]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/vmscan.c
Testing from the XFS folk revealed that there is still too much I/O from
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108         struct memcg_scanrecord *memcg_record;
109
110         /*
111          * Nodemask of nodes allowed by the caller. If NULL, all nodes
112          * are scanned.
113          */
114         nodemask_t      *nodemask;
115 };
116
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field)                    \
121         do {                                                            \
122                 if ((_page)->lru.prev != _base) {                       \
123                         struct page *prev;                              \
124                                                                         \
125                         prev = lru_to_page(&(_page->lru));              \
126                         prefetch(&prev->_field);                        \
127                 }                                                       \
128         } while (0)
129 #else
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
132
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
135         do {                                                            \
136                 if ((_page)->lru.prev != _base) {                       \
137                         struct page *prev;                              \
138                                                                         \
139                         prev = lru_to_page(&(_page->lru));              \
140                         prefetchw(&prev->_field);                       \
141                 }                                                       \
142         } while (0)
143 #else
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
146
147 /*
148  * From 0 .. 100.  Higher means more swappy.
149  */
150 int vm_swappiness = 60;
151 long vm_total_pages;    /* The total number of pages which the VM controls */
152
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
155
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
158 #else
159 #define scanning_global_lru(sc) (1)
160 #endif
161
162 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163                                                   struct scan_control *sc)
164 {
165         if (!scanning_global_lru(sc))
166                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
167
168         return &zone->reclaim_stat;
169 }
170
171 static unsigned long zone_nr_lru_pages(struct zone *zone,
172                                 struct scan_control *sc, enum lru_list lru)
173 {
174         if (!scanning_global_lru(sc))
175                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
176                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
177
178         return zone_page_state(zone, NR_LRU_BASE + lru);
179 }
180
181
182 /*
183  * Add a shrinker callback to be called from the vm
184  */
185 void register_shrinker(struct shrinker *shrinker)
186 {
187         shrinker->nr = 0;
188         down_write(&shrinker_rwsem);
189         list_add_tail(&shrinker->list, &shrinker_list);
190         up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(register_shrinker);
193
194 /*
195  * Remove one
196  */
197 void unregister_shrinker(struct shrinker *shrinker)
198 {
199         down_write(&shrinker_rwsem);
200         list_del(&shrinker->list);
201         up_write(&shrinker_rwsem);
202 }
203 EXPORT_SYMBOL(unregister_shrinker);
204
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206                                      struct shrink_control *sc,
207                                      unsigned long nr_to_scan)
208 {
209         sc->nr_to_scan = nr_to_scan;
210         return (*shrinker->shrink)(shrinker, sc);
211 }
212
213 #define SHRINK_BATCH 128
214 /*
215  * Call the shrink functions to age shrinkable caches
216  *
217  * Here we assume it costs one seek to replace a lru page and that it also
218  * takes a seek to recreate a cache object.  With this in mind we age equal
219  * percentages of the lru and ageable caches.  This should balance the seeks
220  * generated by these structures.
221  *
222  * If the vm encountered mapped pages on the LRU it increase the pressure on
223  * slab to avoid swapping.
224  *
225  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226  *
227  * `lru_pages' represents the number of on-LRU pages in all the zones which
228  * are eligible for the caller's allocation attempt.  It is used for balancing
229  * slab reclaim versus page reclaim.
230  *
231  * Returns the number of slab objects which we shrunk.
232  */
233 unsigned long shrink_slab(struct shrink_control *shrink,
234                           unsigned long nr_pages_scanned,
235                           unsigned long lru_pages)
236 {
237         struct shrinker *shrinker;
238         unsigned long ret = 0;
239
240         if (nr_pages_scanned == 0)
241                 nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243         if (!down_read_trylock(&shrinker_rwsem)) {
244                 /* Assume we'll be able to shrink next time */
245                 ret = 1;
246                 goto out;
247         }
248
249         list_for_each_entry(shrinker, &shrinker_list, list) {
250                 unsigned long long delta;
251                 unsigned long total_scan;
252                 unsigned long max_pass;
253                 int shrink_ret = 0;
254                 long nr;
255                 long new_nr;
256                 long batch_size = shrinker->batch ? shrinker->batch
257                                                   : SHRINK_BATCH;
258
259                 /*
260                  * copy the current shrinker scan count into a local variable
261                  * and zero it so that other concurrent shrinker invocations
262                  * don't also do this scanning work.
263                  */
264                 do {
265                         nr = shrinker->nr;
266                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
267
268                 total_scan = nr;
269                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
270                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271                 delta *= max_pass;
272                 do_div(delta, lru_pages + 1);
273                 total_scan += delta;
274                 if (total_scan < 0) {
275                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
276                                "delete nr=%ld\n",
277                                shrinker->shrink, total_scan);
278                         total_scan = max_pass;
279                 }
280
281                 /*
282                  * We need to avoid excessive windup on filesystem shrinkers
283                  * due to large numbers of GFP_NOFS allocations causing the
284                  * shrinkers to return -1 all the time. This results in a large
285                  * nr being built up so when a shrink that can do some work
286                  * comes along it empties the entire cache due to nr >>>
287                  * max_pass.  This is bad for sustaining a working set in
288                  * memory.
289                  *
290                  * Hence only allow the shrinker to scan the entire cache when
291                  * a large delta change is calculated directly.
292                  */
293                 if (delta < max_pass / 4)
294                         total_scan = min(total_scan, max_pass / 2);
295
296                 /*
297                  * Avoid risking looping forever due to too large nr value:
298                  * never try to free more than twice the estimate number of
299                  * freeable entries.
300                  */
301                 if (total_scan > max_pass * 2)
302                         total_scan = max_pass * 2;
303
304                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305                                         nr_pages_scanned, lru_pages,
306                                         max_pass, delta, total_scan);
307
308                 while (total_scan >= batch_size) {
309                         int nr_before;
310
311                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
313                                                         batch_size);
314                         if (shrink_ret == -1)
315                                 break;
316                         if (shrink_ret < nr_before)
317                                 ret += nr_before - shrink_ret;
318                         count_vm_events(SLABS_SCANNED, batch_size);
319                         total_scan -= batch_size;
320
321                         cond_resched();
322                 }
323
324                 /*
325                  * move the unused scan count back into the shrinker in a
326                  * manner that handles concurrent updates. If we exhausted the
327                  * scan, there is no need to do an update.
328                  */
329                 do {
330                         nr = shrinker->nr;
331                         new_nr = total_scan + nr;
332                         if (total_scan <= 0)
333                                 break;
334                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
335
336                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
337         }
338         up_read(&shrinker_rwsem);
339 out:
340         cond_resched();
341         return ret;
342 }
343
344 static void set_reclaim_mode(int priority, struct scan_control *sc,
345                                    bool sync)
346 {
347         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
348
349         /*
350          * Initially assume we are entering either lumpy reclaim or
351          * reclaim/compaction.Depending on the order, we will either set the
352          * sync mode or just reclaim order-0 pages later.
353          */
354         if (COMPACTION_BUILD)
355                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
356         else
357                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
358
359         /*
360          * Avoid using lumpy reclaim or reclaim/compaction if possible by
361          * restricting when its set to either costly allocations or when
362          * under memory pressure
363          */
364         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
365                 sc->reclaim_mode |= syncmode;
366         else if (sc->order && priority < DEF_PRIORITY - 2)
367                 sc->reclaim_mode |= syncmode;
368         else
369                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
370 }
371
372 static void reset_reclaim_mode(struct scan_control *sc)
373 {
374         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
375 }
376
377 static inline int is_page_cache_freeable(struct page *page)
378 {
379         /*
380          * A freeable page cache page is referenced only by the caller
381          * that isolated the page, the page cache radix tree and
382          * optional buffer heads at page->private.
383          */
384         return page_count(page) - page_has_private(page) == 2;
385 }
386
387 static int may_write_to_queue(struct backing_dev_info *bdi,
388                               struct scan_control *sc)
389 {
390         if (current->flags & PF_SWAPWRITE)
391                 return 1;
392         if (!bdi_write_congested(bdi))
393                 return 1;
394         if (bdi == current->backing_dev_info)
395                 return 1;
396
397         /* lumpy reclaim for hugepage often need a lot of write */
398         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
399                 return 1;
400         return 0;
401 }
402
403 /*
404  * We detected a synchronous write error writing a page out.  Probably
405  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
406  * fsync(), msync() or close().
407  *
408  * The tricky part is that after writepage we cannot touch the mapping: nothing
409  * prevents it from being freed up.  But we have a ref on the page and once
410  * that page is locked, the mapping is pinned.
411  *
412  * We're allowed to run sleeping lock_page() here because we know the caller has
413  * __GFP_FS.
414  */
415 static void handle_write_error(struct address_space *mapping,
416                                 struct page *page, int error)
417 {
418         lock_page(page);
419         if (page_mapping(page) == mapping)
420                 mapping_set_error(mapping, error);
421         unlock_page(page);
422 }
423
424 /* possible outcome of pageout() */
425 typedef enum {
426         /* failed to write page out, page is locked */
427         PAGE_KEEP,
428         /* move page to the active list, page is locked */
429         PAGE_ACTIVATE,
430         /* page has been sent to the disk successfully, page is unlocked */
431         PAGE_SUCCESS,
432         /* page is clean and locked */
433         PAGE_CLEAN,
434 } pageout_t;
435
436 /*
437  * pageout is called by shrink_page_list() for each dirty page.
438  * Calls ->writepage().
439  */
440 static pageout_t pageout(struct page *page, struct address_space *mapping,
441                          struct scan_control *sc)
442 {
443         /*
444          * If the page is dirty, only perform writeback if that write
445          * will be non-blocking.  To prevent this allocation from being
446          * stalled by pagecache activity.  But note that there may be
447          * stalls if we need to run get_block().  We could test
448          * PagePrivate for that.
449          *
450          * If this process is currently in __generic_file_aio_write() against
451          * this page's queue, we can perform writeback even if that
452          * will block.
453          *
454          * If the page is swapcache, write it back even if that would
455          * block, for some throttling. This happens by accident, because
456          * swap_backing_dev_info is bust: it doesn't reflect the
457          * congestion state of the swapdevs.  Easy to fix, if needed.
458          */
459         if (!is_page_cache_freeable(page))
460                 return PAGE_KEEP;
461         if (!mapping) {
462                 /*
463                  * Some data journaling orphaned pages can have
464                  * page->mapping == NULL while being dirty with clean buffers.
465                  */
466                 if (page_has_private(page)) {
467                         if (try_to_free_buffers(page)) {
468                                 ClearPageDirty(page);
469                                 printk("%s: orphaned page\n", __func__);
470                                 return PAGE_CLEAN;
471                         }
472                 }
473                 return PAGE_KEEP;
474         }
475         if (mapping->a_ops->writepage == NULL)
476                 return PAGE_ACTIVATE;
477         if (!may_write_to_queue(mapping->backing_dev_info, sc))
478                 return PAGE_KEEP;
479
480         if (clear_page_dirty_for_io(page)) {
481                 int res;
482                 struct writeback_control wbc = {
483                         .sync_mode = WB_SYNC_NONE,
484                         .nr_to_write = SWAP_CLUSTER_MAX,
485                         .range_start = 0,
486                         .range_end = LLONG_MAX,
487                         .for_reclaim = 1,
488                 };
489
490                 SetPageReclaim(page);
491                 res = mapping->a_ops->writepage(page, &wbc);
492                 if (res < 0)
493                         handle_write_error(mapping, page, res);
494                 if (res == AOP_WRITEPAGE_ACTIVATE) {
495                         ClearPageReclaim(page);
496                         return PAGE_ACTIVATE;
497                 }
498
499                 /*
500                  * Wait on writeback if requested to. This happens when
501                  * direct reclaiming a large contiguous area and the
502                  * first attempt to free a range of pages fails.
503                  */
504                 if (PageWriteback(page) &&
505                     (sc->reclaim_mode & RECLAIM_MODE_SYNC))
506                         wait_on_page_writeback(page);
507
508                 if (!PageWriteback(page)) {
509                         /* synchronous write or broken a_ops? */
510                         ClearPageReclaim(page);
511                 }
512                 trace_mm_vmscan_writepage(page,
513                         trace_reclaim_flags(page, sc->reclaim_mode));
514                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
515                 return PAGE_SUCCESS;
516         }
517
518         return PAGE_CLEAN;
519 }
520
521 /*
522  * Same as remove_mapping, but if the page is removed from the mapping, it
523  * gets returned with a refcount of 0.
524  */
525 static int __remove_mapping(struct address_space *mapping, struct page *page)
526 {
527         BUG_ON(!PageLocked(page));
528         BUG_ON(mapping != page_mapping(page));
529
530         spin_lock_irq(&mapping->tree_lock);
531         /*
532          * The non racy check for a busy page.
533          *
534          * Must be careful with the order of the tests. When someone has
535          * a ref to the page, it may be possible that they dirty it then
536          * drop the reference. So if PageDirty is tested before page_count
537          * here, then the following race may occur:
538          *
539          * get_user_pages(&page);
540          * [user mapping goes away]
541          * write_to(page);
542          *                              !PageDirty(page)    [good]
543          * SetPageDirty(page);
544          * put_page(page);
545          *                              !page_count(page)   [good, discard it]
546          *
547          * [oops, our write_to data is lost]
548          *
549          * Reversing the order of the tests ensures such a situation cannot
550          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
551          * load is not satisfied before that of page->_count.
552          *
553          * Note that if SetPageDirty is always performed via set_page_dirty,
554          * and thus under tree_lock, then this ordering is not required.
555          */
556         if (!page_freeze_refs(page, 2))
557                 goto cannot_free;
558         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
559         if (unlikely(PageDirty(page))) {
560                 page_unfreeze_refs(page, 2);
561                 goto cannot_free;
562         }
563
564         if (PageSwapCache(page)) {
565                 swp_entry_t swap = { .val = page_private(page) };
566                 __delete_from_swap_cache(page);
567                 spin_unlock_irq(&mapping->tree_lock);
568                 swapcache_free(swap, page);
569         } else {
570                 void (*freepage)(struct page *);
571
572                 freepage = mapping->a_ops->freepage;
573
574                 __delete_from_page_cache(page);
575                 spin_unlock_irq(&mapping->tree_lock);
576                 mem_cgroup_uncharge_cache_page(page);
577
578                 if (freepage != NULL)
579                         freepage(page);
580         }
581
582         return 1;
583
584 cannot_free:
585         spin_unlock_irq(&mapping->tree_lock);
586         return 0;
587 }
588
589 /*
590  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
591  * someone else has a ref on the page, abort and return 0.  If it was
592  * successfully detached, return 1.  Assumes the caller has a single ref on
593  * this page.
594  */
595 int remove_mapping(struct address_space *mapping, struct page *page)
596 {
597         if (__remove_mapping(mapping, page)) {
598                 /*
599                  * Unfreezing the refcount with 1 rather than 2 effectively
600                  * drops the pagecache ref for us without requiring another
601                  * atomic operation.
602                  */
603                 page_unfreeze_refs(page, 1);
604                 return 1;
605         }
606         return 0;
607 }
608
609 /**
610  * putback_lru_page - put previously isolated page onto appropriate LRU list
611  * @page: page to be put back to appropriate lru list
612  *
613  * Add previously isolated @page to appropriate LRU list.
614  * Page may still be unevictable for other reasons.
615  *
616  * lru_lock must not be held, interrupts must be enabled.
617  */
618 void putback_lru_page(struct page *page)
619 {
620         int lru;
621         int active = !!TestClearPageActive(page);
622         int was_unevictable = PageUnevictable(page);
623
624         VM_BUG_ON(PageLRU(page));
625
626 redo:
627         ClearPageUnevictable(page);
628
629         if (page_evictable(page, NULL)) {
630                 /*
631                  * For evictable pages, we can use the cache.
632                  * In event of a race, worst case is we end up with an
633                  * unevictable page on [in]active list.
634                  * We know how to handle that.
635                  */
636                 lru = active + page_lru_base_type(page);
637                 lru_cache_add_lru(page, lru);
638         } else {
639                 /*
640                  * Put unevictable pages directly on zone's unevictable
641                  * list.
642                  */
643                 lru = LRU_UNEVICTABLE;
644                 add_page_to_unevictable_list(page);
645                 /*
646                  * When racing with an mlock clearing (page is
647                  * unlocked), make sure that if the other thread does
648                  * not observe our setting of PG_lru and fails
649                  * isolation, we see PG_mlocked cleared below and move
650                  * the page back to the evictable list.
651                  *
652                  * The other side is TestClearPageMlocked().
653                  */
654                 smp_mb();
655         }
656
657         /*
658          * page's status can change while we move it among lru. If an evictable
659          * page is on unevictable list, it never be freed. To avoid that,
660          * check after we added it to the list, again.
661          */
662         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
663                 if (!isolate_lru_page(page)) {
664                         put_page(page);
665                         goto redo;
666                 }
667                 /* This means someone else dropped this page from LRU
668                  * So, it will be freed or putback to LRU again. There is
669                  * nothing to do here.
670                  */
671         }
672
673         if (was_unevictable && lru != LRU_UNEVICTABLE)
674                 count_vm_event(UNEVICTABLE_PGRESCUED);
675         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
676                 count_vm_event(UNEVICTABLE_PGCULLED);
677
678         put_page(page);         /* drop ref from isolate */
679 }
680
681 enum page_references {
682         PAGEREF_RECLAIM,
683         PAGEREF_RECLAIM_CLEAN,
684         PAGEREF_KEEP,
685         PAGEREF_ACTIVATE,
686 };
687
688 static enum page_references page_check_references(struct page *page,
689                                                   struct scan_control *sc)
690 {
691         int referenced_ptes, referenced_page;
692         unsigned long vm_flags;
693
694         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
695         referenced_page = TestClearPageReferenced(page);
696
697         /* Lumpy reclaim - ignore references */
698         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
699                 return PAGEREF_RECLAIM;
700
701         /*
702          * Mlock lost the isolation race with us.  Let try_to_unmap()
703          * move the page to the unevictable list.
704          */
705         if (vm_flags & VM_LOCKED)
706                 return PAGEREF_RECLAIM;
707
708         if (referenced_ptes) {
709                 if (PageAnon(page))
710                         return PAGEREF_ACTIVATE;
711                 /*
712                  * All mapped pages start out with page table
713                  * references from the instantiating fault, so we need
714                  * to look twice if a mapped file page is used more
715                  * than once.
716                  *
717                  * Mark it and spare it for another trip around the
718                  * inactive list.  Another page table reference will
719                  * lead to its activation.
720                  *
721                  * Note: the mark is set for activated pages as well
722                  * so that recently deactivated but used pages are
723                  * quickly recovered.
724                  */
725                 SetPageReferenced(page);
726
727                 if (referenced_page)
728                         return PAGEREF_ACTIVATE;
729
730                 return PAGEREF_KEEP;
731         }
732
733         /* Reclaim if clean, defer dirty pages to writeback */
734         if (referenced_page && !PageSwapBacked(page))
735                 return PAGEREF_RECLAIM_CLEAN;
736
737         return PAGEREF_RECLAIM;
738 }
739
740 static noinline_for_stack void free_page_list(struct list_head *free_pages)
741 {
742         struct pagevec freed_pvec;
743         struct page *page, *tmp;
744
745         pagevec_init(&freed_pvec, 1);
746
747         list_for_each_entry_safe(page, tmp, free_pages, lru) {
748                 list_del(&page->lru);
749                 if (!pagevec_add(&freed_pvec, page)) {
750                         __pagevec_free(&freed_pvec);
751                         pagevec_reinit(&freed_pvec);
752                 }
753         }
754
755         pagevec_free(&freed_pvec);
756 }
757
758 /*
759  * shrink_page_list() returns the number of reclaimed pages
760  */
761 static unsigned long shrink_page_list(struct list_head *page_list,
762                                       struct zone *zone,
763                                       struct scan_control *sc)
764 {
765         LIST_HEAD(ret_pages);
766         LIST_HEAD(free_pages);
767         int pgactivate = 0;
768         unsigned long nr_dirty = 0;
769         unsigned long nr_congested = 0;
770         unsigned long nr_reclaimed = 0;
771
772         cond_resched();
773
774         while (!list_empty(page_list)) {
775                 enum page_references references;
776                 struct address_space *mapping;
777                 struct page *page;
778                 int may_enter_fs;
779
780                 cond_resched();
781
782                 page = lru_to_page(page_list);
783                 list_del(&page->lru);
784
785                 if (!trylock_page(page))
786                         goto keep;
787
788                 VM_BUG_ON(PageActive(page));
789                 VM_BUG_ON(page_zone(page) != zone);
790
791                 sc->nr_scanned++;
792
793                 if (unlikely(!page_evictable(page, NULL)))
794                         goto cull_mlocked;
795
796                 if (!sc->may_unmap && page_mapped(page))
797                         goto keep_locked;
798
799                 /* Double the slab pressure for mapped and swapcache pages */
800                 if (page_mapped(page) || PageSwapCache(page))
801                         sc->nr_scanned++;
802
803                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
804                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
805
806                 if (PageWriteback(page)) {
807                         /*
808                          * Synchronous reclaim is performed in two passes,
809                          * first an asynchronous pass over the list to
810                          * start parallel writeback, and a second synchronous
811                          * pass to wait for the IO to complete.  Wait here
812                          * for any page for which writeback has already
813                          * started.
814                          */
815                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
816                             may_enter_fs)
817                                 wait_on_page_writeback(page);
818                         else {
819                                 unlock_page(page);
820                                 goto keep_lumpy;
821                         }
822                 }
823
824                 references = page_check_references(page, sc);
825                 switch (references) {
826                 case PAGEREF_ACTIVATE:
827                         goto activate_locked;
828                 case PAGEREF_KEEP:
829                         goto keep_locked;
830                 case PAGEREF_RECLAIM:
831                 case PAGEREF_RECLAIM_CLEAN:
832                         ; /* try to reclaim the page below */
833                 }
834
835                 /*
836                  * Anonymous process memory has backing store?
837                  * Try to allocate it some swap space here.
838                  */
839                 if (PageAnon(page) && !PageSwapCache(page)) {
840                         if (!(sc->gfp_mask & __GFP_IO))
841                                 goto keep_locked;
842                         if (!add_to_swap(page))
843                                 goto activate_locked;
844                         may_enter_fs = 1;
845                 }
846
847                 mapping = page_mapping(page);
848
849                 /*
850                  * The page is mapped into the page tables of one or more
851                  * processes. Try to unmap it here.
852                  */
853                 if (page_mapped(page) && mapping) {
854                         switch (try_to_unmap(page, TTU_UNMAP)) {
855                         case SWAP_FAIL:
856                                 goto activate_locked;
857                         case SWAP_AGAIN:
858                                 goto keep_locked;
859                         case SWAP_MLOCK:
860                                 goto cull_mlocked;
861                         case SWAP_SUCCESS:
862                                 ; /* try to free the page below */
863                         }
864                 }
865
866                 if (PageDirty(page)) {
867                         nr_dirty++;
868
869                         /*
870                          * Only kswapd can writeback filesystem pages to
871                          * avoid risk of stack overflow
872                          */
873                         if (page_is_file_cache(page) && !current_is_kswapd()) {
874                                 inc_zone_page_state(page, NR_VMSCAN_WRITE_SKIP);
875                                 goto keep_locked;
876                         }
877
878                         if (references == PAGEREF_RECLAIM_CLEAN)
879                                 goto keep_locked;
880                         if (!may_enter_fs)
881                                 goto keep_locked;
882                         if (!sc->may_writepage)
883                                 goto keep_locked;
884
885                         /* Page is dirty, try to write it out here */
886                         switch (pageout(page, mapping, sc)) {
887                         case PAGE_KEEP:
888                                 nr_congested++;
889                                 goto keep_locked;
890                         case PAGE_ACTIVATE:
891                                 goto activate_locked;
892                         case PAGE_SUCCESS:
893                                 if (PageWriteback(page))
894                                         goto keep_lumpy;
895                                 if (PageDirty(page))
896                                         goto keep;
897
898                                 /*
899                                  * A synchronous write - probably a ramdisk.  Go
900                                  * ahead and try to reclaim the page.
901                                  */
902                                 if (!trylock_page(page))
903                                         goto keep;
904                                 if (PageDirty(page) || PageWriteback(page))
905                                         goto keep_locked;
906                                 mapping = page_mapping(page);
907                         case PAGE_CLEAN:
908                                 ; /* try to free the page below */
909                         }
910                 }
911
912                 /*
913                  * If the page has buffers, try to free the buffer mappings
914                  * associated with this page. If we succeed we try to free
915                  * the page as well.
916                  *
917                  * We do this even if the page is PageDirty().
918                  * try_to_release_page() does not perform I/O, but it is
919                  * possible for a page to have PageDirty set, but it is actually
920                  * clean (all its buffers are clean).  This happens if the
921                  * buffers were written out directly, with submit_bh(). ext3
922                  * will do this, as well as the blockdev mapping.
923                  * try_to_release_page() will discover that cleanness and will
924                  * drop the buffers and mark the page clean - it can be freed.
925                  *
926                  * Rarely, pages can have buffers and no ->mapping.  These are
927                  * the pages which were not successfully invalidated in
928                  * truncate_complete_page().  We try to drop those buffers here
929                  * and if that worked, and the page is no longer mapped into
930                  * process address space (page_count == 1) it can be freed.
931                  * Otherwise, leave the page on the LRU so it is swappable.
932                  */
933                 if (page_has_private(page)) {
934                         if (!try_to_release_page(page, sc->gfp_mask))
935                                 goto activate_locked;
936                         if (!mapping && page_count(page) == 1) {
937                                 unlock_page(page);
938                                 if (put_page_testzero(page))
939                                         goto free_it;
940                                 else {
941                                         /*
942                                          * rare race with speculative reference.
943                                          * the speculative reference will free
944                                          * this page shortly, so we may
945                                          * increment nr_reclaimed here (and
946                                          * leave it off the LRU).
947                                          */
948                                         nr_reclaimed++;
949                                         continue;
950                                 }
951                         }
952                 }
953
954                 if (!mapping || !__remove_mapping(mapping, page))
955                         goto keep_locked;
956
957                 /*
958                  * At this point, we have no other references and there is
959                  * no way to pick any more up (removed from LRU, removed
960                  * from pagecache). Can use non-atomic bitops now (and
961                  * we obviously don't have to worry about waking up a process
962                  * waiting on the page lock, because there are no references.
963                  */
964                 __clear_page_locked(page);
965 free_it:
966                 nr_reclaimed++;
967
968                 /*
969                  * Is there need to periodically free_page_list? It would
970                  * appear not as the counts should be low
971                  */
972                 list_add(&page->lru, &free_pages);
973                 continue;
974
975 cull_mlocked:
976                 if (PageSwapCache(page))
977                         try_to_free_swap(page);
978                 unlock_page(page);
979                 putback_lru_page(page);
980                 reset_reclaim_mode(sc);
981                 continue;
982
983 activate_locked:
984                 /* Not a candidate for swapping, so reclaim swap space. */
985                 if (PageSwapCache(page) && vm_swap_full())
986                         try_to_free_swap(page);
987                 VM_BUG_ON(PageActive(page));
988                 SetPageActive(page);
989                 pgactivate++;
990 keep_locked:
991                 unlock_page(page);
992 keep:
993                 reset_reclaim_mode(sc);
994 keep_lumpy:
995                 list_add(&page->lru, &ret_pages);
996                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
997         }
998
999         /*
1000          * Tag a zone as congested if all the dirty pages encountered were
1001          * backed by a congested BDI. In this case, reclaimers should just
1002          * back off and wait for congestion to clear because further reclaim
1003          * will encounter the same problem
1004          */
1005         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1006                 zone_set_flag(zone, ZONE_CONGESTED);
1007
1008         free_page_list(&free_pages);
1009
1010         list_splice(&ret_pages, page_list);
1011         count_vm_events(PGACTIVATE, pgactivate);
1012         return nr_reclaimed;
1013 }
1014
1015 /*
1016  * Attempt to remove the specified page from its LRU.  Only take this page
1017  * if it is of the appropriate PageActive status.  Pages which are being
1018  * freed elsewhere are also ignored.
1019  *
1020  * page:        page to consider
1021  * mode:        one of the LRU isolation modes defined above
1022  *
1023  * returns 0 on success, -ve errno on failure.
1024  */
1025 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1026 {
1027         bool all_lru_mode;
1028         int ret = -EINVAL;
1029
1030         /* Only take pages on the LRU. */
1031         if (!PageLRU(page))
1032                 return ret;
1033
1034         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1035                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1036
1037         /*
1038          * When checking the active state, we need to be sure we are
1039          * dealing with comparible boolean values.  Take the logical not
1040          * of each.
1041          */
1042         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1043                 return ret;
1044
1045         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1046                 return ret;
1047
1048         /*
1049          * When this function is being called for lumpy reclaim, we
1050          * initially look into all LRU pages, active, inactive and
1051          * unevictable; only give shrink_page_list evictable pages.
1052          */
1053         if (PageUnevictable(page))
1054                 return ret;
1055
1056         ret = -EBUSY;
1057
1058         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1059                 return ret;
1060
1061         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1062                 return ret;
1063
1064         if (likely(get_page_unless_zero(page))) {
1065                 /*
1066                  * Be careful not to clear PageLRU until after we're
1067                  * sure the page is not being freed elsewhere -- the
1068                  * page release code relies on it.
1069                  */
1070                 ClearPageLRU(page);
1071                 ret = 0;
1072         }
1073
1074         return ret;
1075 }
1076
1077 /*
1078  * zone->lru_lock is heavily contended.  Some of the functions that
1079  * shrink the lists perform better by taking out a batch of pages
1080  * and working on them outside the LRU lock.
1081  *
1082  * For pagecache intensive workloads, this function is the hottest
1083  * spot in the kernel (apart from copy_*_user functions).
1084  *
1085  * Appropriate locks must be held before calling this function.
1086  *
1087  * @nr_to_scan: The number of pages to look through on the list.
1088  * @src:        The LRU list to pull pages off.
1089  * @dst:        The temp list to put pages on to.
1090  * @scanned:    The number of pages that were scanned.
1091  * @order:      The caller's attempted allocation order
1092  * @mode:       One of the LRU isolation modes
1093  * @file:       True [1] if isolating file [!anon] pages
1094  *
1095  * returns how many pages were moved onto *@dst.
1096  */
1097 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1098                 struct list_head *src, struct list_head *dst,
1099                 unsigned long *scanned, int order, isolate_mode_t mode,
1100                 int file)
1101 {
1102         unsigned long nr_taken = 0;
1103         unsigned long nr_lumpy_taken = 0;
1104         unsigned long nr_lumpy_dirty = 0;
1105         unsigned long nr_lumpy_failed = 0;
1106         unsigned long scan;
1107
1108         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1109                 struct page *page;
1110                 unsigned long pfn;
1111                 unsigned long end_pfn;
1112                 unsigned long page_pfn;
1113                 int zone_id;
1114
1115                 page = lru_to_page(src);
1116                 prefetchw_prev_lru_page(page, src, flags);
1117
1118                 VM_BUG_ON(!PageLRU(page));
1119
1120                 switch (__isolate_lru_page(page, mode, file)) {
1121                 case 0:
1122                         list_move(&page->lru, dst);
1123                         mem_cgroup_del_lru(page);
1124                         nr_taken += hpage_nr_pages(page);
1125                         break;
1126
1127                 case -EBUSY:
1128                         /* else it is being freed elsewhere */
1129                         list_move(&page->lru, src);
1130                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1131                         continue;
1132
1133                 default:
1134                         BUG();
1135                 }
1136
1137                 if (!order)
1138                         continue;
1139
1140                 /*
1141                  * Attempt to take all pages in the order aligned region
1142                  * surrounding the tag page.  Only take those pages of
1143                  * the same active state as that tag page.  We may safely
1144                  * round the target page pfn down to the requested order
1145                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1146                  * where that page is in a different zone we will detect
1147                  * it from its zone id and abort this block scan.
1148                  */
1149                 zone_id = page_zone_id(page);
1150                 page_pfn = page_to_pfn(page);
1151                 pfn = page_pfn & ~((1 << order) - 1);
1152                 end_pfn = pfn + (1 << order);
1153                 for (; pfn < end_pfn; pfn++) {
1154                         struct page *cursor_page;
1155
1156                         /* The target page is in the block, ignore it. */
1157                         if (unlikely(pfn == page_pfn))
1158                                 continue;
1159
1160                         /* Avoid holes within the zone. */
1161                         if (unlikely(!pfn_valid_within(pfn)))
1162                                 break;
1163
1164                         cursor_page = pfn_to_page(pfn);
1165
1166                         /* Check that we have not crossed a zone boundary. */
1167                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1168                                 break;
1169
1170                         /*
1171                          * If we don't have enough swap space, reclaiming of
1172                          * anon page which don't already have a swap slot is
1173                          * pointless.
1174                          */
1175                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1176                             !PageSwapCache(cursor_page))
1177                                 break;
1178
1179                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1180                                 list_move(&cursor_page->lru, dst);
1181                                 mem_cgroup_del_lru(cursor_page);
1182                                 nr_taken += hpage_nr_pages(page);
1183                                 nr_lumpy_taken++;
1184                                 if (PageDirty(cursor_page))
1185                                         nr_lumpy_dirty++;
1186                                 scan++;
1187                         } else {
1188                                 /*
1189                                  * Check if the page is freed already.
1190                                  *
1191                                  * We can't use page_count() as that
1192                                  * requires compound_head and we don't
1193                                  * have a pin on the page here. If a
1194                                  * page is tail, we may or may not
1195                                  * have isolated the head, so assume
1196                                  * it's not free, it'd be tricky to
1197                                  * track the head status without a
1198                                  * page pin.
1199                                  */
1200                                 if (!PageTail(cursor_page) &&
1201                                     !atomic_read(&cursor_page->_count))
1202                                         continue;
1203                                 break;
1204                         }
1205                 }
1206
1207                 /* If we break out of the loop above, lumpy reclaim failed */
1208                 if (pfn < end_pfn)
1209                         nr_lumpy_failed++;
1210         }
1211
1212         *scanned = scan;
1213
1214         trace_mm_vmscan_lru_isolate(order,
1215                         nr_to_scan, scan,
1216                         nr_taken,
1217                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1218                         mode);
1219         return nr_taken;
1220 }
1221
1222 static unsigned long isolate_pages_global(unsigned long nr,
1223                                         struct list_head *dst,
1224                                         unsigned long *scanned, int order,
1225                                         isolate_mode_t mode,
1226                                         struct zone *z, int active, int file)
1227 {
1228         int lru = LRU_BASE;
1229         if (active)
1230                 lru += LRU_ACTIVE;
1231         if (file)
1232                 lru += LRU_FILE;
1233         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1234                                                                 mode, file);
1235 }
1236
1237 /*
1238  * clear_active_flags() is a helper for shrink_active_list(), clearing
1239  * any active bits from the pages in the list.
1240  */
1241 static unsigned long clear_active_flags(struct list_head *page_list,
1242                                         unsigned int *count)
1243 {
1244         int nr_active = 0;
1245         int lru;
1246         struct page *page;
1247
1248         list_for_each_entry(page, page_list, lru) {
1249                 int numpages = hpage_nr_pages(page);
1250                 lru = page_lru_base_type(page);
1251                 if (PageActive(page)) {
1252                         lru += LRU_ACTIVE;
1253                         ClearPageActive(page);
1254                         nr_active += numpages;
1255                 }
1256                 if (count)
1257                         count[lru] += numpages;
1258         }
1259
1260         return nr_active;
1261 }
1262
1263 /**
1264  * isolate_lru_page - tries to isolate a page from its LRU list
1265  * @page: page to isolate from its LRU list
1266  *
1267  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1268  * vmstat statistic corresponding to whatever LRU list the page was on.
1269  *
1270  * Returns 0 if the page was removed from an LRU list.
1271  * Returns -EBUSY if the page was not on an LRU list.
1272  *
1273  * The returned page will have PageLRU() cleared.  If it was found on
1274  * the active list, it will have PageActive set.  If it was found on
1275  * the unevictable list, it will have the PageUnevictable bit set. That flag
1276  * may need to be cleared by the caller before letting the page go.
1277  *
1278  * The vmstat statistic corresponding to the list on which the page was
1279  * found will be decremented.
1280  *
1281  * Restrictions:
1282  * (1) Must be called with an elevated refcount on the page. This is a
1283  *     fundamentnal difference from isolate_lru_pages (which is called
1284  *     without a stable reference).
1285  * (2) the lru_lock must not be held.
1286  * (3) interrupts must be enabled.
1287  */
1288 int isolate_lru_page(struct page *page)
1289 {
1290         int ret = -EBUSY;
1291
1292         VM_BUG_ON(!page_count(page));
1293
1294         if (PageLRU(page)) {
1295                 struct zone *zone = page_zone(page);
1296
1297                 spin_lock_irq(&zone->lru_lock);
1298                 if (PageLRU(page)) {
1299                         int lru = page_lru(page);
1300                         ret = 0;
1301                         get_page(page);
1302                         ClearPageLRU(page);
1303
1304                         del_page_from_lru_list(zone, page, lru);
1305                 }
1306                 spin_unlock_irq(&zone->lru_lock);
1307         }
1308         return ret;
1309 }
1310
1311 /*
1312  * Are there way too many processes in the direct reclaim path already?
1313  */
1314 static int too_many_isolated(struct zone *zone, int file,
1315                 struct scan_control *sc)
1316 {
1317         unsigned long inactive, isolated;
1318
1319         if (current_is_kswapd())
1320                 return 0;
1321
1322         if (!scanning_global_lru(sc))
1323                 return 0;
1324
1325         if (file) {
1326                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1327                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1328         } else {
1329                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1330                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1331         }
1332
1333         return isolated > inactive;
1334 }
1335
1336 /*
1337  * TODO: Try merging with migrations version of putback_lru_pages
1338  */
1339 static noinline_for_stack void
1340 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1341                                 unsigned long nr_anon, unsigned long nr_file,
1342                                 struct list_head *page_list)
1343 {
1344         struct page *page;
1345         struct pagevec pvec;
1346         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1347
1348         pagevec_init(&pvec, 1);
1349
1350         /*
1351          * Put back any unfreeable pages.
1352          */
1353         spin_lock(&zone->lru_lock);
1354         while (!list_empty(page_list)) {
1355                 int lru;
1356                 page = lru_to_page(page_list);
1357                 VM_BUG_ON(PageLRU(page));
1358                 list_del(&page->lru);
1359                 if (unlikely(!page_evictable(page, NULL))) {
1360                         spin_unlock_irq(&zone->lru_lock);
1361                         putback_lru_page(page);
1362                         spin_lock_irq(&zone->lru_lock);
1363                         continue;
1364                 }
1365                 SetPageLRU(page);
1366                 lru = page_lru(page);
1367                 add_page_to_lru_list(zone, page, lru);
1368                 if (is_active_lru(lru)) {
1369                         int file = is_file_lru(lru);
1370                         int numpages = hpage_nr_pages(page);
1371                         reclaim_stat->recent_rotated[file] += numpages;
1372                         if (!scanning_global_lru(sc))
1373                                 sc->memcg_record->nr_rotated[file] += numpages;
1374                 }
1375                 if (!pagevec_add(&pvec, page)) {
1376                         spin_unlock_irq(&zone->lru_lock);
1377                         __pagevec_release(&pvec);
1378                         spin_lock_irq(&zone->lru_lock);
1379                 }
1380         }
1381         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1382         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1383
1384         spin_unlock_irq(&zone->lru_lock);
1385         pagevec_release(&pvec);
1386 }
1387
1388 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1389                                         struct scan_control *sc,
1390                                         unsigned long *nr_anon,
1391                                         unsigned long *nr_file,
1392                                         struct list_head *isolated_list)
1393 {
1394         unsigned long nr_active;
1395         unsigned int count[NR_LRU_LISTS] = { 0, };
1396         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1397
1398         nr_active = clear_active_flags(isolated_list, count);
1399         __count_vm_events(PGDEACTIVATE, nr_active);
1400
1401         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1402                               -count[LRU_ACTIVE_FILE]);
1403         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1404                               -count[LRU_INACTIVE_FILE]);
1405         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1406                               -count[LRU_ACTIVE_ANON]);
1407         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1408                               -count[LRU_INACTIVE_ANON]);
1409
1410         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1411         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1412         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1413         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1414
1415         reclaim_stat->recent_scanned[0] += *nr_anon;
1416         reclaim_stat->recent_scanned[1] += *nr_file;
1417         if (!scanning_global_lru(sc)) {
1418                 sc->memcg_record->nr_scanned[0] += *nr_anon;
1419                 sc->memcg_record->nr_scanned[1] += *nr_file;
1420         }
1421 }
1422
1423 /*
1424  * Returns true if the caller should wait to clean dirty/writeback pages.
1425  *
1426  * If we are direct reclaiming for contiguous pages and we do not reclaim
1427  * everything in the list, try again and wait for writeback IO to complete.
1428  * This will stall high-order allocations noticeably. Only do that when really
1429  * need to free the pages under high memory pressure.
1430  */
1431 static inline bool should_reclaim_stall(unsigned long nr_taken,
1432                                         unsigned long nr_freed,
1433                                         int priority,
1434                                         struct scan_control *sc)
1435 {
1436         int lumpy_stall_priority;
1437
1438         /* kswapd should not stall on sync IO */
1439         if (current_is_kswapd())
1440                 return false;
1441
1442         /* Only stall on lumpy reclaim */
1443         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1444                 return false;
1445
1446         /* If we have reclaimed everything on the isolated list, no stall */
1447         if (nr_freed == nr_taken)
1448                 return false;
1449
1450         /*
1451          * For high-order allocations, there are two stall thresholds.
1452          * High-cost allocations stall immediately where as lower
1453          * order allocations such as stacks require the scanning
1454          * priority to be much higher before stalling.
1455          */
1456         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1457                 lumpy_stall_priority = DEF_PRIORITY;
1458         else
1459                 lumpy_stall_priority = DEF_PRIORITY / 3;
1460
1461         return priority <= lumpy_stall_priority;
1462 }
1463
1464 /*
1465  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1466  * of reclaimed pages
1467  */
1468 static noinline_for_stack unsigned long
1469 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1470                         struct scan_control *sc, int priority, int file)
1471 {
1472         LIST_HEAD(page_list);
1473         unsigned long nr_scanned;
1474         unsigned long nr_reclaimed = 0;
1475         unsigned long nr_taken;
1476         unsigned long nr_anon;
1477         unsigned long nr_file;
1478         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1479
1480         while (unlikely(too_many_isolated(zone, file, sc))) {
1481                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1482
1483                 /* We are about to die and free our memory. Return now. */
1484                 if (fatal_signal_pending(current))
1485                         return SWAP_CLUSTER_MAX;
1486         }
1487
1488         set_reclaim_mode(priority, sc, false);
1489         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1490                 reclaim_mode |= ISOLATE_ACTIVE;
1491
1492         lru_add_drain();
1493
1494         if (!sc->may_unmap)
1495                 reclaim_mode |= ISOLATE_UNMAPPED;
1496         if (!sc->may_writepage)
1497                 reclaim_mode |= ISOLATE_CLEAN;
1498
1499         spin_lock_irq(&zone->lru_lock);
1500
1501         if (scanning_global_lru(sc)) {
1502                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1503                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1504                 zone->pages_scanned += nr_scanned;
1505                 if (current_is_kswapd())
1506                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1507                                                nr_scanned);
1508                 else
1509                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1510                                                nr_scanned);
1511         } else {
1512                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1513                         &nr_scanned, sc->order, reclaim_mode, zone,
1514                         sc->mem_cgroup, 0, file);
1515                 /*
1516                  * mem_cgroup_isolate_pages() keeps track of
1517                  * scanned pages on its own.
1518                  */
1519         }
1520
1521         if (nr_taken == 0) {
1522                 spin_unlock_irq(&zone->lru_lock);
1523                 return 0;
1524         }
1525
1526         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1527
1528         spin_unlock_irq(&zone->lru_lock);
1529
1530         nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1531
1532         /* Check if we should syncronously wait for writeback */
1533         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1534                 set_reclaim_mode(priority, sc, true);
1535                 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1536         }
1537
1538         if (!scanning_global_lru(sc))
1539                 sc->memcg_record->nr_freed[file] += nr_reclaimed;
1540
1541         local_irq_disable();
1542         if (current_is_kswapd())
1543                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1544         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1545
1546         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1547
1548         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1549                 zone_idx(zone),
1550                 nr_scanned, nr_reclaimed,
1551                 priority,
1552                 trace_shrink_flags(file, sc->reclaim_mode));
1553         return nr_reclaimed;
1554 }
1555
1556 /*
1557  * This moves pages from the active list to the inactive list.
1558  *
1559  * We move them the other way if the page is referenced by one or more
1560  * processes, from rmap.
1561  *
1562  * If the pages are mostly unmapped, the processing is fast and it is
1563  * appropriate to hold zone->lru_lock across the whole operation.  But if
1564  * the pages are mapped, the processing is slow (page_referenced()) so we
1565  * should drop zone->lru_lock around each page.  It's impossible to balance
1566  * this, so instead we remove the pages from the LRU while processing them.
1567  * It is safe to rely on PG_active against the non-LRU pages in here because
1568  * nobody will play with that bit on a non-LRU page.
1569  *
1570  * The downside is that we have to touch page->_count against each page.
1571  * But we had to alter page->flags anyway.
1572  */
1573
1574 static void move_active_pages_to_lru(struct zone *zone,
1575                                      struct list_head *list,
1576                                      enum lru_list lru)
1577 {
1578         unsigned long pgmoved = 0;
1579         struct pagevec pvec;
1580         struct page *page;
1581
1582         pagevec_init(&pvec, 1);
1583
1584         while (!list_empty(list)) {
1585                 page = lru_to_page(list);
1586
1587                 VM_BUG_ON(PageLRU(page));
1588                 SetPageLRU(page);
1589
1590                 list_move(&page->lru, &zone->lru[lru].list);
1591                 mem_cgroup_add_lru_list(page, lru);
1592                 pgmoved += hpage_nr_pages(page);
1593
1594                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1595                         spin_unlock_irq(&zone->lru_lock);
1596                         if (buffer_heads_over_limit)
1597                                 pagevec_strip(&pvec);
1598                         __pagevec_release(&pvec);
1599                         spin_lock_irq(&zone->lru_lock);
1600                 }
1601         }
1602         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1603         if (!is_active_lru(lru))
1604                 __count_vm_events(PGDEACTIVATE, pgmoved);
1605 }
1606
1607 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1608                         struct scan_control *sc, int priority, int file)
1609 {
1610         unsigned long nr_taken;
1611         unsigned long pgscanned;
1612         unsigned long vm_flags;
1613         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1614         LIST_HEAD(l_active);
1615         LIST_HEAD(l_inactive);
1616         struct page *page;
1617         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1618         unsigned long nr_rotated = 0;
1619         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1620
1621         lru_add_drain();
1622
1623         if (!sc->may_unmap)
1624                 reclaim_mode |= ISOLATE_UNMAPPED;
1625         if (!sc->may_writepage)
1626                 reclaim_mode |= ISOLATE_CLEAN;
1627
1628         spin_lock_irq(&zone->lru_lock);
1629         if (scanning_global_lru(sc)) {
1630                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1631                                                 &pgscanned, sc->order,
1632                                                 reclaim_mode, zone,
1633                                                 1, file);
1634                 zone->pages_scanned += pgscanned;
1635         } else {
1636                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1637                                                 &pgscanned, sc->order,
1638                                                 reclaim_mode, zone,
1639                                                 sc->mem_cgroup, 1, file);
1640                 /*
1641                  * mem_cgroup_isolate_pages() keeps track of
1642                  * scanned pages on its own.
1643                  */
1644         }
1645
1646         reclaim_stat->recent_scanned[file] += nr_taken;
1647         if (!scanning_global_lru(sc))
1648                 sc->memcg_record->nr_scanned[file] += nr_taken;
1649
1650         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1651         if (file)
1652                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1653         else
1654                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1655         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1656         spin_unlock_irq(&zone->lru_lock);
1657
1658         while (!list_empty(&l_hold)) {
1659                 cond_resched();
1660                 page = lru_to_page(&l_hold);
1661                 list_del(&page->lru);
1662
1663                 if (unlikely(!page_evictable(page, NULL))) {
1664                         putback_lru_page(page);
1665                         continue;
1666                 }
1667
1668                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1669                         nr_rotated += hpage_nr_pages(page);
1670                         /*
1671                          * Identify referenced, file-backed active pages and
1672                          * give them one more trip around the active list. So
1673                          * that executable code get better chances to stay in
1674                          * memory under moderate memory pressure.  Anon pages
1675                          * are not likely to be evicted by use-once streaming
1676                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1677                          * so we ignore them here.
1678                          */
1679                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1680                                 list_add(&page->lru, &l_active);
1681                                 continue;
1682                         }
1683                 }
1684
1685                 ClearPageActive(page);  /* we are de-activating */
1686                 list_add(&page->lru, &l_inactive);
1687         }
1688
1689         /*
1690          * Move pages back to the lru list.
1691          */
1692         spin_lock_irq(&zone->lru_lock);
1693         /*
1694          * Count referenced pages from currently used mappings as rotated,
1695          * even though only some of them are actually re-activated.  This
1696          * helps balance scan pressure between file and anonymous pages in
1697          * get_scan_ratio.
1698          */
1699         reclaim_stat->recent_rotated[file] += nr_rotated;
1700         if (!scanning_global_lru(sc))
1701                 sc->memcg_record->nr_rotated[file] += nr_rotated;
1702
1703         move_active_pages_to_lru(zone, &l_active,
1704                                                 LRU_ACTIVE + file * LRU_FILE);
1705         move_active_pages_to_lru(zone, &l_inactive,
1706                                                 LRU_BASE   + file * LRU_FILE);
1707         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1708         spin_unlock_irq(&zone->lru_lock);
1709 }
1710
1711 #ifdef CONFIG_SWAP
1712 static int inactive_anon_is_low_global(struct zone *zone)
1713 {
1714         unsigned long active, inactive;
1715
1716         active = zone_page_state(zone, NR_ACTIVE_ANON);
1717         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1718
1719         if (inactive * zone->inactive_ratio < active)
1720                 return 1;
1721
1722         return 0;
1723 }
1724
1725 /**
1726  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1727  * @zone: zone to check
1728  * @sc:   scan control of this context
1729  *
1730  * Returns true if the zone does not have enough inactive anon pages,
1731  * meaning some active anon pages need to be deactivated.
1732  */
1733 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1734 {
1735         int low;
1736
1737         /*
1738          * If we don't have swap space, anonymous page deactivation
1739          * is pointless.
1740          */
1741         if (!total_swap_pages)
1742                 return 0;
1743
1744         if (scanning_global_lru(sc))
1745                 low = inactive_anon_is_low_global(zone);
1746         else
1747                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1748         return low;
1749 }
1750 #else
1751 static inline int inactive_anon_is_low(struct zone *zone,
1752                                         struct scan_control *sc)
1753 {
1754         return 0;
1755 }
1756 #endif
1757
1758 static int inactive_file_is_low_global(struct zone *zone)
1759 {
1760         unsigned long active, inactive;
1761
1762         active = zone_page_state(zone, NR_ACTIVE_FILE);
1763         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1764
1765         return (active > inactive);
1766 }
1767
1768 /**
1769  * inactive_file_is_low - check if file pages need to be deactivated
1770  * @zone: zone to check
1771  * @sc:   scan control of this context
1772  *
1773  * When the system is doing streaming IO, memory pressure here
1774  * ensures that active file pages get deactivated, until more
1775  * than half of the file pages are on the inactive list.
1776  *
1777  * Once we get to that situation, protect the system's working
1778  * set from being evicted by disabling active file page aging.
1779  *
1780  * This uses a different ratio than the anonymous pages, because
1781  * the page cache uses a use-once replacement algorithm.
1782  */
1783 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1784 {
1785         int low;
1786
1787         if (scanning_global_lru(sc))
1788                 low = inactive_file_is_low_global(zone);
1789         else
1790                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1791         return low;
1792 }
1793
1794 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1795                                 int file)
1796 {
1797         if (file)
1798                 return inactive_file_is_low(zone, sc);
1799         else
1800                 return inactive_anon_is_low(zone, sc);
1801 }
1802
1803 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1804         struct zone *zone, struct scan_control *sc, int priority)
1805 {
1806         int file = is_file_lru(lru);
1807
1808         if (is_active_lru(lru)) {
1809                 if (inactive_list_is_low(zone, sc, file))
1810                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1811                 return 0;
1812         }
1813
1814         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1815 }
1816
1817 static int vmscan_swappiness(struct scan_control *sc)
1818 {
1819         if (scanning_global_lru(sc))
1820                 return vm_swappiness;
1821         return mem_cgroup_swappiness(sc->mem_cgroup);
1822 }
1823
1824 /*
1825  * Determine how aggressively the anon and file LRU lists should be
1826  * scanned.  The relative value of each set of LRU lists is determined
1827  * by looking at the fraction of the pages scanned we did rotate back
1828  * onto the active list instead of evict.
1829  *
1830  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1831  */
1832 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1833                                         unsigned long *nr, int priority)
1834 {
1835         unsigned long anon, file, free;
1836         unsigned long anon_prio, file_prio;
1837         unsigned long ap, fp;
1838         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1839         u64 fraction[2], denominator;
1840         enum lru_list l;
1841         int noswap = 0;
1842         bool force_scan = false;
1843
1844         /*
1845          * If the zone or memcg is small, nr[l] can be 0.  This
1846          * results in no scanning on this priority and a potential
1847          * priority drop.  Global direct reclaim can go to the next
1848          * zone and tends to have no problems. Global kswapd is for
1849          * zone balancing and it needs to scan a minimum amount. When
1850          * reclaiming for a memcg, a priority drop can cause high
1851          * latencies, so it's better to scan a minimum amount there as
1852          * well.
1853          */
1854         if (scanning_global_lru(sc) && current_is_kswapd())
1855                 force_scan = true;
1856         if (!scanning_global_lru(sc))
1857                 force_scan = true;
1858
1859         /* If we have no swap space, do not bother scanning anon pages. */
1860         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1861                 noswap = 1;
1862                 fraction[0] = 0;
1863                 fraction[1] = 1;
1864                 denominator = 1;
1865                 goto out;
1866         }
1867
1868         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1869                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1870         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1871                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1872
1873         if (scanning_global_lru(sc)) {
1874                 free  = zone_page_state(zone, NR_FREE_PAGES);
1875                 /* If we have very few page cache pages,
1876                    force-scan anon pages. */
1877                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1878                         fraction[0] = 1;
1879                         fraction[1] = 0;
1880                         denominator = 1;
1881                         goto out;
1882                 }
1883         }
1884
1885         /*
1886          * With swappiness at 100, anonymous and file have the same priority.
1887          * This scanning priority is essentially the inverse of IO cost.
1888          */
1889         anon_prio = vmscan_swappiness(sc);
1890         file_prio = 200 - vmscan_swappiness(sc);
1891
1892         /*
1893          * OK, so we have swap space and a fair amount of page cache
1894          * pages.  We use the recently rotated / recently scanned
1895          * ratios to determine how valuable each cache is.
1896          *
1897          * Because workloads change over time (and to avoid overflow)
1898          * we keep these statistics as a floating average, which ends
1899          * up weighing recent references more than old ones.
1900          *
1901          * anon in [0], file in [1]
1902          */
1903         spin_lock_irq(&zone->lru_lock);
1904         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1905                 reclaim_stat->recent_scanned[0] /= 2;
1906                 reclaim_stat->recent_rotated[0] /= 2;
1907         }
1908
1909         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1910                 reclaim_stat->recent_scanned[1] /= 2;
1911                 reclaim_stat->recent_rotated[1] /= 2;
1912         }
1913
1914         /*
1915          * The amount of pressure on anon vs file pages is inversely
1916          * proportional to the fraction of recently scanned pages on
1917          * each list that were recently referenced and in active use.
1918          */
1919         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1920         ap /= reclaim_stat->recent_rotated[0] + 1;
1921
1922         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1923         fp /= reclaim_stat->recent_rotated[1] + 1;
1924         spin_unlock_irq(&zone->lru_lock);
1925
1926         fraction[0] = ap;
1927         fraction[1] = fp;
1928         denominator = ap + fp + 1;
1929 out:
1930         for_each_evictable_lru(l) {
1931                 int file = is_file_lru(l);
1932                 unsigned long scan;
1933
1934                 scan = zone_nr_lru_pages(zone, sc, l);
1935                 if (priority || noswap) {
1936                         scan >>= priority;
1937                         if (!scan && force_scan)
1938                                 scan = SWAP_CLUSTER_MAX;
1939                         scan = div64_u64(scan * fraction[file], denominator);
1940                 }
1941                 nr[l] = scan;
1942         }
1943 }
1944
1945 /*
1946  * Reclaim/compaction depends on a number of pages being freed. To avoid
1947  * disruption to the system, a small number of order-0 pages continue to be
1948  * rotated and reclaimed in the normal fashion. However, by the time we get
1949  * back to the allocator and call try_to_compact_zone(), we ensure that
1950  * there are enough free pages for it to be likely successful
1951  */
1952 static inline bool should_continue_reclaim(struct zone *zone,
1953                                         unsigned long nr_reclaimed,
1954                                         unsigned long nr_scanned,
1955                                         struct scan_control *sc)
1956 {
1957         unsigned long pages_for_compaction;
1958         unsigned long inactive_lru_pages;
1959
1960         /* If not in reclaim/compaction mode, stop */
1961         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1962                 return false;
1963
1964         /* Consider stopping depending on scan and reclaim activity */
1965         if (sc->gfp_mask & __GFP_REPEAT) {
1966                 /*
1967                  * For __GFP_REPEAT allocations, stop reclaiming if the
1968                  * full LRU list has been scanned and we are still failing
1969                  * to reclaim pages. This full LRU scan is potentially
1970                  * expensive but a __GFP_REPEAT caller really wants to succeed
1971                  */
1972                 if (!nr_reclaimed && !nr_scanned)
1973                         return false;
1974         } else {
1975                 /*
1976                  * For non-__GFP_REPEAT allocations which can presumably
1977                  * fail without consequence, stop if we failed to reclaim
1978                  * any pages from the last SWAP_CLUSTER_MAX number of
1979                  * pages that were scanned. This will return to the
1980                  * caller faster at the risk reclaim/compaction and
1981                  * the resulting allocation attempt fails
1982                  */
1983                 if (!nr_reclaimed)
1984                         return false;
1985         }
1986
1987         /*
1988          * If we have not reclaimed enough pages for compaction and the
1989          * inactive lists are large enough, continue reclaiming
1990          */
1991         pages_for_compaction = (2UL << sc->order);
1992         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1993                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1994         if (sc->nr_reclaimed < pages_for_compaction &&
1995                         inactive_lru_pages > pages_for_compaction)
1996                 return true;
1997
1998         /* If compaction would go ahead or the allocation would succeed, stop */
1999         switch (compaction_suitable(zone, sc->order)) {
2000         case COMPACT_PARTIAL:
2001         case COMPACT_CONTINUE:
2002                 return false;
2003         default:
2004                 return true;
2005         }
2006 }
2007
2008 /*
2009  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2010  */
2011 static void shrink_zone(int priority, struct zone *zone,
2012                                 struct scan_control *sc)
2013 {
2014         unsigned long nr[NR_LRU_LISTS];
2015         unsigned long nr_to_scan;
2016         enum lru_list l;
2017         unsigned long nr_reclaimed, nr_scanned;
2018         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2019         struct blk_plug plug;
2020
2021 restart:
2022         nr_reclaimed = 0;
2023         nr_scanned = sc->nr_scanned;
2024         get_scan_count(zone, sc, nr, priority);
2025
2026         blk_start_plug(&plug);
2027         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2028                                         nr[LRU_INACTIVE_FILE]) {
2029                 for_each_evictable_lru(l) {
2030                         if (nr[l]) {
2031                                 nr_to_scan = min_t(unsigned long,
2032                                                    nr[l], SWAP_CLUSTER_MAX);
2033                                 nr[l] -= nr_to_scan;
2034
2035                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2036                                                             zone, sc, priority);
2037                         }
2038                 }
2039                 /*
2040                  * On large memory systems, scan >> priority can become
2041                  * really large. This is fine for the starting priority;
2042                  * we want to put equal scanning pressure on each zone.
2043                  * However, if the VM has a harder time of freeing pages,
2044                  * with multiple processes reclaiming pages, the total
2045                  * freeing target can get unreasonably large.
2046                  */
2047                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2048                         break;
2049         }
2050         blk_finish_plug(&plug);
2051         sc->nr_reclaimed += nr_reclaimed;
2052
2053         /*
2054          * Even if we did not try to evict anon pages at all, we want to
2055          * rebalance the anon lru active/inactive ratio.
2056          */
2057         if (inactive_anon_is_low(zone, sc))
2058                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2059
2060         /* reclaim/compaction might need reclaim to continue */
2061         if (should_continue_reclaim(zone, nr_reclaimed,
2062                                         sc->nr_scanned - nr_scanned, sc))
2063                 goto restart;
2064
2065         throttle_vm_writeout(sc->gfp_mask);
2066 }
2067
2068 /*
2069  * This is the direct reclaim path, for page-allocating processes.  We only
2070  * try to reclaim pages from zones which will satisfy the caller's allocation
2071  * request.
2072  *
2073  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2074  * Because:
2075  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2076  *    allocation or
2077  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2078  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2079  *    zone defense algorithm.
2080  *
2081  * If a zone is deemed to be full of pinned pages then just give it a light
2082  * scan then give up on it.
2083  */
2084 static void shrink_zones(int priority, struct zonelist *zonelist,
2085                                         struct scan_control *sc)
2086 {
2087         struct zoneref *z;
2088         struct zone *zone;
2089         unsigned long nr_soft_reclaimed;
2090         unsigned long nr_soft_scanned;
2091
2092         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2093                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2094                 if (!populated_zone(zone))
2095                         continue;
2096                 /*
2097                  * Take care memory controller reclaiming has small influence
2098                  * to global LRU.
2099                  */
2100                 if (scanning_global_lru(sc)) {
2101                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2102                                 continue;
2103                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2104                                 continue;       /* Let kswapd poll it */
2105                         /*
2106                          * This steals pages from memory cgroups over softlimit
2107                          * and returns the number of reclaimed pages and
2108                          * scanned pages. This works for global memory pressure
2109                          * and balancing, not for a memcg's limit.
2110                          */
2111                         nr_soft_scanned = 0;
2112                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2113                                                 sc->order, sc->gfp_mask,
2114                                                 &nr_soft_scanned);
2115                         sc->nr_reclaimed += nr_soft_reclaimed;
2116                         sc->nr_scanned += nr_soft_scanned;
2117                         /* need some check for avoid more shrink_zone() */
2118                 }
2119
2120                 shrink_zone(priority, zone, sc);
2121         }
2122 }
2123
2124 static bool zone_reclaimable(struct zone *zone)
2125 {
2126         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2127 }
2128
2129 /* All zones in zonelist are unreclaimable? */
2130 static bool all_unreclaimable(struct zonelist *zonelist,
2131                 struct scan_control *sc)
2132 {
2133         struct zoneref *z;
2134         struct zone *zone;
2135
2136         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2137                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2138                 if (!populated_zone(zone))
2139                         continue;
2140                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2141                         continue;
2142                 if (!zone->all_unreclaimable)
2143                         return false;
2144         }
2145
2146         return true;
2147 }
2148
2149 /*
2150  * This is the main entry point to direct page reclaim.
2151  *
2152  * If a full scan of the inactive list fails to free enough memory then we
2153  * are "out of memory" and something needs to be killed.
2154  *
2155  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2156  * high - the zone may be full of dirty or under-writeback pages, which this
2157  * caller can't do much about.  We kick the writeback threads and take explicit
2158  * naps in the hope that some of these pages can be written.  But if the
2159  * allocating task holds filesystem locks which prevent writeout this might not
2160  * work, and the allocation attempt will fail.
2161  *
2162  * returns:     0, if no pages reclaimed
2163  *              else, the number of pages reclaimed
2164  */
2165 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2166                                         struct scan_control *sc,
2167                                         struct shrink_control *shrink)
2168 {
2169         int priority;
2170         unsigned long total_scanned = 0;
2171         struct reclaim_state *reclaim_state = current->reclaim_state;
2172         struct zoneref *z;
2173         struct zone *zone;
2174         unsigned long writeback_threshold;
2175
2176         get_mems_allowed();
2177         delayacct_freepages_start();
2178
2179         if (scanning_global_lru(sc))
2180                 count_vm_event(ALLOCSTALL);
2181
2182         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2183                 sc->nr_scanned = 0;
2184                 if (!priority)
2185                         disable_swap_token(sc->mem_cgroup);
2186                 shrink_zones(priority, zonelist, sc);
2187                 /*
2188                  * Don't shrink slabs when reclaiming memory from
2189                  * over limit cgroups
2190                  */
2191                 if (scanning_global_lru(sc)) {
2192                         unsigned long lru_pages = 0;
2193                         for_each_zone_zonelist(zone, z, zonelist,
2194                                         gfp_zone(sc->gfp_mask)) {
2195                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2196                                         continue;
2197
2198                                 lru_pages += zone_reclaimable_pages(zone);
2199                         }
2200
2201                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2202                         if (reclaim_state) {
2203                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2204                                 reclaim_state->reclaimed_slab = 0;
2205                         }
2206                 }
2207                 total_scanned += sc->nr_scanned;
2208                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2209                         goto out;
2210
2211                 /*
2212                  * Try to write back as many pages as we just scanned.  This
2213                  * tends to cause slow streaming writers to write data to the
2214                  * disk smoothly, at the dirtying rate, which is nice.   But
2215                  * that's undesirable in laptop mode, where we *want* lumpy
2216                  * writeout.  So in laptop mode, write out the whole world.
2217                  */
2218                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2219                 if (total_scanned > writeback_threshold) {
2220                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2221                         sc->may_writepage = 1;
2222                 }
2223
2224                 /* Take a nap, wait for some writeback to complete */
2225                 if (!sc->hibernation_mode && sc->nr_scanned &&
2226                     priority < DEF_PRIORITY - 2) {
2227                         struct zone *preferred_zone;
2228
2229                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2230                                                 &cpuset_current_mems_allowed,
2231                                                 &preferred_zone);
2232                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2233                 }
2234         }
2235
2236 out:
2237         delayacct_freepages_end();
2238         put_mems_allowed();
2239
2240         if (sc->nr_reclaimed)
2241                 return sc->nr_reclaimed;
2242
2243         /*
2244          * As hibernation is going on, kswapd is freezed so that it can't mark
2245          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2246          * check.
2247          */
2248         if (oom_killer_disabled)
2249                 return 0;
2250
2251         /* top priority shrink_zones still had more to do? don't OOM, then */
2252         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2253                 return 1;
2254
2255         return 0;
2256 }
2257
2258 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2259                                 gfp_t gfp_mask, nodemask_t *nodemask)
2260 {
2261         unsigned long nr_reclaimed;
2262         struct scan_control sc = {
2263                 .gfp_mask = gfp_mask,
2264                 .may_writepage = !laptop_mode,
2265                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2266                 .may_unmap = 1,
2267                 .may_swap = 1,
2268                 .order = order,
2269                 .mem_cgroup = NULL,
2270                 .nodemask = nodemask,
2271         };
2272         struct shrink_control shrink = {
2273                 .gfp_mask = sc.gfp_mask,
2274         };
2275
2276         trace_mm_vmscan_direct_reclaim_begin(order,
2277                                 sc.may_writepage,
2278                                 gfp_mask);
2279
2280         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2281
2282         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2283
2284         return nr_reclaimed;
2285 }
2286
2287 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2288
2289 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2290                                         gfp_t gfp_mask, bool noswap,
2291                                         struct zone *zone,
2292                                         struct memcg_scanrecord *rec,
2293                                         unsigned long *scanned)
2294 {
2295         struct scan_control sc = {
2296                 .nr_scanned = 0,
2297                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2298                 .may_writepage = !laptop_mode,
2299                 .may_unmap = 1,
2300                 .may_swap = !noswap,
2301                 .order = 0,
2302                 .mem_cgroup = mem,
2303                 .memcg_record = rec,
2304         };
2305         ktime_t start, end;
2306
2307         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2308                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2309
2310         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2311                                                       sc.may_writepage,
2312                                                       sc.gfp_mask);
2313
2314         start = ktime_get();
2315         /*
2316          * NOTE: Although we can get the priority field, using it
2317          * here is not a good idea, since it limits the pages we can scan.
2318          * if we don't reclaim here, the shrink_zone from balance_pgdat
2319          * will pick up pages from other mem cgroup's as well. We hack
2320          * the priority and make it zero.
2321          */
2322         shrink_zone(0, zone, &sc);
2323         end = ktime_get();
2324
2325         if (rec)
2326                 rec->elapsed += ktime_to_ns(ktime_sub(end, start));
2327         *scanned = sc.nr_scanned;
2328
2329         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2330
2331         return sc.nr_reclaimed;
2332 }
2333
2334 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2335                                            gfp_t gfp_mask,
2336                                            bool noswap,
2337                                            struct memcg_scanrecord *rec)
2338 {
2339         struct zonelist *zonelist;
2340         unsigned long nr_reclaimed;
2341         ktime_t start, end;
2342         int nid;
2343         struct scan_control sc = {
2344                 .may_writepage = !laptop_mode,
2345                 .may_unmap = 1,
2346                 .may_swap = !noswap,
2347                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2348                 .order = 0,
2349                 .mem_cgroup = mem_cont,
2350                 .memcg_record = rec,
2351                 .nodemask = NULL, /* we don't care the placement */
2352                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2353                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2354         };
2355         struct shrink_control shrink = {
2356                 .gfp_mask = sc.gfp_mask,
2357         };
2358
2359         start = ktime_get();
2360         /*
2361          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2362          * take care of from where we get pages. So the node where we start the
2363          * scan does not need to be the current node.
2364          */
2365         nid = mem_cgroup_select_victim_node(mem_cont);
2366
2367         zonelist = NODE_DATA(nid)->node_zonelists;
2368
2369         trace_mm_vmscan_memcg_reclaim_begin(0,
2370                                             sc.may_writepage,
2371                                             sc.gfp_mask);
2372
2373         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2374         end = ktime_get();
2375         if (rec)
2376                 rec->elapsed += ktime_to_ns(ktime_sub(end, start));
2377
2378         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2379
2380         return nr_reclaimed;
2381 }
2382 #endif
2383
2384 /*
2385  * pgdat_balanced is used when checking if a node is balanced for high-order
2386  * allocations. Only zones that meet watermarks and are in a zone allowed
2387  * by the callers classzone_idx are added to balanced_pages. The total of
2388  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2389  * for the node to be considered balanced. Forcing all zones to be balanced
2390  * for high orders can cause excessive reclaim when there are imbalanced zones.
2391  * The choice of 25% is due to
2392  *   o a 16M DMA zone that is balanced will not balance a zone on any
2393  *     reasonable sized machine
2394  *   o On all other machines, the top zone must be at least a reasonable
2395  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2396  *     would need to be at least 256M for it to be balance a whole node.
2397  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2398  *     to balance a node on its own. These seemed like reasonable ratios.
2399  */
2400 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2401                                                 int classzone_idx)
2402 {
2403         unsigned long present_pages = 0;
2404         int i;
2405
2406         for (i = 0; i <= classzone_idx; i++)
2407                 present_pages += pgdat->node_zones[i].present_pages;
2408
2409         /* A special case here: if zone has no page, we think it's balanced */
2410         return balanced_pages >= (present_pages >> 2);
2411 }
2412
2413 /* is kswapd sleeping prematurely? */
2414 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2415                                         int classzone_idx)
2416 {
2417         int i;
2418         unsigned long balanced = 0;
2419         bool all_zones_ok = true;
2420
2421         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2422         if (remaining)
2423                 return true;
2424
2425         /* Check the watermark levels */
2426         for (i = 0; i <= classzone_idx; i++) {
2427                 struct zone *zone = pgdat->node_zones + i;
2428
2429                 if (!populated_zone(zone))
2430                         continue;
2431
2432                 /*
2433                  * balance_pgdat() skips over all_unreclaimable after
2434                  * DEF_PRIORITY. Effectively, it considers them balanced so
2435                  * they must be considered balanced here as well if kswapd
2436                  * is to sleep
2437                  */
2438                 if (zone->all_unreclaimable) {
2439                         balanced += zone->present_pages;
2440                         continue;
2441                 }
2442
2443                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2444                                                         i, 0))
2445                         all_zones_ok = false;
2446                 else
2447                         balanced += zone->present_pages;
2448         }
2449
2450         /*
2451          * For high-order requests, the balanced zones must contain at least
2452          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2453          * must be balanced
2454          */
2455         if (order)
2456                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2457         else
2458                 return !all_zones_ok;
2459 }
2460
2461 /*
2462  * For kswapd, balance_pgdat() will work across all this node's zones until
2463  * they are all at high_wmark_pages(zone).
2464  *
2465  * Returns the final order kswapd was reclaiming at
2466  *
2467  * There is special handling here for zones which are full of pinned pages.
2468  * This can happen if the pages are all mlocked, or if they are all used by
2469  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2470  * What we do is to detect the case where all pages in the zone have been
2471  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2472  * dead and from now on, only perform a short scan.  Basically we're polling
2473  * the zone for when the problem goes away.
2474  *
2475  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2476  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2477  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2478  * lower zones regardless of the number of free pages in the lower zones. This
2479  * interoperates with the page allocator fallback scheme to ensure that aging
2480  * of pages is balanced across the zones.
2481  */
2482 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2483                                                         int *classzone_idx)
2484 {
2485         int all_zones_ok;
2486         unsigned long balanced;
2487         int priority;
2488         int i;
2489         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2490         unsigned long total_scanned;
2491         struct reclaim_state *reclaim_state = current->reclaim_state;
2492         unsigned long nr_soft_reclaimed;
2493         unsigned long nr_soft_scanned;
2494         struct scan_control sc = {
2495                 .gfp_mask = GFP_KERNEL,
2496                 .may_unmap = 1,
2497                 .may_swap = 1,
2498                 /*
2499                  * kswapd doesn't want to be bailed out while reclaim. because
2500                  * we want to put equal scanning pressure on each zone.
2501                  */
2502                 .nr_to_reclaim = ULONG_MAX,
2503                 .order = order,
2504                 .mem_cgroup = NULL,
2505         };
2506         struct shrink_control shrink = {
2507                 .gfp_mask = sc.gfp_mask,
2508         };
2509 loop_again:
2510         total_scanned = 0;
2511         sc.nr_reclaimed = 0;
2512         sc.may_writepage = !laptop_mode;
2513         count_vm_event(PAGEOUTRUN);
2514
2515         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2516                 unsigned long lru_pages = 0;
2517                 int has_under_min_watermark_zone = 0;
2518
2519                 /* The swap token gets in the way of swapout... */
2520                 if (!priority)
2521                         disable_swap_token(NULL);
2522
2523                 all_zones_ok = 1;
2524                 balanced = 0;
2525
2526                 /*
2527                  * Scan in the highmem->dma direction for the highest
2528                  * zone which needs scanning
2529                  */
2530                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2531                         struct zone *zone = pgdat->node_zones + i;
2532
2533                         if (!populated_zone(zone))
2534                                 continue;
2535
2536                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2537                                 continue;
2538
2539                         /*
2540                          * Do some background aging of the anon list, to give
2541                          * pages a chance to be referenced before reclaiming.
2542                          */
2543                         if (inactive_anon_is_low(zone, &sc))
2544                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2545                                                         &sc, priority, 0);
2546
2547                         if (!zone_watermark_ok_safe(zone, order,
2548                                         high_wmark_pages(zone), 0, 0)) {
2549                                 end_zone = i;
2550                                 break;
2551                         } else {
2552                                 /* If balanced, clear the congested flag */
2553                                 zone_clear_flag(zone, ZONE_CONGESTED);
2554                         }
2555                 }
2556                 if (i < 0)
2557                         goto out;
2558
2559                 for (i = 0; i <= end_zone; i++) {
2560                         struct zone *zone = pgdat->node_zones + i;
2561
2562                         lru_pages += zone_reclaimable_pages(zone);
2563                 }
2564
2565                 /*
2566                  * Now scan the zone in the dma->highmem direction, stopping
2567                  * at the last zone which needs scanning.
2568                  *
2569                  * We do this because the page allocator works in the opposite
2570                  * direction.  This prevents the page allocator from allocating
2571                  * pages behind kswapd's direction of progress, which would
2572                  * cause too much scanning of the lower zones.
2573                  */
2574                 for (i = 0; i <= end_zone; i++) {
2575                         struct zone *zone = pgdat->node_zones + i;
2576                         int nr_slab;
2577                         unsigned long balance_gap;
2578
2579                         if (!populated_zone(zone))
2580                                 continue;
2581
2582                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2583                                 continue;
2584
2585                         sc.nr_scanned = 0;
2586
2587                         nr_soft_scanned = 0;
2588                         /*
2589                          * Call soft limit reclaim before calling shrink_zone.
2590                          */
2591                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2592                                                         order, sc.gfp_mask,
2593                                                         &nr_soft_scanned);
2594                         sc.nr_reclaimed += nr_soft_reclaimed;
2595                         total_scanned += nr_soft_scanned;
2596
2597                         /*
2598                          * We put equal pressure on every zone, unless
2599                          * one zone has way too many pages free
2600                          * already. The "too many pages" is defined
2601                          * as the high wmark plus a "gap" where the
2602                          * gap is either the low watermark or 1%
2603                          * of the zone, whichever is smaller.
2604                          */
2605                         balance_gap = min(low_wmark_pages(zone),
2606                                 (zone->present_pages +
2607                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2608                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2609                         if (!zone_watermark_ok_safe(zone, order,
2610                                         high_wmark_pages(zone) + balance_gap,
2611                                         end_zone, 0)) {
2612                                 shrink_zone(priority, zone, &sc);
2613
2614                                 reclaim_state->reclaimed_slab = 0;
2615                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2616                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2617                                 total_scanned += sc.nr_scanned;
2618
2619                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2620                                         zone->all_unreclaimable = 1;
2621                         }
2622
2623                         /*
2624                          * If we've done a decent amount of scanning and
2625                          * the reclaim ratio is low, start doing writepage
2626                          * even in laptop mode
2627                          */
2628                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2629                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2630                                 sc.may_writepage = 1;
2631
2632                         if (zone->all_unreclaimable) {
2633                                 if (end_zone && end_zone == i)
2634                                         end_zone--;
2635                                 continue;
2636                         }
2637
2638                         if (!zone_watermark_ok_safe(zone, order,
2639                                         high_wmark_pages(zone), end_zone, 0)) {
2640                                 all_zones_ok = 0;
2641                                 /*
2642                                  * We are still under min water mark.  This
2643                                  * means that we have a GFP_ATOMIC allocation
2644                                  * failure risk. Hurry up!
2645                                  */
2646                                 if (!zone_watermark_ok_safe(zone, order,
2647                                             min_wmark_pages(zone), end_zone, 0))
2648                                         has_under_min_watermark_zone = 1;
2649                         } else {
2650                                 /*
2651                                  * If a zone reaches its high watermark,
2652                                  * consider it to be no longer congested. It's
2653                                  * possible there are dirty pages backed by
2654                                  * congested BDIs but as pressure is relieved,
2655                                  * spectulatively avoid congestion waits
2656                                  */
2657                                 zone_clear_flag(zone, ZONE_CONGESTED);
2658                                 if (i <= *classzone_idx)
2659                                         balanced += zone->present_pages;
2660                         }
2661
2662                 }
2663                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2664                         break;          /* kswapd: all done */
2665                 /*
2666                  * OK, kswapd is getting into trouble.  Take a nap, then take
2667                  * another pass across the zones.
2668                  */
2669                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2670                         if (has_under_min_watermark_zone)
2671                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2672                         else
2673                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2674                 }
2675
2676                 /*
2677                  * We do this so kswapd doesn't build up large priorities for
2678                  * example when it is freeing in parallel with allocators. It
2679                  * matches the direct reclaim path behaviour in terms of impact
2680                  * on zone->*_priority.
2681                  */
2682                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2683                         break;
2684         }
2685 out:
2686
2687         /*
2688          * order-0: All zones must meet high watermark for a balanced node
2689          * high-order: Balanced zones must make up at least 25% of the node
2690          *             for the node to be balanced
2691          */
2692         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2693                 cond_resched();
2694
2695                 try_to_freeze();
2696
2697                 /*
2698                  * Fragmentation may mean that the system cannot be
2699                  * rebalanced for high-order allocations in all zones.
2700                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2701                  * it means the zones have been fully scanned and are still
2702                  * not balanced. For high-order allocations, there is
2703                  * little point trying all over again as kswapd may
2704                  * infinite loop.
2705                  *
2706                  * Instead, recheck all watermarks at order-0 as they
2707                  * are the most important. If watermarks are ok, kswapd will go
2708                  * back to sleep. High-order users can still perform direct
2709                  * reclaim if they wish.
2710                  */
2711                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2712                         order = sc.order = 0;
2713
2714                 goto loop_again;
2715         }
2716
2717         /*
2718          * If kswapd was reclaiming at a higher order, it has the option of
2719          * sleeping without all zones being balanced. Before it does, it must
2720          * ensure that the watermarks for order-0 on *all* zones are met and
2721          * that the congestion flags are cleared. The congestion flag must
2722          * be cleared as kswapd is the only mechanism that clears the flag
2723          * and it is potentially going to sleep here.
2724          */
2725         if (order) {
2726                 for (i = 0; i <= end_zone; i++) {
2727                         struct zone *zone = pgdat->node_zones + i;
2728
2729                         if (!populated_zone(zone))
2730                                 continue;
2731
2732                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2733                                 continue;
2734
2735                         /* Confirm the zone is balanced for order-0 */
2736                         if (!zone_watermark_ok(zone, 0,
2737                                         high_wmark_pages(zone), 0, 0)) {
2738                                 order = sc.order = 0;
2739                                 goto loop_again;
2740                         }
2741
2742                         /* If balanced, clear the congested flag */
2743                         zone_clear_flag(zone, ZONE_CONGESTED);
2744                 }
2745         }
2746
2747         /*
2748          * Return the order we were reclaiming at so sleeping_prematurely()
2749          * makes a decision on the order we were last reclaiming at. However,
2750          * if another caller entered the allocator slow path while kswapd
2751          * was awake, order will remain at the higher level
2752          */
2753         *classzone_idx = end_zone;
2754         return order;
2755 }
2756
2757 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2758 {
2759         long remaining = 0;
2760         DEFINE_WAIT(wait);
2761
2762         if (freezing(current) || kthread_should_stop())
2763                 return;
2764
2765         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2766
2767         /* Try to sleep for a short interval */
2768         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2769                 remaining = schedule_timeout(HZ/10);
2770                 finish_wait(&pgdat->kswapd_wait, &wait);
2771                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2772         }
2773
2774         /*
2775          * After a short sleep, check if it was a premature sleep. If not, then
2776          * go fully to sleep until explicitly woken up.
2777          */
2778         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2779                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2780
2781                 /*
2782                  * vmstat counters are not perfectly accurate and the estimated
2783                  * value for counters such as NR_FREE_PAGES can deviate from the
2784                  * true value by nr_online_cpus * threshold. To avoid the zone
2785                  * watermarks being breached while under pressure, we reduce the
2786                  * per-cpu vmstat threshold while kswapd is awake and restore
2787                  * them before going back to sleep.
2788                  */
2789                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2790                 schedule();
2791                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2792         } else {
2793                 if (remaining)
2794                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2795                 else
2796                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2797         }
2798         finish_wait(&pgdat->kswapd_wait, &wait);
2799 }
2800
2801 /*
2802  * The background pageout daemon, started as a kernel thread
2803  * from the init process.
2804  *
2805  * This basically trickles out pages so that we have _some_
2806  * free memory available even if there is no other activity
2807  * that frees anything up. This is needed for things like routing
2808  * etc, where we otherwise might have all activity going on in
2809  * asynchronous contexts that cannot page things out.
2810  *
2811  * If there are applications that are active memory-allocators
2812  * (most normal use), this basically shouldn't matter.
2813  */
2814 static int kswapd(void *p)
2815 {
2816         unsigned long order, new_order;
2817         int classzone_idx, new_classzone_idx;
2818         pg_data_t *pgdat = (pg_data_t*)p;
2819         struct task_struct *tsk = current;
2820
2821         struct reclaim_state reclaim_state = {
2822                 .reclaimed_slab = 0,
2823         };
2824         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2825
2826         lockdep_set_current_reclaim_state(GFP_KERNEL);
2827
2828         if (!cpumask_empty(cpumask))
2829                 set_cpus_allowed_ptr(tsk, cpumask);
2830         current->reclaim_state = &reclaim_state;
2831
2832         /*
2833          * Tell the memory management that we're a "memory allocator",
2834          * and that if we need more memory we should get access to it
2835          * regardless (see "__alloc_pages()"). "kswapd" should
2836          * never get caught in the normal page freeing logic.
2837          *
2838          * (Kswapd normally doesn't need memory anyway, but sometimes
2839          * you need a small amount of memory in order to be able to
2840          * page out something else, and this flag essentially protects
2841          * us from recursively trying to free more memory as we're
2842          * trying to free the first piece of memory in the first place).
2843          */
2844         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2845         set_freezable();
2846
2847         order = new_order = 0;
2848         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2849         for ( ; ; ) {
2850                 int ret;
2851
2852                 /*
2853                  * If the last balance_pgdat was unsuccessful it's unlikely a
2854                  * new request of a similar or harder type will succeed soon
2855                  * so consider going to sleep on the basis we reclaimed at
2856                  */
2857                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2858                         new_order = pgdat->kswapd_max_order;
2859                         new_classzone_idx = pgdat->classzone_idx;
2860                         pgdat->kswapd_max_order =  0;
2861                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2862                 }
2863
2864                 if (order < new_order || classzone_idx > new_classzone_idx) {
2865                         /*
2866                          * Don't sleep if someone wants a larger 'order'
2867                          * allocation or has tigher zone constraints
2868                          */
2869                         order = new_order;
2870                         classzone_idx = new_classzone_idx;
2871                 } else {
2872                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2873                         order = pgdat->kswapd_max_order;
2874                         classzone_idx = pgdat->classzone_idx;
2875                         pgdat->kswapd_max_order = 0;
2876                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2877                 }
2878
2879                 ret = try_to_freeze();
2880                 if (kthread_should_stop())
2881                         break;
2882
2883                 /*
2884                  * We can speed up thawing tasks if we don't call balance_pgdat
2885                  * after returning from the refrigerator
2886                  */
2887                 if (!ret) {
2888                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2889                         order = balance_pgdat(pgdat, order, &classzone_idx);
2890                 }
2891         }
2892         return 0;
2893 }
2894
2895 /*
2896  * A zone is low on free memory, so wake its kswapd task to service it.
2897  */
2898 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2899 {
2900         pg_data_t *pgdat;
2901
2902         if (!populated_zone(zone))
2903                 return;
2904
2905         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2906                 return;
2907         pgdat = zone->zone_pgdat;
2908         if (pgdat->kswapd_max_order < order) {
2909                 pgdat->kswapd_max_order = order;
2910                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2911         }
2912         if (!waitqueue_active(&pgdat->kswapd_wait))
2913                 return;
2914         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2915                 return;
2916
2917         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2918         wake_up_interruptible(&pgdat->kswapd_wait);
2919 }
2920
2921 /*
2922  * The reclaimable count would be mostly accurate.
2923  * The less reclaimable pages may be
2924  * - mlocked pages, which will be moved to unevictable list when encountered
2925  * - mapped pages, which may require several travels to be reclaimed
2926  * - dirty pages, which is not "instantly" reclaimable
2927  */
2928 unsigned long global_reclaimable_pages(void)
2929 {
2930         int nr;
2931
2932         nr = global_page_state(NR_ACTIVE_FILE) +
2933              global_page_state(NR_INACTIVE_FILE);
2934
2935         if (nr_swap_pages > 0)
2936                 nr += global_page_state(NR_ACTIVE_ANON) +
2937                       global_page_state(NR_INACTIVE_ANON);
2938
2939         return nr;
2940 }
2941
2942 unsigned long zone_reclaimable_pages(struct zone *zone)
2943 {
2944         int nr;
2945
2946         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2947              zone_page_state(zone, NR_INACTIVE_FILE);
2948
2949         if (nr_swap_pages > 0)
2950                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2951                       zone_page_state(zone, NR_INACTIVE_ANON);
2952
2953         return nr;
2954 }
2955
2956 #ifdef CONFIG_HIBERNATION
2957 /*
2958  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2959  * freed pages.
2960  *
2961  * Rather than trying to age LRUs the aim is to preserve the overall
2962  * LRU order by reclaiming preferentially
2963  * inactive > active > active referenced > active mapped
2964  */
2965 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2966 {
2967         struct reclaim_state reclaim_state;
2968         struct scan_control sc = {
2969                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2970                 .may_swap = 1,
2971                 .may_unmap = 1,
2972                 .may_writepage = 1,
2973                 .nr_to_reclaim = nr_to_reclaim,
2974                 .hibernation_mode = 1,
2975                 .order = 0,
2976         };
2977         struct shrink_control shrink = {
2978                 .gfp_mask = sc.gfp_mask,
2979         };
2980         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2981         struct task_struct *p = current;
2982         unsigned long nr_reclaimed;
2983
2984         p->flags |= PF_MEMALLOC;
2985         lockdep_set_current_reclaim_state(sc.gfp_mask);
2986         reclaim_state.reclaimed_slab = 0;
2987         p->reclaim_state = &reclaim_state;
2988
2989         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2990
2991         p->reclaim_state = NULL;
2992         lockdep_clear_current_reclaim_state();
2993         p->flags &= ~PF_MEMALLOC;
2994
2995         return nr_reclaimed;
2996 }
2997 #endif /* CONFIG_HIBERNATION */
2998
2999 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3000    not required for correctness.  So if the last cpu in a node goes
3001    away, we get changed to run anywhere: as the first one comes back,
3002    restore their cpu bindings. */
3003 static int __devinit cpu_callback(struct notifier_block *nfb,
3004                                   unsigned long action, void *hcpu)
3005 {
3006         int nid;
3007
3008         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3009                 for_each_node_state(nid, N_HIGH_MEMORY) {
3010                         pg_data_t *pgdat = NODE_DATA(nid);
3011                         const struct cpumask *mask;
3012
3013                         mask = cpumask_of_node(pgdat->node_id);
3014
3015                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3016                                 /* One of our CPUs online: restore mask */
3017                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3018                 }
3019         }
3020         return NOTIFY_OK;
3021 }
3022
3023 /*
3024  * This kswapd start function will be called by init and node-hot-add.
3025  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3026  */
3027 int kswapd_run(int nid)
3028 {
3029         pg_data_t *pgdat = NODE_DATA(nid);
3030         int ret = 0;
3031
3032         if (pgdat->kswapd)
3033                 return 0;
3034
3035         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3036         if (IS_ERR(pgdat->kswapd)) {
3037                 /* failure at boot is fatal */
3038                 BUG_ON(system_state == SYSTEM_BOOTING);
3039                 printk("Failed to start kswapd on node %d\n",nid);
3040                 ret = -1;
3041         }
3042         return ret;
3043 }
3044
3045 /*
3046  * Called by memory hotplug when all memory in a node is offlined.
3047  */
3048 void kswapd_stop(int nid)
3049 {
3050         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3051
3052         if (kswapd)
3053                 kthread_stop(kswapd);
3054 }
3055
3056 static int __init kswapd_init(void)
3057 {
3058         int nid;
3059
3060         swap_setup();
3061         for_each_node_state(nid, N_HIGH_MEMORY)
3062                 kswapd_run(nid);
3063         hotcpu_notifier(cpu_callback, 0);
3064         return 0;
3065 }
3066
3067 module_init(kswapd_init)
3068
3069 #ifdef CONFIG_NUMA
3070 /*
3071  * Zone reclaim mode
3072  *
3073  * If non-zero call zone_reclaim when the number of free pages falls below
3074  * the watermarks.
3075  */
3076 int zone_reclaim_mode __read_mostly;
3077
3078 #define RECLAIM_OFF 0
3079 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3080 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3081 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3082
3083 /*
3084  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3085  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3086  * a zone.
3087  */
3088 #define ZONE_RECLAIM_PRIORITY 4
3089
3090 /*
3091  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3092  * occur.
3093  */
3094 int sysctl_min_unmapped_ratio = 1;
3095
3096 /*
3097  * If the number of slab pages in a zone grows beyond this percentage then
3098  * slab reclaim needs to occur.
3099  */
3100 int sysctl_min_slab_ratio = 5;
3101
3102 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3103 {
3104         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3105         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3106                 zone_page_state(zone, NR_ACTIVE_FILE);
3107
3108         /*
3109          * It's possible for there to be more file mapped pages than
3110          * accounted for by the pages on the file LRU lists because
3111          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3112          */
3113         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3114 }
3115
3116 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3117 static long zone_pagecache_reclaimable(struct zone *zone)
3118 {
3119         long nr_pagecache_reclaimable;
3120         long delta = 0;
3121
3122         /*
3123          * If RECLAIM_SWAP is set, then all file pages are considered
3124          * potentially reclaimable. Otherwise, we have to worry about
3125          * pages like swapcache and zone_unmapped_file_pages() provides
3126          * a better estimate
3127          */
3128         if (zone_reclaim_mode & RECLAIM_SWAP)
3129                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3130         else
3131                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3132
3133         /* If we can't clean pages, remove dirty pages from consideration */
3134         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3135                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3136
3137         /* Watch for any possible underflows due to delta */
3138         if (unlikely(delta > nr_pagecache_reclaimable))
3139                 delta = nr_pagecache_reclaimable;
3140
3141         return nr_pagecache_reclaimable - delta;
3142 }
3143
3144 /*
3145  * Try to free up some pages from this zone through reclaim.
3146  */
3147 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3148 {
3149         /* Minimum pages needed in order to stay on node */
3150         const unsigned long nr_pages = 1 << order;
3151         struct task_struct *p = current;
3152         struct reclaim_state reclaim_state;
3153         int priority;
3154         struct scan_control sc = {
3155                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3156                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3157                 .may_swap = 1,
3158                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3159                                        SWAP_CLUSTER_MAX),
3160                 .gfp_mask = gfp_mask,
3161                 .order = order,
3162         };
3163         struct shrink_control shrink = {
3164                 .gfp_mask = sc.gfp_mask,
3165         };
3166         unsigned long nr_slab_pages0, nr_slab_pages1;
3167
3168         cond_resched();
3169         /*
3170          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3171          * and we also need to be able to write out pages for RECLAIM_WRITE
3172          * and RECLAIM_SWAP.
3173          */
3174         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3175         lockdep_set_current_reclaim_state(gfp_mask);
3176         reclaim_state.reclaimed_slab = 0;
3177         p->reclaim_state = &reclaim_state;
3178
3179         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3180                 /*
3181                  * Free memory by calling shrink zone with increasing
3182                  * priorities until we have enough memory freed.
3183                  */
3184                 priority = ZONE_RECLAIM_PRIORITY;
3185                 do {
3186                         shrink_zone(priority, zone, &sc);
3187                         priority--;
3188                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3189         }
3190
3191         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3192         if (nr_slab_pages0 > zone->min_slab_pages) {
3193                 /*
3194                  * shrink_slab() does not currently allow us to determine how
3195                  * many pages were freed in this zone. So we take the current
3196                  * number of slab pages and shake the slab until it is reduced
3197                  * by the same nr_pages that we used for reclaiming unmapped
3198                  * pages.
3199                  *
3200                  * Note that shrink_slab will free memory on all zones and may
3201                  * take a long time.
3202                  */
3203                 for (;;) {
3204                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3205
3206                         /* No reclaimable slab or very low memory pressure */
3207                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3208                                 break;
3209
3210                         /* Freed enough memory */
3211                         nr_slab_pages1 = zone_page_state(zone,
3212                                                         NR_SLAB_RECLAIMABLE);
3213                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3214                                 break;
3215                 }
3216
3217                 /*
3218                  * Update nr_reclaimed by the number of slab pages we
3219                  * reclaimed from this zone.
3220                  */
3221                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3222                 if (nr_slab_pages1 < nr_slab_pages0)
3223                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3224         }
3225
3226         p->reclaim_state = NULL;
3227         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3228         lockdep_clear_current_reclaim_state();
3229         return sc.nr_reclaimed >= nr_pages;
3230 }
3231
3232 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3233 {
3234         int node_id;
3235         int ret;
3236
3237         /*
3238          * Zone reclaim reclaims unmapped file backed pages and
3239          * slab pages if we are over the defined limits.
3240          *
3241          * A small portion of unmapped file backed pages is needed for
3242          * file I/O otherwise pages read by file I/O will be immediately
3243          * thrown out if the zone is overallocated. So we do not reclaim
3244          * if less than a specified percentage of the zone is used by
3245          * unmapped file backed pages.
3246          */
3247         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3248             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3249                 return ZONE_RECLAIM_FULL;
3250
3251         if (zone->all_unreclaimable)
3252                 return ZONE_RECLAIM_FULL;
3253
3254         /*
3255          * Do not scan if the allocation should not be delayed.
3256          */
3257         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3258                 return ZONE_RECLAIM_NOSCAN;
3259
3260         /*
3261          * Only run zone reclaim on the local zone or on zones that do not
3262          * have associated processors. This will favor the local processor
3263          * over remote processors and spread off node memory allocations
3264          * as wide as possible.
3265          */
3266         node_id = zone_to_nid(zone);
3267         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3268                 return ZONE_RECLAIM_NOSCAN;
3269
3270         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3271                 return ZONE_RECLAIM_NOSCAN;
3272
3273         ret = __zone_reclaim(zone, gfp_mask, order);
3274         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3275
3276         if (!ret)
3277                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3278
3279         return ret;
3280 }
3281 #endif
3282
3283 /*
3284  * page_evictable - test whether a page is evictable
3285  * @page: the page to test
3286  * @vma: the VMA in which the page is or will be mapped, may be NULL
3287  *
3288  * Test whether page is evictable--i.e., should be placed on active/inactive
3289  * lists vs unevictable list.  The vma argument is !NULL when called from the
3290  * fault path to determine how to instantate a new page.
3291  *
3292  * Reasons page might not be evictable:
3293  * (1) page's mapping marked unevictable
3294  * (2) page is part of an mlocked VMA
3295  *
3296  */
3297 int page_evictable(struct page *page, struct vm_area_struct *vma)
3298 {
3299
3300         if (mapping_unevictable(page_mapping(page)))
3301                 return 0;
3302
3303         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3304                 return 0;
3305
3306         return 1;
3307 }
3308
3309 /**
3310  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3311  * @page: page to check evictability and move to appropriate lru list
3312  * @zone: zone page is in
3313  *
3314  * Checks a page for evictability and moves the page to the appropriate
3315  * zone lru list.
3316  *
3317  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3318  * have PageUnevictable set.
3319  */
3320 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3321 {
3322         VM_BUG_ON(PageActive(page));
3323
3324 retry:
3325         ClearPageUnevictable(page);
3326         if (page_evictable(page, NULL)) {
3327                 enum lru_list l = page_lru_base_type(page);
3328
3329                 __dec_zone_state(zone, NR_UNEVICTABLE);
3330                 list_move(&page->lru, &zone->lru[l].list);
3331                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3332                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3333                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3334         } else {
3335                 /*
3336                  * rotate unevictable list
3337                  */
3338                 SetPageUnevictable(page);
3339                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3340                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3341                 if (page_evictable(page, NULL))
3342                         goto retry;
3343         }
3344 }
3345
3346 /**
3347  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3348  * @mapping: struct address_space to scan for evictable pages
3349  *
3350  * Scan all pages in mapping.  Check unevictable pages for
3351  * evictability and move them to the appropriate zone lru list.
3352  */
3353 void scan_mapping_unevictable_pages(struct address_space *mapping)
3354 {
3355         pgoff_t next = 0;
3356         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3357                          PAGE_CACHE_SHIFT;
3358         struct zone *zone;
3359         struct pagevec pvec;
3360
3361         if (mapping->nrpages == 0)
3362                 return;
3363
3364         pagevec_init(&pvec, 0);
3365         while (next < end &&
3366                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3367                 int i;
3368                 int pg_scanned = 0;
3369
3370                 zone = NULL;
3371
3372                 for (i = 0; i < pagevec_count(&pvec); i++) {
3373                         struct page *page = pvec.pages[i];
3374                         pgoff_t page_index = page->index;
3375                         struct zone *pagezone = page_zone(page);
3376
3377                         pg_scanned++;
3378                         if (page_index > next)
3379                                 next = page_index;
3380                         next++;
3381
3382                         if (pagezone != zone) {
3383                                 if (zone)
3384                                         spin_unlock_irq(&zone->lru_lock);
3385                                 zone = pagezone;
3386                                 spin_lock_irq(&zone->lru_lock);
3387                         }
3388
3389                         if (PageLRU(page) && PageUnevictable(page))
3390                                 check_move_unevictable_page(page, zone);
3391                 }
3392                 if (zone)
3393                         spin_unlock_irq(&zone->lru_lock);
3394                 pagevec_release(&pvec);
3395
3396                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3397         }
3398
3399 }
3400
3401 /**
3402  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3403  * @zone - zone of which to scan the unevictable list
3404  *
3405  * Scan @zone's unevictable LRU lists to check for pages that have become
3406  * evictable.  Move those that have to @zone's inactive list where they
3407  * become candidates for reclaim, unless shrink_inactive_zone() decides
3408  * to reactivate them.  Pages that are still unevictable are rotated
3409  * back onto @zone's unevictable list.
3410  */
3411 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3412 static void scan_zone_unevictable_pages(struct zone *zone)
3413 {
3414         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3415         unsigned long scan;
3416         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3417
3418         while (nr_to_scan > 0) {
3419                 unsigned long batch_size = min(nr_to_scan,
3420                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3421
3422                 spin_lock_irq(&zone->lru_lock);
3423                 for (scan = 0;  scan < batch_size; scan++) {
3424                         struct page *page = lru_to_page(l_unevictable);
3425
3426                         if (!trylock_page(page))
3427                                 continue;
3428
3429                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3430
3431                         if (likely(PageLRU(page) && PageUnevictable(page)))
3432                                 check_move_unevictable_page(page, zone);
3433
3434                         unlock_page(page);
3435                 }
3436                 spin_unlock_irq(&zone->lru_lock);
3437
3438                 nr_to_scan -= batch_size;
3439         }
3440 }
3441
3442
3443 /**
3444  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3445  *
3446  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3447  * pages that have become evictable.  Move those back to the zones'
3448  * inactive list where they become candidates for reclaim.
3449  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3450  * and we add swap to the system.  As such, it runs in the context of a task
3451  * that has possibly/probably made some previously unevictable pages
3452  * evictable.
3453  */
3454 static void scan_all_zones_unevictable_pages(void)
3455 {
3456         struct zone *zone;
3457
3458         for_each_zone(zone) {
3459                 scan_zone_unevictable_pages(zone);
3460         }
3461 }
3462
3463 /*
3464  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3465  * all nodes' unevictable lists for evictable pages
3466  */
3467 unsigned long scan_unevictable_pages;
3468
3469 int scan_unevictable_handler(struct ctl_table *table, int write,
3470                            void __user *buffer,
3471                            size_t *length, loff_t *ppos)
3472 {
3473         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3474
3475         if (write && *(unsigned long *)table->data)
3476                 scan_all_zones_unevictable_pages();
3477
3478         scan_unevictable_pages = 0;
3479         return 0;
3480 }
3481
3482 #ifdef CONFIG_NUMA
3483 /*
3484  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3485  * a specified node's per zone unevictable lists for evictable pages.
3486  */
3487
3488 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3489                                           struct sysdev_attribute *attr,
3490                                           char *buf)
3491 {
3492         return sprintf(buf, "0\n");     /* always zero; should fit... */
3493 }
3494
3495 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3496                                            struct sysdev_attribute *attr,
3497                                         const char *buf, size_t count)
3498 {
3499         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3500         struct zone *zone;
3501         unsigned long res;
3502         unsigned long req = strict_strtoul(buf, 10, &res);
3503
3504         if (!req)
3505                 return 1;       /* zero is no-op */
3506
3507         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3508                 if (!populated_zone(zone))
3509                         continue;
3510                 scan_zone_unevictable_pages(zone);
3511         }
3512         return 1;
3513 }
3514
3515
3516 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3517                         read_scan_unevictable_node,
3518                         write_scan_unevictable_node);
3519
3520 int scan_unevictable_register_node(struct node *node)
3521 {
3522         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3523 }
3524
3525 void scan_unevictable_unregister_node(struct node *node)
3526 {
3527         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3528 }
3529 #endif