE(!PageLocked(page), page);
85         VM_BUG_ON_PAGE(PageSwapCache(page), page);
86         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
87
88         page_cache_get(page);
89         SetPageSwapCache(page);
90         set_page_private(page, entry.val);
91
92         address_space = swap_address_space(entry);
93         spin_lock_irq(&address_space->tree_lock);
94         error = radix_tree_insert(&address_space->page_tree,
95                                         entry.val, page);
96         if (likely(!error)) {
97                 address_space->nrpages++;
98                 __inc_zone_page_state(page, NR_FILE_PAGES);
99                 INC_CACHE_INFO(add_total);
100         }
101         spin_unlock_irq(&address_space->tree_lock);
102
103         if (unlikely(error)) {
104                 /*
105                  * Only the context which have set SWAP_HAS_CACHE flag
106                  * would call add_to_swap_cache().
107                  * So add_to_swap_cache() doesn't returns -EEXIST.
108                  */
109                 VM_BUG_ON(error == -EEXIST);
110                 set_page_private(page, 0UL);
111                 ClearPageSwapCache(page);
112                 page_cache_release(page);
113         }
114
115         return error;
116 }
117
118
119 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
120 {
121         int error;
122
123         error = radix_tree_maybe_preload(gfp_mask);
124         if (!error) {
125                 error = __add_to_swap_cache(page, entry);
126                 radix_tree_preload_end();
127         }
128         return error;
129 }
130
131 /*
132  * This must be called only on pages that have
133  * been verified to be in the swap cache.
134  */
135 void __delete_from_swap_cache(struct page *page)
136 {
137         swp_entry_t entry;
138         struct address_space *address_space;
139
140         VM_BUG_ON_PAGE(!PageLocked(page), page);
141         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
142         VM_BUG_ON_PAGE(PageWriteback(page), page);
143
144         entry.val = page_private(page);
145         address_space = swap_address_space(entry);
146         radix_tree_delete(&address_space->page_tree, page_private(page));
147         set_page_private(page, 0);
148         ClearPageSwapCache(page);
149         address_space->nrpages--;
150         __dec_zone_page_state(page, NR_FILE_PAGES);
151         INC_CACHE_INFO(del_total);
152 }
153
154 /**
155  * add_to_swap - allocate swap space for a page
156  * @page: page we want to move to swap
157  *
158  * Allocate swap space for the page and add the page to the
159  * swap cache.  Caller needs to hold the page lock. 
160  */
161 int add_to_swap(struct page *page, struct list_head *list)
162 {
163         swp_entry_t entry;
164         int err;
165
166         VM_BUG_ON_PAGE(!PageLocked(page), page);
167         VM_BUG_ON_PAGE(!PageUptodate(page), page);
168
169         entry = get_swap_page();
170         if (!entry.val)
171                 return 0;
172
173         if (unlikely(PageTransHuge(page)))
174                 if (unlikely(split_huge_page_to_list(page, list))) {
175                         swapcache_free(entry);
176                         return 0;
177                 }
178
179         /*
180          * Radix-tree node allocations from PF_MEMALLOC contexts could
181          * completely exhaust the page allocator. __GFP_NOMEMALLOC
182          * stops emergency reserves from being allocated.
183          *
184          * TODO: this could cause a theoretical memory reclaim
185          * deadlock in the swap out path.
186          */
187         /*
188          * Add it to the swap cache.
189          */
190         err = add_to_swap_cache(page, entry,
191                         __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
192
193         if (!err) {
194                 return 1;
195         } else {        /* -ENOMEM radix-tree allocation failure */
196                 /*
197                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
198                  * clear SWAP_HAS_CACHE flag.
199                  */
200                 swapcache_free(entry);
201                 return 0;
202         }
203 }
204
205 /*
206  * This must be called only on pages that have
207  * been verified to be in the swap cache and locked.
208  * It will never put the page into the free list,
209  * the caller has a reference on the page.
210  */
211 void delete_from_swap_cache(struct page *page)
212 {
213         swp_entry_t entry;
214         struct address_space *address_space;
215
216         entry.val = page_private(page);
217
218         address_space = swap_address_space(entry);
219         spin_lock_irq(&address_space->tree_lock);
220         __delete_from_swap_cache(page);
221         spin_unlock_irq(&address_space->tree_lock);
222
223         swapcache_free(entry);
224         page_cache_release(page);
225 }
226
227 /* 
228  * If we are the only user, then try to free up the swap cache. 
229  * 
230  * Its ok to check for PageSwapCache without the page lock
231  * here because we are going to recheck again inside
232  * try_to_free_swap() _with_ the lock.
233  *                                      - Marcelo
234  */
235 static inline void free_swap_cache(struct page *page)
236 {
237         if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
238                 try_to_free_swap(page);
239                 unlock_page(page);
240         }
241 }
242
243 /* 
244  * Perform a free_page(), also freeing any swap cache associated with
245  * this page if it is the last user of the page.
246  */
247 void free_page_and_swap_cache(struct page *page)
248 {
249         free_swap_cache(page);
250         page_cache_release(page);
251 }
252
253 /*
254  * Passed an array of pages, drop them all from swapcache and then release
255  * them.  They are removed from the LRU and freed if this is their last use.
256  */
257 void free_pages_and_swap_cache(struct page **pages, int nr)
258 {
259         struct page **pagep = pages;
260         int i;
261
262         lru_add_drain();
263         for (i = 0; i < nr; i++)
264                 free_swap_cache(pagep[i]);
265         release_pages(pagep, nr, false);
266 }
267
268 /*
269  * Lookup a swap entry in the swap cache. A found page will be returned
270  * unlocked and with its refcount incremented - we rely on the kernel
271  * lock getting page table operations atomic even if we drop the page
272  * lock before returning.
273  */
274 struct page * lookup_swap_cache(swp_entry_t entry)
275 {
276         struct page *page;
277
278         page = find_get_page(swap_address_space(entry), entry.val);
279
280         if (page) {
281                 INC_CACHE_INFO(find_success);
282                 if (TestClearPageReadahead(page))
283                         atomic_inc(&swapin_readahead_hits);
284         }
285
286         INC_CACHE_INFO(find_total);
287         return page;
288 }
289
290 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
291                         struct vm_area_struct *vma, unsigned long addr,
292                         bool *new_page_allocated)
293 {
294         struct page *found_page, *new_page = NULL;
295         struct address_space *swapper_space = swap_address_space(entry);
296         int err;
297         *new_page_allocated = false;
298
299         do {
300                 /*
301                  * First check the swap cache.  Since this is normally
302                  * called after lookup_swap_cache() failed, re-calling
303                  * that would confuse statistics.
304                  */
305                 found_page = find_get_page(swapper_space, entry.val);
306                 if (found_page)
307                         break;
308
309                 /*
310                  * Get a new page to read into from swap.
311                  */
312                 if (!new_page) {
313                         new_page = alloc_page_vma(gfp_mask, vma, addr);
314                         if (!new_page)
315                                 break;          /* Out of memory */
316                 }
317
318                 /*
319                  * call radix_tree_preload() while we can wait.
320                  */
321                 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
322                 if (err)
323                         break;
324
325                 /*
326                  * Swap entry may have been freed since our caller observed it.
327                  */
328                 err = swapcache_prepare(entry);
329                 if (err == -EEXIST) {
330                         radix_tree_preload_end();
331                         /*
332                          * We might race against get_swap_page() and stumble
333                          * across a SWAP_HAS_CACHE swap_map entry whose page
334                          * has not been brought into the swapcache yet, while
335                          * the other end is scheduled away waiting on discard
336                          * I/O completion at scan_swap_map().
337                          *
338                          * In order to avoid turning this transitory state
339                          * into a permanent loop around this -EEXIST case
340                          * if !CONFIG_PREEMPT and the I/O completion happens
341                          * to be waiting on the CPU waitqueue where we are now
342                          * busy looping, we just conditionally invoke the
343                          * scheduler here, if there are some more important
344                          * tasks to run.
345                          */
346                         cond_resched();
347                         continue;
348                 }
349                 if (err) {              /* swp entry is obsolete ? */
350                         radix_tree_preload_end();
351                         break;
352                 }
353
354                 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
355                 __SetPageLocked(new_page);
356                 SetPageSwapBacked(new_page);
357                 err = __add_to_swap_cache(new_page, entry);
358                 if (likely(!err)) {
359                         radix_tree_preload_end();
360                         /*
361                          * Initiate read into locked page and return.
362                          */
363                         lru_cache_add_anon(new_page);
364                         *new_page_allocated = true;
365                         return new_page;
366                 }
367                 radix_tree_preload_end();
368                 ClearPageSwapBacked(new_page);
369                 __ClearPageLocked(new_page);
370                 /*
371                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
372                  * clear SWAP_HAS_CACHE flag.
373                  */
374                 swapcache_free(entry);
375         } while (err != -ENOMEM);
376
377         if (new_page)
378                 page_cache_release(new_page);
379         return found_page;
380 }
381
382 /*
383  * Locate a page of swap in physical memory, reserving swap cache space
384  * and reading the disk if it is not already cached.
385  * A failure return means that either the page allocation failed or that
386  * the swap entry is no longer in use.
387  */
388 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
389                         struct vm_area_struct *vma, unsigned long addr)
390 {
391         bool page_was_allocated;
392         struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
393                         vma, addr, &page_was_allocated);
394
395         if (page_was_allocated)
396                 swap_readpage(retpage);
397
398         return retpage;
399 }
400
401 static unsigned long swapin_nr_pages(unsigned long offset)
402 {
403         static unsigned long prev_offset;
404         unsigned int pages, max_pages, last_ra;
405         static atomic_t last_readahead_pages;
406
407         max_pages = 1 << READ_ONCE(page_cluster);
408         if (max_pages <= 1)
409                 return 1;
410
411         /*
412          * This heuristic has been found to work well on both sequential and
413          * random loads, swapping to hard disk or to SSD: please don't ask
414          * what the "+ 2" means, it just happens to work well, that's all.
415          */
416         pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
417         if (pages == 2) {
418                 /*
419                  * We can have no readahead hits to judge by: but must not get
420                  * stuck here forever, so check for an adjacent offset instead
421                  * (and don't even bother to check whether swap type is same).
422                  */
423                 if (offset != prev_offset + 1 && offset != prev_offset - 1)
424                         pages = 1;
425                 prev_offset = offset;
426         } else {
427                 unsigned int roundup = 4;
428                 while (roundup < pages)
429                         roundup <<= 1;
430                 pages = roundup;
431         }
432
433         if (pages > max_pages)
434                 pages = max_pages;
435
436         /* Don't shrink readahead too fast */
437         last_ra = atomic_read(&last_readahead_pages) / 2;
438         if (pages < last_ra)
439                 pages = last_ra;
440         atomic_set(&last_readahead_pages, pages);
441
442         return pages;
443 }
444
445 /**
446  * swapin_readahead - swap in pages in hope we need them soon
447  * @entry: swap entry of this memory
448  * @gfp_mask: memory allocation flags
449  * @vma: user vma this address belongs to
450  * @addr: target address for mempolicy
451  *
452  * Returns the struct page for entry and addr, after queueing swapin.
453  *
454  * Primitive swap readahead code. We simply read an aligned block of
455  * (1 << page_cluster) entries in the swap area. This method is chosen
456  * because it doesn't cost us any seek time.  We also make sure to queue
457  * the 'original' request together with the readahead ones...
458  *
459  * This has been extended to use the NUMA policies from the mm triggering
460  * the readahead.
461  *
462  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
463  */
464 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
465                         struct vm_area_struct *vma, unsigned long addr)
466 {
467         struct page *page;
468         unsigned long entry_offset = swp_offset(entry);
469         unsigned long offset = entry_offset;
470         unsigned long start_offset, end_offset;
471         unsigned long mask;
472         struct blk_plug plug;
473
474         mask = swapin_nr_pages(offset) - 1;
475         if (!mask)
476                 goto skip;
477
478         /* Read a page_cluster sized and aligned cluster around offset. */
479         start_offset = offset & ~mask;
480         end_offset = offset | mask;
481         if (!start_offset)      /* First page is swap header. */
482                 start_offset++;
483
484         blk_start_plug(&plug);
485         for (offset = start_offset; offset <= end_offset ; offset++) {
486                 /* Ok, do the async read-ahead now */
487                 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
488                                                 gfp_mask, vma, addr);
489                 if (!page)
490                         continue;
491                 if (offset != entry_offset)
492                         SetPageReadahead(page);
493                 page_cache_release(page);
494         }
495         blk_finish_plug(&plug);
496
497         lru_add_drain();        /* Push any new pages onto the LRU now */
498 skip:
499         return read_swap_cache_async(entry, gfp_mask, vma, addr);
500 }