]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/vmscan.c
In __zone_reclaim case, we don't want to shrink mapped page. Nonetheless,
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108         struct memcg_scanrecord *memcg_record;
109
110         /*
111          * Nodemask of nodes allowed by the caller. If NULL, all nodes
112          * are scanned.
113          */
114         nodemask_t      *nodemask;
115 };
116
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field)                    \
121         do {                                                            \
122                 if ((_page)->lru.prev != _base) {                       \
123                         struct page *prev;                              \
124                                                                         \
125                         prev = lru_to_page(&(_page->lru));              \
126                         prefetch(&prev->_field);                        \
127                 }                                                       \
128         } while (0)
129 #else
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
132
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
135         do {                                                            \
136                 if ((_page)->lru.prev != _base) {                       \
137                         struct page *prev;                              \
138                                                                         \
139                         prev = lru_to_page(&(_page->lru));              \
140                         prefetchw(&prev->_field);                       \
141                 }                                                       \
142         } while (0)
143 #else
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
146
147 /*
148  * From 0 .. 100.  Higher means more swappy.
149  */
150 int vm_swappiness = 60;
151 long vm_total_pages;    /* The total number of pages which the VM controls */
152
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
155
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
158 #else
159 #define scanning_global_lru(sc) (1)
160 #endif
161
162 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163                                                   struct scan_control *sc)
164 {
165         if (!scanning_global_lru(sc))
166                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
167
168         return &zone->reclaim_stat;
169 }
170
171 static unsigned long zone_nr_lru_pages(struct zone *zone,
172                                 struct scan_control *sc, enum lru_list lru)
173 {
174         if (!scanning_global_lru(sc))
175                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
176                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
177
178         return zone_page_state(zone, NR_LRU_BASE + lru);
179 }
180
181
182 /*
183  * Add a shrinker callback to be called from the vm
184  */
185 void register_shrinker(struct shrinker *shrinker)
186 {
187         shrinker->nr = 0;
188         down_write(&shrinker_rwsem);
189         list_add_tail(&shrinker->list, &shrinker_list);
190         up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(register_shrinker);
193
194 /*
195  * Remove one
196  */
197 void unregister_shrinker(struct shrinker *shrinker)
198 {
199         down_write(&shrinker_rwsem);
200         list_del(&shrinker->list);
201         up_write(&shrinker_rwsem);
202 }
203 EXPORT_SYMBOL(unregister_shrinker);
204
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206                                      struct shrink_control *sc,
207                                      unsigned long nr_to_scan)
208 {
209         sc->nr_to_scan = nr_to_scan;
210         return (*shrinker->shrink)(shrinker, sc);
211 }
212
213 #define SHRINK_BATCH 128
214 /*
215  * Call the shrink functions to age shrinkable caches
216  *
217  * Here we assume it costs one seek to replace a lru page and that it also
218  * takes a seek to recreate a cache object.  With this in mind we age equal
219  * percentages of the lru and ageable caches.  This should balance the seeks
220  * generated by these structures.
221  *
222  * If the vm encountered mapped pages on the LRU it increase the pressure on
223  * slab to avoid swapping.
224  *
225  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226  *
227  * `lru_pages' represents the number of on-LRU pages in all the zones which
228  * are eligible for the caller's allocation attempt.  It is used for balancing
229  * slab reclaim versus page reclaim.
230  *
231  * Returns the number of slab objects which we shrunk.
232  */
233 unsigned long shrink_slab(struct shrink_control *shrink,
234                           unsigned long nr_pages_scanned,
235                           unsigned long lru_pages)
236 {
237         struct shrinker *shrinker;
238         unsigned long ret = 0;
239
240         if (nr_pages_scanned == 0)
241                 nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243         if (!down_read_trylock(&shrinker_rwsem)) {
244                 /* Assume we'll be able to shrink next time */
245                 ret = 1;
246                 goto out;
247         }
248
249         list_for_each_entry(shrinker, &shrinker_list, list) {
250                 unsigned long long delta;
251                 unsigned long total_scan;
252                 unsigned long max_pass;
253                 int shrink_ret = 0;
254                 long nr;
255                 long new_nr;
256                 long batch_size = shrinker->batch ? shrinker->batch
257                                                   : SHRINK_BATCH;
258
259                 /*
260                  * copy the current shrinker scan count into a local variable
261                  * and zero it so that other concurrent shrinker invocations
262                  * don't also do this scanning work.
263                  */
264                 do {
265                         nr = shrinker->nr;
266                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
267
268                 total_scan = nr;
269                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
270                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271                 delta *= max_pass;
272                 do_div(delta, lru_pages + 1);
273                 total_scan += delta;
274                 if (total_scan < 0) {
275                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
276                                "delete nr=%ld\n",
277                                shrinker->shrink, total_scan);
278                         total_scan = max_pass;
279                 }
280
281                 /*
282                  * We need to avoid excessive windup on filesystem shrinkers
283                  * due to large numbers of GFP_NOFS allocations causing the
284                  * shrinkers to return -1 all the time. This results in a large
285                  * nr being built up so when a shrink that can do some work
286                  * comes along it empties the entire cache due to nr >>>
287                  * max_pass.  This is bad for sustaining a working set in
288                  * memory.
289                  *
290                  * Hence only allow the shrinker to scan the entire cache when
291                  * a large delta change is calculated directly.
292                  */
293                 if (delta < max_pass / 4)
294                         total_scan = min(total_scan, max_pass / 2);
295
296                 /*
297                  * Avoid risking looping forever due to too large nr value:
298                  * never try to free more than twice the estimate number of
299                  * freeable entries.
300                  */
301                 if (total_scan > max_pass * 2)
302                         total_scan = max_pass * 2;
303
304                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305                                         nr_pages_scanned, lru_pages,
306                                         max_pass, delta, total_scan);
307
308                 while (total_scan >= batch_size) {
309                         int nr_before;
310
311                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
313                                                         batch_size);
314                         if (shrink_ret == -1)
315                                 break;
316                         if (shrink_ret < nr_before)
317                                 ret += nr_before - shrink_ret;
318                         count_vm_events(SLABS_SCANNED, batch_size);
319                         total_scan -= batch_size;
320
321                         cond_resched();
322                 }
323
324                 /*
325                  * move the unused scan count back into the shrinker in a
326                  * manner that handles concurrent updates. If we exhausted the
327                  * scan, there is no need to do an update.
328                  */
329                 do {
330                         nr = shrinker->nr;
331                         new_nr = total_scan + nr;
332                         if (total_scan <= 0)
333                                 break;
334                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
335
336                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
337         }
338         up_read(&shrinker_rwsem);
339 out:
340         cond_resched();
341         return ret;
342 }
343
344 static void set_reclaim_mode(int priority, struct scan_control *sc,
345                                    bool sync)
346 {
347         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
348
349         /*
350          * Initially assume we are entering either lumpy reclaim or
351          * reclaim/compaction.Depending on the order, we will either set the
352          * sync mode or just reclaim order-0 pages later.
353          */
354         if (COMPACTION_BUILD)
355                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
356         else
357                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
358
359         /*
360          * Avoid using lumpy reclaim or reclaim/compaction if possible by
361          * restricting when its set to either costly allocations or when
362          * under memory pressure
363          */
364         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
365                 sc->reclaim_mode |= syncmode;
366         else if (sc->order && priority < DEF_PRIORITY - 2)
367                 sc->reclaim_mode |= syncmode;
368         else
369                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
370 }
371
372 static void reset_reclaim_mode(struct scan_control *sc)
373 {
374         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
375 }
376
377 static inline int is_page_cache_freeable(struct page *page)
378 {
379         /*
380          * A freeable page cache page is referenced only by the caller
381          * that isolated the page, the page cache radix tree and
382          * optional buffer heads at page->private.
383          */
384         return page_count(page) - page_has_private(page) == 2;
385 }
386
387 static int may_write_to_queue(struct backing_dev_info *bdi,
388                               struct scan_control *sc)
389 {
390         if (current->flags & PF_SWAPWRITE)
391                 return 1;
392         if (!bdi_write_congested(bdi))
393                 return 1;
394         if (bdi == current->backing_dev_info)
395                 return 1;
396
397         /* lumpy reclaim for hugepage often need a lot of write */
398         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
399                 return 1;
400         return 0;
401 }
402
403 /*
404  * We detected a synchronous write error writing a page out.  Probably
405  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
406  * fsync(), msync() or close().
407  *
408  * The tricky part is that after writepage we cannot touch the mapping: nothing
409  * prevents it from being freed up.  But we have a ref on the page and once
410  * that page is locked, the mapping is pinned.
411  *
412  * We're allowed to run sleeping lock_page() here because we know the caller has
413  * __GFP_FS.
414  */
415 static void handle_write_error(struct address_space *mapping,
416                                 struct page *page, int error)
417 {
418         lock_page(page);
419         if (page_mapping(page) == mapping)
420                 mapping_set_error(mapping, error);
421         unlock_page(page);
422 }
423
424 /* possible outcome of pageout() */
425 typedef enum {
426         /* failed to write page out, page is locked */
427         PAGE_KEEP,
428         /* move page to the active list, page is locked */
429         PAGE_ACTIVATE,
430         /* page has been sent to the disk successfully, page is unlocked */
431         PAGE_SUCCESS,
432         /* page is clean and locked */
433         PAGE_CLEAN,
434 } pageout_t;
435
436 /*
437  * pageout is called by shrink_page_list() for each dirty page.
438  * Calls ->writepage().
439  */
440 static pageout_t pageout(struct page *page, struct address_space *mapping,
441                          struct scan_control *sc)
442 {
443         /*
444          * If the page is dirty, only perform writeback if that write
445          * will be non-blocking.  To prevent this allocation from being
446          * stalled by pagecache activity.  But note that there may be
447          * stalls if we need to run get_block().  We could test
448          * PagePrivate for that.
449          *
450          * If this process is currently in __generic_file_aio_write() against
451          * this page's queue, we can perform writeback even if that
452          * will block.
453          *
454          * If the page is swapcache, write it back even if that would
455          * block, for some throttling. This happens by accident, because
456          * swap_backing_dev_info is bust: it doesn't reflect the
457          * congestion state of the swapdevs.  Easy to fix, if needed.
458          */
459         if (!is_page_cache_freeable(page))
460                 return PAGE_KEEP;
461         if (!mapping) {
462                 /*
463                  * Some data journaling orphaned pages can have
464                  * page->mapping == NULL while being dirty with clean buffers.
465                  */
466                 if (page_has_private(page)) {
467                         if (try_to_free_buffers(page)) {
468                                 ClearPageDirty(page);
469                                 printk("%s: orphaned page\n", __func__);
470                                 return PAGE_CLEAN;
471                         }
472                 }
473                 return PAGE_KEEP;
474         }
475         if (mapping->a_ops->writepage == NULL)
476                 return PAGE_ACTIVATE;
477         if (!may_write_to_queue(mapping->backing_dev_info, sc))
478                 return PAGE_KEEP;
479
480         if (clear_page_dirty_for_io(page)) {
481                 int res;
482                 struct writeback_control wbc = {
483                         .sync_mode = WB_SYNC_NONE,
484                         .nr_to_write = SWAP_CLUSTER_MAX,
485                         .range_start = 0,
486                         .range_end = LLONG_MAX,
487                         .for_reclaim = 1,
488                 };
489
490                 SetPageReclaim(page);
491                 res = mapping->a_ops->writepage(page, &wbc);
492                 if (res < 0)
493                         handle_write_error(mapping, page, res);
494                 if (res == AOP_WRITEPAGE_ACTIVATE) {
495                         ClearPageReclaim(page);
496                         return PAGE_ACTIVATE;
497                 }
498
499                 /*
500                  * Wait on writeback if requested to. This happens when
501                  * direct reclaiming a large contiguous area and the
502                  * first attempt to free a range of pages fails.
503                  */
504                 if (PageWriteback(page) &&
505                     (sc->reclaim_mode & RECLAIM_MODE_SYNC))
506                         wait_on_page_writeback(page);
507
508                 if (!PageWriteback(page)) {
509                         /* synchronous write or broken a_ops? */
510                         ClearPageReclaim(page);
511                 }
512                 trace_mm_vmscan_writepage(page,
513                         trace_reclaim_flags(page, sc->reclaim_mode));
514                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
515                 return PAGE_SUCCESS;
516         }
517
518         return PAGE_CLEAN;
519 }
520
521 /*
522  * Same as remove_mapping, but if the page is removed from the mapping, it
523  * gets returned with a refcount of 0.
524  */
525 static int __remove_mapping(struct address_space *mapping, struct page *page)
526 {
527         BUG_ON(!PageLocked(page));
528         BUG_ON(mapping != page_mapping(page));
529
530         spin_lock_irq(&mapping->tree_lock);
531         /*
532          * The non racy check for a busy page.
533          *
534          * Must be careful with the order of the tests. When someone has
535          * a ref to the page, it may be possible that they dirty it then
536          * drop the reference. So if PageDirty is tested before page_count
537          * here, then the following race may occur:
538          *
539          * get_user_pages(&page);
540          * [user mapping goes away]
541          * write_to(page);
542          *                              !PageDirty(page)    [good]
543          * SetPageDirty(page);
544          * put_page(page);
545          *                              !page_count(page)   [good, discard it]
546          *
547          * [oops, our write_to data is lost]
548          *
549          * Reversing the order of the tests ensures such a situation cannot
550          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
551          * load is not satisfied before that of page->_count.
552          *
553          * Note that if SetPageDirty is always performed via set_page_dirty,
554          * and thus under tree_lock, then this ordering is not required.
555          */
556         if (!page_freeze_refs(page, 2))
557                 goto cannot_free;
558         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
559         if (unlikely(PageDirty(page))) {
560                 page_unfreeze_refs(page, 2);
561                 goto cannot_free;
562         }
563
564         if (PageSwapCache(page)) {
565                 swp_entry_t swap = { .val = page_private(page) };
566                 __delete_from_swap_cache(page);
567                 spin_unlock_irq(&mapping->tree_lock);
568                 swapcache_free(swap, page);
569         } else {
570                 void (*freepage)(struct page *);
571
572                 freepage = mapping->a_ops->freepage;
573
574                 __delete_from_page_cache(page);
575                 spin_unlock_irq(&mapping->tree_lock);
576                 mem_cgroup_uncharge_cache_page(page);
577
578                 if (freepage != NULL)
579                         freepage(page);
580         }
581
582         return 1;
583
584 cannot_free:
585         spin_unlock_irq(&mapping->tree_lock);
586         return 0;
587 }
588
589 /*
590  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
591  * someone else has a ref on the page, abort and return 0.  If it was
592  * successfully detached, return 1.  Assumes the caller has a single ref on
593  * this page.
594  */
595 int remove_mapping(struct address_space *mapping, struct page *page)
596 {
597         if (__remove_mapping(mapping, page)) {
598                 /*
599                  * Unfreezing the refcount with 1 rather than 2 effectively
600                  * drops the pagecache ref for us without requiring another
601                  * atomic operation.
602                  */
603                 page_unfreeze_refs(page, 1);
604                 return 1;
605         }
606         return 0;
607 }
608
609 /**
610  * putback_lru_page - put previously isolated page onto appropriate LRU list
611  * @page: page to be put back to appropriate lru list
612  *
613  * Add previously isolated @page to appropriate LRU list.
614  * Page may still be unevictable for other reasons.
615  *
616  * lru_lock must not be held, interrupts must be enabled.
617  */
618 void putback_lru_page(struct page *page)
619 {
620         int lru;
621         int active = !!TestClearPageActive(page);
622         int was_unevictable = PageUnevictable(page);
623
624         VM_BUG_ON(PageLRU(page));
625
626 redo:
627         ClearPageUnevictable(page);
628
629         if (page_evictable(page, NULL)) {
630                 /*
631                  * For evictable pages, we can use the cache.
632                  * In event of a race, worst case is we end up with an
633                  * unevictable page on [in]active list.
634                  * We know how to handle that.
635                  */
636                 lru = active + page_lru_base_type(page);
637                 lru_cache_add_lru(page, lru);
638         } else {
639                 /*
640                  * Put unevictable pages directly on zone's unevictable
641                  * list.
642                  */
643                 lru = LRU_UNEVICTABLE;
644                 add_page_to_unevictable_list(page);
645                 /*
646                  * When racing with an mlock clearing (page is
647                  * unlocked), make sure that if the other thread does
648                  * not observe our setting of PG_lru and fails
649                  * isolation, we see PG_mlocked cleared below and move
650                  * the page back to the evictable list.
651                  *
652                  * The other side is TestClearPageMlocked().
653                  */
654                 smp_mb();
655         }
656
657         /*
658          * page's status can change while we move it among lru. If an evictable
659          * page is on unevictable list, it never be freed. To avoid that,
660          * check after we added it to the list, again.
661          */
662         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
663                 if (!isolate_lru_page(page)) {
664                         put_page(page);
665                         goto redo;
666                 }
667                 /* This means someone else dropped this page from LRU
668                  * So, it will be freed or putback to LRU again. There is
669                  * nothing to do here.
670                  */
671         }
672
673         if (was_unevictable && lru != LRU_UNEVICTABLE)
674                 count_vm_event(UNEVICTABLE_PGRESCUED);
675         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
676                 count_vm_event(UNEVICTABLE_PGCULLED);
677
678         put_page(page);         /* drop ref from isolate */
679 }
680
681 enum page_references {
682         PAGEREF_RECLAIM,
683         PAGEREF_RECLAIM_CLEAN,
684         PAGEREF_KEEP,
685         PAGEREF_ACTIVATE,
686 };
687
688 static enum page_references page_check_references(struct page *page,
689                                                   struct scan_control *sc)
690 {
691         int referenced_ptes, referenced_page;
692         unsigned long vm_flags;
693
694         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
695         referenced_page = TestClearPageReferenced(page);
696
697         /* Lumpy reclaim - ignore references */
698         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
699                 return PAGEREF_RECLAIM;
700
701         /*
702          * Mlock lost the isolation race with us.  Let try_to_unmap()
703          * move the page to the unevictable list.
704          */
705         if (vm_flags & VM_LOCKED)
706                 return PAGEREF_RECLAIM;
707
708         if (referenced_ptes) {
709                 if (PageAnon(page))
710                         return PAGEREF_ACTIVATE;
711                 /*
712                  * All mapped pages start out with page table
713                  * references from the instantiating fault, so we need
714                  * to look twice if a mapped file page is used more
715                  * than once.
716                  *
717                  * Mark it and spare it for another trip around the
718                  * inactive list.  Another page table reference will
719                  * lead to its activation.
720                  *
721                  * Note: the mark is set for activated pages as well
722                  * so that recently deactivated but used pages are
723                  * quickly recovered.
724                  */
725                 SetPageReferenced(page);
726
727                 if (referenced_page)
728                         return PAGEREF_ACTIVATE;
729
730                 return PAGEREF_KEEP;
731         }
732
733         /* Reclaim if clean, defer dirty pages to writeback */
734         if (referenced_page && !PageSwapBacked(page))
735                 return PAGEREF_RECLAIM_CLEAN;
736
737         return PAGEREF_RECLAIM;
738 }
739
740 static noinline_for_stack void free_page_list(struct list_head *free_pages)
741 {
742         struct pagevec freed_pvec;
743         struct page *page, *tmp;
744
745         pagevec_init(&freed_pvec, 1);
746
747         list_for_each_entry_safe(page, tmp, free_pages, lru) {
748                 list_del(&page->lru);
749                 if (!pagevec_add(&freed_pvec, page)) {
750                         __pagevec_free(&freed_pvec);
751                         pagevec_reinit(&freed_pvec);
752                 }
753         }
754
755         pagevec_free(&freed_pvec);
756 }
757
758 /*
759  * shrink_page_list() returns the number of reclaimed pages
760  */
761 static unsigned long shrink_page_list(struct list_head *page_list,
762                                       struct zone *zone,
763                                       struct scan_control *sc)
764 {
765         LIST_HEAD(ret_pages);
766         LIST_HEAD(free_pages);
767         int pgactivate = 0;
768         unsigned long nr_dirty = 0;
769         unsigned long nr_congested = 0;
770         unsigned long nr_reclaimed = 0;
771
772         cond_resched();
773
774         while (!list_empty(page_list)) {
775                 enum page_references references;
776                 struct address_space *mapping;
777                 struct page *page;
778                 int may_enter_fs;
779
780                 cond_resched();
781
782                 page = lru_to_page(page_list);
783                 list_del(&page->lru);
784
785                 if (!trylock_page(page))
786                         goto keep;
787
788                 VM_BUG_ON(PageActive(page));
789                 VM_BUG_ON(page_zone(page) != zone);
790
791                 sc->nr_scanned++;
792
793                 if (unlikely(!page_evictable(page, NULL)))
794                         goto cull_mlocked;
795
796                 if (!sc->may_unmap && page_mapped(page))
797                         goto keep_locked;
798
799                 /* Double the slab pressure for mapped and swapcache pages */
800                 if (page_mapped(page) || PageSwapCache(page))
801                         sc->nr_scanned++;
802
803                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
804                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
805
806                 if (PageWriteback(page)) {
807                         /*
808                          * Synchronous reclaim is performed in two passes,
809                          * first an asynchronous pass over the list to
810                          * start parallel writeback, and a second synchronous
811                          * pass to wait for the IO to complete.  Wait here
812                          * for any page for which writeback has already
813                          * started.
814                          */
815                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
816                             may_enter_fs)
817                                 wait_on_page_writeback(page);
818                         else {
819                                 unlock_page(page);
820                                 goto keep_lumpy;
821                         }
822                 }
823
824                 references = page_check_references(page, sc);
825                 switch (references) {
826                 case PAGEREF_ACTIVATE:
827                         goto activate_locked;
828                 case PAGEREF_KEEP:
829                         goto keep_locked;
830                 case PAGEREF_RECLAIM:
831                 case PAGEREF_RECLAIM_CLEAN:
832                         ; /* try to reclaim the page below */
833                 }
834
835                 /*
836                  * Anonymous process memory has backing store?
837                  * Try to allocate it some swap space here.
838                  */
839                 if (PageAnon(page) && !PageSwapCache(page)) {
840                         if (!(sc->gfp_mask & __GFP_IO))
841                                 goto keep_locked;
842                         if (!add_to_swap(page))
843                                 goto activate_locked;
844                         may_enter_fs = 1;
845                 }
846
847                 mapping = page_mapping(page);
848
849                 /*
850                  * The page is mapped into the page tables of one or more
851                  * processes. Try to unmap it here.
852                  */
853                 if (page_mapped(page) && mapping) {
854                         switch (try_to_unmap(page, TTU_UNMAP)) {
855                         case SWAP_FAIL:
856                                 goto activate_locked;
857                         case SWAP_AGAIN:
858                                 goto keep_locked;
859                         case SWAP_MLOCK:
860                                 goto cull_mlocked;
861                         case SWAP_SUCCESS:
862                                 ; /* try to free the page below */
863                         }
864                 }
865
866                 if (PageDirty(page)) {
867                         nr_dirty++;
868
869                         if (references == PAGEREF_RECLAIM_CLEAN)
870                                 goto keep_locked;
871                         if (!may_enter_fs)
872                                 goto keep_locked;
873                         if (!sc->may_writepage)
874                                 goto keep_locked;
875
876                         /* Page is dirty, try to write it out here */
877                         switch (pageout(page, mapping, sc)) {
878                         case PAGE_KEEP:
879                                 nr_congested++;
880                                 goto keep_locked;
881                         case PAGE_ACTIVATE:
882                                 goto activate_locked;
883                         case PAGE_SUCCESS:
884                                 if (PageWriteback(page))
885                                         goto keep_lumpy;
886                                 if (PageDirty(page))
887                                         goto keep;
888
889                                 /*
890                                  * A synchronous write - probably a ramdisk.  Go
891                                  * ahead and try to reclaim the page.
892                                  */
893                                 if (!trylock_page(page))
894                                         goto keep;
895                                 if (PageDirty(page) || PageWriteback(page))
896                                         goto keep_locked;
897                                 mapping = page_mapping(page);
898                         case PAGE_CLEAN:
899                                 ; /* try to free the page below */
900                         }
901                 }
902
903                 /*
904                  * If the page has buffers, try to free the buffer mappings
905                  * associated with this page. If we succeed we try to free
906                  * the page as well.
907                  *
908                  * We do this even if the page is PageDirty().
909                  * try_to_release_page() does not perform I/O, but it is
910                  * possible for a page to have PageDirty set, but it is actually
911                  * clean (all its buffers are clean).  This happens if the
912                  * buffers were written out directly, with submit_bh(). ext3
913                  * will do this, as well as the blockdev mapping.
914                  * try_to_release_page() will discover that cleanness and will
915                  * drop the buffers and mark the page clean - it can be freed.
916                  *
917                  * Rarely, pages can have buffers and no ->mapping.  These are
918                  * the pages which were not successfully invalidated in
919                  * truncate_complete_page().  We try to drop those buffers here
920                  * and if that worked, and the page is no longer mapped into
921                  * process address space (page_count == 1) it can be freed.
922                  * Otherwise, leave the page on the LRU so it is swappable.
923                  */
924                 if (page_has_private(page)) {
925                         if (!try_to_release_page(page, sc->gfp_mask))
926                                 goto activate_locked;
927                         if (!mapping && page_count(page) == 1) {
928                                 unlock_page(page);
929                                 if (put_page_testzero(page))
930                                         goto free_it;
931                                 else {
932                                         /*
933                                          * rare race with speculative reference.
934                                          * the speculative reference will free
935                                          * this page shortly, so we may
936                                          * increment nr_reclaimed here (and
937                                          * leave it off the LRU).
938                                          */
939                                         nr_reclaimed++;
940                                         continue;
941                                 }
942                         }
943                 }
944
945                 if (!mapping || !__remove_mapping(mapping, page))
946                         goto keep_locked;
947
948                 /*
949                  * At this point, we have no other references and there is
950                  * no way to pick any more up (removed from LRU, removed
951                  * from pagecache). Can use non-atomic bitops now (and
952                  * we obviously don't have to worry about waking up a process
953                  * waiting on the page lock, because there are no references.
954                  */
955                 __clear_page_locked(page);
956 free_it:
957                 nr_reclaimed++;
958
959                 /*
960                  * Is there need to periodically free_page_list? It would
961                  * appear not as the counts should be low
962                  */
963                 list_add(&page->lru, &free_pages);
964                 continue;
965
966 cull_mlocked:
967                 if (PageSwapCache(page))
968                         try_to_free_swap(page);
969                 unlock_page(page);
970                 putback_lru_page(page);
971                 reset_reclaim_mode(sc);
972                 continue;
973
974 activate_locked:
975                 /* Not a candidate for swapping, so reclaim swap space. */
976                 if (PageSwapCache(page) && vm_swap_full())
977                         try_to_free_swap(page);
978                 VM_BUG_ON(PageActive(page));
979                 SetPageActive(page);
980                 pgactivate++;
981 keep_locked:
982                 unlock_page(page);
983 keep:
984                 reset_reclaim_mode(sc);
985 keep_lumpy:
986                 list_add(&page->lru, &ret_pages);
987                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
988         }
989
990         /*
991          * Tag a zone as congested if all the dirty pages encountered were
992          * backed by a congested BDI. In this case, reclaimers should just
993          * back off and wait for congestion to clear because further reclaim
994          * will encounter the same problem
995          */
996         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
997                 zone_set_flag(zone, ZONE_CONGESTED);
998
999         free_page_list(&free_pages);
1000
1001         list_splice(&ret_pages, page_list);
1002         count_vm_events(PGACTIVATE, pgactivate);
1003         return nr_reclaimed;
1004 }
1005
1006 /*
1007  * Attempt to remove the specified page from its LRU.  Only take this page
1008  * if it is of the appropriate PageActive status.  Pages which are being
1009  * freed elsewhere are also ignored.
1010  *
1011  * page:        page to consider
1012  * mode:        one of the LRU isolation modes defined above
1013  *
1014  * returns 0 on success, -ve errno on failure.
1015  */
1016 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1017 {
1018         bool all_lru_mode;
1019         int ret = -EINVAL;
1020
1021         /* Only take pages on the LRU. */
1022         if (!PageLRU(page))
1023                 return ret;
1024
1025         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1026                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1027
1028         /*
1029          * When checking the active state, we need to be sure we are
1030          * dealing with comparible boolean values.  Take the logical not
1031          * of each.
1032          */
1033         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1034                 return ret;
1035
1036         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1037                 return ret;
1038
1039         /*
1040          * When this function is being called for lumpy reclaim, we
1041          * initially look into all LRU pages, active, inactive and
1042          * unevictable; only give shrink_page_list evictable pages.
1043          */
1044         if (PageUnevictable(page))
1045                 return ret;
1046
1047         ret = -EBUSY;
1048
1049         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1050                 return ret;
1051
1052         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1053                 return ret;
1054
1055         if (likely(get_page_unless_zero(page))) {
1056                 /*
1057                  * Be careful not to clear PageLRU until after we're
1058                  * sure the page is not being freed elsewhere -- the
1059                  * page release code relies on it.
1060                  */
1061                 ClearPageLRU(page);
1062                 ret = 0;
1063         }
1064
1065         return ret;
1066 }
1067
1068 /*
1069  * zone->lru_lock is heavily contended.  Some of the functions that
1070  * shrink the lists perform better by taking out a batch of pages
1071  * and working on them outside the LRU lock.
1072  *
1073  * For pagecache intensive workloads, this function is the hottest
1074  * spot in the kernel (apart from copy_*_user functions).
1075  *
1076  * Appropriate locks must be held before calling this function.
1077  *
1078  * @nr_to_scan: The number of pages to look through on the list.
1079  * @src:        The LRU list to pull pages off.
1080  * @dst:        The temp list to put pages on to.
1081  * @scanned:    The number of pages that were scanned.
1082  * @order:      The caller's attempted allocation order
1083  * @mode:       One of the LRU isolation modes
1084  * @file:       True [1] if isolating file [!anon] pages
1085  *
1086  * returns how many pages were moved onto *@dst.
1087  */
1088 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1089                 struct list_head *src, struct list_head *dst,
1090                 unsigned long *scanned, int order, isolate_mode_t mode,
1091                 int file)
1092 {
1093         unsigned long nr_taken = 0;
1094         unsigned long nr_lumpy_taken = 0;
1095         unsigned long nr_lumpy_dirty = 0;
1096         unsigned long nr_lumpy_failed = 0;
1097         unsigned long scan;
1098
1099         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1100                 struct page *page;
1101                 unsigned long pfn;
1102                 unsigned long end_pfn;
1103                 unsigned long page_pfn;
1104                 int zone_id;
1105
1106                 page = lru_to_page(src);
1107                 prefetchw_prev_lru_page(page, src, flags);
1108
1109                 VM_BUG_ON(!PageLRU(page));
1110
1111                 switch (__isolate_lru_page(page, mode, file)) {
1112                 case 0:
1113                         list_move(&page->lru, dst);
1114                         mem_cgroup_del_lru(page);
1115                         nr_taken += hpage_nr_pages(page);
1116                         break;
1117
1118                 case -EBUSY:
1119                         /* else it is being freed elsewhere */
1120                         list_move(&page->lru, src);
1121                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1122                         continue;
1123
1124                 default:
1125                         BUG();
1126                 }
1127
1128                 if (!order)
1129                         continue;
1130
1131                 /*
1132                  * Attempt to take all pages in the order aligned region
1133                  * surrounding the tag page.  Only take those pages of
1134                  * the same active state as that tag page.  We may safely
1135                  * round the target page pfn down to the requested order
1136                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1137                  * where that page is in a different zone we will detect
1138                  * it from its zone id and abort this block scan.
1139                  */
1140                 zone_id = page_zone_id(page);
1141                 page_pfn = page_to_pfn(page);
1142                 pfn = page_pfn & ~((1 << order) - 1);
1143                 end_pfn = pfn + (1 << order);
1144                 for (; pfn < end_pfn; pfn++) {
1145                         struct page *cursor_page;
1146
1147                         /* The target page is in the block, ignore it. */
1148                         if (unlikely(pfn == page_pfn))
1149                                 continue;
1150
1151                         /* Avoid holes within the zone. */
1152                         if (unlikely(!pfn_valid_within(pfn)))
1153                                 break;
1154
1155                         cursor_page = pfn_to_page(pfn);
1156
1157                         /* Check that we have not crossed a zone boundary. */
1158                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1159                                 break;
1160
1161                         /*
1162                          * If we don't have enough swap space, reclaiming of
1163                          * anon page which don't already have a swap slot is
1164                          * pointless.
1165                          */
1166                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1167                             !PageSwapCache(cursor_page))
1168                                 break;
1169
1170                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1171                                 list_move(&cursor_page->lru, dst);
1172                                 mem_cgroup_del_lru(cursor_page);
1173                                 nr_taken += hpage_nr_pages(page);
1174                                 nr_lumpy_taken++;
1175                                 if (PageDirty(cursor_page))
1176                                         nr_lumpy_dirty++;
1177                                 scan++;
1178                         } else {
1179                                 /*
1180                                  * Check if the page is freed already.
1181                                  *
1182                                  * We can't use page_count() as that
1183                                  * requires compound_head and we don't
1184                                  * have a pin on the page here. If a
1185                                  * page is tail, we may or may not
1186                                  * have isolated the head, so assume
1187                                  * it's not free, it'd be tricky to
1188                                  * track the head status without a
1189                                  * page pin.
1190                                  */
1191                                 if (!PageTail(cursor_page) &&
1192                                     !atomic_read(&cursor_page->_count))
1193                                         continue;
1194                                 break;
1195                         }
1196                 }
1197
1198                 /* If we break out of the loop above, lumpy reclaim failed */
1199                 if (pfn < end_pfn)
1200                         nr_lumpy_failed++;
1201         }
1202
1203         *scanned = scan;
1204
1205         trace_mm_vmscan_lru_isolate(order,
1206                         nr_to_scan, scan,
1207                         nr_taken,
1208                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1209                         mode);
1210         return nr_taken;
1211 }
1212
1213 static unsigned long isolate_pages_global(unsigned long nr,
1214                                         struct list_head *dst,
1215                                         unsigned long *scanned, int order,
1216                                         isolate_mode_t mode,
1217                                         struct zone *z, int active, int file)
1218 {
1219         int lru = LRU_BASE;
1220         if (active)
1221                 lru += LRU_ACTIVE;
1222         if (file)
1223                 lru += LRU_FILE;
1224         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1225                                                                 mode, file);
1226 }
1227
1228 /*
1229  * clear_active_flags() is a helper for shrink_active_list(), clearing
1230  * any active bits from the pages in the list.
1231  */
1232 static unsigned long clear_active_flags(struct list_head *page_list,
1233                                         unsigned int *count)
1234 {
1235         int nr_active = 0;
1236         int lru;
1237         struct page *page;
1238
1239         list_for_each_entry(page, page_list, lru) {
1240                 int numpages = hpage_nr_pages(page);
1241                 lru = page_lru_base_type(page);
1242                 if (PageActive(page)) {
1243                         lru += LRU_ACTIVE;
1244                         ClearPageActive(page);
1245                         nr_active += numpages;
1246                 }
1247                 if (count)
1248                         count[lru] += numpages;
1249         }
1250
1251         return nr_active;
1252 }
1253
1254 /**
1255  * isolate_lru_page - tries to isolate a page from its LRU list
1256  * @page: page to isolate from its LRU list
1257  *
1258  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1259  * vmstat statistic corresponding to whatever LRU list the page was on.
1260  *
1261  * Returns 0 if the page was removed from an LRU list.
1262  * Returns -EBUSY if the page was not on an LRU list.
1263  *
1264  * The returned page will have PageLRU() cleared.  If it was found on
1265  * the active list, it will have PageActive set.  If it was found on
1266  * the unevictable list, it will have the PageUnevictable bit set. That flag
1267  * may need to be cleared by the caller before letting the page go.
1268  *
1269  * The vmstat statistic corresponding to the list on which the page was
1270  * found will be decremented.
1271  *
1272  * Restrictions:
1273  * (1) Must be called with an elevated refcount on the page. This is a
1274  *     fundamentnal difference from isolate_lru_pages (which is called
1275  *     without a stable reference).
1276  * (2) the lru_lock must not be held.
1277  * (3) interrupts must be enabled.
1278  */
1279 int isolate_lru_page(struct page *page)
1280 {
1281         int ret = -EBUSY;
1282
1283         VM_BUG_ON(!page_count(page));
1284
1285         if (PageLRU(page)) {
1286                 struct zone *zone = page_zone(page);
1287
1288                 spin_lock_irq(&zone->lru_lock);
1289                 if (PageLRU(page)) {
1290                         int lru = page_lru(page);
1291                         ret = 0;
1292                         get_page(page);
1293                         ClearPageLRU(page);
1294
1295                         del_page_from_lru_list(zone, page, lru);
1296                 }
1297                 spin_unlock_irq(&zone->lru_lock);
1298         }
1299         return ret;
1300 }
1301
1302 /*
1303  * Are there way too many processes in the direct reclaim path already?
1304  */
1305 static int too_many_isolated(struct zone *zone, int file,
1306                 struct scan_control *sc)
1307 {
1308         unsigned long inactive, isolated;
1309
1310         if (current_is_kswapd())
1311                 return 0;
1312
1313         if (!scanning_global_lru(sc))
1314                 return 0;
1315
1316         if (file) {
1317                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1318                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1319         } else {
1320                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1321                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1322         }
1323
1324         return isolated > inactive;
1325 }
1326
1327 /*
1328  * TODO: Try merging with migrations version of putback_lru_pages
1329  */
1330 static noinline_for_stack void
1331 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1332                                 unsigned long nr_anon, unsigned long nr_file,
1333                                 struct list_head *page_list)
1334 {
1335         struct page *page;
1336         struct pagevec pvec;
1337         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1338
1339         pagevec_init(&pvec, 1);
1340
1341         /*
1342          * Put back any unfreeable pages.
1343          */
1344         spin_lock(&zone->lru_lock);
1345         while (!list_empty(page_list)) {
1346                 int lru;
1347                 page = lru_to_page(page_list);
1348                 VM_BUG_ON(PageLRU(page));
1349                 list_del(&page->lru);
1350                 if (unlikely(!page_evictable(page, NULL))) {
1351                         spin_unlock_irq(&zone->lru_lock);
1352                         putback_lru_page(page);
1353                         spin_lock_irq(&zone->lru_lock);
1354                         continue;
1355                 }
1356                 SetPageLRU(page);
1357                 lru = page_lru(page);
1358                 add_page_to_lru_list(zone, page, lru);
1359                 if (is_active_lru(lru)) {
1360                         int file = is_file_lru(lru);
1361                         int numpages = hpage_nr_pages(page);
1362                         reclaim_stat->recent_rotated[file] += numpages;
1363                         if (!scanning_global_lru(sc))
1364                                 sc->memcg_record->nr_rotated[file] += numpages;
1365                 }
1366                 if (!pagevec_add(&pvec, page)) {
1367                         spin_unlock_irq(&zone->lru_lock);
1368                         __pagevec_release(&pvec);
1369                         spin_lock_irq(&zone->lru_lock);
1370                 }
1371         }
1372         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1373         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1374
1375         spin_unlock_irq(&zone->lru_lock);
1376         pagevec_release(&pvec);
1377 }
1378
1379 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1380                                         struct scan_control *sc,
1381                                         unsigned long *nr_anon,
1382                                         unsigned long *nr_file,
1383                                         struct list_head *isolated_list)
1384 {
1385         unsigned long nr_active;
1386         unsigned int count[NR_LRU_LISTS] = { 0, };
1387         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1388
1389         nr_active = clear_active_flags(isolated_list, count);
1390         __count_vm_events(PGDEACTIVATE, nr_active);
1391
1392         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1393                               -count[LRU_ACTIVE_FILE]);
1394         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1395                               -count[LRU_INACTIVE_FILE]);
1396         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1397                               -count[LRU_ACTIVE_ANON]);
1398         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1399                               -count[LRU_INACTIVE_ANON]);
1400
1401         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1402         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1403         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1404         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1405
1406         reclaim_stat->recent_scanned[0] += *nr_anon;
1407         reclaim_stat->recent_scanned[1] += *nr_file;
1408         if (!scanning_global_lru(sc)) {
1409                 sc->memcg_record->nr_scanned[0] += *nr_anon;
1410                 sc->memcg_record->nr_scanned[1] += *nr_file;
1411         }
1412 }
1413
1414 /*
1415  * Returns true if the caller should wait to clean dirty/writeback pages.
1416  *
1417  * If we are direct reclaiming for contiguous pages and we do not reclaim
1418  * everything in the list, try again and wait for writeback IO to complete.
1419  * This will stall high-order allocations noticeably. Only do that when really
1420  * need to free the pages under high memory pressure.
1421  */
1422 static inline bool should_reclaim_stall(unsigned long nr_taken,
1423                                         unsigned long nr_freed,
1424                                         int priority,
1425                                         struct scan_control *sc)
1426 {
1427         int lumpy_stall_priority;
1428
1429         /* kswapd should not stall on sync IO */
1430         if (current_is_kswapd())
1431                 return false;
1432
1433         /* Only stall on lumpy reclaim */
1434         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1435                 return false;
1436
1437         /* If we have reclaimed everything on the isolated list, no stall */
1438         if (nr_freed == nr_taken)
1439                 return false;
1440
1441         /*
1442          * For high-order allocations, there are two stall thresholds.
1443          * High-cost allocations stall immediately where as lower
1444          * order allocations such as stacks require the scanning
1445          * priority to be much higher before stalling.
1446          */
1447         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1448                 lumpy_stall_priority = DEF_PRIORITY;
1449         else
1450                 lumpy_stall_priority = DEF_PRIORITY / 3;
1451
1452         return priority <= lumpy_stall_priority;
1453 }
1454
1455 /*
1456  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1457  * of reclaimed pages
1458  */
1459 static noinline_for_stack unsigned long
1460 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1461                         struct scan_control *sc, int priority, int file)
1462 {
1463         LIST_HEAD(page_list);
1464         unsigned long nr_scanned;
1465         unsigned long nr_reclaimed = 0;
1466         unsigned long nr_taken;
1467         unsigned long nr_anon;
1468         unsigned long nr_file;
1469         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1470
1471         while (unlikely(too_many_isolated(zone, file, sc))) {
1472                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1473
1474                 /* We are about to die and free our memory. Return now. */
1475                 if (fatal_signal_pending(current))
1476                         return SWAP_CLUSTER_MAX;
1477         }
1478
1479         set_reclaim_mode(priority, sc, false);
1480         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1481                 reclaim_mode |= ISOLATE_ACTIVE;
1482
1483         lru_add_drain();
1484
1485         if (!sc->may_unmap)
1486                 reclaim_mode |= ISOLATE_UNMAPPED;
1487         if (!sc->may_writepage)
1488                 reclaim_mode |= ISOLATE_CLEAN;
1489
1490         spin_lock_irq(&zone->lru_lock);
1491
1492         if (scanning_global_lru(sc)) {
1493                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1494                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1495                 zone->pages_scanned += nr_scanned;
1496                 if (current_is_kswapd())
1497                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1498                                                nr_scanned);
1499                 else
1500                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1501                                                nr_scanned);
1502         } else {
1503                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1504                         &nr_scanned, sc->order, reclaim_mode, zone,
1505                         sc->mem_cgroup, 0, file);
1506                 /*
1507                  * mem_cgroup_isolate_pages() keeps track of
1508                  * scanned pages on its own.
1509                  */
1510         }
1511
1512         if (nr_taken == 0) {
1513                 spin_unlock_irq(&zone->lru_lock);
1514                 return 0;
1515         }
1516
1517         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1518
1519         spin_unlock_irq(&zone->lru_lock);
1520
1521         nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1522
1523         /* Check if we should syncronously wait for writeback */
1524         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1525                 set_reclaim_mode(priority, sc, true);
1526                 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1527         }
1528
1529         if (!scanning_global_lru(sc))
1530                 sc->memcg_record->nr_freed[file] += nr_reclaimed;
1531
1532         local_irq_disable();
1533         if (current_is_kswapd())
1534                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1535         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1536
1537         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1538
1539         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1540                 zone_idx(zone),
1541                 nr_scanned, nr_reclaimed,
1542                 priority,
1543                 trace_shrink_flags(file, sc->reclaim_mode));
1544         return nr_reclaimed;
1545 }
1546
1547 /*
1548  * This moves pages from the active list to the inactive list.
1549  *
1550  * We move them the other way if the page is referenced by one or more
1551  * processes, from rmap.
1552  *
1553  * If the pages are mostly unmapped, the processing is fast and it is
1554  * appropriate to hold zone->lru_lock across the whole operation.  But if
1555  * the pages are mapped, the processing is slow (page_referenced()) so we
1556  * should drop zone->lru_lock around each page.  It's impossible to balance
1557  * this, so instead we remove the pages from the LRU while processing them.
1558  * It is safe to rely on PG_active against the non-LRU pages in here because
1559  * nobody will play with that bit on a non-LRU page.
1560  *
1561  * The downside is that we have to touch page->_count against each page.
1562  * But we had to alter page->flags anyway.
1563  */
1564
1565 static void move_active_pages_to_lru(struct zone *zone,
1566                                      struct list_head *list,
1567                                      enum lru_list lru)
1568 {
1569         unsigned long pgmoved = 0;
1570         struct pagevec pvec;
1571         struct page *page;
1572
1573         pagevec_init(&pvec, 1);
1574
1575         while (!list_empty(list)) {
1576                 page = lru_to_page(list);
1577
1578                 VM_BUG_ON(PageLRU(page));
1579                 SetPageLRU(page);
1580
1581                 list_move(&page->lru, &zone->lru[lru].list);
1582                 mem_cgroup_add_lru_list(page, lru);
1583                 pgmoved += hpage_nr_pages(page);
1584
1585                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1586                         spin_unlock_irq(&zone->lru_lock);
1587                         if (buffer_heads_over_limit)
1588                                 pagevec_strip(&pvec);
1589                         __pagevec_release(&pvec);
1590                         spin_lock_irq(&zone->lru_lock);
1591                 }
1592         }
1593         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1594         if (!is_active_lru(lru))
1595                 __count_vm_events(PGDEACTIVATE, pgmoved);
1596 }
1597
1598 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1599                         struct scan_control *sc, int priority, int file)
1600 {
1601         unsigned long nr_taken;
1602         unsigned long pgscanned;
1603         unsigned long vm_flags;
1604         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1605         LIST_HEAD(l_active);
1606         LIST_HEAD(l_inactive);
1607         struct page *page;
1608         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1609         unsigned long nr_rotated = 0;
1610         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1611
1612         lru_add_drain();
1613
1614         if (!sc->may_unmap)
1615                 reclaim_mode |= ISOLATE_UNMAPPED;
1616         if (!sc->may_writepage)
1617                 reclaim_mode |= ISOLATE_CLEAN;
1618
1619         spin_lock_irq(&zone->lru_lock);
1620         if (scanning_global_lru(sc)) {
1621                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1622                                                 &pgscanned, sc->order,
1623                                                 reclaim_mode, zone,
1624                                                 1, file);
1625                 zone->pages_scanned += pgscanned;
1626         } else {
1627                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1628                                                 &pgscanned, sc->order,
1629                                                 reclaim_mode, zone,
1630                                                 sc->mem_cgroup, 1, file);
1631                 /*
1632                  * mem_cgroup_isolate_pages() keeps track of
1633                  * scanned pages on its own.
1634                  */
1635         }
1636
1637         reclaim_stat->recent_scanned[file] += nr_taken;
1638         if (!scanning_global_lru(sc))
1639                 sc->memcg_record->nr_scanned[file] += nr_taken;
1640
1641         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1642         if (file)
1643                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1644         else
1645                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1646         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1647         spin_unlock_irq(&zone->lru_lock);
1648
1649         while (!list_empty(&l_hold)) {
1650                 cond_resched();
1651                 page = lru_to_page(&l_hold);
1652                 list_del(&page->lru);
1653
1654                 if (unlikely(!page_evictable(page, NULL))) {
1655                         putback_lru_page(page);
1656                         continue;
1657                 }
1658
1659                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1660                         nr_rotated += hpage_nr_pages(page);
1661                         /*
1662                          * Identify referenced, file-backed active pages and
1663                          * give them one more trip around the active list. So
1664                          * that executable code get better chances to stay in
1665                          * memory under moderate memory pressure.  Anon pages
1666                          * are not likely to be evicted by use-once streaming
1667                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1668                          * so we ignore them here.
1669                          */
1670                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1671                                 list_add(&page->lru, &l_active);
1672                                 continue;
1673                         }
1674                 }
1675
1676                 ClearPageActive(page);  /* we are de-activating */
1677                 list_add(&page->lru, &l_inactive);
1678         }
1679
1680         /*
1681          * Move pages back to the lru list.
1682          */
1683         spin_lock_irq(&zone->lru_lock);
1684         /*
1685          * Count referenced pages from currently used mappings as rotated,
1686          * even though only some of them are actually re-activated.  This
1687          * helps balance scan pressure between file and anonymous pages in
1688          * get_scan_ratio.
1689          */
1690         reclaim_stat->recent_rotated[file] += nr_rotated;
1691         if (!scanning_global_lru(sc))
1692                 sc->memcg_record->nr_rotated[file] += nr_rotated;
1693
1694         move_active_pages_to_lru(zone, &l_active,
1695                                                 LRU_ACTIVE + file * LRU_FILE);
1696         move_active_pages_to_lru(zone, &l_inactive,
1697                                                 LRU_BASE   + file * LRU_FILE);
1698         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1699         spin_unlock_irq(&zone->lru_lock);
1700 }
1701
1702 #ifdef CONFIG_SWAP
1703 static int inactive_anon_is_low_global(struct zone *zone)
1704 {
1705         unsigned long active, inactive;
1706
1707         active = zone_page_state(zone, NR_ACTIVE_ANON);
1708         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1709
1710         if (inactive * zone->inactive_ratio < active)
1711                 return 1;
1712
1713         return 0;
1714 }
1715
1716 /**
1717  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1718  * @zone: zone to check
1719  * @sc:   scan control of this context
1720  *
1721  * Returns true if the zone does not have enough inactive anon pages,
1722  * meaning some active anon pages need to be deactivated.
1723  */
1724 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1725 {
1726         int low;
1727
1728         /*
1729          * If we don't have swap space, anonymous page deactivation
1730          * is pointless.
1731          */
1732         if (!total_swap_pages)
1733                 return 0;
1734
1735         if (scanning_global_lru(sc))
1736                 low = inactive_anon_is_low_global(zone);
1737         else
1738                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1739         return low;
1740 }
1741 #else
1742 static inline int inactive_anon_is_low(struct zone *zone,
1743                                         struct scan_control *sc)
1744 {
1745         return 0;
1746 }
1747 #endif
1748
1749 static int inactive_file_is_low_global(struct zone *zone)
1750 {
1751         unsigned long active, inactive;
1752
1753         active = zone_page_state(zone, NR_ACTIVE_FILE);
1754         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1755
1756         return (active > inactive);
1757 }
1758
1759 /**
1760  * inactive_file_is_low - check if file pages need to be deactivated
1761  * @zone: zone to check
1762  * @sc:   scan control of this context
1763  *
1764  * When the system is doing streaming IO, memory pressure here
1765  * ensures that active file pages get deactivated, until more
1766  * than half of the file pages are on the inactive list.
1767  *
1768  * Once we get to that situation, protect the system's working
1769  * set from being evicted by disabling active file page aging.
1770  *
1771  * This uses a different ratio than the anonymous pages, because
1772  * the page cache uses a use-once replacement algorithm.
1773  */
1774 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1775 {
1776         int low;
1777
1778         if (scanning_global_lru(sc))
1779                 low = inactive_file_is_low_global(zone);
1780         else
1781                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1782         return low;
1783 }
1784
1785 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1786                                 int file)
1787 {
1788         if (file)
1789                 return inactive_file_is_low(zone, sc);
1790         else
1791                 return inactive_anon_is_low(zone, sc);
1792 }
1793
1794 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1795         struct zone *zone, struct scan_control *sc, int priority)
1796 {
1797         int file = is_file_lru(lru);
1798
1799         if (is_active_lru(lru)) {
1800                 if (inactive_list_is_low(zone, sc, file))
1801                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1802                 return 0;
1803         }
1804
1805         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1806 }
1807
1808 static int vmscan_swappiness(struct scan_control *sc)
1809 {
1810         if (scanning_global_lru(sc))
1811                 return vm_swappiness;
1812         return mem_cgroup_swappiness(sc->mem_cgroup);
1813 }
1814
1815 /*
1816  * Determine how aggressively the anon and file LRU lists should be
1817  * scanned.  The relative value of each set of LRU lists is determined
1818  * by looking at the fraction of the pages scanned we did rotate back
1819  * onto the active list instead of evict.
1820  *
1821  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1822  */
1823 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1824                                         unsigned long *nr, int priority)
1825 {
1826         unsigned long anon, file, free;
1827         unsigned long anon_prio, file_prio;
1828         unsigned long ap, fp;
1829         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1830         u64 fraction[2], denominator;
1831         enum lru_list l;
1832         int noswap = 0;
1833         int force_scan = 0;
1834         unsigned long nr_force_scan[2];
1835
1836
1837         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1838                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1839         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1840                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1841
1842         if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) {
1843                 /* kswapd does zone balancing and need to scan this zone */
1844                 if (scanning_global_lru(sc) && current_is_kswapd())
1845                         force_scan = 1;
1846                 /* memcg may have small limit and need to avoid priority drop */
1847                 if (!scanning_global_lru(sc))
1848                         force_scan = 1;
1849         }
1850
1851         /* If we have no swap space, do not bother scanning anon pages. */
1852         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1853                 noswap = 1;
1854                 fraction[0] = 0;
1855                 fraction[1] = 1;
1856                 denominator = 1;
1857                 nr_force_scan[0] = 0;
1858                 nr_force_scan[1] = SWAP_CLUSTER_MAX;
1859                 goto out;
1860         }
1861
1862         if (scanning_global_lru(sc)) {
1863                 free  = zone_page_state(zone, NR_FREE_PAGES);
1864                 /* If we have very few page cache pages,
1865                    force-scan anon pages. */
1866                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1867                         fraction[0] = 1;
1868                         fraction[1] = 0;
1869                         denominator = 1;
1870                         nr_force_scan[0] = SWAP_CLUSTER_MAX;
1871                         nr_force_scan[1] = 0;
1872                         goto out;
1873                 }
1874         }
1875
1876         /*
1877          * With swappiness at 100, anonymous and file have the same priority.
1878          * This scanning priority is essentially the inverse of IO cost.
1879          */
1880         anon_prio = vmscan_swappiness(sc);
1881         file_prio = 200 - vmscan_swappiness(sc);
1882
1883         /*
1884          * OK, so we have swap space and a fair amount of page cache
1885          * pages.  We use the recently rotated / recently scanned
1886          * ratios to determine how valuable each cache is.
1887          *
1888          * Because workloads change over time (and to avoid overflow)
1889          * we keep these statistics as a floating average, which ends
1890          * up weighing recent references more than old ones.
1891          *
1892          * anon in [0], file in [1]
1893          */
1894         spin_lock_irq(&zone->lru_lock);
1895         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1896                 reclaim_stat->recent_scanned[0] /= 2;
1897                 reclaim_stat->recent_rotated[0] /= 2;
1898         }
1899
1900         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1901                 reclaim_stat->recent_scanned[1] /= 2;
1902                 reclaim_stat->recent_rotated[1] /= 2;
1903         }
1904
1905         /*
1906          * The amount of pressure on anon vs file pages is inversely
1907          * proportional to the fraction of recently scanned pages on
1908          * each list that were recently referenced and in active use.
1909          */
1910         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1911         ap /= reclaim_stat->recent_rotated[0] + 1;
1912
1913         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1914         fp /= reclaim_stat->recent_rotated[1] + 1;
1915         spin_unlock_irq(&zone->lru_lock);
1916
1917         fraction[0] = ap;
1918         fraction[1] = fp;
1919         denominator = ap + fp + 1;
1920         if (force_scan) {
1921                 unsigned long scan = SWAP_CLUSTER_MAX;
1922                 nr_force_scan[0] = div64_u64(scan * ap, denominator);
1923                 nr_force_scan[1] = div64_u64(scan * fp, denominator);
1924         }
1925 out:
1926         for_each_evictable_lru(l) {
1927                 int file = is_file_lru(l);
1928                 unsigned long scan;
1929
1930                 scan = zone_nr_lru_pages(zone, sc, l);
1931                 if (priority || noswap) {
1932                         scan >>= priority;
1933                         scan = div64_u64(scan * fraction[file], denominator);
1934                 }
1935
1936                 /*
1937                  * If zone is small or memcg is small, nr[l] can be 0.
1938                  * This results no-scan on this priority and priority drop down.
1939                  * For global direct reclaim, it can visit next zone and tend
1940                  * not to have problems. For global kswapd, it's for zone
1941                  * balancing and it need to scan a small amounts. When using
1942                  * memcg, priority drop can cause big latency. So, it's better
1943                  * to scan small amount. See may_noscan above.
1944                  */
1945                 if (!scan && force_scan)
1946                         scan = nr_force_scan[file];
1947                 nr[l] = scan;
1948         }
1949 }
1950
1951 /*
1952  * Reclaim/compaction depends on a number of pages being freed. To avoid
1953  * disruption to the system, a small number of order-0 pages continue to be
1954  * rotated and reclaimed in the normal fashion. However, by the time we get
1955  * back to the allocator and call try_to_compact_zone(), we ensure that
1956  * there are enough free pages for it to be likely successful
1957  */
1958 static inline bool should_continue_reclaim(struct zone *zone,
1959                                         unsigned long nr_reclaimed,
1960                                         unsigned long nr_scanned,
1961                                         struct scan_control *sc)
1962 {
1963         unsigned long pages_for_compaction;
1964         unsigned long inactive_lru_pages;
1965
1966         /* If not in reclaim/compaction mode, stop */
1967         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1968                 return false;
1969
1970         /* Consider stopping depending on scan and reclaim activity */
1971         if (sc->gfp_mask & __GFP_REPEAT) {
1972                 /*
1973                  * For __GFP_REPEAT allocations, stop reclaiming if the
1974                  * full LRU list has been scanned and we are still failing
1975                  * to reclaim pages. This full LRU scan is potentially
1976                  * expensive but a __GFP_REPEAT caller really wants to succeed
1977                  */
1978                 if (!nr_reclaimed && !nr_scanned)
1979                         return false;
1980         } else {
1981                 /*
1982                  * For non-__GFP_REPEAT allocations which can presumably
1983                  * fail without consequence, stop if we failed to reclaim
1984                  * any pages from the last SWAP_CLUSTER_MAX number of
1985                  * pages that were scanned. This will return to the
1986                  * caller faster at the risk reclaim/compaction and
1987                  * the resulting allocation attempt fails
1988                  */
1989                 if (!nr_reclaimed)
1990                         return false;
1991         }
1992
1993         /*
1994          * If we have not reclaimed enough pages for compaction and the
1995          * inactive lists are large enough, continue reclaiming
1996          */
1997         pages_for_compaction = (2UL << sc->order);
1998         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1999                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2000         if (sc->nr_reclaimed < pages_for_compaction &&
2001                         inactive_lru_pages > pages_for_compaction)
2002                 return true;
2003
2004         /* If compaction would go ahead or the allocation would succeed, stop */
2005         switch (compaction_suitable(zone, sc->order)) {
2006         case COMPACT_PARTIAL:
2007         case COMPACT_CONTINUE:
2008                 return false;
2009         default:
2010                 return true;
2011         }
2012 }
2013
2014 /*
2015  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2016  */
2017 static void shrink_zone(int priority, struct zone *zone,
2018                                 struct scan_control *sc)
2019 {
2020         unsigned long nr[NR_LRU_LISTS];
2021         unsigned long nr_to_scan;
2022         enum lru_list l;
2023         unsigned long nr_reclaimed, nr_scanned;
2024         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2025
2026 restart:
2027         nr_reclaimed = 0;
2028         nr_scanned = sc->nr_scanned;
2029         get_scan_count(zone, sc, nr, priority);
2030
2031         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2032                                         nr[LRU_INACTIVE_FILE]) {
2033                 for_each_evictable_lru(l) {
2034                         if (nr[l]) {
2035                                 nr_to_scan = min_t(unsigned long,
2036                                                    nr[l], SWAP_CLUSTER_MAX);
2037                                 nr[l] -= nr_to_scan;
2038
2039                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2040                                                             zone, sc, priority);
2041                         }
2042                 }
2043                 /*
2044                  * On large memory systems, scan >> priority can become
2045                  * really large. This is fine for the starting priority;
2046                  * we want to put equal scanning pressure on each zone.
2047                  * However, if the VM has a harder time of freeing pages,
2048                  * with multiple processes reclaiming pages, the total
2049                  * freeing target can get unreasonably large.
2050                  */
2051                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2052                         break;
2053         }
2054         sc->nr_reclaimed += nr_reclaimed;
2055
2056         /*
2057          * Even if we did not try to evict anon pages at all, we want to
2058          * rebalance the anon lru active/inactive ratio.
2059          */
2060         if (inactive_anon_is_low(zone, sc))
2061                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2062
2063         /* reclaim/compaction might need reclaim to continue */
2064         if (should_continue_reclaim(zone, nr_reclaimed,
2065                                         sc->nr_scanned - nr_scanned, sc))
2066                 goto restart;
2067
2068         throttle_vm_writeout(sc->gfp_mask);
2069 }
2070
2071 /*
2072  * This is the direct reclaim path, for page-allocating processes.  We only
2073  * try to reclaim pages from zones which will satisfy the caller's allocation
2074  * request.
2075  *
2076  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2077  * Because:
2078  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2079  *    allocation or
2080  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2081  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2082  *    zone defense algorithm.
2083  *
2084  * If a zone is deemed to be full of pinned pages then just give it a light
2085  * scan then give up on it.
2086  */
2087 static void shrink_zones(int priority, struct zonelist *zonelist,
2088                                         struct scan_control *sc)
2089 {
2090         struct zoneref *z;
2091         struct zone *zone;
2092         unsigned long nr_soft_reclaimed;
2093         unsigned long nr_soft_scanned;
2094
2095         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2096                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2097                 if (!populated_zone(zone))
2098                         continue;
2099                 /*
2100                  * Take care memory controller reclaiming has small influence
2101                  * to global LRU.
2102                  */
2103                 if (scanning_global_lru(sc)) {
2104                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2105                                 continue;
2106                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2107                                 continue;       /* Let kswapd poll it */
2108                         /*
2109                          * This steals pages from memory cgroups over softlimit
2110                          * and returns the number of reclaimed pages and
2111                          * scanned pages. This works for global memory pressure
2112                          * and balancing, not for a memcg's limit.
2113                          */
2114                         nr_soft_scanned = 0;
2115                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2116                                                 sc->order, sc->gfp_mask,
2117                                                 &nr_soft_scanned);
2118                         sc->nr_reclaimed += nr_soft_reclaimed;
2119                         sc->nr_scanned += nr_soft_scanned;
2120                         /* need some check for avoid more shrink_zone() */
2121                 }
2122
2123                 shrink_zone(priority, zone, sc);
2124         }
2125 }
2126
2127 static bool zone_reclaimable(struct zone *zone)
2128 {
2129         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2130 }
2131
2132 /* All zones in zonelist are unreclaimable? */
2133 static bool all_unreclaimable(struct zonelist *zonelist,
2134                 struct scan_control *sc)
2135 {
2136         struct zoneref *z;
2137         struct zone *zone;
2138
2139         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2140                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2141                 if (!populated_zone(zone))
2142                         continue;
2143                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2144                         continue;
2145                 if (!zone->all_unreclaimable)
2146                         return false;
2147         }
2148
2149         return true;
2150 }
2151
2152 /*
2153  * This is the main entry point to direct page reclaim.
2154  *
2155  * If a full scan of the inactive list fails to free enough memory then we
2156  * are "out of memory" and something needs to be killed.
2157  *
2158  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2159  * high - the zone may be full of dirty or under-writeback pages, which this
2160  * caller can't do much about.  We kick the writeback threads and take explicit
2161  * naps in the hope that some of these pages can be written.  But if the
2162  * allocating task holds filesystem locks which prevent writeout this might not
2163  * work, and the allocation attempt will fail.
2164  *
2165  * returns:     0, if no pages reclaimed
2166  *              else, the number of pages reclaimed
2167  */
2168 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2169                                         struct scan_control *sc,
2170                                         struct shrink_control *shrink)
2171 {
2172         int priority;
2173         unsigned long total_scanned = 0;
2174         struct reclaim_state *reclaim_state = current->reclaim_state;
2175         struct zoneref *z;
2176         struct zone *zone;
2177         unsigned long writeback_threshold;
2178
2179         get_mems_allowed();
2180         delayacct_freepages_start();
2181
2182         if (scanning_global_lru(sc))
2183                 count_vm_event(ALLOCSTALL);
2184
2185         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2186                 sc->nr_scanned = 0;
2187                 if (!priority)
2188                         disable_swap_token(sc->mem_cgroup);
2189                 shrink_zones(priority, zonelist, sc);
2190                 /*
2191                  * Don't shrink slabs when reclaiming memory from
2192                  * over limit cgroups
2193                  */
2194                 if (scanning_global_lru(sc)) {
2195                         unsigned long lru_pages = 0;
2196                         for_each_zone_zonelist(zone, z, zonelist,
2197                                         gfp_zone(sc->gfp_mask)) {
2198                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2199                                         continue;
2200
2201                                 lru_pages += zone_reclaimable_pages(zone);
2202                         }
2203
2204                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2205                         if (reclaim_state) {
2206                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2207                                 reclaim_state->reclaimed_slab = 0;
2208                         }
2209                 }
2210                 total_scanned += sc->nr_scanned;
2211                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2212                         goto out;
2213
2214                 /*
2215                  * Try to write back as many pages as we just scanned.  This
2216                  * tends to cause slow streaming writers to write data to the
2217                  * disk smoothly, at the dirtying rate, which is nice.   But
2218                  * that's undesirable in laptop mode, where we *want* lumpy
2219                  * writeout.  So in laptop mode, write out the whole world.
2220                  */
2221                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2222                 if (total_scanned > writeback_threshold) {
2223                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2224                         sc->may_writepage = 1;
2225                 }
2226
2227                 /* Take a nap, wait for some writeback to complete */
2228                 if (!sc->hibernation_mode && sc->nr_scanned &&
2229                     priority < DEF_PRIORITY - 2) {
2230                         struct zone *preferred_zone;
2231
2232                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2233                                                 &cpuset_current_mems_allowed,
2234                                                 &preferred_zone);
2235                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2236                 }
2237         }
2238
2239 out:
2240         delayacct_freepages_end();
2241         put_mems_allowed();
2242
2243         if (sc->nr_reclaimed)
2244                 return sc->nr_reclaimed;
2245
2246         /*
2247          * As hibernation is going on, kswapd is freezed so that it can't mark
2248          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2249          * check.
2250          */
2251         if (oom_killer_disabled)
2252                 return 0;
2253
2254         /* top priority shrink_zones still had more to do? don't OOM, then */
2255         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2256                 return 1;
2257
2258         return 0;
2259 }
2260
2261 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2262                                 gfp_t gfp_mask, nodemask_t *nodemask)
2263 {
2264         unsigned long nr_reclaimed;
2265         struct scan_control sc = {
2266                 .gfp_mask = gfp_mask,
2267                 .may_writepage = !laptop_mode,
2268                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2269                 .may_unmap = 1,
2270                 .may_swap = 1,
2271                 .order = order,
2272                 .mem_cgroup = NULL,
2273                 .nodemask = nodemask,
2274         };
2275         struct shrink_control shrink = {
2276                 .gfp_mask = sc.gfp_mask,
2277         };
2278
2279         trace_mm_vmscan_direct_reclaim_begin(order,
2280                                 sc.may_writepage,
2281                                 gfp_mask);
2282
2283         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2284
2285         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2286
2287         return nr_reclaimed;
2288 }
2289
2290 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2291
2292 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2293                                         gfp_t gfp_mask, bool noswap,
2294                                         struct zone *zone,
2295                                         struct memcg_scanrecord *rec,
2296                                         unsigned long *scanned)
2297 {
2298         struct scan_control sc = {
2299                 .nr_scanned = 0,
2300                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2301                 .may_writepage = !laptop_mode,
2302                 .may_unmap = 1,
2303                 .may_swap = !noswap,
2304                 .order = 0,
2305                 .mem_cgroup = mem,
2306                 .memcg_record = rec,
2307         };
2308         ktime_t start, end;
2309
2310         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2311                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2312
2313         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2314                                                       sc.may_writepage,
2315                                                       sc.gfp_mask);
2316
2317         start = ktime_get();
2318         /*
2319          * NOTE: Although we can get the priority field, using it
2320          * here is not a good idea, since it limits the pages we can scan.
2321          * if we don't reclaim here, the shrink_zone from balance_pgdat
2322          * will pick up pages from other mem cgroup's as well. We hack
2323          * the priority and make it zero.
2324          */
2325         shrink_zone(0, zone, &sc);
2326         end = ktime_get();
2327
2328         if (rec)
2329                 rec->elapsed += ktime_to_ns(ktime_sub(end, start));
2330         *scanned = sc.nr_scanned;
2331
2332         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2333
2334         return sc.nr_reclaimed;
2335 }
2336
2337 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2338                                            gfp_t gfp_mask,
2339                                            bool noswap,
2340                                            struct memcg_scanrecord *rec)
2341 {
2342         struct zonelist *zonelist;
2343         unsigned long nr_reclaimed;
2344         ktime_t start, end;
2345         int nid;
2346         struct scan_control sc = {
2347                 .may_writepage = !laptop_mode,
2348                 .may_unmap = 1,
2349                 .may_swap = !noswap,
2350                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2351                 .order = 0,
2352                 .mem_cgroup = mem_cont,
2353                 .memcg_record = rec,
2354                 .nodemask = NULL, /* we don't care the placement */
2355                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2356                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2357         };
2358         struct shrink_control shrink = {
2359                 .gfp_mask = sc.gfp_mask,
2360         };
2361
2362         start = ktime_get();
2363         /*
2364          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2365          * take care of from where we get pages. So the node where we start the
2366          * scan does not need to be the current node.
2367          */
2368         nid = mem_cgroup_select_victim_node(mem_cont);
2369
2370         zonelist = NODE_DATA(nid)->node_zonelists;
2371
2372         trace_mm_vmscan_memcg_reclaim_begin(0,
2373                                             sc.may_writepage,
2374                                             sc.gfp_mask);
2375
2376         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2377         end = ktime_get();
2378         if (rec)
2379                 rec->elapsed += ktime_to_ns(ktime_sub(end, start));
2380
2381         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2382
2383         return nr_reclaimed;
2384 }
2385 #endif
2386
2387 /*
2388  * pgdat_balanced is used when checking if a node is balanced for high-order
2389  * allocations. Only zones that meet watermarks and are in a zone allowed
2390  * by the callers classzone_idx are added to balanced_pages. The total of
2391  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2392  * for the node to be considered balanced. Forcing all zones to be balanced
2393  * for high orders can cause excessive reclaim when there are imbalanced zones.
2394  * The choice of 25% is due to
2395  *   o a 16M DMA zone that is balanced will not balance a zone on any
2396  *     reasonable sized machine
2397  *   o On all other machines, the top zone must be at least a reasonable
2398  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2399  *     would need to be at least 256M for it to be balance a whole node.
2400  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2401  *     to balance a node on its own. These seemed like reasonable ratios.
2402  */
2403 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2404                                                 int classzone_idx)
2405 {
2406         unsigned long present_pages = 0;
2407         int i;
2408
2409         for (i = 0; i <= classzone_idx; i++)
2410                 present_pages += pgdat->node_zones[i].present_pages;
2411
2412         /* A special case here: if zone has no page, we think it's balanced */
2413         return balanced_pages >= (present_pages >> 2);
2414 }
2415
2416 /* is kswapd sleeping prematurely? */
2417 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2418                                         int classzone_idx)
2419 {
2420         int i;
2421         unsigned long balanced = 0;
2422         bool all_zones_ok = true;
2423
2424         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2425         if (remaining)
2426                 return true;
2427
2428         /* Check the watermark levels */
2429         for (i = 0; i <= classzone_idx; i++) {
2430                 struct zone *zone = pgdat->node_zones + i;
2431
2432                 if (!populated_zone(zone))
2433                         continue;
2434
2435                 /*
2436                  * balance_pgdat() skips over all_unreclaimable after
2437                  * DEF_PRIORITY. Effectively, it considers them balanced so
2438                  * they must be considered balanced here as well if kswapd
2439                  * is to sleep
2440                  */
2441                 if (zone->all_unreclaimable) {
2442                         balanced += zone->present_pages;
2443                         continue;
2444                 }
2445
2446                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2447                                                         i, 0))
2448                         all_zones_ok = false;
2449                 else
2450                         balanced += zone->present_pages;
2451         }
2452
2453         /*
2454          * For high-order requests, the balanced zones must contain at least
2455          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2456          * must be balanced
2457          */
2458         if (order)
2459                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2460         else
2461                 return !all_zones_ok;
2462 }
2463
2464 /*
2465  * For kswapd, balance_pgdat() will work across all this node's zones until
2466  * they are all at high_wmark_pages(zone).
2467  *
2468  * Returns the final order kswapd was reclaiming at
2469  *
2470  * There is special handling here for zones which are full of pinned pages.
2471  * This can happen if the pages are all mlocked, or if they are all used by
2472  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2473  * What we do is to detect the case where all pages in the zone have been
2474  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2475  * dead and from now on, only perform a short scan.  Basically we're polling
2476  * the zone for when the problem goes away.
2477  *
2478  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2479  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2480  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2481  * lower zones regardless of the number of free pages in the lower zones. This
2482  * interoperates with the page allocator fallback scheme to ensure that aging
2483  * of pages is balanced across the zones.
2484  */
2485 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2486                                                         int *classzone_idx)
2487 {
2488         int all_zones_ok;
2489         unsigned long balanced;
2490         int priority;
2491         int i;
2492         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2493         unsigned long total_scanned;
2494         struct reclaim_state *reclaim_state = current->reclaim_state;
2495         unsigned long nr_soft_reclaimed;
2496         unsigned long nr_soft_scanned;
2497         struct scan_control sc = {
2498                 .gfp_mask = GFP_KERNEL,
2499                 .may_unmap = 1,
2500                 .may_swap = 1,
2501                 /*
2502                  * kswapd doesn't want to be bailed out while reclaim. because
2503                  * we want to put equal scanning pressure on each zone.
2504                  */
2505                 .nr_to_reclaim = ULONG_MAX,
2506                 .order = order,
2507                 .mem_cgroup = NULL,
2508         };
2509         struct shrink_control shrink = {
2510                 .gfp_mask = sc.gfp_mask,
2511         };
2512 loop_again:
2513         total_scanned = 0;
2514         sc.nr_reclaimed = 0;
2515         sc.may_writepage = !laptop_mode;
2516         count_vm_event(PAGEOUTRUN);
2517
2518         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2519                 unsigned long lru_pages = 0;
2520                 int has_under_min_watermark_zone = 0;
2521
2522                 /* The swap token gets in the way of swapout... */
2523                 if (!priority)
2524                         disable_swap_token(NULL);
2525
2526                 all_zones_ok = 1;
2527                 balanced = 0;
2528
2529                 /*
2530                  * Scan in the highmem->dma direction for the highest
2531                  * zone which needs scanning
2532                  */
2533                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2534                         struct zone *zone = pgdat->node_zones + i;
2535
2536                         if (!populated_zone(zone))
2537                                 continue;
2538
2539                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2540                                 continue;
2541
2542                         /*
2543                          * Do some background aging of the anon list, to give
2544                          * pages a chance to be referenced before reclaiming.
2545                          */
2546                         if (inactive_anon_is_low(zone, &sc))
2547                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2548                                                         &sc, priority, 0);
2549
2550                         if (!zone_watermark_ok_safe(zone, order,
2551                                         high_wmark_pages(zone), 0, 0)) {
2552                                 end_zone = i;
2553                                 break;
2554                         } else {
2555                                 /* If balanced, clear the congested flag */
2556                                 zone_clear_flag(zone, ZONE_CONGESTED);
2557                         }
2558                 }
2559                 if (i < 0)
2560                         goto out;
2561
2562                 for (i = 0; i <= end_zone; i++) {
2563                         struct zone *zone = pgdat->node_zones + i;
2564
2565                         lru_pages += zone_reclaimable_pages(zone);
2566                 }
2567
2568                 /*
2569                  * Now scan the zone in the dma->highmem direction, stopping
2570                  * at the last zone which needs scanning.
2571                  *
2572                  * We do this because the page allocator works in the opposite
2573                  * direction.  This prevents the page allocator from allocating
2574                  * pages behind kswapd's direction of progress, which would
2575                  * cause too much scanning of the lower zones.
2576                  */
2577                 for (i = 0; i <= end_zone; i++) {
2578                         struct zone *zone = pgdat->node_zones + i;
2579                         int nr_slab;
2580                         unsigned long balance_gap;
2581
2582                         if (!populated_zone(zone))
2583                                 continue;
2584
2585                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2586                                 continue;
2587
2588                         sc.nr_scanned = 0;
2589
2590                         nr_soft_scanned = 0;
2591                         /*
2592                          * Call soft limit reclaim before calling shrink_zone.
2593                          */
2594                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2595                                                         order, sc.gfp_mask,
2596                                                         &nr_soft_scanned);
2597                         sc.nr_reclaimed += nr_soft_reclaimed;
2598                         total_scanned += nr_soft_scanned;
2599
2600                         /*
2601                          * We put equal pressure on every zone, unless
2602                          * one zone has way too many pages free
2603                          * already. The "too many pages" is defined
2604                          * as the high wmark plus a "gap" where the
2605                          * gap is either the low watermark or 1%
2606                          * of the zone, whichever is smaller.
2607                          */
2608                         balance_gap = min(low_wmark_pages(zone),
2609                                 (zone->present_pages +
2610                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2611                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2612                         if (!zone_watermark_ok_safe(zone, order,
2613                                         high_wmark_pages(zone) + balance_gap,
2614                                         end_zone, 0)) {
2615                                 shrink_zone(priority, zone, &sc);
2616
2617                                 reclaim_state->reclaimed_slab = 0;
2618                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2619                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2620                                 total_scanned += sc.nr_scanned;
2621
2622                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2623                                         zone->all_unreclaimable = 1;
2624                         }
2625
2626                         /*
2627                          * If we've done a decent amount of scanning and
2628                          * the reclaim ratio is low, start doing writepage
2629                          * even in laptop mode
2630                          */
2631                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2632                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2633                                 sc.may_writepage = 1;
2634
2635                         if (zone->all_unreclaimable) {
2636                                 if (end_zone && end_zone == i)
2637                                         end_zone--;
2638                                 continue;
2639                         }
2640
2641                         if (!zone_watermark_ok_safe(zone, order,
2642                                         high_wmark_pages(zone), end_zone, 0)) {
2643                                 all_zones_ok = 0;
2644                                 /*
2645                                  * We are still under min water mark.  This
2646                                  * means that we have a GFP_ATOMIC allocation
2647                                  * failure risk. Hurry up!
2648                                  */
2649                                 if (!zone_watermark_ok_safe(zone, order,
2650                                             min_wmark_pages(zone), end_zone, 0))
2651                                         has_under_min_watermark_zone = 1;
2652                         } else {
2653                                 /*
2654                                  * If a zone reaches its high watermark,
2655                                  * consider it to be no longer congested. It's
2656                                  * possible there are dirty pages backed by
2657                                  * congested BDIs but as pressure is relieved,
2658                                  * spectulatively avoid congestion waits
2659                                  */
2660                                 zone_clear_flag(zone, ZONE_CONGESTED);
2661                                 if (i <= *classzone_idx)
2662                                         balanced += zone->present_pages;
2663                         }
2664
2665                 }
2666                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2667                         break;          /* kswapd: all done */
2668                 /*
2669                  * OK, kswapd is getting into trouble.  Take a nap, then take
2670                  * another pass across the zones.
2671                  */
2672                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2673                         if (has_under_min_watermark_zone)
2674                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2675                         else
2676                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2677                 }
2678
2679                 /*
2680                  * We do this so kswapd doesn't build up large priorities for
2681                  * example when it is freeing in parallel with allocators. It
2682                  * matches the direct reclaim path behaviour in terms of impact
2683                  * on zone->*_priority.
2684                  */
2685                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2686                         break;
2687         }
2688 out:
2689
2690         /*
2691          * order-0: All zones must meet high watermark for a balanced node
2692          * high-order: Balanced zones must make up at least 25% of the node
2693          *             for the node to be balanced
2694          */
2695         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2696                 cond_resched();
2697
2698                 try_to_freeze();
2699
2700                 /*
2701                  * Fragmentation may mean that the system cannot be
2702                  * rebalanced for high-order allocations in all zones.
2703                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2704                  * it means the zones have been fully scanned and are still
2705                  * not balanced. For high-order allocations, there is
2706                  * little point trying all over again as kswapd may
2707                  * infinite loop.
2708                  *
2709                  * Instead, recheck all watermarks at order-0 as they
2710                  * are the most important. If watermarks are ok, kswapd will go
2711                  * back to sleep. High-order users can still perform direct
2712                  * reclaim if they wish.
2713                  */
2714                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2715                         order = sc.order = 0;
2716
2717                 goto loop_again;
2718         }
2719
2720         /*
2721          * If kswapd was reclaiming at a higher order, it has the option of
2722          * sleeping without all zones being balanced. Before it does, it must
2723          * ensure that the watermarks for order-0 on *all* zones are met and
2724          * that the congestion flags are cleared. The congestion flag must
2725          * be cleared as kswapd is the only mechanism that clears the flag
2726          * and it is potentially going to sleep here.
2727          */
2728         if (order) {
2729                 for (i = 0; i <= end_zone; i++) {
2730                         struct zone *zone = pgdat->node_zones + i;
2731
2732                         if (!populated_zone(zone))
2733                                 continue;
2734
2735                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2736                                 continue;
2737
2738                         /* Confirm the zone is balanced for order-0 */
2739                         if (!zone_watermark_ok(zone, 0,
2740                                         high_wmark_pages(zone), 0, 0)) {
2741                                 order = sc.order = 0;
2742                                 goto loop_again;
2743                         }
2744
2745                         /* If balanced, clear the congested flag */
2746                         zone_clear_flag(zone, ZONE_CONGESTED);
2747                 }
2748         }
2749
2750         /*
2751          * Return the order we were reclaiming at so sleeping_prematurely()
2752          * makes a decision on the order we were last reclaiming at. However,
2753          * if another caller entered the allocator slow path while kswapd
2754          * was awake, order will remain at the higher level
2755          */
2756         *classzone_idx = end_zone;
2757         return order;
2758 }
2759
2760 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2761 {
2762         long remaining = 0;
2763         DEFINE_WAIT(wait);
2764
2765         if (freezing(current) || kthread_should_stop())
2766                 return;
2767
2768         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2769
2770         /* Try to sleep for a short interval */
2771         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2772                 remaining = schedule_timeout(HZ/10);
2773                 finish_wait(&pgdat->kswapd_wait, &wait);
2774                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2775         }
2776
2777         /*
2778          * After a short sleep, check if it was a premature sleep. If not, then
2779          * go fully to sleep until explicitly woken up.
2780          */
2781         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2782                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2783
2784                 /*
2785                  * vmstat counters are not perfectly accurate and the estimated
2786                  * value for counters such as NR_FREE_PAGES can deviate from the
2787                  * true value by nr_online_cpus * threshold. To avoid the zone
2788                  * watermarks being breached while under pressure, we reduce the
2789                  * per-cpu vmstat threshold while kswapd is awake and restore
2790                  * them before going back to sleep.
2791                  */
2792                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2793                 schedule();
2794                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2795         } else {
2796                 if (remaining)
2797                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2798                 else
2799                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2800         }
2801         finish_wait(&pgdat->kswapd_wait, &wait);
2802 }
2803
2804 /*
2805  * The background pageout daemon, started as a kernel thread
2806  * from the init process.
2807  *
2808  * This basically trickles out pages so that we have _some_
2809  * free memory available even if there is no other activity
2810  * that frees anything up. This is needed for things like routing
2811  * etc, where we otherwise might have all activity going on in
2812  * asynchronous contexts that cannot page things out.
2813  *
2814  * If there are applications that are active memory-allocators
2815  * (most normal use), this basically shouldn't matter.
2816  */
2817 static int kswapd(void *p)
2818 {
2819         unsigned long order, new_order;
2820         int classzone_idx, new_classzone_idx;
2821         pg_data_t *pgdat = (pg_data_t*)p;
2822         struct task_struct *tsk = current;
2823
2824         struct reclaim_state reclaim_state = {
2825                 .reclaimed_slab = 0,
2826         };
2827         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2828
2829         lockdep_set_current_reclaim_state(GFP_KERNEL);
2830
2831         if (!cpumask_empty(cpumask))
2832                 set_cpus_allowed_ptr(tsk, cpumask);
2833         current->reclaim_state = &reclaim_state;
2834
2835         /*
2836          * Tell the memory management that we're a "memory allocator",
2837          * and that if we need more memory we should get access to it
2838          * regardless (see "__alloc_pages()"). "kswapd" should
2839          * never get caught in the normal page freeing logic.
2840          *
2841          * (Kswapd normally doesn't need memory anyway, but sometimes
2842          * you need a small amount of memory in order to be able to
2843          * page out something else, and this flag essentially protects
2844          * us from recursively trying to free more memory as we're
2845          * trying to free the first piece of memory in the first place).
2846          */
2847         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2848         set_freezable();
2849
2850         order = new_order = 0;
2851         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2852         for ( ; ; ) {
2853                 int ret;
2854
2855                 /*
2856                  * If the last balance_pgdat was unsuccessful it's unlikely a
2857                  * new request of a similar or harder type will succeed soon
2858                  * so consider going to sleep on the basis we reclaimed at
2859                  */
2860                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2861                         new_order = pgdat->kswapd_max_order;
2862                         new_classzone_idx = pgdat->classzone_idx;
2863                         pgdat->kswapd_max_order =  0;
2864                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2865                 }
2866
2867                 if (order < new_order || classzone_idx > new_classzone_idx) {
2868                         /*
2869                          * Don't sleep if someone wants a larger 'order'
2870                          * allocation or has tigher zone constraints
2871                          */
2872                         order = new_order;
2873                         classzone_idx = new_classzone_idx;
2874                 } else {
2875                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2876                         order = pgdat->kswapd_max_order;
2877                         classzone_idx = pgdat->classzone_idx;
2878                         pgdat->kswapd_max_order = 0;
2879                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2880                 }
2881
2882                 ret = try_to_freeze();
2883                 if (kthread_should_stop())
2884                         break;
2885
2886                 /*
2887                  * We can speed up thawing tasks if we don't call balance_pgdat
2888                  * after returning from the refrigerator
2889                  */
2890                 if (!ret) {
2891                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2892                         order = balance_pgdat(pgdat, order, &classzone_idx);
2893                 }
2894         }
2895         return 0;
2896 }
2897
2898 /*
2899  * A zone is low on free memory, so wake its kswapd task to service it.
2900  */
2901 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2902 {
2903         pg_data_t *pgdat;
2904
2905         if (!populated_zone(zone))
2906                 return;
2907
2908         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2909                 return;
2910         pgdat = zone->zone_pgdat;
2911         if (pgdat->kswapd_max_order < order) {
2912                 pgdat->kswapd_max_order = order;
2913                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2914         }
2915         if (!waitqueue_active(&pgdat->kswapd_wait))
2916                 return;
2917         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2918                 return;
2919
2920         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2921         wake_up_interruptible(&pgdat->kswapd_wait);
2922 }
2923
2924 /*
2925  * The reclaimable count would be mostly accurate.
2926  * The less reclaimable pages may be
2927  * - mlocked pages, which will be moved to unevictable list when encountered
2928  * - mapped pages, which may require several travels to be reclaimed
2929  * - dirty pages, which is not "instantly" reclaimable
2930  */
2931 unsigned long global_reclaimable_pages(void)
2932 {
2933         int nr;
2934
2935         nr = global_page_state(NR_ACTIVE_FILE) +
2936              global_page_state(NR_INACTIVE_FILE);
2937
2938         if (nr_swap_pages > 0)
2939                 nr += global_page_state(NR_ACTIVE_ANON) +
2940                       global_page_state(NR_INACTIVE_ANON);
2941
2942         return nr;
2943 }
2944
2945 unsigned long zone_reclaimable_pages(struct zone *zone)
2946 {
2947         int nr;
2948
2949         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2950              zone_page_state(zone, NR_INACTIVE_FILE);
2951
2952         if (nr_swap_pages > 0)
2953                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2954                       zone_page_state(zone, NR_INACTIVE_ANON);
2955
2956         return nr;
2957 }
2958
2959 #ifdef CONFIG_HIBERNATION
2960 /*
2961  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2962  * freed pages.
2963  *
2964  * Rather than trying to age LRUs the aim is to preserve the overall
2965  * LRU order by reclaiming preferentially
2966  * inactive > active > active referenced > active mapped
2967  */
2968 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2969 {
2970         struct reclaim_state reclaim_state;
2971         struct scan_control sc = {
2972                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2973                 .may_swap = 1,
2974                 .may_unmap = 1,
2975                 .may_writepage = 1,
2976                 .nr_to_reclaim = nr_to_reclaim,
2977                 .hibernation_mode = 1,
2978                 .order = 0,
2979         };
2980         struct shrink_control shrink = {
2981                 .gfp_mask = sc.gfp_mask,
2982         };
2983         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2984         struct task_struct *p = current;
2985         unsigned long nr_reclaimed;
2986
2987         p->flags |= PF_MEMALLOC;
2988         lockdep_set_current_reclaim_state(sc.gfp_mask);
2989         reclaim_state.reclaimed_slab = 0;
2990         p->reclaim_state = &reclaim_state;
2991
2992         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2993
2994         p->reclaim_state = NULL;
2995         lockdep_clear_current_reclaim_state();
2996         p->flags &= ~PF_MEMALLOC;
2997
2998         return nr_reclaimed;
2999 }
3000 #endif /* CONFIG_HIBERNATION */
3001
3002 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3003    not required for correctness.  So if the last cpu in a node goes
3004    away, we get changed to run anywhere: as the first one comes back,
3005    restore their cpu bindings. */
3006 static int __devinit cpu_callback(struct notifier_block *nfb,
3007                                   unsigned long action, void *hcpu)
3008 {
3009         int nid;
3010
3011         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3012                 for_each_node_state(nid, N_HIGH_MEMORY) {
3013                         pg_data_t *pgdat = NODE_DATA(nid);
3014                         const struct cpumask *mask;
3015
3016                         mask = cpumask_of_node(pgdat->node_id);
3017
3018                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3019                                 /* One of our CPUs online: restore mask */
3020                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3021                 }
3022         }
3023         return NOTIFY_OK;
3024 }
3025
3026 /*
3027  * This kswapd start function will be called by init and node-hot-add.
3028  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3029  */
3030 int kswapd_run(int nid)
3031 {
3032         pg_data_t *pgdat = NODE_DATA(nid);
3033         int ret = 0;
3034
3035         if (pgdat->kswapd)
3036                 return 0;
3037
3038         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3039         if (IS_ERR(pgdat->kswapd)) {
3040                 /* failure at boot is fatal */
3041                 BUG_ON(system_state == SYSTEM_BOOTING);
3042                 printk("Failed to start kswapd on node %d\n",nid);
3043                 ret = -1;
3044         }
3045         return ret;
3046 }
3047
3048 /*
3049  * Called by memory hotplug when all memory in a node is offlined.
3050  */
3051 void kswapd_stop(int nid)
3052 {
3053         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3054
3055         if (kswapd)
3056                 kthread_stop(kswapd);
3057 }
3058
3059 static int __init kswapd_init(void)
3060 {
3061         int nid;
3062
3063         swap_setup();
3064         for_each_node_state(nid, N_HIGH_MEMORY)
3065                 kswapd_run(nid);
3066         hotcpu_notifier(cpu_callback, 0);
3067         return 0;
3068 }
3069
3070 module_init(kswapd_init)
3071
3072 #ifdef CONFIG_NUMA
3073 /*
3074  * Zone reclaim mode
3075  *
3076  * If non-zero call zone_reclaim when the number of free pages falls below
3077  * the watermarks.
3078  */
3079 int zone_reclaim_mode __read_mostly;
3080
3081 #define RECLAIM_OFF 0
3082 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3083 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3084 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3085
3086 /*
3087  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3088  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3089  * a zone.
3090  */
3091 #define ZONE_RECLAIM_PRIORITY 4
3092
3093 /*
3094  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3095  * occur.
3096  */
3097 int sysctl_min_unmapped_ratio = 1;
3098
3099 /*
3100  * If the number of slab pages in a zone grows beyond this percentage then
3101  * slab reclaim needs to occur.
3102  */
3103 int sysctl_min_slab_ratio = 5;
3104
3105 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3106 {
3107         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3108         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3109                 zone_page_state(zone, NR_ACTIVE_FILE);
3110
3111         /*
3112          * It's possible for there to be more file mapped pages than
3113          * accounted for by the pages on the file LRU lists because
3114          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3115          */
3116         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3117 }
3118
3119 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3120 static long zone_pagecache_reclaimable(struct zone *zone)
3121 {
3122         long nr_pagecache_reclaimable;
3123         long delta = 0;
3124
3125         /*
3126          * If RECLAIM_SWAP is set, then all file pages are considered
3127          * potentially reclaimable. Otherwise, we have to worry about
3128          * pages like swapcache and zone_unmapped_file_pages() provides
3129          * a better estimate
3130          */
3131         if (zone_reclaim_mode & RECLAIM_SWAP)
3132                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3133         else
3134                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3135
3136         /* If we can't clean pages, remove dirty pages from consideration */
3137         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3138                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3139
3140         /* Watch for any possible underflows due to delta */
3141         if (unlikely(delta > nr_pagecache_reclaimable))
3142                 delta = nr_pagecache_reclaimable;
3143
3144         return nr_pagecache_reclaimable - delta;
3145 }
3146
3147 /*
3148  * Try to free up some pages from this zone through reclaim.
3149  */
3150 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3151 {
3152         /* Minimum pages needed in order to stay on node */
3153         const unsigned long nr_pages = 1 << order;
3154         struct task_struct *p = current;
3155         struct reclaim_state reclaim_state;
3156         int priority;
3157         struct scan_control sc = {
3158                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3159                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3160                 .may_swap = 1,
3161                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3162                                        SWAP_CLUSTER_MAX),
3163                 .gfp_mask = gfp_mask,
3164                 .order = order,
3165         };
3166         struct shrink_control shrink = {
3167                 .gfp_mask = sc.gfp_mask,
3168         };
3169         unsigned long nr_slab_pages0, nr_slab_pages1;
3170
3171         cond_resched();
3172         /*
3173          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3174          * and we also need to be able to write out pages for RECLAIM_WRITE
3175          * and RECLAIM_SWAP.
3176          */
3177         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3178         lockdep_set_current_reclaim_state(gfp_mask);
3179         reclaim_state.reclaimed_slab = 0;
3180         p->reclaim_state = &reclaim_state;
3181
3182         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3183                 /*
3184                  * Free memory by calling shrink zone with increasing
3185                  * priorities until we have enough memory freed.
3186                  */
3187                 priority = ZONE_RECLAIM_PRIORITY;
3188                 do {
3189                         shrink_zone(priority, zone, &sc);
3190                         priority--;
3191                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3192         }
3193
3194         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3195         if (nr_slab_pages0 > zone->min_slab_pages) {
3196                 /*
3197                  * shrink_slab() does not currently allow us to determine how
3198                  * many pages were freed in this zone. So we take the current
3199                  * number of slab pages and shake the slab until it is reduced
3200                  * by the same nr_pages that we used for reclaiming unmapped
3201                  * pages.
3202                  *
3203                  * Note that shrink_slab will free memory on all zones and may
3204                  * take a long time.
3205                  */
3206                 for (;;) {
3207                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3208
3209                         /* No reclaimable slab or very low memory pressure */
3210                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3211                                 break;
3212
3213                         /* Freed enough memory */
3214                         nr_slab_pages1 = zone_page_state(zone,
3215                                                         NR_SLAB_RECLAIMABLE);
3216                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3217                                 break;
3218                 }
3219
3220                 /*
3221                  * Update nr_reclaimed by the number of slab pages we
3222                  * reclaimed from this zone.
3223                  */
3224                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3225                 if (nr_slab_pages1 < nr_slab_pages0)
3226                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3227         }
3228
3229         p->reclaim_state = NULL;
3230         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3231         lockdep_clear_current_reclaim_state();
3232         return sc.nr_reclaimed >= nr_pages;
3233 }
3234
3235 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3236 {
3237         int node_id;
3238         int ret;
3239
3240         /*
3241          * Zone reclaim reclaims unmapped file backed pages and
3242          * slab pages if we are over the defined limits.
3243          *
3244          * A small portion of unmapped file backed pages is needed for
3245          * file I/O otherwise pages read by file I/O will be immediately
3246          * thrown out if the zone is overallocated. So we do not reclaim
3247          * if less than a specified percentage of the zone is used by
3248          * unmapped file backed pages.
3249          */
3250         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3251             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3252                 return ZONE_RECLAIM_FULL;
3253
3254         if (zone->all_unreclaimable)
3255                 return ZONE_RECLAIM_FULL;
3256
3257         /*
3258          * Do not scan if the allocation should not be delayed.
3259          */
3260         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3261                 return ZONE_RECLAIM_NOSCAN;
3262
3263         /*
3264          * Only run zone reclaim on the local zone or on zones that do not
3265          * have associated processors. This will favor the local processor
3266          * over remote processors and spread off node memory allocations
3267          * as wide as possible.
3268          */
3269         node_id = zone_to_nid(zone);
3270         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3271                 return ZONE_RECLAIM_NOSCAN;
3272
3273         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3274                 return ZONE_RECLAIM_NOSCAN;
3275
3276         ret = __zone_reclaim(zone, gfp_mask, order);
3277         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3278
3279         if (!ret)
3280                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3281
3282         return ret;
3283 }
3284 #endif
3285
3286 /*
3287  * page_evictable - test whether a page is evictable
3288  * @page: the page to test
3289  * @vma: the VMA in which the page is or will be mapped, may be NULL
3290  *
3291  * Test whether page is evictable--i.e., should be placed on active/inactive
3292  * lists vs unevictable list.  The vma argument is !NULL when called from the
3293  * fault path to determine how to instantate a new page.
3294  *
3295  * Reasons page might not be evictable:
3296  * (1) page's mapping marked unevictable
3297  * (2) page is part of an mlocked VMA
3298  *
3299  */
3300 int page_evictable(struct page *page, struct vm_area_struct *vma)
3301 {
3302
3303         if (mapping_unevictable(page_mapping(page)))
3304                 return 0;
3305
3306         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3307                 return 0;
3308
3309         return 1;
3310 }
3311
3312 /**
3313  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3314  * @page: page to check evictability and move to appropriate lru list
3315  * @zone: zone page is in
3316  *
3317  * Checks a page for evictability and moves the page to the appropriate
3318  * zone lru list.
3319  *
3320  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3321  * have PageUnevictable set.
3322  */
3323 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3324 {
3325         VM_BUG_ON(PageActive(page));
3326
3327 retry:
3328         ClearPageUnevictable(page);
3329         if (page_evictable(page, NULL)) {
3330                 enum lru_list l = page_lru_base_type(page);
3331
3332                 __dec_zone_state(zone, NR_UNEVICTABLE);
3333                 list_move(&page->lru, &zone->lru[l].list);
3334                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3335                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3336                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3337         } else {
3338                 /*
3339                  * rotate unevictable list
3340                  */
3341                 SetPageUnevictable(page);
3342                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3343                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3344                 if (page_evictable(page, NULL))
3345                         goto retry;
3346         }
3347 }
3348
3349 /**
3350  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3351  * @mapping: struct address_space to scan for evictable pages
3352  *
3353  * Scan all pages in mapping.  Check unevictable pages for
3354  * evictability and move them to the appropriate zone lru list.
3355  */
3356 void scan_mapping_unevictable_pages(struct address_space *mapping)
3357 {
3358         pgoff_t next = 0;
3359         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3360                          PAGE_CACHE_SHIFT;
3361         struct zone *zone;
3362         struct pagevec pvec;
3363
3364         if (mapping->nrpages == 0)
3365                 return;
3366
3367         pagevec_init(&pvec, 0);
3368         while (next < end &&
3369                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3370                 int i;
3371                 int pg_scanned = 0;
3372
3373                 zone = NULL;
3374
3375                 for (i = 0; i < pagevec_count(&pvec); i++) {
3376                         struct page *page = pvec.pages[i];
3377                         pgoff_t page_index = page->index;
3378                         struct zone *pagezone = page_zone(page);
3379
3380                         pg_scanned++;
3381                         if (page_index > next)
3382                                 next = page_index;
3383                         next++;
3384
3385                         if (pagezone != zone) {
3386                                 if (zone)
3387                                         spin_unlock_irq(&zone->lru_lock);
3388                                 zone = pagezone;
3389                                 spin_lock_irq(&zone->lru_lock);
3390                         }
3391
3392                         if (PageLRU(page) && PageUnevictable(page))
3393                                 check_move_unevictable_page(page, zone);
3394                 }
3395                 if (zone)
3396                         spin_unlock_irq(&zone->lru_lock);
3397                 pagevec_release(&pvec);
3398
3399                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3400         }
3401
3402 }
3403
3404 /**
3405  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3406  * @zone - zone of which to scan the unevictable list
3407  *
3408  * Scan @zone's unevictable LRU lists to check for pages that have become
3409  * evictable.  Move those that have to @zone's inactive list where they
3410  * become candidates for reclaim, unless shrink_inactive_zone() decides
3411  * to reactivate them.  Pages that are still unevictable are rotated
3412  * back onto @zone's unevictable list.
3413  */
3414 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3415 static void scan_zone_unevictable_pages(struct zone *zone)
3416 {
3417         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3418         unsigned long scan;
3419         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3420
3421         while (nr_to_scan > 0) {
3422                 unsigned long batch_size = min(nr_to_scan,
3423                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3424
3425                 spin_lock_irq(&zone->lru_lock);
3426                 for (scan = 0;  scan < batch_size; scan++) {
3427                         struct page *page = lru_to_page(l_unevictable);
3428
3429                         if (!trylock_page(page))
3430                                 continue;
3431
3432                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3433
3434                         if (likely(PageLRU(page) && PageUnevictable(page)))
3435                                 check_move_unevictable_page(page, zone);
3436
3437                         unlock_page(page);
3438                 }
3439                 spin_unlock_irq(&zone->lru_lock);
3440
3441                 nr_to_scan -= batch_size;
3442         }
3443 }
3444
3445
3446 /**
3447  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3448  *
3449  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3450  * pages that have become evictable.  Move those back to the zones'
3451  * inactive list where they become candidates for reclaim.
3452  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3453  * and we add swap to the system.  As such, it runs in the context of a task
3454  * that has possibly/probably made some previously unevictable pages
3455  * evictable.
3456  */
3457 static void scan_all_zones_unevictable_pages(void)
3458 {
3459         struct zone *zone;
3460
3461         for_each_zone(zone) {
3462                 scan_zone_unevictable_pages(zone);
3463         }
3464 }
3465
3466 /*
3467  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3468  * all nodes' unevictable lists for evictable pages
3469  */
3470 unsigned long scan_unevictable_pages;
3471
3472 int scan_unevictable_handler(struct ctl_table *table, int write,
3473                            void __user *buffer,
3474                            size_t *length, loff_t *ppos)
3475 {
3476         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3477
3478         if (write && *(unsigned long *)table->data)
3479                 scan_all_zones_unevictable_pages();
3480
3481         scan_unevictable_pages = 0;
3482         return 0;
3483 }
3484
3485 #ifdef CONFIG_NUMA
3486 /*
3487  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3488  * a specified node's per zone unevictable lists for evictable pages.
3489  */
3490
3491 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3492                                           struct sysdev_attribute *attr,
3493                                           char *buf)
3494 {
3495         return sprintf(buf, "0\n");     /* always zero; should fit... */
3496 }
3497
3498 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3499                                            struct sysdev_attribute *attr,
3500                                         const char *buf, size_t count)
3501 {
3502         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3503         struct zone *zone;
3504         unsigned long res;
3505         unsigned long req = strict_strtoul(buf, 10, &res);
3506
3507         if (!req)
3508                 return 1;       /* zero is no-op */
3509
3510         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3511                 if (!populated_zone(zone))
3512                         continue;
3513                 scan_zone_unevictable_pages(zone);
3514         }
3515         return 1;
3516 }
3517
3518
3519 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3520                         read_scan_unevictable_node,
3521                         write_scan_unevictable_node);
3522
3523 int scan_unevictable_register_node(struct node *node)
3524 {
3525         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3526 }
3527
3528 void scan_unevictable_unregister_node(struct node *node)
3529 {
3530         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3531 }
3532 #endif