]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/swapfile.c
fs/ncpfs/dir.c: remove unnecessary new_valid_dev() check
[karo-tx-linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59
60 /*
61  * all active swap_info_structs
62  * protected with swap_lock, and ordered by priority.
63  */
64 PLIST_HEAD(swap_active_head);
65
66 /*
67  * all available (active, not full) swap_info_structs
68  * protected with swap_avail_lock, ordered by priority.
69  * This is used by get_swap_page() instead of swap_active_head
70  * because swap_active_head includes all swap_info_structs,
71  * but get_swap_page() doesn't need to look at full ones.
72  * This uses its own lock instead of swap_lock because when a
73  * swap_info_struct changes between not-full/full, it needs to
74  * add/remove itself to/from this list, but the swap_info_struct->lock
75  * is held and the locking order requires swap_lock to be taken
76  * before any swap_info_struct->lock.
77  */
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
80
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
82
83 static DEFINE_MUTEX(swapon_mutex);
84
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
89 static inline unsigned char swap_count(unsigned char ent)
90 {
91         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
92 }
93
94 /* returns 1 if swap entry is freed */
95 static int
96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97 {
98         swp_entry_t entry = swp_entry(si->type, offset);
99         struct page *page;
100         int ret = 0;
101
102         page = find_get_page(swap_address_space(entry), entry.val);
103         if (!page)
104                 return 0;
105         /*
106          * This function is called from scan_swap_map() and it's called
107          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108          * We have to use trylock for avoiding deadlock. This is a special
109          * case and you should use try_to_free_swap() with explicit lock_page()
110          * in usual operations.
111          */
112         if (trylock_page(page)) {
113                 ret = try_to_free_swap(page);
114                 unlock_page(page);
115         }
116         page_cache_release(page);
117         return ret;
118 }
119
120 /*
121  * swapon tell device that all the old swap contents can be discarded,
122  * to allow the swap device to optimize its wear-levelling.
123  */
124 static int discard_swap(struct swap_info_struct *si)
125 {
126         struct swap_extent *se;
127         sector_t start_block;
128         sector_t nr_blocks;
129         int err = 0;
130
131         /* Do not discard the swap header page! */
132         se = &si->first_swap_extent;
133         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135         if (nr_blocks) {
136                 err = blkdev_issue_discard(si->bdev, start_block,
137                                 nr_blocks, GFP_KERNEL, 0);
138                 if (err)
139                         return err;
140                 cond_resched();
141         }
142
143         list_for_each_entry(se, &si->first_swap_extent.list, list) {
144                 start_block = se->start_block << (PAGE_SHIFT - 9);
145                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146
147                 err = blkdev_issue_discard(si->bdev, start_block,
148                                 nr_blocks, GFP_KERNEL, 0);
149                 if (err)
150                         break;
151
152                 cond_resched();
153         }
154         return err;             /* That will often be -EOPNOTSUPP */
155 }
156
157 /*
158  * swap allocation tell device that a cluster of swap can now be discarded,
159  * to allow the swap device to optimize its wear-levelling.
160  */
161 static void discard_swap_cluster(struct swap_info_struct *si,
162                                  pgoff_t start_page, pgoff_t nr_pages)
163 {
164         struct swap_extent *se = si->curr_swap_extent;
165         int found_extent = 0;
166
167         while (nr_pages) {
168                 struct list_head *lh;
169
170                 if (se->start_page <= start_page &&
171                     start_page < se->start_page + se->nr_pages) {
172                         pgoff_t offset = start_page - se->start_page;
173                         sector_t start_block = se->start_block + offset;
174                         sector_t nr_blocks = se->nr_pages - offset;
175
176                         if (nr_blocks > nr_pages)
177                                 nr_blocks = nr_pages;
178                         start_page += nr_blocks;
179                         nr_pages -= nr_blocks;
180
181                         if (!found_extent++)
182                                 si->curr_swap_extent = se;
183
184                         start_block <<= PAGE_SHIFT - 9;
185                         nr_blocks <<= PAGE_SHIFT - 9;
186                         if (blkdev_issue_discard(si->bdev, start_block,
187                                     nr_blocks, GFP_NOIO, 0))
188                                 break;
189                 }
190
191                 lh = se->list.next;
192                 se = list_entry(lh, struct swap_extent, list);
193         }
194 }
195
196 #define SWAPFILE_CLUSTER        256
197 #define LATENCY_LIMIT           256
198
199 static inline void cluster_set_flag(struct swap_cluster_info *info,
200         unsigned int flag)
201 {
202         info->flags = flag;
203 }
204
205 static inline unsigned int cluster_count(struct swap_cluster_info *info)
206 {
207         return info->data;
208 }
209
210 static inline void cluster_set_count(struct swap_cluster_info *info,
211                                      unsigned int c)
212 {
213         info->data = c;
214 }
215
216 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
217                                          unsigned int c, unsigned int f)
218 {
219         info->flags = f;
220         info->data = c;
221 }
222
223 static inline unsigned int cluster_next(struct swap_cluster_info *info)
224 {
225         return info->data;
226 }
227
228 static inline void cluster_set_next(struct swap_cluster_info *info,
229                                     unsigned int n)
230 {
231         info->data = n;
232 }
233
234 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
235                                          unsigned int n, unsigned int f)
236 {
237         info->flags = f;
238         info->data = n;
239 }
240
241 static inline bool cluster_is_free(struct swap_cluster_info *info)
242 {
243         return info->flags & CLUSTER_FLAG_FREE;
244 }
245
246 static inline bool cluster_is_null(struct swap_cluster_info *info)
247 {
248         return info->flags & CLUSTER_FLAG_NEXT_NULL;
249 }
250
251 static inline void cluster_set_null(struct swap_cluster_info *info)
252 {
253         info->flags = CLUSTER_FLAG_NEXT_NULL;
254         info->data = 0;
255 }
256
257 /* Add a cluster to discard list and schedule it to do discard */
258 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
259                 unsigned int idx)
260 {
261         /*
262          * If scan_swap_map() can't find a free cluster, it will check
263          * si->swap_map directly. To make sure the discarding cluster isn't
264          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265          * will be cleared after discard
266          */
267         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
268                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
269
270         if (cluster_is_null(&si->discard_cluster_head)) {
271                 cluster_set_next_flag(&si->discard_cluster_head,
272                                                 idx, 0);
273                 cluster_set_next_flag(&si->discard_cluster_tail,
274                                                 idx, 0);
275         } else {
276                 unsigned int tail = cluster_next(&si->discard_cluster_tail);
277                 cluster_set_next(&si->cluster_info[tail], idx);
278                 cluster_set_next_flag(&si->discard_cluster_tail,
279                                                 idx, 0);
280         }
281
282         schedule_work(&si->discard_work);
283 }
284
285 /*
286  * Doing discard actually. After a cluster discard is finished, the cluster
287  * will be added to free cluster list. caller should hold si->lock.
288 */
289 static void swap_do_scheduled_discard(struct swap_info_struct *si)
290 {
291         struct swap_cluster_info *info;
292         unsigned int idx;
293
294         info = si->cluster_info;
295
296         while (!cluster_is_null(&si->discard_cluster_head)) {
297                 idx = cluster_next(&si->discard_cluster_head);
298
299                 cluster_set_next_flag(&si->discard_cluster_head,
300                                                 cluster_next(&info[idx]), 0);
301                 if (cluster_next(&si->discard_cluster_tail) == idx) {
302                         cluster_set_null(&si->discard_cluster_head);
303                         cluster_set_null(&si->discard_cluster_tail);
304                 }
305                 spin_unlock(&si->lock);
306
307                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
308                                 SWAPFILE_CLUSTER);
309
310                 spin_lock(&si->lock);
311                 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
312                 if (cluster_is_null(&si->free_cluster_head)) {
313                         cluster_set_next_flag(&si->free_cluster_head,
314                                                 idx, 0);
315                         cluster_set_next_flag(&si->free_cluster_tail,
316                                                 idx, 0);
317                 } else {
318                         unsigned int tail;
319
320                         tail = cluster_next(&si->free_cluster_tail);
321                         cluster_set_next(&info[tail], idx);
322                         cluster_set_next_flag(&si->free_cluster_tail,
323                                                 idx, 0);
324                 }
325                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
326                                 0, SWAPFILE_CLUSTER);
327         }
328 }
329
330 static void swap_discard_work(struct work_struct *work)
331 {
332         struct swap_info_struct *si;
333
334         si = container_of(work, struct swap_info_struct, discard_work);
335
336         spin_lock(&si->lock);
337         swap_do_scheduled_discard(si);
338         spin_unlock(&si->lock);
339 }
340
341 /*
342  * The cluster corresponding to page_nr will be used. The cluster will be
343  * removed from free cluster list and its usage counter will be increased.
344  */
345 static void inc_cluster_info_page(struct swap_info_struct *p,
346         struct swap_cluster_info *cluster_info, unsigned long page_nr)
347 {
348         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
349
350         if (!cluster_info)
351                 return;
352         if (cluster_is_free(&cluster_info[idx])) {
353                 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
354                 cluster_set_next_flag(&p->free_cluster_head,
355                         cluster_next(&cluster_info[idx]), 0);
356                 if (cluster_next(&p->free_cluster_tail) == idx) {
357                         cluster_set_null(&p->free_cluster_tail);
358                         cluster_set_null(&p->free_cluster_head);
359                 }
360                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
361         }
362
363         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
364         cluster_set_count(&cluster_info[idx],
365                 cluster_count(&cluster_info[idx]) + 1);
366 }
367
368 /*
369  * The cluster corresponding to page_nr decreases one usage. If the usage
370  * counter becomes 0, which means no page in the cluster is in using, we can
371  * optionally discard the cluster and add it to free cluster list.
372  */
373 static void dec_cluster_info_page(struct swap_info_struct *p,
374         struct swap_cluster_info *cluster_info, unsigned long page_nr)
375 {
376         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
377
378         if (!cluster_info)
379                 return;
380
381         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
382         cluster_set_count(&cluster_info[idx],
383                 cluster_count(&cluster_info[idx]) - 1);
384
385         if (cluster_count(&cluster_info[idx]) == 0) {
386                 /*
387                  * If the swap is discardable, prepare discard the cluster
388                  * instead of free it immediately. The cluster will be freed
389                  * after discard.
390                  */
391                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
392                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
393                         swap_cluster_schedule_discard(p, idx);
394                         return;
395                 }
396
397                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
398                 if (cluster_is_null(&p->free_cluster_head)) {
399                         cluster_set_next_flag(&p->free_cluster_head, idx, 0);
400                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
401                 } else {
402                         unsigned int tail = cluster_next(&p->free_cluster_tail);
403                         cluster_set_next(&cluster_info[tail], idx);
404                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
405                 }
406         }
407 }
408
409 /*
410  * It's possible scan_swap_map() uses a free cluster in the middle of free
411  * cluster list. Avoiding such abuse to avoid list corruption.
412  */
413 static bool
414 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
415         unsigned long offset)
416 {
417         struct percpu_cluster *percpu_cluster;
418         bool conflict;
419
420         offset /= SWAPFILE_CLUSTER;
421         conflict = !cluster_is_null(&si->free_cluster_head) &&
422                 offset != cluster_next(&si->free_cluster_head) &&
423                 cluster_is_free(&si->cluster_info[offset]);
424
425         if (!conflict)
426                 return false;
427
428         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
429         cluster_set_null(&percpu_cluster->index);
430         return true;
431 }
432
433 /*
434  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435  * might involve allocating a new cluster for current CPU too.
436  */
437 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
438         unsigned long *offset, unsigned long *scan_base)
439 {
440         struct percpu_cluster *cluster;
441         bool found_free;
442         unsigned long tmp;
443
444 new_cluster:
445         cluster = this_cpu_ptr(si->percpu_cluster);
446         if (cluster_is_null(&cluster->index)) {
447                 if (!cluster_is_null(&si->free_cluster_head)) {
448                         cluster->index = si->free_cluster_head;
449                         cluster->next = cluster_next(&cluster->index) *
450                                         SWAPFILE_CLUSTER;
451                 } else if (!cluster_is_null(&si->discard_cluster_head)) {
452                         /*
453                          * we don't have free cluster but have some clusters in
454                          * discarding, do discard now and reclaim them
455                          */
456                         swap_do_scheduled_discard(si);
457                         *scan_base = *offset = si->cluster_next;
458                         goto new_cluster;
459                 } else
460                         return;
461         }
462
463         found_free = false;
464
465         /*
466          * Other CPUs can use our cluster if they can't find a free cluster,
467          * check if there is still free entry in the cluster
468          */
469         tmp = cluster->next;
470         while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
471                SWAPFILE_CLUSTER) {
472                 if (!si->swap_map[tmp]) {
473                         found_free = true;
474                         break;
475                 }
476                 tmp++;
477         }
478         if (!found_free) {
479                 cluster_set_null(&cluster->index);
480                 goto new_cluster;
481         }
482         cluster->next = tmp + 1;
483         *offset = tmp;
484         *scan_base = tmp;
485 }
486
487 static unsigned long scan_swap_map(struct swap_info_struct *si,
488                                    unsigned char usage)
489 {
490         unsigned long offset;
491         unsigned long scan_base;
492         unsigned long last_in_cluster = 0;
493         int latency_ration = LATENCY_LIMIT;
494
495         /*
496          * We try to cluster swap pages by allocating them sequentially
497          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
498          * way, however, we resort to first-free allocation, starting
499          * a new cluster.  This prevents us from scattering swap pages
500          * all over the entire swap partition, so that we reduce
501          * overall disk seek times between swap pages.  -- sct
502          * But we do now try to find an empty cluster.  -Andrea
503          * And we let swap pages go all over an SSD partition.  Hugh
504          */
505
506         si->flags += SWP_SCANNING;
507         scan_base = offset = si->cluster_next;
508
509         /* SSD algorithm */
510         if (si->cluster_info) {
511                 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
512                 goto checks;
513         }
514
515         if (unlikely(!si->cluster_nr--)) {
516                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
517                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
518                         goto checks;
519                 }
520
521                 spin_unlock(&si->lock);
522
523                 /*
524                  * If seek is expensive, start searching for new cluster from
525                  * start of partition, to minimize the span of allocated swap.
526                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
527                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
528                  */
529                 scan_base = offset = si->lowest_bit;
530                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
531
532                 /* Locate the first empty (unaligned) cluster */
533                 for (; last_in_cluster <= si->highest_bit; offset++) {
534                         if (si->swap_map[offset])
535                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
536                         else if (offset == last_in_cluster) {
537                                 spin_lock(&si->lock);
538                                 offset -= SWAPFILE_CLUSTER - 1;
539                                 si->cluster_next = offset;
540                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
541                                 goto checks;
542                         }
543                         if (unlikely(--latency_ration < 0)) {
544                                 cond_resched();
545                                 latency_ration = LATENCY_LIMIT;
546                         }
547                 }
548
549                 offset = scan_base;
550                 spin_lock(&si->lock);
551                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
552         }
553
554 checks:
555         if (si->cluster_info) {
556                 while (scan_swap_map_ssd_cluster_conflict(si, offset))
557                         scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
558         }
559         if (!(si->flags & SWP_WRITEOK))
560                 goto no_page;
561         if (!si->highest_bit)
562                 goto no_page;
563         if (offset > si->highest_bit)
564                 scan_base = offset = si->lowest_bit;
565
566         /* reuse swap entry of cache-only swap if not busy. */
567         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
568                 int swap_was_freed;
569                 spin_unlock(&si->lock);
570                 swap_was_freed = __try_to_reclaim_swap(si, offset);
571                 spin_lock(&si->lock);
572                 /* entry was freed successfully, try to use this again */
573                 if (swap_was_freed)
574                         goto checks;
575                 goto scan; /* check next one */
576         }
577
578         if (si->swap_map[offset])
579                 goto scan;
580
581         if (offset == si->lowest_bit)
582                 si->lowest_bit++;
583         if (offset == si->highest_bit)
584                 si->highest_bit--;
585         si->inuse_pages++;
586         if (si->inuse_pages == si->pages) {
587                 si->lowest_bit = si->max;
588                 si->highest_bit = 0;
589                 spin_lock(&swap_avail_lock);
590                 plist_del(&si->avail_list, &swap_avail_head);
591                 spin_unlock(&swap_avail_lock);
592         }
593         si->swap_map[offset] = usage;
594         inc_cluster_info_page(si, si->cluster_info, offset);
595         si->cluster_next = offset + 1;
596         si->flags -= SWP_SCANNING;
597
598         return offset;
599
600 scan:
601         spin_unlock(&si->lock);
602         while (++offset <= si->highest_bit) {
603                 if (!si->swap_map[offset]) {
604                         spin_lock(&si->lock);
605                         goto checks;
606                 }
607                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
608                         spin_lock(&si->lock);
609                         goto checks;
610                 }
611                 if (unlikely(--latency_ration < 0)) {
612                         cond_resched();
613                         latency_ration = LATENCY_LIMIT;
614                 }
615         }
616         offset = si->lowest_bit;
617         while (offset < scan_base) {
618                 if (!si->swap_map[offset]) {
619                         spin_lock(&si->lock);
620                         goto checks;
621                 }
622                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
623                         spin_lock(&si->lock);
624                         goto checks;
625                 }
626                 if (unlikely(--latency_ration < 0)) {
627                         cond_resched();
628                         latency_ration = LATENCY_LIMIT;
629                 }
630                 offset++;
631         }
632         spin_lock(&si->lock);
633
634 no_page:
635         si->flags -= SWP_SCANNING;
636         return 0;
637 }
638
639 swp_entry_t get_swap_page(void)
640 {
641         struct swap_info_struct *si, *next;
642         pgoff_t offset;
643
644         if (atomic_long_read(&nr_swap_pages) <= 0)
645                 goto noswap;
646         atomic_long_dec(&nr_swap_pages);
647
648         spin_lock(&swap_avail_lock);
649
650 start_over:
651         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
652                 /* requeue si to after same-priority siblings */
653                 plist_requeue(&si->avail_list, &swap_avail_head);
654                 spin_unlock(&swap_avail_lock);
655                 spin_lock(&si->lock);
656                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
657                         spin_lock(&swap_avail_lock);
658                         if (plist_node_empty(&si->avail_list)) {
659                                 spin_unlock(&si->lock);
660                                 goto nextsi;
661                         }
662                         WARN(!si->highest_bit,
663                              "swap_info %d in list but !highest_bit\n",
664                              si->type);
665                         WARN(!(si->flags & SWP_WRITEOK),
666                              "swap_info %d in list but !SWP_WRITEOK\n",
667                              si->type);
668                         plist_del(&si->avail_list, &swap_avail_head);
669                         spin_unlock(&si->lock);
670                         goto nextsi;
671                 }
672
673                 /* This is called for allocating swap entry for cache */
674                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
675                 spin_unlock(&si->lock);
676                 if (offset)
677                         return swp_entry(si->type, offset);
678                 pr_debug("scan_swap_map of si %d failed to find offset\n",
679                        si->type);
680                 spin_lock(&swap_avail_lock);
681 nextsi:
682                 /*
683                  * if we got here, it's likely that si was almost full before,
684                  * and since scan_swap_map() can drop the si->lock, multiple
685                  * callers probably all tried to get a page from the same si
686                  * and it filled up before we could get one; or, the si filled
687                  * up between us dropping swap_avail_lock and taking si->lock.
688                  * Since we dropped the swap_avail_lock, the swap_avail_head
689                  * list may have been modified; so if next is still in the
690                  * swap_avail_head list then try it, otherwise start over.
691                  */
692                 if (plist_node_empty(&next->avail_list))
693                         goto start_over;
694         }
695
696         spin_unlock(&swap_avail_lock);
697
698         atomic_long_inc(&nr_swap_pages);
699 noswap:
700         return (swp_entry_t) {0};
701 }
702
703 /* The only caller of this function is now suspend routine */
704 swp_entry_t get_swap_page_of_type(int type)
705 {
706         struct swap_info_struct *si;
707         pgoff_t offset;
708
709         si = swap_info[type];
710         spin_lock(&si->lock);
711         if (si && (si->flags & SWP_WRITEOK)) {
712                 atomic_long_dec(&nr_swap_pages);
713                 /* This is called for allocating swap entry, not cache */
714                 offset = scan_swap_map(si, 1);
715                 if (offset) {
716                         spin_unlock(&si->lock);
717                         return swp_entry(type, offset);
718                 }
719                 atomic_long_inc(&nr_swap_pages);
720         }
721         spin_unlock(&si->lock);
722         return (swp_entry_t) {0};
723 }
724
725 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
726 {
727         struct swap_info_struct *p;
728         unsigned long offset, type;
729
730         if (!entry.val)
731                 goto out;
732         type = swp_type(entry);
733         if (type >= nr_swapfiles)
734                 goto bad_nofile;
735         p = swap_info[type];
736         if (!(p->flags & SWP_USED))
737                 goto bad_device;
738         offset = swp_offset(entry);
739         if (offset >= p->max)
740                 goto bad_offset;
741         if (!p->swap_map[offset])
742                 goto bad_free;
743         spin_lock(&p->lock);
744         return p;
745
746 bad_free:
747         pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
748         goto out;
749 bad_offset:
750         pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
751         goto out;
752 bad_device:
753         pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
754         goto out;
755 bad_nofile:
756         pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
757 out:
758         return NULL;
759 }
760
761 static unsigned char swap_entry_free(struct swap_info_struct *p,
762                                      swp_entry_t entry, unsigned char usage)
763 {
764         unsigned long offset = swp_offset(entry);
765         unsigned char count;
766         unsigned char has_cache;
767
768         count = p->swap_map[offset];
769         has_cache = count & SWAP_HAS_CACHE;
770         count &= ~SWAP_HAS_CACHE;
771
772         if (usage == SWAP_HAS_CACHE) {
773                 VM_BUG_ON(!has_cache);
774                 has_cache = 0;
775         } else if (count == SWAP_MAP_SHMEM) {
776                 /*
777                  * Or we could insist on shmem.c using a special
778                  * swap_shmem_free() and free_shmem_swap_and_cache()...
779                  */
780                 count = 0;
781         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
782                 if (count == COUNT_CONTINUED) {
783                         if (swap_count_continued(p, offset, count))
784                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
785                         else
786                                 count = SWAP_MAP_MAX;
787                 } else
788                         count--;
789         }
790
791         if (!count)
792                 mem_cgroup_uncharge_swap(entry);
793
794         usage = count | has_cache;
795         p->swap_map[offset] = usage;
796
797         /* free if no reference */
798         if (!usage) {
799                 dec_cluster_info_page(p, p->cluster_info, offset);
800                 if (offset < p->lowest_bit)
801                         p->lowest_bit = offset;
802                 if (offset > p->highest_bit) {
803                         bool was_full = !p->highest_bit;
804                         p->highest_bit = offset;
805                         if (was_full && (p->flags & SWP_WRITEOK)) {
806                                 spin_lock(&swap_avail_lock);
807                                 WARN_ON(!plist_node_empty(&p->avail_list));
808                                 if (plist_node_empty(&p->avail_list))
809                                         plist_add(&p->avail_list,
810                                                   &swap_avail_head);
811                                 spin_unlock(&swap_avail_lock);
812                         }
813                 }
814                 atomic_long_inc(&nr_swap_pages);
815                 p->inuse_pages--;
816                 frontswap_invalidate_page(p->type, offset);
817                 if (p->flags & SWP_BLKDEV) {
818                         struct gendisk *disk = p->bdev->bd_disk;
819                         if (disk->fops->swap_slot_free_notify)
820                                 disk->fops->swap_slot_free_notify(p->bdev,
821                                                                   offset);
822                 }
823         }
824
825         return usage;
826 }
827
828 /*
829  * Caller has made sure that the swap device corresponding to entry
830  * is still around or has not been recycled.
831  */
832 void swap_free(swp_entry_t entry)
833 {
834         struct swap_info_struct *p;
835
836         p = swap_info_get(entry);
837         if (p) {
838                 swap_entry_free(p, entry, 1);
839                 spin_unlock(&p->lock);
840         }
841 }
842
843 /*
844  * Called after dropping swapcache to decrease refcnt to swap entries.
845  */
846 void swapcache_free(swp_entry_t entry)
847 {
848         struct swap_info_struct *p;
849
850         p = swap_info_get(entry);
851         if (p) {
852                 swap_entry_free(p, entry, SWAP_HAS_CACHE);
853                 spin_unlock(&p->lock);
854         }
855 }
856
857 /*
858  * How many references to page are currently swapped out?
859  * This does not give an exact answer when swap count is continued,
860  * but does include the high COUNT_CONTINUED flag to allow for that.
861  */
862 int page_swapcount(struct page *page)
863 {
864         int count = 0;
865         struct swap_info_struct *p;
866         swp_entry_t entry;
867
868         entry.val = page_private(page);
869         p = swap_info_get(entry);
870         if (p) {
871                 count = swap_count(p->swap_map[swp_offset(entry)]);
872                 spin_unlock(&p->lock);
873         }
874         return count;
875 }
876
877 /*
878  * How many references to @entry are currently swapped out?
879  * This considers COUNT_CONTINUED so it returns exact answer.
880  */
881 int swp_swapcount(swp_entry_t entry)
882 {
883         int count, tmp_count, n;
884         struct swap_info_struct *p;
885         struct page *page;
886         pgoff_t offset;
887         unsigned char *map;
888
889         p = swap_info_get(entry);
890         if (!p)
891                 return 0;
892
893         count = swap_count(p->swap_map[swp_offset(entry)]);
894         if (!(count & COUNT_CONTINUED))
895                 goto out;
896
897         count &= ~COUNT_CONTINUED;
898         n = SWAP_MAP_MAX + 1;
899
900         offset = swp_offset(entry);
901         page = vmalloc_to_page(p->swap_map + offset);
902         offset &= ~PAGE_MASK;
903         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
904
905         do {
906                 page = list_entry(page->lru.next, struct page, lru);
907                 map = kmap_atomic(page);
908                 tmp_count = map[offset];
909                 kunmap_atomic(map);
910
911                 count += (tmp_count & ~COUNT_CONTINUED) * n;
912                 n *= (SWAP_CONT_MAX + 1);
913         } while (tmp_count & COUNT_CONTINUED);
914 out:
915         spin_unlock(&p->lock);
916         return count;
917 }
918
919 /*
920  * We can write to an anon page without COW if there are no other references
921  * to it.  And as a side-effect, free up its swap: because the old content
922  * on disk will never be read, and seeking back there to write new content
923  * later would only waste time away from clustering.
924  */
925 int reuse_swap_page(struct page *page)
926 {
927         int count;
928
929         VM_BUG_ON_PAGE(!PageLocked(page), page);
930         if (unlikely(PageKsm(page)))
931                 return 0;
932         /* The page is part of THP and cannot be reused */
933         if (PageTransCompound(page))
934                 return 0;
935         count = page_mapcount(page);
936         if (count <= 1 && PageSwapCache(page)) {
937                 count += page_swapcount(page);
938                 if (count == 1 && !PageWriteback(page)) {
939                         delete_from_swap_cache(page);
940                         SetPageDirty(page);
941                 }
942         }
943         return count <= 1;
944 }
945
946 /*
947  * If swap is getting full, or if there are no more mappings of this page,
948  * then try_to_free_swap is called to free its swap space.
949  */
950 int try_to_free_swap(struct page *page)
951 {
952         VM_BUG_ON_PAGE(!PageLocked(page), page);
953
954         if (!PageSwapCache(page))
955                 return 0;
956         if (PageWriteback(page))
957                 return 0;
958         if (page_swapcount(page))
959                 return 0;
960
961         /*
962          * Once hibernation has begun to create its image of memory,
963          * there's a danger that one of the calls to try_to_free_swap()
964          * - most probably a call from __try_to_reclaim_swap() while
965          * hibernation is allocating its own swap pages for the image,
966          * but conceivably even a call from memory reclaim - will free
967          * the swap from a page which has already been recorded in the
968          * image as a clean swapcache page, and then reuse its swap for
969          * another page of the image.  On waking from hibernation, the
970          * original page might be freed under memory pressure, then
971          * later read back in from swap, now with the wrong data.
972          *
973          * Hibernation suspends storage while it is writing the image
974          * to disk so check that here.
975          */
976         if (pm_suspended_storage())
977                 return 0;
978
979         delete_from_swap_cache(page);
980         SetPageDirty(page);
981         return 1;
982 }
983
984 /*
985  * Free the swap entry like above, but also try to
986  * free the page cache entry if it is the last user.
987  */
988 int free_swap_and_cache(swp_entry_t entry)
989 {
990         struct swap_info_struct *p;
991         struct page *page = NULL;
992
993         if (non_swap_entry(entry))
994                 return 1;
995
996         p = swap_info_get(entry);
997         if (p) {
998                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
999                         page = find_get_page(swap_address_space(entry),
1000                                                 entry.val);
1001                         if (page && !trylock_page(page)) {
1002                                 page_cache_release(page);
1003                                 page = NULL;
1004                         }
1005                 }
1006                 spin_unlock(&p->lock);
1007         }
1008         if (page) {
1009                 /*
1010                  * Not mapped elsewhere, or swap space full? Free it!
1011                  * Also recheck PageSwapCache now page is locked (above).
1012                  */
1013                 if (PageSwapCache(page) && !PageWriteback(page) &&
1014                                 (!page_mapped(page) || vm_swap_full())) {
1015                         delete_from_swap_cache(page);
1016                         SetPageDirty(page);
1017                 }
1018                 unlock_page(page);
1019                 page_cache_release(page);
1020         }
1021         return p != NULL;
1022 }
1023
1024 #ifdef CONFIG_HIBERNATION
1025 /*
1026  * Find the swap type that corresponds to given device (if any).
1027  *
1028  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1029  * from 0, in which the swap header is expected to be located.
1030  *
1031  * This is needed for the suspend to disk (aka swsusp).
1032  */
1033 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1034 {
1035         struct block_device *bdev = NULL;
1036         int type;
1037
1038         if (device)
1039                 bdev = bdget(device);
1040
1041         spin_lock(&swap_lock);
1042         for (type = 0; type < nr_swapfiles; type++) {
1043                 struct swap_info_struct *sis = swap_info[type];
1044
1045                 if (!(sis->flags & SWP_WRITEOK))
1046                         continue;
1047
1048                 if (!bdev) {
1049                         if (bdev_p)
1050                                 *bdev_p = bdgrab(sis->bdev);
1051
1052                         spin_unlock(&swap_lock);
1053                         return type;
1054                 }
1055                 if (bdev == sis->bdev) {
1056                         struct swap_extent *se = &sis->first_swap_extent;
1057
1058                         if (se->start_block == offset) {
1059                                 if (bdev_p)
1060                                         *bdev_p = bdgrab(sis->bdev);
1061
1062                                 spin_unlock(&swap_lock);
1063                                 bdput(bdev);
1064                                 return type;
1065                         }
1066                 }
1067         }
1068         spin_unlock(&swap_lock);
1069         if (bdev)
1070                 bdput(bdev);
1071
1072         return -ENODEV;
1073 }
1074
1075 /*
1076  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1077  * corresponding to given index in swap_info (swap type).
1078  */
1079 sector_t swapdev_block(int type, pgoff_t offset)
1080 {
1081         struct block_device *bdev;
1082
1083         if ((unsigned int)type >= nr_swapfiles)
1084                 return 0;
1085         if (!(swap_info[type]->flags & SWP_WRITEOK))
1086                 return 0;
1087         return map_swap_entry(swp_entry(type, offset), &bdev);
1088 }
1089
1090 /*
1091  * Return either the total number of swap pages of given type, or the number
1092  * of free pages of that type (depending on @free)
1093  *
1094  * This is needed for software suspend
1095  */
1096 unsigned int count_swap_pages(int type, int free)
1097 {
1098         unsigned int n = 0;
1099
1100         spin_lock(&swap_lock);
1101         if ((unsigned int)type < nr_swapfiles) {
1102                 struct swap_info_struct *sis = swap_info[type];
1103
1104                 spin_lock(&sis->lock);
1105                 if (sis->flags & SWP_WRITEOK) {
1106                         n = sis->pages;
1107                         if (free)
1108                                 n -= sis->inuse_pages;
1109                 }
1110                 spin_unlock(&sis->lock);
1111         }
1112         spin_unlock(&swap_lock);
1113         return n;
1114 }
1115 #endif /* CONFIG_HIBERNATION */
1116
1117 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1118 {
1119 #ifdef CONFIG_MEM_SOFT_DIRTY
1120         /*
1121          * When pte keeps soft dirty bit the pte generated
1122          * from swap entry does not has it, still it's same
1123          * pte from logical point of view.
1124          */
1125         pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1126         return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1127 #else
1128         return pte_same(pte, swp_pte);
1129 #endif
1130 }
1131
1132 /*
1133  * No need to decide whether this PTE shares the swap entry with others,
1134  * just let do_wp_page work it out if a write is requested later - to
1135  * force COW, vm_page_prot omits write permission from any private vma.
1136  */
1137 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1138                 unsigned long addr, swp_entry_t entry, struct page *page)
1139 {
1140         struct page *swapcache;
1141         struct mem_cgroup *memcg;
1142         spinlock_t *ptl;
1143         pte_t *pte;
1144         int ret = 1;
1145
1146         swapcache = page;
1147         page = ksm_might_need_to_copy(page, vma, addr);
1148         if (unlikely(!page))
1149                 return -ENOMEM;
1150
1151         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1152                                 &memcg, false)) {
1153                 ret = -ENOMEM;
1154                 goto out_nolock;
1155         }
1156
1157         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1158         if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1159                 mem_cgroup_cancel_charge(page, memcg, false);
1160                 ret = 0;
1161                 goto out;
1162         }
1163
1164         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1165         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1166         get_page(page);
1167         set_pte_at(vma->vm_mm, addr, pte,
1168                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1169         if (page == swapcache) {
1170                 page_add_anon_rmap(page, vma, addr, false);
1171                 mem_cgroup_commit_charge(page, memcg, true, false);
1172         } else { /* ksm created a completely new copy */
1173                 page_add_new_anon_rmap(page, vma, addr, false);
1174                 mem_cgroup_commit_charge(page, memcg, false, false);
1175                 lru_cache_add_active_or_unevictable(page, vma);
1176         }
1177         swap_free(entry);
1178         /*
1179          * Move the page to the active list so it is not
1180          * immediately swapped out again after swapon.
1181          */
1182         activate_page(page);
1183 out:
1184         pte_unmap_unlock(pte, ptl);
1185 out_nolock:
1186         if (page != swapcache) {
1187                 unlock_page(page);
1188                 put_page(page);
1189         }
1190         return ret;
1191 }
1192
1193 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1194                                 unsigned long addr, unsigned long end,
1195                                 swp_entry_t entry, struct page *page)
1196 {
1197         pte_t swp_pte = swp_entry_to_pte(entry);
1198         pte_t *pte;
1199         int ret = 0;
1200
1201         /*
1202          * We don't actually need pte lock while scanning for swp_pte: since
1203          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1204          * page table while we're scanning; though it could get zapped, and on
1205          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1206          * of unmatched parts which look like swp_pte, so unuse_pte must
1207          * recheck under pte lock.  Scanning without pte lock lets it be
1208          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1209          */
1210         pte = pte_offset_map(pmd, addr);
1211         do {
1212                 /*
1213                  * swapoff spends a _lot_ of time in this loop!
1214                  * Test inline before going to call unuse_pte.
1215                  */
1216                 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1217                         pte_unmap(pte);
1218                         ret = unuse_pte(vma, pmd, addr, entry, page);
1219                         if (ret)
1220                                 goto out;
1221                         pte = pte_offset_map(pmd, addr);
1222                 }
1223         } while (pte++, addr += PAGE_SIZE, addr != end);
1224         pte_unmap(pte - 1);
1225 out:
1226         return ret;
1227 }
1228
1229 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1230                                 unsigned long addr, unsigned long end,
1231                                 swp_entry_t entry, struct page *page)
1232 {
1233         pmd_t *pmd;
1234         unsigned long next;
1235         int ret;
1236
1237         pmd = pmd_offset(pud, addr);
1238         do {
1239                 next = pmd_addr_end(addr, end);
1240                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1241                         continue;
1242                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1243                 if (ret)
1244                         return ret;
1245         } while (pmd++, addr = next, addr != end);
1246         return 0;
1247 }
1248
1249 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1250                                 unsigned long addr, unsigned long end,
1251                                 swp_entry_t entry, struct page *page)
1252 {
1253         pud_t *pud;
1254         unsigned long next;
1255         int ret;
1256
1257         pud = pud_offset(pgd, addr);
1258         do {
1259                 next = pud_addr_end(addr, end);
1260                 if (pud_none_or_clear_bad(pud))
1261                         continue;
1262                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1263                 if (ret)
1264                         return ret;
1265         } while (pud++, addr = next, addr != end);
1266         return 0;
1267 }
1268
1269 static int unuse_vma(struct vm_area_struct *vma,
1270                                 swp_entry_t entry, struct page *page)
1271 {
1272         pgd_t *pgd;
1273         unsigned long addr, end, next;
1274         int ret;
1275
1276         if (page_anon_vma(page)) {
1277                 addr = page_address_in_vma(page, vma);
1278                 if (addr == -EFAULT)
1279                         return 0;
1280                 else
1281                         end = addr + PAGE_SIZE;
1282         } else {
1283                 addr = vma->vm_start;
1284                 end = vma->vm_end;
1285         }
1286
1287         pgd = pgd_offset(vma->vm_mm, addr);
1288         do {
1289                 next = pgd_addr_end(addr, end);
1290                 if (pgd_none_or_clear_bad(pgd))
1291                         continue;
1292                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1293                 if (ret)
1294                         return ret;
1295         } while (pgd++, addr = next, addr != end);
1296         return 0;
1297 }
1298
1299 static int unuse_mm(struct mm_struct *mm,
1300                                 swp_entry_t entry, struct page *page)
1301 {
1302         struct vm_area_struct *vma;
1303         int ret = 0;
1304
1305         if (!down_read_trylock(&mm->mmap_sem)) {
1306                 /*
1307                  * Activate page so shrink_inactive_list is unlikely to unmap
1308                  * its ptes while lock is dropped, so swapoff can make progress.
1309                  */
1310                 activate_page(page);
1311                 unlock_page(page);
1312                 down_read(&mm->mmap_sem);
1313                 lock_page(page);
1314         }
1315         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1316                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1317                         break;
1318         }
1319         up_read(&mm->mmap_sem);
1320         return (ret < 0)? ret: 0;
1321 }
1322
1323 /*
1324  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1325  * from current position to next entry still in use.
1326  * Recycle to start on reaching the end, returning 0 when empty.
1327  */
1328 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1329                                         unsigned int prev, bool frontswap)
1330 {
1331         unsigned int max = si->max;
1332         unsigned int i = prev;
1333         unsigned char count;
1334
1335         /*
1336          * No need for swap_lock here: we're just looking
1337          * for whether an entry is in use, not modifying it; false
1338          * hits are okay, and sys_swapoff() has already prevented new
1339          * allocations from this area (while holding swap_lock).
1340          */
1341         for (;;) {
1342                 if (++i >= max) {
1343                         if (!prev) {
1344                                 i = 0;
1345                                 break;
1346                         }
1347                         /*
1348                          * No entries in use at top of swap_map,
1349                          * loop back to start and recheck there.
1350                          */
1351                         max = prev + 1;
1352                         prev = 0;
1353                         i = 1;
1354                 }
1355                 if (frontswap) {
1356                         if (frontswap_test(si, i))
1357                                 break;
1358                         else
1359                                 continue;
1360                 }
1361                 count = READ_ONCE(si->swap_map[i]);
1362                 if (count && swap_count(count) != SWAP_MAP_BAD)
1363                         break;
1364         }
1365         return i;
1366 }
1367
1368 /*
1369  * We completely avoid races by reading each swap page in advance,
1370  * and then search for the process using it.  All the necessary
1371  * page table adjustments can then be made atomically.
1372  *
1373  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1374  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1375  */
1376 int try_to_unuse(unsigned int type, bool frontswap,
1377                  unsigned long pages_to_unuse)
1378 {
1379         struct swap_info_struct *si = swap_info[type];
1380         struct mm_struct *start_mm;
1381         volatile unsigned char *swap_map; /* swap_map is accessed without
1382                                            * locking. Mark it as volatile
1383                                            * to prevent compiler doing
1384                                            * something odd.
1385                                            */
1386         unsigned char swcount;
1387         struct page *page;
1388         swp_entry_t entry;
1389         unsigned int i = 0;
1390         int retval = 0;
1391
1392         /*
1393          * When searching mms for an entry, a good strategy is to
1394          * start at the first mm we freed the previous entry from
1395          * (though actually we don't notice whether we or coincidence
1396          * freed the entry).  Initialize this start_mm with a hold.
1397          *
1398          * A simpler strategy would be to start at the last mm we
1399          * freed the previous entry from; but that would take less
1400          * advantage of mmlist ordering, which clusters forked mms
1401          * together, child after parent.  If we race with dup_mmap(), we
1402          * prefer to resolve parent before child, lest we miss entries
1403          * duplicated after we scanned child: using last mm would invert
1404          * that.
1405          */
1406         start_mm = &init_mm;
1407         atomic_inc(&init_mm.mm_users);
1408
1409         /*
1410          * Keep on scanning until all entries have gone.  Usually,
1411          * one pass through swap_map is enough, but not necessarily:
1412          * there are races when an instance of an entry might be missed.
1413          */
1414         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1415                 if (signal_pending(current)) {
1416                         retval = -EINTR;
1417                         break;
1418                 }
1419
1420                 /*
1421                  * Get a page for the entry, using the existing swap
1422                  * cache page if there is one.  Otherwise, get a clean
1423                  * page and read the swap into it.
1424                  */
1425                 swap_map = &si->swap_map[i];
1426                 entry = swp_entry(type, i);
1427                 page = read_swap_cache_async(entry,
1428                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1429                 if (!page) {
1430                         /*
1431                          * Either swap_duplicate() failed because entry
1432                          * has been freed independently, and will not be
1433                          * reused since sys_swapoff() already disabled
1434                          * allocation from here, or alloc_page() failed.
1435                          */
1436                         swcount = *swap_map;
1437                         /*
1438                          * We don't hold lock here, so the swap entry could be
1439                          * SWAP_MAP_BAD (when the cluster is discarding).
1440                          * Instead of fail out, We can just skip the swap
1441                          * entry because swapoff will wait for discarding
1442                          * finish anyway.
1443                          */
1444                         if (!swcount || swcount == SWAP_MAP_BAD)
1445                                 continue;
1446                         retval = -ENOMEM;
1447                         break;
1448                 }
1449
1450                 /*
1451                  * Don't hold on to start_mm if it looks like exiting.
1452                  */
1453                 if (atomic_read(&start_mm->mm_users) == 1) {
1454                         mmput(start_mm);
1455                         start_mm = &init_mm;
1456                         atomic_inc(&init_mm.mm_users);
1457                 }
1458
1459                 /*
1460                  * Wait for and lock page.  When do_swap_page races with
1461                  * try_to_unuse, do_swap_page can handle the fault much
1462                  * faster than try_to_unuse can locate the entry.  This
1463                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1464                  * defer to do_swap_page in such a case - in some tests,
1465                  * do_swap_page and try_to_unuse repeatedly compete.
1466                  */
1467                 wait_on_page_locked(page);
1468                 wait_on_page_writeback(page);
1469                 lock_page(page);
1470                 wait_on_page_writeback(page);
1471
1472                 /*
1473                  * Remove all references to entry.
1474                  */
1475                 swcount = *swap_map;
1476                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1477                         retval = shmem_unuse(entry, page);
1478                         /* page has already been unlocked and released */
1479                         if (retval < 0)
1480                                 break;
1481                         continue;
1482                 }
1483                 if (swap_count(swcount) && start_mm != &init_mm)
1484                         retval = unuse_mm(start_mm, entry, page);
1485
1486                 if (swap_count(*swap_map)) {
1487                         int set_start_mm = (*swap_map >= swcount);
1488                         struct list_head *p = &start_mm->mmlist;
1489                         struct mm_struct *new_start_mm = start_mm;
1490                         struct mm_struct *prev_mm = start_mm;
1491                         struct mm_struct *mm;
1492
1493                         atomic_inc(&new_start_mm->mm_users);
1494                         atomic_inc(&prev_mm->mm_users);
1495                         spin_lock(&mmlist_lock);
1496                         while (swap_count(*swap_map) && !retval &&
1497                                         (p = p->next) != &start_mm->mmlist) {
1498                                 mm = list_entry(p, struct mm_struct, mmlist);
1499                                 if (!atomic_inc_not_zero(&mm->mm_users))
1500                                         continue;
1501                                 spin_unlock(&mmlist_lock);
1502                                 mmput(prev_mm);
1503                                 prev_mm = mm;
1504
1505                                 cond_resched();
1506
1507                                 swcount = *swap_map;
1508                                 if (!swap_count(swcount)) /* any usage ? */
1509                                         ;
1510                                 else if (mm == &init_mm)
1511                                         set_start_mm = 1;
1512                                 else
1513                                         retval = unuse_mm(mm, entry, page);
1514
1515                                 if (set_start_mm && *swap_map < swcount) {
1516                                         mmput(new_start_mm);
1517                                         atomic_inc(&mm->mm_users);
1518                                         new_start_mm = mm;
1519                                         set_start_mm = 0;
1520                                 }
1521                                 spin_lock(&mmlist_lock);
1522                         }
1523                         spin_unlock(&mmlist_lock);
1524                         mmput(prev_mm);
1525                         mmput(start_mm);
1526                         start_mm = new_start_mm;
1527                 }
1528                 if (retval) {
1529                         unlock_page(page);
1530                         page_cache_release(page);
1531                         break;
1532                 }
1533
1534                 /*
1535                  * If a reference remains (rare), we would like to leave
1536                  * the page in the swap cache; but try_to_unmap could
1537                  * then re-duplicate the entry once we drop page lock,
1538                  * so we might loop indefinitely; also, that page could
1539                  * not be swapped out to other storage meanwhile.  So:
1540                  * delete from cache even if there's another reference,
1541                  * after ensuring that the data has been saved to disk -
1542                  * since if the reference remains (rarer), it will be
1543                  * read from disk into another page.  Splitting into two
1544                  * pages would be incorrect if swap supported "shared
1545                  * private" pages, but they are handled by tmpfs files.
1546                  *
1547                  * Given how unuse_vma() targets one particular offset
1548                  * in an anon_vma, once the anon_vma has been determined,
1549                  * this splitting happens to be just what is needed to
1550                  * handle where KSM pages have been swapped out: re-reading
1551                  * is unnecessarily slow, but we can fix that later on.
1552                  */
1553                 if (swap_count(*swap_map) &&
1554                      PageDirty(page) && PageSwapCache(page)) {
1555                         struct writeback_control wbc = {
1556                                 .sync_mode = WB_SYNC_NONE,
1557                         };
1558
1559                         swap_writepage(page, &wbc);
1560                         lock_page(page);
1561                         wait_on_page_writeback(page);
1562                 }
1563
1564                 /*
1565                  * It is conceivable that a racing task removed this page from
1566                  * swap cache just before we acquired the page lock at the top,
1567                  * or while we dropped it in unuse_mm().  The page might even
1568                  * be back in swap cache on another swap area: that we must not
1569                  * delete, since it may not have been written out to swap yet.
1570                  */
1571                 if (PageSwapCache(page) &&
1572                     likely(page_private(page) == entry.val))
1573                         delete_from_swap_cache(page);
1574
1575                 /*
1576                  * So we could skip searching mms once swap count went
1577                  * to 1, we did not mark any present ptes as dirty: must
1578                  * mark page dirty so shrink_page_list will preserve it.
1579                  */
1580                 SetPageDirty(page);
1581                 unlock_page(page);
1582                 page_cache_release(page);
1583
1584                 /*
1585                  * Make sure that we aren't completely killing
1586                  * interactive performance.
1587                  */
1588                 cond_resched();
1589                 if (frontswap && pages_to_unuse > 0) {
1590                         if (!--pages_to_unuse)
1591                                 break;
1592                 }
1593         }
1594
1595         mmput(start_mm);
1596         return retval;
1597 }
1598
1599 /*
1600  * After a successful try_to_unuse, if no swap is now in use, we know
1601  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1602  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1603  * added to the mmlist just after page_duplicate - before would be racy.
1604  */
1605 static void drain_mmlist(void)
1606 {
1607         struct list_head *p, *next;
1608         unsigned int type;
1609
1610         for (type = 0; type < nr_swapfiles; type++)
1611                 if (swap_info[type]->inuse_pages)
1612                         return;
1613         spin_lock(&mmlist_lock);
1614         list_for_each_safe(p, next, &init_mm.mmlist)
1615                 list_del_init(p);
1616         spin_unlock(&mmlist_lock);
1617 }
1618
1619 /*
1620  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1621  * corresponds to page offset for the specified swap entry.
1622  * Note that the type of this function is sector_t, but it returns page offset
1623  * into the bdev, not sector offset.
1624  */
1625 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1626 {
1627         struct swap_info_struct *sis;
1628         struct swap_extent *start_se;
1629         struct swap_extent *se;
1630         pgoff_t offset;
1631
1632         sis = swap_info[swp_type(entry)];
1633         *bdev = sis->bdev;
1634
1635         offset = swp_offset(entry);
1636         start_se = sis->curr_swap_extent;
1637         se = start_se;
1638
1639         for ( ; ; ) {
1640                 struct list_head *lh;
1641
1642                 if (se->start_page <= offset &&
1643                                 offset < (se->start_page + se->nr_pages)) {
1644                         return se->start_block + (offset - se->start_page);
1645                 }
1646                 lh = se->list.next;
1647                 se = list_entry(lh, struct swap_extent, list);
1648                 sis->curr_swap_extent = se;
1649                 BUG_ON(se == start_se);         /* It *must* be present */
1650         }
1651 }
1652
1653 /*
1654  * Returns the page offset into bdev for the specified page's swap entry.
1655  */
1656 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1657 {
1658         swp_entry_t entry;
1659         entry.val = page_private(page);
1660         return map_swap_entry(entry, bdev);
1661 }
1662
1663 /*
1664  * Free all of a swapdev's extent information
1665  */
1666 static void destroy_swap_extents(struct swap_info_struct *sis)
1667 {
1668         while (!list_empty(&sis->first_swap_extent.list)) {
1669                 struct swap_extent *se;
1670
1671                 se = list_entry(sis->first_swap_extent.list.next,
1672                                 struct swap_extent, list);
1673                 list_del(&se->list);
1674                 kfree(se);
1675         }
1676
1677         if (sis->flags & SWP_FILE) {
1678                 struct file *swap_file = sis->swap_file;
1679                 struct address_space *mapping = swap_file->f_mapping;
1680
1681                 sis->flags &= ~SWP_FILE;
1682                 mapping->a_ops->swap_deactivate(swap_file);
1683         }
1684 }
1685
1686 /*
1687  * Add a block range (and the corresponding page range) into this swapdev's
1688  * extent list.  The extent list is kept sorted in page order.
1689  *
1690  * This function rather assumes that it is called in ascending page order.
1691  */
1692 int
1693 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1694                 unsigned long nr_pages, sector_t start_block)
1695 {
1696         struct swap_extent *se;
1697         struct swap_extent *new_se;
1698         struct list_head *lh;
1699
1700         if (start_page == 0) {
1701                 se = &sis->first_swap_extent;
1702                 sis->curr_swap_extent = se;
1703                 se->start_page = 0;
1704                 se->nr_pages = nr_pages;
1705                 se->start_block = start_block;
1706                 return 1;
1707         } else {
1708                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1709                 se = list_entry(lh, struct swap_extent, list);
1710                 BUG_ON(se->start_page + se->nr_pages != start_page);
1711                 if (se->start_block + se->nr_pages == start_block) {
1712                         /* Merge it */
1713                         se->nr_pages += nr_pages;
1714                         return 0;
1715                 }
1716         }
1717
1718         /*
1719          * No merge.  Insert a new extent, preserving ordering.
1720          */
1721         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1722         if (new_se == NULL)
1723                 return -ENOMEM;
1724         new_se->start_page = start_page;
1725         new_se->nr_pages = nr_pages;
1726         new_se->start_block = start_block;
1727
1728         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1729         return 1;
1730 }
1731
1732 /*
1733  * A `swap extent' is a simple thing which maps a contiguous range of pages
1734  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1735  * is built at swapon time and is then used at swap_writepage/swap_readpage
1736  * time for locating where on disk a page belongs.
1737  *
1738  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1739  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1740  * swap files identically.
1741  *
1742  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1743  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1744  * swapfiles are handled *identically* after swapon time.
1745  *
1746  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1747  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1748  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1749  * requirements, they are simply tossed out - we will never use those blocks
1750  * for swapping.
1751  *
1752  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1753  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1754  * which will scribble on the fs.
1755  *
1756  * The amount of disk space which a single swap extent represents varies.
1757  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1758  * extents in the list.  To avoid much list walking, we cache the previous
1759  * search location in `curr_swap_extent', and start new searches from there.
1760  * This is extremely effective.  The average number of iterations in
1761  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1762  */
1763 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1764 {
1765         struct file *swap_file = sis->swap_file;
1766         struct address_space *mapping = swap_file->f_mapping;
1767         struct inode *inode = mapping->host;
1768         int ret;
1769
1770         if (S_ISBLK(inode->i_mode)) {
1771                 ret = add_swap_extent(sis, 0, sis->max, 0);
1772                 *span = sis->pages;
1773                 return ret;
1774         }
1775
1776         if (mapping->a_ops->swap_activate) {
1777                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1778                 if (!ret) {
1779                         sis->flags |= SWP_FILE;
1780                         ret = add_swap_extent(sis, 0, sis->max, 0);
1781                         *span = sis->pages;
1782                 }
1783                 return ret;
1784         }
1785
1786         return generic_swapfile_activate(sis, swap_file, span);
1787 }
1788
1789 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1790                                 unsigned char *swap_map,
1791                                 struct swap_cluster_info *cluster_info)
1792 {
1793         if (prio >= 0)
1794                 p->prio = prio;
1795         else
1796                 p->prio = --least_priority;
1797         /*
1798          * the plist prio is negated because plist ordering is
1799          * low-to-high, while swap ordering is high-to-low
1800          */
1801         p->list.prio = -p->prio;
1802         p->avail_list.prio = -p->prio;
1803         p->swap_map = swap_map;
1804         p->cluster_info = cluster_info;
1805         p->flags |= SWP_WRITEOK;
1806         atomic_long_add(p->pages, &nr_swap_pages);
1807         total_swap_pages += p->pages;
1808
1809         assert_spin_locked(&swap_lock);
1810         /*
1811          * both lists are plists, and thus priority ordered.
1812          * swap_active_head needs to be priority ordered for swapoff(),
1813          * which on removal of any swap_info_struct with an auto-assigned
1814          * (i.e. negative) priority increments the auto-assigned priority
1815          * of any lower-priority swap_info_structs.
1816          * swap_avail_head needs to be priority ordered for get_swap_page(),
1817          * which allocates swap pages from the highest available priority
1818          * swap_info_struct.
1819          */
1820         plist_add(&p->list, &swap_active_head);
1821         spin_lock(&swap_avail_lock);
1822         plist_add(&p->avail_list, &swap_avail_head);
1823         spin_unlock(&swap_avail_lock);
1824 }
1825
1826 static void enable_swap_info(struct swap_info_struct *p, int prio,
1827                                 unsigned char *swap_map,
1828                                 struct swap_cluster_info *cluster_info,
1829                                 unsigned long *frontswap_map)
1830 {
1831         frontswap_init(p->type, frontswap_map);
1832         spin_lock(&swap_lock);
1833         spin_lock(&p->lock);
1834          _enable_swap_info(p, prio, swap_map, cluster_info);
1835         spin_unlock(&p->lock);
1836         spin_unlock(&swap_lock);
1837 }
1838
1839 static void reinsert_swap_info(struct swap_info_struct *p)
1840 {
1841         spin_lock(&swap_lock);
1842         spin_lock(&p->lock);
1843         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1844         spin_unlock(&p->lock);
1845         spin_unlock(&swap_lock);
1846 }
1847
1848 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1849 {
1850         struct swap_info_struct *p = NULL;
1851         unsigned char *swap_map;
1852         struct swap_cluster_info *cluster_info;
1853         unsigned long *frontswap_map;
1854         struct file *swap_file, *victim;
1855         struct address_space *mapping;
1856         struct inode *inode;
1857         struct filename *pathname;
1858         int err, found = 0;
1859         unsigned int old_block_size;
1860
1861         if (!capable(CAP_SYS_ADMIN))
1862                 return -EPERM;
1863
1864         BUG_ON(!current->mm);
1865
1866         pathname = getname(specialfile);
1867         if (IS_ERR(pathname))
1868                 return PTR_ERR(pathname);
1869
1870         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1871         err = PTR_ERR(victim);
1872         if (IS_ERR(victim))
1873                 goto out;
1874
1875         mapping = victim->f_mapping;
1876         spin_lock(&swap_lock);
1877         plist_for_each_entry(p, &swap_active_head, list) {
1878                 if (p->flags & SWP_WRITEOK) {
1879                         if (p->swap_file->f_mapping == mapping) {
1880                                 found = 1;
1881                                 break;
1882                         }
1883                 }
1884         }
1885         if (!found) {
1886                 err = -EINVAL;
1887                 spin_unlock(&swap_lock);
1888                 goto out_dput;
1889         }
1890         if (!security_vm_enough_memory_mm(current->mm, p->pages))
1891                 vm_unacct_memory(p->pages);
1892         else {
1893                 err = -ENOMEM;
1894                 spin_unlock(&swap_lock);
1895                 goto out_dput;
1896         }
1897         spin_lock(&swap_avail_lock);
1898         plist_del(&p->avail_list, &swap_avail_head);
1899         spin_unlock(&swap_avail_lock);
1900         spin_lock(&p->lock);
1901         if (p->prio < 0) {
1902                 struct swap_info_struct *si = p;
1903
1904                 plist_for_each_entry_continue(si, &swap_active_head, list) {
1905                         si->prio++;
1906                         si->list.prio--;
1907                         si->avail_list.prio--;
1908                 }
1909                 least_priority++;
1910         }
1911         plist_del(&p->list, &swap_active_head);
1912         atomic_long_sub(p->pages, &nr_swap_pages);
1913         total_swap_pages -= p->pages;
1914         p->flags &= ~SWP_WRITEOK;
1915         spin_unlock(&p->lock);
1916         spin_unlock(&swap_lock);
1917
1918         set_current_oom_origin();
1919         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1920         clear_current_oom_origin();
1921
1922         if (err) {
1923                 /* re-insert swap space back into swap_list */
1924                 reinsert_swap_info(p);
1925                 goto out_dput;
1926         }
1927
1928         flush_work(&p->discard_work);
1929
1930         destroy_swap_extents(p);
1931         if (p->flags & SWP_CONTINUED)
1932                 free_swap_count_continuations(p);
1933
1934         mutex_lock(&swapon_mutex);
1935         spin_lock(&swap_lock);
1936         spin_lock(&p->lock);
1937         drain_mmlist();
1938
1939         /* wait for anyone still in scan_swap_map */
1940         p->highest_bit = 0;             /* cuts scans short */
1941         while (p->flags >= SWP_SCANNING) {
1942                 spin_unlock(&p->lock);
1943                 spin_unlock(&swap_lock);
1944                 schedule_timeout_uninterruptible(1);
1945                 spin_lock(&swap_lock);
1946                 spin_lock(&p->lock);
1947         }
1948
1949         swap_file = p->swap_file;
1950         old_block_size = p->old_block_size;
1951         p->swap_file = NULL;
1952         p->max = 0;
1953         swap_map = p->swap_map;
1954         p->swap_map = NULL;
1955         cluster_info = p->cluster_info;
1956         p->cluster_info = NULL;
1957         frontswap_map = frontswap_map_get(p);
1958         spin_unlock(&p->lock);
1959         spin_unlock(&swap_lock);
1960         frontswap_invalidate_area(p->type);
1961         frontswap_map_set(p, NULL);
1962         mutex_unlock(&swapon_mutex);
1963         free_percpu(p->percpu_cluster);
1964         p->percpu_cluster = NULL;
1965         vfree(swap_map);
1966         vfree(cluster_info);
1967         vfree(frontswap_map);
1968         /* Destroy swap account information */
1969         swap_cgroup_swapoff(p->type);
1970
1971         inode = mapping->host;
1972         if (S_ISBLK(inode->i_mode)) {
1973                 struct block_device *bdev = I_BDEV(inode);
1974                 set_blocksize(bdev, old_block_size);
1975                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1976         } else {
1977                 mutex_lock(&inode->i_mutex);
1978                 inode->i_flags &= ~S_SWAPFILE;
1979                 mutex_unlock(&inode->i_mutex);
1980         }
1981         filp_close(swap_file, NULL);
1982
1983         /*
1984          * Clear the SWP_USED flag after all resources are freed so that swapon
1985          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1986          * not hold p->lock after we cleared its SWP_WRITEOK.
1987          */
1988         spin_lock(&swap_lock);
1989         p->flags = 0;
1990         spin_unlock(&swap_lock);
1991
1992         err = 0;
1993         atomic_inc(&proc_poll_event);
1994         wake_up_interruptible(&proc_poll_wait);
1995
1996 out_dput:
1997         filp_close(victim, NULL);
1998 out:
1999         putname(pathname);
2000         return err;
2001 }
2002
2003 #ifdef CONFIG_PROC_FS
2004 static unsigned swaps_poll(struct file *file, poll_table *wait)
2005 {
2006         struct seq_file *seq = file->private_data;
2007
2008         poll_wait(file, &proc_poll_wait, wait);
2009
2010         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2011                 seq->poll_event = atomic_read(&proc_poll_event);
2012                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2013         }
2014
2015         return POLLIN | POLLRDNORM;
2016 }
2017
2018 /* iterator */
2019 static void *swap_start(struct seq_file *swap, loff_t *pos)
2020 {
2021         struct swap_info_struct *si;
2022         int type;
2023         loff_t l = *pos;
2024
2025         mutex_lock(&swapon_mutex);
2026
2027         if (!l)
2028                 return SEQ_START_TOKEN;
2029
2030         for (type = 0; type < nr_swapfiles; type++) {
2031                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2032                 si = swap_info[type];
2033                 if (!(si->flags & SWP_USED) || !si->swap_map)
2034                         continue;
2035                 if (!--l)
2036                         return si;
2037         }
2038
2039         return NULL;
2040 }
2041
2042 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2043 {
2044         struct swap_info_struct *si = v;
2045         int type;
2046
2047         if (v == SEQ_START_TOKEN)
2048                 type = 0;
2049         else
2050                 type = si->type + 1;
2051
2052         for (; type < nr_swapfiles; type++) {
2053                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2054                 si = swap_info[type];
2055                 if (!(si->flags & SWP_USED) || !si->swap_map)
2056                         continue;
2057                 ++*pos;
2058                 return si;
2059         }
2060
2061         return NULL;
2062 }
2063
2064 static void swap_stop(struct seq_file *swap, void *v)
2065 {
2066         mutex_unlock(&swapon_mutex);
2067 }
2068
2069 static int swap_show(struct seq_file *swap, void *v)
2070 {
2071         struct swap_info_struct *si = v;
2072         struct file *file;
2073         int len;
2074
2075         if (si == SEQ_START_TOKEN) {
2076                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2077                 return 0;
2078         }
2079
2080         file = si->swap_file;
2081         len = seq_file_path(swap, file, " \t\n\\");
2082         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2083                         len < 40 ? 40 - len : 1, " ",
2084                         S_ISBLK(file_inode(file)->i_mode) ?
2085                                 "partition" : "file\t",
2086                         si->pages << (PAGE_SHIFT - 10),
2087                         si->inuse_pages << (PAGE_SHIFT - 10),
2088                         si->prio);
2089         return 0;
2090 }
2091
2092 static const struct seq_operations swaps_op = {
2093         .start =        swap_start,
2094         .next =         swap_next,
2095         .stop =         swap_stop,
2096         .show =         swap_show
2097 };
2098
2099 static int swaps_open(struct inode *inode, struct file *file)
2100 {
2101         struct seq_file *seq;
2102         int ret;
2103
2104         ret = seq_open(file, &swaps_op);
2105         if (ret)
2106                 return ret;
2107
2108         seq = file->private_data;
2109         seq->poll_event = atomic_read(&proc_poll_event);
2110         return 0;
2111 }
2112
2113 static const struct file_operations proc_swaps_operations = {
2114         .open           = swaps_open,
2115         .read           = seq_read,
2116         .llseek         = seq_lseek,
2117         .release        = seq_release,
2118         .poll           = swaps_poll,
2119 };
2120
2121 static int __init procswaps_init(void)
2122 {
2123         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2124         return 0;
2125 }
2126 __initcall(procswaps_init);
2127 #endif /* CONFIG_PROC_FS */
2128
2129 #ifdef MAX_SWAPFILES_CHECK
2130 static int __init max_swapfiles_check(void)
2131 {
2132         MAX_SWAPFILES_CHECK();
2133         return 0;
2134 }
2135 late_initcall(max_swapfiles_check);
2136 #endif
2137
2138 static struct swap_info_struct *alloc_swap_info(void)
2139 {
2140         struct swap_info_struct *p;
2141         unsigned int type;
2142
2143         p = kzalloc(sizeof(*p), GFP_KERNEL);
2144         if (!p)
2145                 return ERR_PTR(-ENOMEM);
2146
2147         spin_lock(&swap_lock);
2148         for (type = 0; type < nr_swapfiles; type++) {
2149                 if (!(swap_info[type]->flags & SWP_USED))
2150                         break;
2151         }
2152         if (type >= MAX_SWAPFILES) {
2153                 spin_unlock(&swap_lock);
2154                 kfree(p);
2155                 return ERR_PTR(-EPERM);
2156         }
2157         if (type >= nr_swapfiles) {
2158                 p->type = type;
2159                 swap_info[type] = p;
2160                 /*
2161                  * Write swap_info[type] before nr_swapfiles, in case a
2162                  * racing procfs swap_start() or swap_next() is reading them.
2163                  * (We never shrink nr_swapfiles, we never free this entry.)
2164                  */
2165                 smp_wmb();
2166                 nr_swapfiles++;
2167         } else {
2168                 kfree(p);
2169                 p = swap_info[type];
2170                 /*
2171                  * Do not memset this entry: a racing procfs swap_next()
2172                  * would be relying on p->type to remain valid.
2173                  */
2174         }
2175         INIT_LIST_HEAD(&p->first_swap_extent.list);
2176         plist_node_init(&p->list, 0);
2177         plist_node_init(&p->avail_list, 0);
2178         p->flags = SWP_USED;
2179         spin_unlock(&swap_lock);
2180         spin_lock_init(&p->lock);
2181
2182         return p;
2183 }
2184
2185 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2186 {
2187         int error;
2188
2189         if (S_ISBLK(inode->i_mode)) {
2190                 p->bdev = bdgrab(I_BDEV(inode));
2191                 error = blkdev_get(p->bdev,
2192                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2193                 if (error < 0) {
2194                         p->bdev = NULL;
2195                         return error;
2196                 }
2197                 p->old_block_size = block_size(p->bdev);
2198                 error = set_blocksize(p->bdev, PAGE_SIZE);
2199                 if (error < 0)
2200                         return error;
2201                 p->flags |= SWP_BLKDEV;
2202         } else if (S_ISREG(inode->i_mode)) {
2203                 p->bdev = inode->i_sb->s_bdev;
2204                 mutex_lock(&inode->i_mutex);
2205                 if (IS_SWAPFILE(inode))
2206                         return -EBUSY;
2207         } else
2208                 return -EINVAL;
2209
2210         return 0;
2211 }
2212
2213 static unsigned long read_swap_header(struct swap_info_struct *p,
2214                                         union swap_header *swap_header,
2215                                         struct inode *inode)
2216 {
2217         int i;
2218         unsigned long maxpages;
2219         unsigned long swapfilepages;
2220         unsigned long last_page;
2221
2222         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2223                 pr_err("Unable to find swap-space signature\n");
2224                 return 0;
2225         }
2226
2227         /* swap partition endianess hack... */
2228         if (swab32(swap_header->info.version) == 1) {
2229                 swab32s(&swap_header->info.version);
2230                 swab32s(&swap_header->info.last_page);
2231                 swab32s(&swap_header->info.nr_badpages);
2232                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2233                         swab32s(&swap_header->info.badpages[i]);
2234         }
2235         /* Check the swap header's sub-version */
2236         if (swap_header->info.version != 1) {
2237                 pr_warn("Unable to handle swap header version %d\n",
2238                         swap_header->info.version);
2239                 return 0;
2240         }
2241
2242         p->lowest_bit  = 1;
2243         p->cluster_next = 1;
2244         p->cluster_nr = 0;
2245
2246         /*
2247          * Find out how many pages are allowed for a single swap
2248          * device. There are two limiting factors: 1) the number
2249          * of bits for the swap offset in the swp_entry_t type, and
2250          * 2) the number of bits in the swap pte as defined by the
2251          * different architectures. In order to find the
2252          * largest possible bit mask, a swap entry with swap type 0
2253          * and swap offset ~0UL is created, encoded to a swap pte,
2254          * decoded to a swp_entry_t again, and finally the swap
2255          * offset is extracted. This will mask all the bits from
2256          * the initial ~0UL mask that can't be encoded in either
2257          * the swp_entry_t or the architecture definition of a
2258          * swap pte.
2259          */
2260         maxpages = swp_offset(pte_to_swp_entry(
2261                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2262         last_page = swap_header->info.last_page;
2263         if (last_page > maxpages) {
2264                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2265                         maxpages << (PAGE_SHIFT - 10),
2266                         last_page << (PAGE_SHIFT - 10));
2267         }
2268         if (maxpages > last_page) {
2269                 maxpages = last_page + 1;
2270                 /* p->max is an unsigned int: don't overflow it */
2271                 if ((unsigned int)maxpages == 0)
2272                         maxpages = UINT_MAX;
2273         }
2274         p->highest_bit = maxpages - 1;
2275
2276         if (!maxpages)
2277                 return 0;
2278         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2279         if (swapfilepages && maxpages > swapfilepages) {
2280                 pr_warn("Swap area shorter than signature indicates\n");
2281                 return 0;
2282         }
2283         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2284                 return 0;
2285         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2286                 return 0;
2287
2288         return maxpages;
2289 }
2290
2291 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2292                                         union swap_header *swap_header,
2293                                         unsigned char *swap_map,
2294                                         struct swap_cluster_info *cluster_info,
2295                                         unsigned long maxpages,
2296                                         sector_t *span)
2297 {
2298         int i;
2299         unsigned int nr_good_pages;
2300         int nr_extents;
2301         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2302         unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2303
2304         nr_good_pages = maxpages - 1;   /* omit header page */
2305
2306         cluster_set_null(&p->free_cluster_head);
2307         cluster_set_null(&p->free_cluster_tail);
2308         cluster_set_null(&p->discard_cluster_head);
2309         cluster_set_null(&p->discard_cluster_tail);
2310
2311         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2312                 unsigned int page_nr = swap_header->info.badpages[i];
2313                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2314                         return -EINVAL;
2315                 if (page_nr < maxpages) {
2316                         swap_map[page_nr] = SWAP_MAP_BAD;
2317                         nr_good_pages--;
2318                         /*
2319                          * Haven't marked the cluster free yet, no list
2320                          * operation involved
2321                          */
2322                         inc_cluster_info_page(p, cluster_info, page_nr);
2323                 }
2324         }
2325
2326         /* Haven't marked the cluster free yet, no list operation involved */
2327         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2328                 inc_cluster_info_page(p, cluster_info, i);
2329
2330         if (nr_good_pages) {
2331                 swap_map[0] = SWAP_MAP_BAD;
2332                 /*
2333                  * Not mark the cluster free yet, no list
2334                  * operation involved
2335                  */
2336                 inc_cluster_info_page(p, cluster_info, 0);
2337                 p->max = maxpages;
2338                 p->pages = nr_good_pages;
2339                 nr_extents = setup_swap_extents(p, span);
2340                 if (nr_extents < 0)
2341                         return nr_extents;
2342                 nr_good_pages = p->pages;
2343         }
2344         if (!nr_good_pages) {
2345                 pr_warn("Empty swap-file\n");
2346                 return -EINVAL;
2347         }
2348
2349         if (!cluster_info)
2350                 return nr_extents;
2351
2352         for (i = 0; i < nr_clusters; i++) {
2353                 if (!cluster_count(&cluster_info[idx])) {
2354                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2355                         if (cluster_is_null(&p->free_cluster_head)) {
2356                                 cluster_set_next_flag(&p->free_cluster_head,
2357                                                                 idx, 0);
2358                                 cluster_set_next_flag(&p->free_cluster_tail,
2359                                                                 idx, 0);
2360                         } else {
2361                                 unsigned int tail;
2362
2363                                 tail = cluster_next(&p->free_cluster_tail);
2364                                 cluster_set_next(&cluster_info[tail], idx);
2365                                 cluster_set_next_flag(&p->free_cluster_tail,
2366                                                                 idx, 0);
2367                         }
2368                 }
2369                 idx++;
2370                 if (idx == nr_clusters)
2371                         idx = 0;
2372         }
2373         return nr_extents;
2374 }
2375
2376 /*
2377  * Helper to sys_swapon determining if a given swap
2378  * backing device queue supports DISCARD operations.
2379  */
2380 static bool swap_discardable(struct swap_info_struct *si)
2381 {
2382         struct request_queue *q = bdev_get_queue(si->bdev);
2383
2384         if (!q || !blk_queue_discard(q))
2385                 return false;
2386
2387         return true;
2388 }
2389
2390 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2391 {
2392         struct swap_info_struct *p;
2393         struct filename *name;
2394         struct file *swap_file = NULL;
2395         struct address_space *mapping;
2396         int prio;
2397         int error;
2398         union swap_header *swap_header;
2399         int nr_extents;
2400         sector_t span;
2401         unsigned long maxpages;
2402         unsigned char *swap_map = NULL;
2403         struct swap_cluster_info *cluster_info = NULL;
2404         unsigned long *frontswap_map = NULL;
2405         struct page *page = NULL;
2406         struct inode *inode = NULL;
2407
2408         if (swap_flags & ~SWAP_FLAGS_VALID)
2409                 return -EINVAL;
2410
2411         if (!capable(CAP_SYS_ADMIN))
2412                 return -EPERM;
2413
2414         p = alloc_swap_info();
2415         if (IS_ERR(p))
2416                 return PTR_ERR(p);
2417
2418         INIT_WORK(&p->discard_work, swap_discard_work);
2419
2420         name = getname(specialfile);
2421         if (IS_ERR(name)) {
2422                 error = PTR_ERR(name);
2423                 name = NULL;
2424                 goto bad_swap;
2425         }
2426         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2427         if (IS_ERR(swap_file)) {
2428                 error = PTR_ERR(swap_file);
2429                 swap_file = NULL;
2430                 goto bad_swap;
2431         }
2432
2433         p->swap_file = swap_file;
2434         mapping = swap_file->f_mapping;
2435         inode = mapping->host;
2436
2437         /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2438         error = claim_swapfile(p, inode);
2439         if (unlikely(error))
2440                 goto bad_swap;
2441
2442         /*
2443          * Read the swap header.
2444          */
2445         if (!mapping->a_ops->readpage) {
2446                 error = -EINVAL;
2447                 goto bad_swap;
2448         }
2449         page = read_mapping_page(mapping, 0, swap_file);
2450         if (IS_ERR(page)) {
2451                 error = PTR_ERR(page);
2452                 goto bad_swap;
2453         }
2454         swap_header = kmap(page);
2455
2456         maxpages = read_swap_header(p, swap_header, inode);
2457         if (unlikely(!maxpages)) {
2458                 error = -EINVAL;
2459                 goto bad_swap;
2460         }
2461
2462         /* OK, set up the swap map and apply the bad block list */
2463         swap_map = vzalloc(maxpages);
2464         if (!swap_map) {
2465                 error = -ENOMEM;
2466                 goto bad_swap;
2467         }
2468         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2469                 int cpu;
2470
2471                 p->flags |= SWP_SOLIDSTATE;
2472                 /*
2473                  * select a random position to start with to help wear leveling
2474                  * SSD
2475                  */
2476                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2477
2478                 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2479                         SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2480                 if (!cluster_info) {
2481                         error = -ENOMEM;
2482                         goto bad_swap;
2483                 }
2484                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2485                 if (!p->percpu_cluster) {
2486                         error = -ENOMEM;
2487                         goto bad_swap;
2488                 }
2489                 for_each_possible_cpu(cpu) {
2490                         struct percpu_cluster *cluster;
2491                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2492                         cluster_set_null(&cluster->index);
2493                 }
2494         }
2495
2496         error = swap_cgroup_swapon(p->type, maxpages);
2497         if (error)
2498                 goto bad_swap;
2499
2500         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2501                 cluster_info, maxpages, &span);
2502         if (unlikely(nr_extents < 0)) {
2503                 error = nr_extents;
2504                 goto bad_swap;
2505         }
2506         /* frontswap enabled? set up bit-per-page map for frontswap */
2507         if (frontswap_enabled)
2508                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2509
2510         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2511                 /*
2512                  * When discard is enabled for swap with no particular
2513                  * policy flagged, we set all swap discard flags here in
2514                  * order to sustain backward compatibility with older
2515                  * swapon(8) releases.
2516                  */
2517                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2518                              SWP_PAGE_DISCARD);
2519
2520                 /*
2521                  * By flagging sys_swapon, a sysadmin can tell us to
2522                  * either do single-time area discards only, or to just
2523                  * perform discards for released swap page-clusters.
2524                  * Now it's time to adjust the p->flags accordingly.
2525                  */
2526                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2527                         p->flags &= ~SWP_PAGE_DISCARD;
2528                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2529                         p->flags &= ~SWP_AREA_DISCARD;
2530
2531                 /* issue a swapon-time discard if it's still required */
2532                 if (p->flags & SWP_AREA_DISCARD) {
2533                         int err = discard_swap(p);
2534                         if (unlikely(err))
2535                                 pr_err("swapon: discard_swap(%p): %d\n",
2536                                         p, err);
2537                 }
2538         }
2539
2540         mutex_lock(&swapon_mutex);
2541         prio = -1;
2542         if (swap_flags & SWAP_FLAG_PREFER)
2543                 prio =
2544                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2545         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2546
2547         pr_info("Adding %uk swap on %s.  "
2548                         "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2549                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2550                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2551                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2552                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2553                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2554                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2555                 (frontswap_map) ? "FS" : "");
2556
2557         mutex_unlock(&swapon_mutex);
2558         atomic_inc(&proc_poll_event);
2559         wake_up_interruptible(&proc_poll_wait);
2560
2561         if (S_ISREG(inode->i_mode))
2562                 inode->i_flags |= S_SWAPFILE;
2563         error = 0;
2564         goto out;
2565 bad_swap:
2566         free_percpu(p->percpu_cluster);
2567         p->percpu_cluster = NULL;
2568         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2569                 set_blocksize(p->bdev, p->old_block_size);
2570                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2571         }
2572         destroy_swap_extents(p);
2573         swap_cgroup_swapoff(p->type);
2574         spin_lock(&swap_lock);
2575         p->swap_file = NULL;
2576         p->flags = 0;
2577         spin_unlock(&swap_lock);
2578         vfree(swap_map);
2579         vfree(cluster_info);
2580         if (swap_file) {
2581                 if (inode && S_ISREG(inode->i_mode)) {
2582                         mutex_unlock(&inode->i_mutex);
2583                         inode = NULL;
2584                 }
2585                 filp_close(swap_file, NULL);
2586         }
2587 out:
2588         if (page && !IS_ERR(page)) {
2589                 kunmap(page);
2590                 page_cache_release(page);
2591         }
2592         if (name)
2593                 putname(name);
2594         if (inode && S_ISREG(inode->i_mode))
2595                 mutex_unlock(&inode->i_mutex);
2596         return error;
2597 }
2598
2599 void si_swapinfo(struct sysinfo *val)
2600 {
2601         unsigned int type;
2602         unsigned long nr_to_be_unused = 0;
2603
2604         spin_lock(&swap_lock);
2605         for (type = 0; type < nr_swapfiles; type++) {
2606                 struct swap_info_struct *si = swap_info[type];
2607
2608                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2609                         nr_to_be_unused += si->inuse_pages;
2610         }
2611         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2612         val->totalswap = total_swap_pages + nr_to_be_unused;
2613         spin_unlock(&swap_lock);
2614 }
2615
2616 /*
2617  * Verify that a swap entry is valid and increment its swap map count.
2618  *
2619  * Returns error code in following case.
2620  * - success -> 0
2621  * - swp_entry is invalid -> EINVAL
2622  * - swp_entry is migration entry -> EINVAL
2623  * - swap-cache reference is requested but there is already one. -> EEXIST
2624  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2625  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2626  */
2627 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2628 {
2629         struct swap_info_struct *p;
2630         unsigned long offset, type;
2631         unsigned char count;
2632         unsigned char has_cache;
2633         int err = -EINVAL;
2634
2635         if (non_swap_entry(entry))
2636                 goto out;
2637
2638         type = swp_type(entry);
2639         if (type >= nr_swapfiles)
2640                 goto bad_file;
2641         p = swap_info[type];
2642         offset = swp_offset(entry);
2643
2644         spin_lock(&p->lock);
2645         if (unlikely(offset >= p->max))
2646                 goto unlock_out;
2647
2648         count = p->swap_map[offset];
2649
2650         /*
2651          * swapin_readahead() doesn't check if a swap entry is valid, so the
2652          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2653          */
2654         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2655                 err = -ENOENT;
2656                 goto unlock_out;
2657         }
2658
2659         has_cache = count & SWAP_HAS_CACHE;
2660         count &= ~SWAP_HAS_CACHE;
2661         err = 0;
2662
2663         if (usage == SWAP_HAS_CACHE) {
2664
2665                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2666                 if (!has_cache && count)
2667                         has_cache = SWAP_HAS_CACHE;
2668                 else if (has_cache)             /* someone else added cache */
2669                         err = -EEXIST;
2670                 else                            /* no users remaining */
2671                         err = -ENOENT;
2672
2673         } else if (count || has_cache) {
2674
2675                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2676                         count += usage;
2677                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2678                         err = -EINVAL;
2679                 else if (swap_count_continued(p, offset, count))
2680                         count = COUNT_CONTINUED;
2681                 else
2682                         err = -ENOMEM;
2683         } else
2684                 err = -ENOENT;                  /* unused swap entry */
2685
2686         p->swap_map[offset] = count | has_cache;
2687
2688 unlock_out:
2689         spin_unlock(&p->lock);
2690 out:
2691         return err;
2692
2693 bad_file:
2694         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2695         goto out;
2696 }
2697
2698 /*
2699  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2700  * (in which case its reference count is never incremented).
2701  */
2702 void swap_shmem_alloc(swp_entry_t entry)
2703 {
2704         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2705 }
2706
2707 /*
2708  * Increase reference count of swap entry by 1.
2709  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2710  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2711  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2712  * might occur if a page table entry has got corrupted.
2713  */
2714 int swap_duplicate(swp_entry_t entry)
2715 {
2716         int err = 0;
2717
2718         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2719                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2720         return err;
2721 }
2722
2723 /*
2724  * @entry: swap entry for which we allocate swap cache.
2725  *
2726  * Called when allocating swap cache for existing swap entry,
2727  * This can return error codes. Returns 0 at success.
2728  * -EBUSY means there is a swap cache.
2729  * Note: return code is different from swap_duplicate().
2730  */
2731 int swapcache_prepare(swp_entry_t entry)
2732 {
2733         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2734 }
2735
2736 struct swap_info_struct *page_swap_info(struct page *page)
2737 {
2738         swp_entry_t swap = { .val = page_private(page) };
2739         BUG_ON(!PageSwapCache(page));
2740         return swap_info[swp_type(swap)];
2741 }
2742
2743 /*
2744  * out-of-line __page_file_ methods to avoid include hell.
2745  */
2746 struct address_space *__page_file_mapping(struct page *page)
2747 {
2748         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2749         return page_swap_info(page)->swap_file->f_mapping;
2750 }
2751 EXPORT_SYMBOL_GPL(__page_file_mapping);
2752
2753 pgoff_t __page_file_index(struct page *page)
2754 {
2755         swp_entry_t swap = { .val = page_private(page) };
2756         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2757         return swp_offset(swap);
2758 }
2759 EXPORT_SYMBOL_GPL(__page_file_index);
2760
2761 /*
2762  * add_swap_count_continuation - called when a swap count is duplicated
2763  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2764  * page of the original vmalloc'ed swap_map, to hold the continuation count
2765  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2766  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2767  *
2768  * These continuation pages are seldom referenced: the common paths all work
2769  * on the original swap_map, only referring to a continuation page when the
2770  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2771  *
2772  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2773  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2774  * can be called after dropping locks.
2775  */
2776 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2777 {
2778         struct swap_info_struct *si;
2779         struct page *head;
2780         struct page *page;
2781         struct page *list_page;
2782         pgoff_t offset;
2783         unsigned char count;
2784
2785         /*
2786          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2787          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2788          */
2789         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2790
2791         si = swap_info_get(entry);
2792         if (!si) {
2793                 /*
2794                  * An acceptable race has occurred since the failing
2795                  * __swap_duplicate(): the swap entry has been freed,
2796                  * perhaps even the whole swap_map cleared for swapoff.
2797                  */
2798                 goto outer;
2799         }
2800
2801         offset = swp_offset(entry);
2802         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2803
2804         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2805                 /*
2806                  * The higher the swap count, the more likely it is that tasks
2807                  * will race to add swap count continuation: we need to avoid
2808                  * over-provisioning.
2809                  */
2810                 goto out;
2811         }
2812
2813         if (!page) {
2814                 spin_unlock(&si->lock);
2815                 return -ENOMEM;
2816         }
2817
2818         /*
2819          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2820          * no architecture is using highmem pages for kernel page tables: so it
2821          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2822          */
2823         head = vmalloc_to_page(si->swap_map + offset);
2824         offset &= ~PAGE_MASK;
2825
2826         /*
2827          * Page allocation does not initialize the page's lru field,
2828          * but it does always reset its private field.
2829          */
2830         if (!page_private(head)) {
2831                 BUG_ON(count & COUNT_CONTINUED);
2832                 INIT_LIST_HEAD(&head->lru);
2833                 set_page_private(head, SWP_CONTINUED);
2834                 si->flags |= SWP_CONTINUED;
2835         }
2836
2837         list_for_each_entry(list_page, &head->lru, lru) {
2838                 unsigned char *map;
2839
2840                 /*
2841                  * If the previous map said no continuation, but we've found
2842                  * a continuation page, free our allocation and use this one.
2843                  */
2844                 if (!(count & COUNT_CONTINUED))
2845                         goto out;
2846
2847                 map = kmap_atomic(list_page) + offset;
2848                 count = *map;
2849                 kunmap_atomic(map);
2850
2851                 /*
2852                  * If this continuation count now has some space in it,
2853                  * free our allocation and use this one.
2854                  */
2855                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2856                         goto out;
2857         }
2858
2859         list_add_tail(&page->lru, &head->lru);
2860         page = NULL;                    /* now it's attached, don't free it */
2861 out:
2862         spin_unlock(&si->lock);
2863 outer:
2864         if (page)
2865                 __free_page(page);
2866         return 0;
2867 }
2868
2869 /*
2870  * swap_count_continued - when the original swap_map count is incremented
2871  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2872  * into, carry if so, or else fail until a new continuation page is allocated;
2873  * when the original swap_map count is decremented from 0 with continuation,
2874  * borrow from the continuation and report whether it still holds more.
2875  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2876  */
2877 static bool swap_count_continued(struct swap_info_struct *si,
2878                                  pgoff_t offset, unsigned char count)
2879 {
2880         struct page *head;
2881         struct page *page;
2882         unsigned char *map;
2883
2884         head = vmalloc_to_page(si->swap_map + offset);
2885         if (page_private(head) != SWP_CONTINUED) {
2886                 BUG_ON(count & COUNT_CONTINUED);
2887                 return false;           /* need to add count continuation */
2888         }
2889
2890         offset &= ~PAGE_MASK;
2891         page = list_entry(head->lru.next, struct page, lru);
2892         map = kmap_atomic(page) + offset;
2893
2894         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2895                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2896
2897         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2898                 /*
2899                  * Think of how you add 1 to 999
2900                  */
2901                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2902                         kunmap_atomic(map);
2903                         page = list_entry(page->lru.next, struct page, lru);
2904                         BUG_ON(page == head);
2905                         map = kmap_atomic(page) + offset;
2906                 }
2907                 if (*map == SWAP_CONT_MAX) {
2908                         kunmap_atomic(map);
2909                         page = list_entry(page->lru.next, struct page, lru);
2910                         if (page == head)
2911                                 return false;   /* add count continuation */
2912                         map = kmap_atomic(page) + offset;
2913 init_map:               *map = 0;               /* we didn't zero the page */
2914                 }
2915                 *map += 1;
2916                 kunmap_atomic(map);
2917                 page = list_entry(page->lru.prev, struct page, lru);
2918                 while (page != head) {
2919                         map = kmap_atomic(page) + offset;
2920                         *map = COUNT_CONTINUED;
2921                         kunmap_atomic(map);
2922                         page = list_entry(page->lru.prev, struct page, lru);
2923                 }
2924                 return true;                    /* incremented */
2925
2926         } else {                                /* decrementing */
2927                 /*
2928                  * Think of how you subtract 1 from 1000
2929                  */
2930                 BUG_ON(count != COUNT_CONTINUED);
2931                 while (*map == COUNT_CONTINUED) {
2932                         kunmap_atomic(map);
2933                         page = list_entry(page->lru.next, struct page, lru);
2934                         BUG_ON(page == head);
2935                         map = kmap_atomic(page) + offset;
2936                 }
2937                 BUG_ON(*map == 0);
2938                 *map -= 1;
2939                 if (*map == 0)
2940                         count = 0;
2941                 kunmap_atomic(map);
2942                 page = list_entry(page->lru.prev, struct page, lru);
2943                 while (page != head) {
2944                         map = kmap_atomic(page) + offset;
2945                         *map = SWAP_CONT_MAX | count;
2946                         count = COUNT_CONTINUED;
2947                         kunmap_atomic(map);
2948                         page = list_entry(page->lru.prev, struct page, lru);
2949                 }
2950                 return count == COUNT_CONTINUED;
2951         }
2952 }
2953
2954 /*
2955  * free_swap_count_continuations - swapoff free all the continuation pages
2956  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2957  */
2958 static void free_swap_count_continuations(struct swap_info_struct *si)
2959 {
2960         pgoff_t offset;
2961
2962         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2963                 struct page *head;
2964                 head = vmalloc_to_page(si->swap_map + offset);
2965                 if (page_private(head)) {
2966                         struct list_head *this, *next;
2967                         list_for_each_safe(this, next, &head->lru) {
2968                                 struct page *page;
2969                                 page = list_entry(this, struct page, lru);
2970                                 list_del(this);
2971                                 __free_page(page);
2972                         }
2973                 }
2974         }
2975 }