]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/vmscan.c
mm: remove lru type checks from __isolate_lru_page()
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 /*
57  * reclaim_mode determines how the inactive list is shrunk
58  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59  * RECLAIM_MODE_ASYNC:  Do not block
60  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
61  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
62  *                      page from the LRU and reclaim all pages within a
63  *                      naturally aligned range
64  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
65  *                      order-0 pages and then compact the zone
66  */
67 typedef unsigned __bitwise__ reclaim_mode_t;
68 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
69 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
70 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
71 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
72 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
73
74 struct scan_control {
75         /* Incremented by the number of inactive pages that were scanned */
76         unsigned long nr_scanned;
77
78         /* Number of pages freed so far during a call to shrink_zones() */
79         unsigned long nr_reclaimed;
80
81         /* How many pages shrink_list() should reclaim */
82         unsigned long nr_to_reclaim;
83
84         unsigned long hibernation_mode;
85
86         /* This context's GFP mask */
87         gfp_t gfp_mask;
88
89         int may_writepage;
90
91         /* Can mapped pages be reclaimed? */
92         int may_unmap;
93
94         /* Can pages be swapped as part of reclaim? */
95         int may_swap;
96
97         int order;
98
99         /*
100          * Intend to reclaim enough continuous memory rather than reclaim
101          * enough amount of memory. i.e, mode for high order allocation.
102          */
103         reclaim_mode_t reclaim_mode;
104
105         /*
106          * The memory cgroup that hit its limit and as a result is the
107          * primary target of this reclaim invocation.
108          */
109         struct mem_cgroup *target_mem_cgroup;
110
111         /*
112          * Nodemask of nodes allowed by the caller. If NULL, all nodes
113          * are scanned.
114          */
115         nodemask_t      *nodemask;
116 };
117
118 struct mem_cgroup_zone {
119         struct mem_cgroup *mem_cgroup;
120         struct zone *zone;
121 };
122
123 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
124
125 #ifdef ARCH_HAS_PREFETCH
126 #define prefetch_prev_lru_page(_page, _base, _field)                    \
127         do {                                                            \
128                 if ((_page)->lru.prev != _base) {                       \
129                         struct page *prev;                              \
130                                                                         \
131                         prev = lru_to_page(&(_page->lru));              \
132                         prefetch(&prev->_field);                        \
133                 }                                                       \
134         } while (0)
135 #else
136 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138
139 #ifdef ARCH_HAS_PREFETCHW
140 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
141         do {                                                            \
142                 if ((_page)->lru.prev != _base) {                       \
143                         struct page *prev;                              \
144                                                                         \
145                         prev = lru_to_page(&(_page->lru));              \
146                         prefetchw(&prev->_field);                       \
147                 }                                                       \
148         } while (0)
149 #else
150 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
151 #endif
152
153 /*
154  * From 0 .. 100.  Higher means more swappy.
155  */
156 int vm_swappiness = 60;
157 long vm_total_pages;    /* The total number of pages which the VM controls */
158
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
161
162 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
163 static bool global_reclaim(struct scan_control *sc)
164 {
165         return !sc->target_mem_cgroup;
166 }
167 #else
168 static bool global_reclaim(struct scan_control *sc)
169 {
170         return true;
171 }
172 #endif
173
174 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
175 {
176         return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
177 }
178
179 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
180                                        enum lru_list lru)
181 {
182         if (!mem_cgroup_disabled())
183                 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
184                                                     zone_to_nid(mz->zone),
185                                                     zone_idx(mz->zone),
186                                                     BIT(lru));
187
188         return zone_page_state(mz->zone, NR_LRU_BASE + lru);
189 }
190
191
192 /*
193  * Add a shrinker callback to be called from the vm
194  */
195 void register_shrinker(struct shrinker *shrinker)
196 {
197         atomic_long_set(&shrinker->nr_in_batch, 0);
198         down_write(&shrinker_rwsem);
199         list_add_tail(&shrinker->list, &shrinker_list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(register_shrinker);
203
204 /*
205  * Remove one
206  */
207 void unregister_shrinker(struct shrinker *shrinker)
208 {
209         down_write(&shrinker_rwsem);
210         list_del(&shrinker->list);
211         up_write(&shrinker_rwsem);
212 }
213 EXPORT_SYMBOL(unregister_shrinker);
214
215 static inline int do_shrinker_shrink(struct shrinker *shrinker,
216                                      struct shrink_control *sc,
217                                      unsigned long nr_to_scan)
218 {
219         sc->nr_to_scan = nr_to_scan;
220         return (*shrinker->shrink)(shrinker, sc);
221 }
222
223 #define SHRINK_BATCH 128
224 /*
225  * Call the shrink functions to age shrinkable caches
226  *
227  * Here we assume it costs one seek to replace a lru page and that it also
228  * takes a seek to recreate a cache object.  With this in mind we age equal
229  * percentages of the lru and ageable caches.  This should balance the seeks
230  * generated by these structures.
231  *
232  * If the vm encountered mapped pages on the LRU it increase the pressure on
233  * slab to avoid swapping.
234  *
235  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
236  *
237  * `lru_pages' represents the number of on-LRU pages in all the zones which
238  * are eligible for the caller's allocation attempt.  It is used for balancing
239  * slab reclaim versus page reclaim.
240  *
241  * Returns the number of slab objects which we shrunk.
242  */
243 unsigned long shrink_slab(struct shrink_control *shrink,
244                           unsigned long nr_pages_scanned,
245                           unsigned long lru_pages)
246 {
247         struct shrinker *shrinker;
248         unsigned long ret = 0;
249
250         if (nr_pages_scanned == 0)
251                 nr_pages_scanned = SWAP_CLUSTER_MAX;
252
253         if (!down_read_trylock(&shrinker_rwsem)) {
254                 /* Assume we'll be able to shrink next time */
255                 ret = 1;
256                 goto out;
257         }
258
259         list_for_each_entry(shrinker, &shrinker_list, list) {
260                 unsigned long long delta;
261                 long total_scan;
262                 long max_pass;
263                 int shrink_ret = 0;
264                 long nr;
265                 long new_nr;
266                 long batch_size = shrinker->batch ? shrinker->batch
267                                                   : SHRINK_BATCH;
268
269                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
270                 if (max_pass <= 0)
271                         continue;
272
273                 /*
274                  * copy the current shrinker scan count into a local variable
275                  * and zero it so that other concurrent shrinker invocations
276                  * don't also do this scanning work.
277                  */
278                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
279
280                 total_scan = nr;
281                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
282                 delta *= max_pass;
283                 do_div(delta, lru_pages + 1);
284                 total_scan += delta;
285                 if (total_scan < 0) {
286                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
287                                "delete nr=%ld\n",
288                                shrinker->shrink, total_scan);
289                         total_scan = max_pass;
290                 }
291
292                 /*
293                  * We need to avoid excessive windup on filesystem shrinkers
294                  * due to large numbers of GFP_NOFS allocations causing the
295                  * shrinkers to return -1 all the time. This results in a large
296                  * nr being built up so when a shrink that can do some work
297                  * comes along it empties the entire cache due to nr >>>
298                  * max_pass.  This is bad for sustaining a working set in
299                  * memory.
300                  *
301                  * Hence only allow the shrinker to scan the entire cache when
302                  * a large delta change is calculated directly.
303                  */
304                 if (delta < max_pass / 4)
305                         total_scan = min(total_scan, max_pass / 2);
306
307                 /*
308                  * Avoid risking looping forever due to too large nr value:
309                  * never try to free more than twice the estimate number of
310                  * freeable entries.
311                  */
312                 if (total_scan > max_pass * 2)
313                         total_scan = max_pass * 2;
314
315                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
316                                         nr_pages_scanned, lru_pages,
317                                         max_pass, delta, total_scan);
318
319                 while (total_scan >= batch_size) {
320                         int nr_before;
321
322                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
323                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
324                                                         batch_size);
325                         if (shrink_ret == -1)
326                                 break;
327                         if (shrink_ret < nr_before)
328                                 ret += nr_before - shrink_ret;
329                         count_vm_events(SLABS_SCANNED, batch_size);
330                         total_scan -= batch_size;
331
332                         cond_resched();
333                 }
334
335                 /*
336                  * move the unused scan count back into the shrinker in a
337                  * manner that handles concurrent updates. If we exhausted the
338                  * scan, there is no need to do an update.
339                  */
340                 if (total_scan > 0)
341                         new_nr = atomic_long_add_return(total_scan,
342                                         &shrinker->nr_in_batch);
343                 else
344                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
345
346                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
347         }
348         up_read(&shrinker_rwsem);
349 out:
350         cond_resched();
351         return ret;
352 }
353
354 static void set_reclaim_mode(int priority, struct scan_control *sc,
355                                    bool sync)
356 {
357         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
358
359         /*
360          * Initially assume we are entering either lumpy reclaim or
361          * reclaim/compaction.Depending on the order, we will either set the
362          * sync mode or just reclaim order-0 pages later.
363          */
364         if (COMPACTION_BUILD)
365                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
366         else
367                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
368
369         /*
370          * Avoid using lumpy reclaim or reclaim/compaction if possible by
371          * restricting when its set to either costly allocations or when
372          * under memory pressure
373          */
374         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
375                 sc->reclaim_mode |= syncmode;
376         else if (sc->order && priority < DEF_PRIORITY - 2)
377                 sc->reclaim_mode |= syncmode;
378         else
379                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
380 }
381
382 static void reset_reclaim_mode(struct scan_control *sc)
383 {
384         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
385 }
386
387 static inline int is_page_cache_freeable(struct page *page)
388 {
389         /*
390          * A freeable page cache page is referenced only by the caller
391          * that isolated the page, the page cache radix tree and
392          * optional buffer heads at page->private.
393          */
394         return page_count(page) - page_has_private(page) == 2;
395 }
396
397 static int may_write_to_queue(struct backing_dev_info *bdi,
398                               struct scan_control *sc)
399 {
400         if (current->flags & PF_SWAPWRITE)
401                 return 1;
402         if (!bdi_write_congested(bdi))
403                 return 1;
404         if (bdi == current->backing_dev_info)
405                 return 1;
406
407         /* lumpy reclaim for hugepage often need a lot of write */
408         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
409                 return 1;
410         return 0;
411 }
412
413 /*
414  * We detected a synchronous write error writing a page out.  Probably
415  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
416  * fsync(), msync() or close().
417  *
418  * The tricky part is that after writepage we cannot touch the mapping: nothing
419  * prevents it from being freed up.  But we have a ref on the page and once
420  * that page is locked, the mapping is pinned.
421  *
422  * We're allowed to run sleeping lock_page() here because we know the caller has
423  * __GFP_FS.
424  */
425 static void handle_write_error(struct address_space *mapping,
426                                 struct page *page, int error)
427 {
428         lock_page(page);
429         if (page_mapping(page) == mapping)
430                 mapping_set_error(mapping, error);
431         unlock_page(page);
432 }
433
434 /* possible outcome of pageout() */
435 typedef enum {
436         /* failed to write page out, page is locked */
437         PAGE_KEEP,
438         /* move page to the active list, page is locked */
439         PAGE_ACTIVATE,
440         /* page has been sent to the disk successfully, page is unlocked */
441         PAGE_SUCCESS,
442         /* page is clean and locked */
443         PAGE_CLEAN,
444 } pageout_t;
445
446 /*
447  * pageout is called by shrink_page_list() for each dirty page.
448  * Calls ->writepage().
449  */
450 static pageout_t pageout(struct page *page, struct address_space *mapping,
451                          struct scan_control *sc)
452 {
453         /*
454          * If the page is dirty, only perform writeback if that write
455          * will be non-blocking.  To prevent this allocation from being
456          * stalled by pagecache activity.  But note that there may be
457          * stalls if we need to run get_block().  We could test
458          * PagePrivate for that.
459          *
460          * If this process is currently in __generic_file_aio_write() against
461          * this page's queue, we can perform writeback even if that
462          * will block.
463          *
464          * If the page is swapcache, write it back even if that would
465          * block, for some throttling. This happens by accident, because
466          * swap_backing_dev_info is bust: it doesn't reflect the
467          * congestion state of the swapdevs.  Easy to fix, if needed.
468          */
469         if (!is_page_cache_freeable(page))
470                 return PAGE_KEEP;
471         if (!mapping) {
472                 /*
473                  * Some data journaling orphaned pages can have
474                  * page->mapping == NULL while being dirty with clean buffers.
475                  */
476                 if (page_has_private(page)) {
477                         if (try_to_free_buffers(page)) {
478                                 ClearPageDirty(page);
479                                 printk("%s: orphaned page\n", __func__);
480                                 return PAGE_CLEAN;
481                         }
482                 }
483                 return PAGE_KEEP;
484         }
485         if (mapping->a_ops->writepage == NULL)
486                 return PAGE_ACTIVATE;
487         if (!may_write_to_queue(mapping->backing_dev_info, sc))
488                 return PAGE_KEEP;
489
490         if (clear_page_dirty_for_io(page)) {
491                 int res;
492                 struct writeback_control wbc = {
493                         .sync_mode = WB_SYNC_NONE,
494                         .nr_to_write = SWAP_CLUSTER_MAX,
495                         .range_start = 0,
496                         .range_end = LLONG_MAX,
497                         .for_reclaim = 1,
498                 };
499
500                 SetPageReclaim(page);
501                 res = mapping->a_ops->writepage(page, &wbc);
502                 if (res < 0)
503                         handle_write_error(mapping, page, res);
504                 if (res == AOP_WRITEPAGE_ACTIVATE) {
505                         ClearPageReclaim(page);
506                         return PAGE_ACTIVATE;
507                 }
508
509                 if (!PageWriteback(page)) {
510                         /* synchronous write or broken a_ops? */
511                         ClearPageReclaim(page);
512                 }
513                 trace_mm_vmscan_writepage(page,
514                         trace_reclaim_flags(page, sc->reclaim_mode));
515                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
516                 return PAGE_SUCCESS;
517         }
518
519         return PAGE_CLEAN;
520 }
521
522 /*
523  * Same as remove_mapping, but if the page is removed from the mapping, it
524  * gets returned with a refcount of 0.
525  */
526 static int __remove_mapping(struct address_space *mapping, struct page *page)
527 {
528         BUG_ON(!PageLocked(page));
529         BUG_ON(mapping != page_mapping(page));
530
531         spin_lock_irq(&mapping->tree_lock);
532         /*
533          * The non racy check for a busy page.
534          *
535          * Must be careful with the order of the tests. When someone has
536          * a ref to the page, it may be possible that they dirty it then
537          * drop the reference. So if PageDirty is tested before page_count
538          * here, then the following race may occur:
539          *
540          * get_user_pages(&page);
541          * [user mapping goes away]
542          * write_to(page);
543          *                              !PageDirty(page)    [good]
544          * SetPageDirty(page);
545          * put_page(page);
546          *                              !page_count(page)   [good, discard it]
547          *
548          * [oops, our write_to data is lost]
549          *
550          * Reversing the order of the tests ensures such a situation cannot
551          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
552          * load is not satisfied before that of page->_count.
553          *
554          * Note that if SetPageDirty is always performed via set_page_dirty,
555          * and thus under tree_lock, then this ordering is not required.
556          */
557         if (!page_freeze_refs(page, 2))
558                 goto cannot_free;
559         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
560         if (unlikely(PageDirty(page))) {
561                 page_unfreeze_refs(page, 2);
562                 goto cannot_free;
563         }
564
565         if (PageSwapCache(page)) {
566                 swp_entry_t swap = { .val = page_private(page) };
567                 __delete_from_swap_cache(page);
568                 spin_unlock_irq(&mapping->tree_lock);
569                 swapcache_free(swap, page);
570         } else {
571                 void (*freepage)(struct page *);
572
573                 freepage = mapping->a_ops->freepage;
574
575                 __delete_from_page_cache(page);
576                 spin_unlock_irq(&mapping->tree_lock);
577                 mem_cgroup_uncharge_cache_page(page);
578
579                 if (freepage != NULL)
580                         freepage(page);
581         }
582
583         return 1;
584
585 cannot_free:
586         spin_unlock_irq(&mapping->tree_lock);
587         return 0;
588 }
589
590 /*
591  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
592  * someone else has a ref on the page, abort and return 0.  If it was
593  * successfully detached, return 1.  Assumes the caller has a single ref on
594  * this page.
595  */
596 int remove_mapping(struct address_space *mapping, struct page *page)
597 {
598         if (__remove_mapping(mapping, page)) {
599                 /*
600                  * Unfreezing the refcount with 1 rather than 2 effectively
601                  * drops the pagecache ref for us without requiring another
602                  * atomic operation.
603                  */
604                 page_unfreeze_refs(page, 1);
605                 return 1;
606         }
607         return 0;
608 }
609
610 /**
611  * putback_lru_page - put previously isolated page onto appropriate LRU list
612  * @page: page to be put back to appropriate lru list
613  *
614  * Add previously isolated @page to appropriate LRU list.
615  * Page may still be unevictable for other reasons.
616  *
617  * lru_lock must not be held, interrupts must be enabled.
618  */
619 void putback_lru_page(struct page *page)
620 {
621         int lru;
622         int active = !!TestClearPageActive(page);
623         int was_unevictable = PageUnevictable(page);
624
625         VM_BUG_ON(PageLRU(page));
626
627 redo:
628         ClearPageUnevictable(page);
629
630         if (page_evictable(page, NULL)) {
631                 /*
632                  * For evictable pages, we can use the cache.
633                  * In event of a race, worst case is we end up with an
634                  * unevictable page on [in]active list.
635                  * We know how to handle that.
636                  */
637                 lru = active + page_lru_base_type(page);
638                 lru_cache_add_lru(page, lru);
639         } else {
640                 /*
641                  * Put unevictable pages directly on zone's unevictable
642                  * list.
643                  */
644                 lru = LRU_UNEVICTABLE;
645                 add_page_to_unevictable_list(page);
646                 /*
647                  * When racing with an mlock or AS_UNEVICTABLE clearing
648                  * (page is unlocked) make sure that if the other thread
649                  * does not observe our setting of PG_lru and fails
650                  * isolation/check_move_unevictable_pages,
651                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
652                  * the page back to the evictable list.
653                  *
654                  * The other side is TestClearPageMlocked() or shmem_lock().
655                  */
656                 smp_mb();
657         }
658
659         /*
660          * page's status can change while we move it among lru. If an evictable
661          * page is on unevictable list, it never be freed. To avoid that,
662          * check after we added it to the list, again.
663          */
664         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
665                 if (!isolate_lru_page(page)) {
666                         put_page(page);
667                         goto redo;
668                 }
669                 /* This means someone else dropped this page from LRU
670                  * So, it will be freed or putback to LRU again. There is
671                  * nothing to do here.
672                  */
673         }
674
675         if (was_unevictable && lru != LRU_UNEVICTABLE)
676                 count_vm_event(UNEVICTABLE_PGRESCUED);
677         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
678                 count_vm_event(UNEVICTABLE_PGCULLED);
679
680         put_page(page);         /* drop ref from isolate */
681 }
682
683 enum page_references {
684         PAGEREF_RECLAIM,
685         PAGEREF_RECLAIM_CLEAN,
686         PAGEREF_KEEP,
687         PAGEREF_ACTIVATE,
688 };
689
690 static enum page_references page_check_references(struct page *page,
691                                                   struct mem_cgroup_zone *mz,
692                                                   struct scan_control *sc)
693 {
694         int referenced_ptes, referenced_page;
695         unsigned long vm_flags;
696
697         referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
698         referenced_page = TestClearPageReferenced(page);
699
700         /* Lumpy reclaim - ignore references */
701         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
702                 return PAGEREF_RECLAIM;
703
704         /*
705          * Mlock lost the isolation race with us.  Let try_to_unmap()
706          * move the page to the unevictable list.
707          */
708         if (vm_flags & VM_LOCKED)
709                 return PAGEREF_RECLAIM;
710
711         if (referenced_ptes) {
712                 if (PageAnon(page))
713                         return PAGEREF_ACTIVATE;
714                 /*
715                  * All mapped pages start out with page table
716                  * references from the instantiating fault, so we need
717                  * to look twice if a mapped file page is used more
718                  * than once.
719                  *
720                  * Mark it and spare it for another trip around the
721                  * inactive list.  Another page table reference will
722                  * lead to its activation.
723                  *
724                  * Note: the mark is set for activated pages as well
725                  * so that recently deactivated but used pages are
726                  * quickly recovered.
727                  */
728                 SetPageReferenced(page);
729
730                 if (referenced_page || referenced_ptes > 1)
731                         return PAGEREF_ACTIVATE;
732
733                 /*
734                  * Activate file-backed executable pages after first usage.
735                  */
736                 if (vm_flags & VM_EXEC)
737                         return PAGEREF_ACTIVATE;
738
739                 return PAGEREF_KEEP;
740         }
741
742         /* Reclaim if clean, defer dirty pages to writeback */
743         if (referenced_page && !PageSwapBacked(page))
744                 return PAGEREF_RECLAIM_CLEAN;
745
746         return PAGEREF_RECLAIM;
747 }
748
749 /*
750  * shrink_page_list() returns the number of reclaimed pages
751  */
752 static unsigned long shrink_page_list(struct list_head *page_list,
753                                       struct mem_cgroup_zone *mz,
754                                       struct scan_control *sc,
755                                       int priority,
756                                       unsigned long *ret_nr_dirty,
757                                       unsigned long *ret_nr_writeback)
758 {
759         LIST_HEAD(ret_pages);
760         LIST_HEAD(free_pages);
761         int pgactivate = 0;
762         unsigned long nr_dirty = 0;
763         unsigned long nr_congested = 0;
764         unsigned long nr_reclaimed = 0;
765         unsigned long nr_writeback = 0;
766
767         cond_resched();
768
769         while (!list_empty(page_list)) {
770                 enum page_references references;
771                 struct address_space *mapping;
772                 struct page *page;
773                 int may_enter_fs;
774
775                 cond_resched();
776
777                 page = lru_to_page(page_list);
778                 list_del(&page->lru);
779
780                 if (!trylock_page(page))
781                         goto keep;
782
783                 VM_BUG_ON(PageActive(page));
784                 VM_BUG_ON(page_zone(page) != mz->zone);
785
786                 sc->nr_scanned++;
787
788                 if (unlikely(!page_evictable(page, NULL)))
789                         goto cull_mlocked;
790
791                 if (!sc->may_unmap && page_mapped(page))
792                         goto keep_locked;
793
794                 /* Double the slab pressure for mapped and swapcache pages */
795                 if (page_mapped(page) || PageSwapCache(page))
796                         sc->nr_scanned++;
797
798                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
799                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
800
801                 if (PageWriteback(page)) {
802                         nr_writeback++;
803                         /*
804                          * Synchronous reclaim cannot queue pages for
805                          * writeback due to the possibility of stack overflow
806                          * but if it encounters a page under writeback, wait
807                          * for the IO to complete.
808                          */
809                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
810                             may_enter_fs)
811                                 wait_on_page_writeback(page);
812                         else {
813                                 unlock_page(page);
814                                 goto keep_lumpy;
815                         }
816                 }
817
818                 references = page_check_references(page, mz, sc);
819                 switch (references) {
820                 case PAGEREF_ACTIVATE:
821                         goto activate_locked;
822                 case PAGEREF_KEEP:
823                         goto keep_locked;
824                 case PAGEREF_RECLAIM:
825                 case PAGEREF_RECLAIM_CLEAN:
826                         ; /* try to reclaim the page below */
827                 }
828
829                 /*
830                  * Anonymous process memory has backing store?
831                  * Try to allocate it some swap space here.
832                  */
833                 if (PageAnon(page) && !PageSwapCache(page)) {
834                         if (!(sc->gfp_mask & __GFP_IO))
835                                 goto keep_locked;
836                         if (!add_to_swap(page))
837                                 goto activate_locked;
838                         may_enter_fs = 1;
839                 }
840
841                 mapping = page_mapping(page);
842
843                 /*
844                  * The page is mapped into the page tables of one or more
845                  * processes. Try to unmap it here.
846                  */
847                 if (page_mapped(page) && mapping) {
848                         switch (try_to_unmap(page, TTU_UNMAP)) {
849                         case SWAP_FAIL:
850                                 goto activate_locked;
851                         case SWAP_AGAIN:
852                                 goto keep_locked;
853                         case SWAP_MLOCK:
854                                 goto cull_mlocked;
855                         case SWAP_SUCCESS:
856                                 ; /* try to free the page below */
857                         }
858                 }
859
860                 if (PageDirty(page)) {
861                         nr_dirty++;
862
863                         /*
864                          * Only kswapd can writeback filesystem pages to
865                          * avoid risk of stack overflow but do not writeback
866                          * unless under significant pressure.
867                          */
868                         if (page_is_file_cache(page) &&
869                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
870                                 /*
871                                  * Immediately reclaim when written back.
872                                  * Similar in principal to deactivate_page()
873                                  * except we already have the page isolated
874                                  * and know it's dirty
875                                  */
876                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
877                                 SetPageReclaim(page);
878
879                                 goto keep_locked;
880                         }
881
882                         if (references == PAGEREF_RECLAIM_CLEAN)
883                                 goto keep_locked;
884                         if (!may_enter_fs)
885                                 goto keep_locked;
886                         if (!sc->may_writepage)
887                                 goto keep_locked;
888
889                         /* Page is dirty, try to write it out here */
890                         switch (pageout(page, mapping, sc)) {
891                         case PAGE_KEEP:
892                                 nr_congested++;
893                                 goto keep_locked;
894                         case PAGE_ACTIVATE:
895                                 goto activate_locked;
896                         case PAGE_SUCCESS:
897                                 if (PageWriteback(page))
898                                         goto keep_lumpy;
899                                 if (PageDirty(page))
900                                         goto keep;
901
902                                 /*
903                                  * A synchronous write - probably a ramdisk.  Go
904                                  * ahead and try to reclaim the page.
905                                  */
906                                 if (!trylock_page(page))
907                                         goto keep;
908                                 if (PageDirty(page) || PageWriteback(page))
909                                         goto keep_locked;
910                                 mapping = page_mapping(page);
911                         case PAGE_CLEAN:
912                                 ; /* try to free the page below */
913                         }
914                 }
915
916                 /*
917                  * If the page has buffers, try to free the buffer mappings
918                  * associated with this page. If we succeed we try to free
919                  * the page as well.
920                  *
921                  * We do this even if the page is PageDirty().
922                  * try_to_release_page() does not perform I/O, but it is
923                  * possible for a page to have PageDirty set, but it is actually
924                  * clean (all its buffers are clean).  This happens if the
925                  * buffers were written out directly, with submit_bh(). ext3
926                  * will do this, as well as the blockdev mapping.
927                  * try_to_release_page() will discover that cleanness and will
928                  * drop the buffers and mark the page clean - it can be freed.
929                  *
930                  * Rarely, pages can have buffers and no ->mapping.  These are
931                  * the pages which were not successfully invalidated in
932                  * truncate_complete_page().  We try to drop those buffers here
933                  * and if that worked, and the page is no longer mapped into
934                  * process address space (page_count == 1) it can be freed.
935                  * Otherwise, leave the page on the LRU so it is swappable.
936                  */
937                 if (page_has_private(page)) {
938                         if (!try_to_release_page(page, sc->gfp_mask))
939                                 goto activate_locked;
940                         if (!mapping && page_count(page) == 1) {
941                                 unlock_page(page);
942                                 if (put_page_testzero(page))
943                                         goto free_it;
944                                 else {
945                                         /*
946                                          * rare race with speculative reference.
947                                          * the speculative reference will free
948                                          * this page shortly, so we may
949                                          * increment nr_reclaimed here (and
950                                          * leave it off the LRU).
951                                          */
952                                         nr_reclaimed++;
953                                         continue;
954                                 }
955                         }
956                 }
957
958                 if (!mapping || !__remove_mapping(mapping, page))
959                         goto keep_locked;
960
961                 /*
962                  * At this point, we have no other references and there is
963                  * no way to pick any more up (removed from LRU, removed
964                  * from pagecache). Can use non-atomic bitops now (and
965                  * we obviously don't have to worry about waking up a process
966                  * waiting on the page lock, because there are no references.
967                  */
968                 __clear_page_locked(page);
969 free_it:
970                 nr_reclaimed++;
971
972                 /*
973                  * Is there need to periodically free_page_list? It would
974                  * appear not as the counts should be low
975                  */
976                 list_add(&page->lru, &free_pages);
977                 continue;
978
979 cull_mlocked:
980                 if (PageSwapCache(page))
981                         try_to_free_swap(page);
982                 unlock_page(page);
983                 putback_lru_page(page);
984                 reset_reclaim_mode(sc);
985                 continue;
986
987 activate_locked:
988                 /* Not a candidate for swapping, so reclaim swap space. */
989                 if (PageSwapCache(page) && vm_swap_full())
990                         try_to_free_swap(page);
991                 VM_BUG_ON(PageActive(page));
992                 SetPageActive(page);
993                 pgactivate++;
994 keep_locked:
995                 unlock_page(page);
996 keep:
997                 reset_reclaim_mode(sc);
998 keep_lumpy:
999                 list_add(&page->lru, &ret_pages);
1000                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1001         }
1002
1003         /*
1004          * Tag a zone as congested if all the dirty pages encountered were
1005          * backed by a congested BDI. In this case, reclaimers should just
1006          * back off and wait for congestion to clear because further reclaim
1007          * will encounter the same problem
1008          */
1009         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1010                 zone_set_flag(mz->zone, ZONE_CONGESTED);
1011
1012         free_hot_cold_page_list(&free_pages, 1);
1013
1014         list_splice(&ret_pages, page_list);
1015         count_vm_events(PGACTIVATE, pgactivate);
1016         *ret_nr_dirty += nr_dirty;
1017         *ret_nr_writeback += nr_writeback;
1018         return nr_reclaimed;
1019 }
1020
1021 /*
1022  * Attempt to remove the specified page from its LRU.  Only take this page
1023  * if it is of the appropriate PageActive status.  Pages which are being
1024  * freed elsewhere are also ignored.
1025  *
1026  * page:        page to consider
1027  * mode:        one of the LRU isolation modes defined above
1028  *
1029  * returns 0 on success, -ve errno on failure.
1030  */
1031 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1032 {
1033         int ret = -EINVAL;
1034
1035         /* Only take pages on the LRU. */
1036         if (!PageLRU(page))
1037                 return ret;
1038
1039         /*
1040          * When this function is being called for lumpy reclaim, we
1041          * initially look into all LRU pages, active, inactive and
1042          * unevictable; only give shrink_page_list evictable pages.
1043          */
1044         if (PageUnevictable(page))
1045                 return ret;
1046
1047         ret = -EBUSY;
1048
1049         /*
1050          * To minimise LRU disruption, the caller can indicate that it only
1051          * wants to isolate pages it will be able to operate on without
1052          * blocking - clean pages for the most part.
1053          *
1054          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1055          * is used by reclaim when it is cannot write to backing storage
1056          *
1057          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1058          * that it is possible to migrate without blocking
1059          */
1060         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1061                 /* All the caller can do on PageWriteback is block */
1062                 if (PageWriteback(page))
1063                         return ret;
1064
1065                 if (PageDirty(page)) {
1066                         struct address_space *mapping;
1067
1068                         /* ISOLATE_CLEAN means only clean pages */
1069                         if (mode & ISOLATE_CLEAN)
1070                                 return ret;
1071
1072                         /*
1073                          * Only pages without mappings or that have a
1074                          * ->migratepage callback are possible to migrate
1075                          * without blocking
1076                          */
1077                         mapping = page_mapping(page);
1078                         if (mapping && !mapping->a_ops->migratepage)
1079                                 return ret;
1080                 }
1081         }
1082
1083         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1084                 return ret;
1085
1086         if (likely(get_page_unless_zero(page))) {
1087                 /*
1088                  * Be careful not to clear PageLRU until after we're
1089                  * sure the page is not being freed elsewhere -- the
1090                  * page release code relies on it.
1091                  */
1092                 ClearPageLRU(page);
1093                 ret = 0;
1094         }
1095
1096         return ret;
1097 }
1098
1099 /*
1100  * zone->lru_lock is heavily contended.  Some of the functions that
1101  * shrink the lists perform better by taking out a batch of pages
1102  * and working on them outside the LRU lock.
1103  *
1104  * For pagecache intensive workloads, this function is the hottest
1105  * spot in the kernel (apart from copy_*_user functions).
1106  *
1107  * Appropriate locks must be held before calling this function.
1108  *
1109  * @nr_to_scan: The number of pages to look through on the list.
1110  * @mz:         The mem_cgroup_zone to pull pages from.
1111  * @dst:        The temp list to put pages on to.
1112  * @nr_scanned: The number of pages that were scanned.
1113  * @sc:         The scan_control struct for this reclaim session
1114  * @mode:       One of the LRU isolation modes
1115  * @lru:        LRU list id for isolating
1116  *
1117  * returns how many pages were moved onto *@dst.
1118  */
1119 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1120                 struct mem_cgroup_zone *mz, struct list_head *dst,
1121                 unsigned long *nr_scanned, struct scan_control *sc,
1122                 isolate_mode_t mode, enum lru_list lru)
1123 {
1124         struct lruvec *lruvec;
1125         struct list_head *src;
1126         unsigned long nr_taken = 0;
1127         unsigned long nr_lumpy_taken = 0;
1128         unsigned long nr_lumpy_dirty = 0;
1129         unsigned long nr_lumpy_failed = 0;
1130         unsigned long scan;
1131         int file = is_file_lru(lru);
1132
1133         lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1134         src = &lruvec->lists[lru];
1135
1136         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1137                 struct page *page;
1138                 unsigned long pfn;
1139                 unsigned long end_pfn;
1140                 unsigned long page_pfn;
1141                 int zone_id;
1142
1143                 page = lru_to_page(src);
1144                 prefetchw_prev_lru_page(page, src, flags);
1145
1146                 VM_BUG_ON(!PageLRU(page));
1147
1148                 switch (__isolate_lru_page(page, mode)) {
1149                 case 0:
1150                         mem_cgroup_lru_del(page);
1151                         list_move(&page->lru, dst);
1152                         nr_taken += hpage_nr_pages(page);
1153                         break;
1154
1155                 case -EBUSY:
1156                         /* else it is being freed elsewhere */
1157                         list_move(&page->lru, src);
1158                         continue;
1159
1160                 default:
1161                         BUG();
1162                 }
1163
1164                 if (!sc->order || !(sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM))
1165                         continue;
1166
1167                 /*
1168                  * Attempt to take all pages in the order aligned region
1169                  * surrounding the tag page.  Only take those pages of
1170                  * the same active state as that tag page.  We may safely
1171                  * round the target page pfn down to the requested order
1172                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1173                  * where that page is in a different zone we will detect
1174                  * it from its zone id and abort this block scan.
1175                  */
1176                 zone_id = page_zone_id(page);
1177                 page_pfn = page_to_pfn(page);
1178                 pfn = page_pfn & ~((1 << sc->order) - 1);
1179                 end_pfn = pfn + (1 << sc->order);
1180                 for (; pfn < end_pfn; pfn++) {
1181                         struct page *cursor_page;
1182
1183                         /* The target page is in the block, ignore it. */
1184                         if (unlikely(pfn == page_pfn))
1185                                 continue;
1186
1187                         /* Avoid holes within the zone. */
1188                         if (unlikely(!pfn_valid_within(pfn)))
1189                                 break;
1190
1191                         cursor_page = pfn_to_page(pfn);
1192
1193                         /* Check that we have not crossed a zone boundary. */
1194                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1195                                 break;
1196
1197                         /*
1198                          * If we don't have enough swap space, reclaiming of
1199                          * anon page which don't already have a swap slot is
1200                          * pointless.
1201                          */
1202                         if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1203                             !PageSwapCache(cursor_page))
1204                                 break;
1205
1206                         if (__isolate_lru_page(cursor_page, mode) == 0) {
1207                                 unsigned int isolated_pages;
1208
1209                                 mem_cgroup_lru_del(cursor_page);
1210                                 list_move(&cursor_page->lru, dst);
1211                                 isolated_pages = hpage_nr_pages(cursor_page);
1212                                 nr_taken += isolated_pages;
1213                                 nr_lumpy_taken += isolated_pages;
1214                                 if (PageDirty(cursor_page))
1215                                         nr_lumpy_dirty += isolated_pages;
1216                                 scan++;
1217                                 pfn += isolated_pages - 1;
1218                         } else {
1219                                 /*
1220                                  * Check if the page is freed already.
1221                                  *
1222                                  * We can't use page_count() as that
1223                                  * requires compound_head and we don't
1224                                  * have a pin on the page here. If a
1225                                  * page is tail, we may or may not
1226                                  * have isolated the head, so assume
1227                                  * it's not free, it'd be tricky to
1228                                  * track the head status without a
1229                                  * page pin.
1230                                  */
1231                                 if (!PageTail(cursor_page) &&
1232                                     !atomic_read(&cursor_page->_count))
1233                                         continue;
1234                                 break;
1235                         }
1236                 }
1237
1238                 /* If we break out of the loop above, lumpy reclaim failed */
1239                 if (pfn < end_pfn)
1240                         nr_lumpy_failed++;
1241         }
1242
1243         *nr_scanned = scan;
1244
1245         trace_mm_vmscan_lru_isolate(sc->order,
1246                         nr_to_scan, scan,
1247                         nr_taken,
1248                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1249                         mode, file);
1250         return nr_taken;
1251 }
1252
1253 /**
1254  * isolate_lru_page - tries to isolate a page from its LRU list
1255  * @page: page to isolate from its LRU list
1256  *
1257  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1258  * vmstat statistic corresponding to whatever LRU list the page was on.
1259  *
1260  * Returns 0 if the page was removed from an LRU list.
1261  * Returns -EBUSY if the page was not on an LRU list.
1262  *
1263  * The returned page will have PageLRU() cleared.  If it was found on
1264  * the active list, it will have PageActive set.  If it was found on
1265  * the unevictable list, it will have the PageUnevictable bit set. That flag
1266  * may need to be cleared by the caller before letting the page go.
1267  *
1268  * The vmstat statistic corresponding to the list on which the page was
1269  * found will be decremented.
1270  *
1271  * Restrictions:
1272  * (1) Must be called with an elevated refcount on the page. This is a
1273  *     fundamentnal difference from isolate_lru_pages (which is called
1274  *     without a stable reference).
1275  * (2) the lru_lock must not be held.
1276  * (3) interrupts must be enabled.
1277  */
1278 int isolate_lru_page(struct page *page)
1279 {
1280         int ret = -EBUSY;
1281
1282         VM_BUG_ON(!page_count(page));
1283
1284         if (PageLRU(page)) {
1285                 struct zone *zone = page_zone(page);
1286
1287                 spin_lock_irq(&zone->lru_lock);
1288                 if (PageLRU(page)) {
1289                         int lru = page_lru(page);
1290                         ret = 0;
1291                         get_page(page);
1292                         ClearPageLRU(page);
1293
1294                         del_page_from_lru_list(zone, page, lru);
1295                 }
1296                 spin_unlock_irq(&zone->lru_lock);
1297         }
1298         return ret;
1299 }
1300
1301 /*
1302  * Are there way too many processes in the direct reclaim path already?
1303  */
1304 static int too_many_isolated(struct zone *zone, int file,
1305                 struct scan_control *sc)
1306 {
1307         unsigned long inactive, isolated;
1308
1309         if (current_is_kswapd())
1310                 return 0;
1311
1312         if (!global_reclaim(sc))
1313                 return 0;
1314
1315         if (file) {
1316                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1317                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1318         } else {
1319                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1320                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1321         }
1322
1323         return isolated > inactive;
1324 }
1325
1326 static noinline_for_stack void
1327 putback_inactive_pages(struct mem_cgroup_zone *mz,
1328                        struct list_head *page_list)
1329 {
1330         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1331         struct zone *zone = mz->zone;
1332         LIST_HEAD(pages_to_free);
1333
1334         /*
1335          * Put back any unfreeable pages.
1336          */
1337         while (!list_empty(page_list)) {
1338                 struct page *page = lru_to_page(page_list);
1339                 int lru;
1340
1341                 VM_BUG_ON(PageLRU(page));
1342                 list_del(&page->lru);
1343                 if (unlikely(!page_evictable(page, NULL))) {
1344                         spin_unlock_irq(&zone->lru_lock);
1345                         putback_lru_page(page);
1346                         spin_lock_irq(&zone->lru_lock);
1347                         continue;
1348                 }
1349                 SetPageLRU(page);
1350                 lru = page_lru(page);
1351                 add_page_to_lru_list(zone, page, lru);
1352                 if (is_active_lru(lru)) {
1353                         int file = is_file_lru(lru);
1354                         int numpages = hpage_nr_pages(page);
1355                         reclaim_stat->recent_rotated[file] += numpages;
1356                 }
1357                 if (put_page_testzero(page)) {
1358                         __ClearPageLRU(page);
1359                         __ClearPageActive(page);
1360                         del_page_from_lru_list(zone, page, lru);
1361
1362                         if (unlikely(PageCompound(page))) {
1363                                 spin_unlock_irq(&zone->lru_lock);
1364                                 (*get_compound_page_dtor(page))(page);
1365                                 spin_lock_irq(&zone->lru_lock);
1366                         } else
1367                                 list_add(&page->lru, &pages_to_free);
1368                 }
1369         }
1370
1371         /*
1372          * To save our caller's stack, now use input list for pages to free.
1373          */
1374         list_splice(&pages_to_free, page_list);
1375 }
1376
1377 static noinline_for_stack void
1378 update_isolated_counts(struct mem_cgroup_zone *mz,
1379                        struct list_head *page_list,
1380                        unsigned long *nr_anon,
1381                        unsigned long *nr_file)
1382 {
1383         struct zone *zone = mz->zone;
1384         unsigned int count[NR_LRU_LISTS] = { 0, };
1385         unsigned long nr_active = 0;
1386         struct page *page;
1387         int lru;
1388
1389         /*
1390          * Count pages and clear active flags
1391          */
1392         list_for_each_entry(page, page_list, lru) {
1393                 int numpages = hpage_nr_pages(page);
1394                 lru = page_lru_base_type(page);
1395                 if (PageActive(page)) {
1396                         lru += LRU_ACTIVE;
1397                         ClearPageActive(page);
1398                         nr_active += numpages;
1399                 }
1400                 count[lru] += numpages;
1401         }
1402
1403         preempt_disable();
1404         __count_vm_events(PGDEACTIVATE, nr_active);
1405
1406         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1407                               -count[LRU_ACTIVE_FILE]);
1408         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1409                               -count[LRU_INACTIVE_FILE]);
1410         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1411                               -count[LRU_ACTIVE_ANON]);
1412         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1413                               -count[LRU_INACTIVE_ANON]);
1414
1415         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1416         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1417
1418         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1419         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1420         preempt_enable();
1421 }
1422
1423 /*
1424  * Returns true if a direct reclaim should wait on pages under writeback.
1425  *
1426  * If we are direct reclaiming for contiguous pages and we do not reclaim
1427  * everything in the list, try again and wait for writeback IO to complete.
1428  * This will stall high-order allocations noticeably. Only do that when really
1429  * need to free the pages under high memory pressure.
1430  */
1431 static inline bool should_reclaim_stall(unsigned long nr_taken,
1432                                         unsigned long nr_freed,
1433                                         int priority,
1434                                         struct scan_control *sc)
1435 {
1436         int lumpy_stall_priority;
1437
1438         /* kswapd should not stall on sync IO */
1439         if (current_is_kswapd())
1440                 return false;
1441
1442         /* Only stall on lumpy reclaim */
1443         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1444                 return false;
1445
1446         /* If we have reclaimed everything on the isolated list, no stall */
1447         if (nr_freed == nr_taken)
1448                 return false;
1449
1450         /*
1451          * For high-order allocations, there are two stall thresholds.
1452          * High-cost allocations stall immediately where as lower
1453          * order allocations such as stacks require the scanning
1454          * priority to be much higher before stalling.
1455          */
1456         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1457                 lumpy_stall_priority = DEF_PRIORITY;
1458         else
1459                 lumpy_stall_priority = DEF_PRIORITY / 3;
1460
1461         return priority <= lumpy_stall_priority;
1462 }
1463
1464 /*
1465  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1466  * of reclaimed pages
1467  */
1468 static noinline_for_stack unsigned long
1469 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1470                      struct scan_control *sc, int priority, enum lru_list lru)
1471 {
1472         LIST_HEAD(page_list);
1473         unsigned long nr_scanned;
1474         unsigned long nr_reclaimed = 0;
1475         unsigned long nr_taken;
1476         unsigned long nr_anon;
1477         unsigned long nr_file;
1478         unsigned long nr_dirty = 0;
1479         unsigned long nr_writeback = 0;
1480         isolate_mode_t isolate_mode = 0;
1481         int file = is_file_lru(lru);
1482         struct zone *zone = mz->zone;
1483         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1484
1485         while (unlikely(too_many_isolated(zone, file, sc))) {
1486                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1487
1488                 /* We are about to die and free our memory. Return now. */
1489                 if (fatal_signal_pending(current))
1490                         return SWAP_CLUSTER_MAX;
1491         }
1492
1493         set_reclaim_mode(priority, sc, false);
1494
1495         lru_add_drain();
1496
1497         if (!sc->may_unmap)
1498                 isolate_mode |= ISOLATE_UNMAPPED;
1499         if (!sc->may_writepage)
1500                 isolate_mode |= ISOLATE_CLEAN;
1501
1502         spin_lock_irq(&zone->lru_lock);
1503
1504         nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1505                                      sc, isolate_mode, lru);
1506         if (global_reclaim(sc)) {
1507                 zone->pages_scanned += nr_scanned;
1508                 if (current_is_kswapd())
1509                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1510                                                nr_scanned);
1511                 else
1512                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1513                                                nr_scanned);
1514         }
1515         spin_unlock_irq(&zone->lru_lock);
1516
1517         if (nr_taken == 0)
1518                 return 0;
1519
1520         update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1521
1522         nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1523                                                 &nr_dirty, &nr_writeback);
1524
1525         /* Check if we should syncronously wait for writeback */
1526         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1527                 set_reclaim_mode(priority, sc, true);
1528                 nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1529                                         priority, &nr_dirty, &nr_writeback);
1530         }
1531
1532         spin_lock_irq(&zone->lru_lock);
1533
1534         reclaim_stat->recent_scanned[0] += nr_anon;
1535         reclaim_stat->recent_scanned[1] += nr_file;
1536
1537         if (current_is_kswapd())
1538                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1539         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1540
1541         putback_inactive_pages(mz, &page_list);
1542
1543         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1544         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1545
1546         spin_unlock_irq(&zone->lru_lock);
1547
1548         free_hot_cold_page_list(&page_list, 1);
1549
1550         /*
1551          * If reclaim is isolating dirty pages under writeback, it implies
1552          * that the long-lived page allocation rate is exceeding the page
1553          * laundering rate. Either the global limits are not being effective
1554          * at throttling processes due to the page distribution throughout
1555          * zones or there is heavy usage of a slow backing device. The
1556          * only option is to throttle from reclaim context which is not ideal
1557          * as there is no guarantee the dirtying process is throttled in the
1558          * same way balance_dirty_pages() manages.
1559          *
1560          * This scales the number of dirty pages that must be under writeback
1561          * before throttling depending on priority. It is a simple backoff
1562          * function that has the most effect in the range DEF_PRIORITY to
1563          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1564          * in trouble and reclaim is considered to be in trouble.
1565          *
1566          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1567          * DEF_PRIORITY-1  50% must be PageWriteback
1568          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1569          * ...
1570          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1571          *                     isolated page is PageWriteback
1572          */
1573         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1574                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1575
1576         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1577                 zone_idx(zone),
1578                 nr_scanned, nr_reclaimed,
1579                 priority,
1580                 trace_shrink_flags(file, sc->reclaim_mode));
1581         return nr_reclaimed;
1582 }
1583
1584 /*
1585  * This moves pages from the active list to the inactive list.
1586  *
1587  * We move them the other way if the page is referenced by one or more
1588  * processes, from rmap.
1589  *
1590  * If the pages are mostly unmapped, the processing is fast and it is
1591  * appropriate to hold zone->lru_lock across the whole operation.  But if
1592  * the pages are mapped, the processing is slow (page_referenced()) so we
1593  * should drop zone->lru_lock around each page.  It's impossible to balance
1594  * this, so instead we remove the pages from the LRU while processing them.
1595  * It is safe to rely on PG_active against the non-LRU pages in here because
1596  * nobody will play with that bit on a non-LRU page.
1597  *
1598  * The downside is that we have to touch page->_count against each page.
1599  * But we had to alter page->flags anyway.
1600  */
1601
1602 static void move_active_pages_to_lru(struct zone *zone,
1603                                      struct list_head *list,
1604                                      struct list_head *pages_to_free,
1605                                      enum lru_list lru)
1606 {
1607         unsigned long pgmoved = 0;
1608         struct page *page;
1609
1610         while (!list_empty(list)) {
1611                 struct lruvec *lruvec;
1612
1613                 page = lru_to_page(list);
1614
1615                 VM_BUG_ON(PageLRU(page));
1616                 SetPageLRU(page);
1617
1618                 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1619                 list_move(&page->lru, &lruvec->lists[lru]);
1620                 pgmoved += hpage_nr_pages(page);
1621
1622                 if (put_page_testzero(page)) {
1623                         __ClearPageLRU(page);
1624                         __ClearPageActive(page);
1625                         del_page_from_lru_list(zone, page, lru);
1626
1627                         if (unlikely(PageCompound(page))) {
1628                                 spin_unlock_irq(&zone->lru_lock);
1629                                 (*get_compound_page_dtor(page))(page);
1630                                 spin_lock_irq(&zone->lru_lock);
1631                         } else
1632                                 list_add(&page->lru, pages_to_free);
1633                 }
1634         }
1635         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1636         if (!is_active_lru(lru))
1637                 __count_vm_events(PGDEACTIVATE, pgmoved);
1638 }
1639
1640 static void shrink_active_list(unsigned long nr_to_scan,
1641                                struct mem_cgroup_zone *mz,
1642                                struct scan_control *sc,
1643                                int priority, enum lru_list lru)
1644 {
1645         unsigned long nr_taken;
1646         unsigned long nr_scanned;
1647         unsigned long vm_flags;
1648         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1649         LIST_HEAD(l_active);
1650         LIST_HEAD(l_inactive);
1651         struct page *page;
1652         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1653         unsigned long nr_rotated = 0;
1654         isolate_mode_t isolate_mode = 0;
1655         int file = is_file_lru(lru);
1656         struct zone *zone = mz->zone;
1657
1658         lru_add_drain();
1659
1660         reset_reclaim_mode(sc);
1661
1662         if (!sc->may_unmap)
1663                 isolate_mode |= ISOLATE_UNMAPPED;
1664         if (!sc->may_writepage)
1665                 isolate_mode |= ISOLATE_CLEAN;
1666
1667         spin_lock_irq(&zone->lru_lock);
1668
1669         nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1670                                      isolate_mode, lru);
1671         if (global_reclaim(sc))
1672                 zone->pages_scanned += nr_scanned;
1673
1674         reclaim_stat->recent_scanned[file] += nr_taken;
1675
1676         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1677         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1678         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1679         spin_unlock_irq(&zone->lru_lock);
1680
1681         while (!list_empty(&l_hold)) {
1682                 cond_resched();
1683                 page = lru_to_page(&l_hold);
1684                 list_del(&page->lru);
1685
1686                 if (unlikely(!page_evictable(page, NULL))) {
1687                         putback_lru_page(page);
1688                         continue;
1689                 }
1690
1691                 if (unlikely(buffer_heads_over_limit)) {
1692                         if (page_has_private(page) && trylock_page(page)) {
1693                                 if (page_has_private(page))
1694                                         try_to_release_page(page, 0);
1695                                 unlock_page(page);
1696                         }
1697                 }
1698
1699                 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1700                         nr_rotated += hpage_nr_pages(page);
1701                         /*
1702                          * Identify referenced, file-backed active pages and
1703                          * give them one more trip around the active list. So
1704                          * that executable code get better chances to stay in
1705                          * memory under moderate memory pressure.  Anon pages
1706                          * are not likely to be evicted by use-once streaming
1707                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1708                          * so we ignore them here.
1709                          */
1710                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1711                                 list_add(&page->lru, &l_active);
1712                                 continue;
1713                         }
1714                 }
1715
1716                 ClearPageActive(page);  /* we are de-activating */
1717                 list_add(&page->lru, &l_inactive);
1718         }
1719
1720         /*
1721          * Move pages back to the lru list.
1722          */
1723         spin_lock_irq(&zone->lru_lock);
1724         /*
1725          * Count referenced pages from currently used mappings as rotated,
1726          * even though only some of them are actually re-activated.  This
1727          * helps balance scan pressure between file and anonymous pages in
1728          * get_scan_ratio.
1729          */
1730         reclaim_stat->recent_rotated[file] += nr_rotated;
1731
1732         move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1733         move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1734         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1735         spin_unlock_irq(&zone->lru_lock);
1736
1737         free_hot_cold_page_list(&l_hold, 1);
1738 }
1739
1740 #ifdef CONFIG_SWAP
1741 static int inactive_anon_is_low_global(struct zone *zone)
1742 {
1743         unsigned long active, inactive;
1744
1745         active = zone_page_state(zone, NR_ACTIVE_ANON);
1746         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1747
1748         if (inactive * zone->inactive_ratio < active)
1749                 return 1;
1750
1751         return 0;
1752 }
1753
1754 /**
1755  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1756  * @zone: zone to check
1757  * @sc:   scan control of this context
1758  *
1759  * Returns true if the zone does not have enough inactive anon pages,
1760  * meaning some active anon pages need to be deactivated.
1761  */
1762 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1763 {
1764         /*
1765          * If we don't have swap space, anonymous page deactivation
1766          * is pointless.
1767          */
1768         if (!total_swap_pages)
1769                 return 0;
1770
1771         if (!mem_cgroup_disabled())
1772                 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1773                                                        mz->zone);
1774
1775         return inactive_anon_is_low_global(mz->zone);
1776 }
1777 #else
1778 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1779 {
1780         return 0;
1781 }
1782 #endif
1783
1784 static int inactive_file_is_low_global(struct zone *zone)
1785 {
1786         unsigned long active, inactive;
1787
1788         active = zone_page_state(zone, NR_ACTIVE_FILE);
1789         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1790
1791         return (active > inactive);
1792 }
1793
1794 /**
1795  * inactive_file_is_low - check if file pages need to be deactivated
1796  * @mz: memory cgroup and zone to check
1797  *
1798  * When the system is doing streaming IO, memory pressure here
1799  * ensures that active file pages get deactivated, until more
1800  * than half of the file pages are on the inactive list.
1801  *
1802  * Once we get to that situation, protect the system's working
1803  * set from being evicted by disabling active file page aging.
1804  *
1805  * This uses a different ratio than the anonymous pages, because
1806  * the page cache uses a use-once replacement algorithm.
1807  */
1808 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1809 {
1810         if (!mem_cgroup_disabled())
1811                 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1812                                                        mz->zone);
1813
1814         return inactive_file_is_low_global(mz->zone);
1815 }
1816
1817 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1818 {
1819         if (file)
1820                 return inactive_file_is_low(mz);
1821         else
1822                 return inactive_anon_is_low(mz);
1823 }
1824
1825 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1826                                  struct mem_cgroup_zone *mz,
1827                                  struct scan_control *sc, int priority)
1828 {
1829         int file = is_file_lru(lru);
1830
1831         if (is_active_lru(lru)) {
1832                 if (inactive_list_is_low(mz, file))
1833                         shrink_active_list(nr_to_scan, mz, sc, priority, lru);
1834                 return 0;
1835         }
1836
1837         return shrink_inactive_list(nr_to_scan, mz, sc, priority, lru);
1838 }
1839
1840 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1841                              struct scan_control *sc)
1842 {
1843         if (global_reclaim(sc))
1844                 return vm_swappiness;
1845         return mem_cgroup_swappiness(mz->mem_cgroup);
1846 }
1847
1848 /*
1849  * Determine how aggressively the anon and file LRU lists should be
1850  * scanned.  The relative value of each set of LRU lists is determined
1851  * by looking at the fraction of the pages scanned we did rotate back
1852  * onto the active list instead of evict.
1853  *
1854  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1855  */
1856 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1857                            unsigned long *nr, int priority)
1858 {
1859         unsigned long anon, file, free;
1860         unsigned long anon_prio, file_prio;
1861         unsigned long ap, fp;
1862         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1863         u64 fraction[2], denominator;
1864         enum lru_list lru;
1865         int noswap = 0;
1866         bool force_scan = false;
1867
1868         /*
1869          * If the zone or memcg is small, nr[l] can be 0.  This
1870          * results in no scanning on this priority and a potential
1871          * priority drop.  Global direct reclaim can go to the next
1872          * zone and tends to have no problems. Global kswapd is for
1873          * zone balancing and it needs to scan a minimum amount. When
1874          * reclaiming for a memcg, a priority drop can cause high
1875          * latencies, so it's better to scan a minimum amount there as
1876          * well.
1877          */
1878         if (current_is_kswapd() && mz->zone->all_unreclaimable)
1879                 force_scan = true;
1880         if (!global_reclaim(sc))
1881                 force_scan = true;
1882
1883         /* If we have no swap space, do not bother scanning anon pages. */
1884         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1885                 noswap = 1;
1886                 fraction[0] = 0;
1887                 fraction[1] = 1;
1888                 denominator = 1;
1889                 goto out;
1890         }
1891
1892         anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1893                 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1894         file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1895                 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1896
1897         if (global_reclaim(sc)) {
1898                 free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1899                 /* If we have very few page cache pages,
1900                    force-scan anon pages. */
1901                 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1902                         fraction[0] = 1;
1903                         fraction[1] = 0;
1904                         denominator = 1;
1905                         goto out;
1906                 }
1907         }
1908
1909         /*
1910          * With swappiness at 100, anonymous and file have the same priority.
1911          * This scanning priority is essentially the inverse of IO cost.
1912          */
1913         anon_prio = vmscan_swappiness(mz, sc);
1914         file_prio = 200 - vmscan_swappiness(mz, sc);
1915
1916         /*
1917          * OK, so we have swap space and a fair amount of page cache
1918          * pages.  We use the recently rotated / recently scanned
1919          * ratios to determine how valuable each cache is.
1920          *
1921          * Because workloads change over time (and to avoid overflow)
1922          * we keep these statistics as a floating average, which ends
1923          * up weighing recent references more than old ones.
1924          *
1925          * anon in [0], file in [1]
1926          */
1927         spin_lock_irq(&mz->zone->lru_lock);
1928         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1929                 reclaim_stat->recent_scanned[0] /= 2;
1930                 reclaim_stat->recent_rotated[0] /= 2;
1931         }
1932
1933         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1934                 reclaim_stat->recent_scanned[1] /= 2;
1935                 reclaim_stat->recent_rotated[1] /= 2;
1936         }
1937
1938         /*
1939          * The amount of pressure on anon vs file pages is inversely
1940          * proportional to the fraction of recently scanned pages on
1941          * each list that were recently referenced and in active use.
1942          */
1943         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1944         ap /= reclaim_stat->recent_rotated[0] + 1;
1945
1946         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1947         fp /= reclaim_stat->recent_rotated[1] + 1;
1948         spin_unlock_irq(&mz->zone->lru_lock);
1949
1950         fraction[0] = ap;
1951         fraction[1] = fp;
1952         denominator = ap + fp + 1;
1953 out:
1954         for_each_evictable_lru(lru) {
1955                 int file = is_file_lru(lru);
1956                 unsigned long scan;
1957
1958                 scan = zone_nr_lru_pages(mz, lru);
1959                 if (priority || noswap) {
1960                         scan >>= priority;
1961                         if (!scan && force_scan)
1962                                 scan = SWAP_CLUSTER_MAX;
1963                         scan = div64_u64(scan * fraction[file], denominator);
1964                 }
1965                 nr[lru] = scan;
1966         }
1967 }
1968
1969 /*
1970  * Reclaim/compaction depends on a number of pages being freed. To avoid
1971  * disruption to the system, a small number of order-0 pages continue to be
1972  * rotated and reclaimed in the normal fashion. However, by the time we get
1973  * back to the allocator and call try_to_compact_zone(), we ensure that
1974  * there are enough free pages for it to be likely successful
1975  */
1976 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1977                                         unsigned long nr_reclaimed,
1978                                         unsigned long nr_scanned,
1979                                         struct scan_control *sc)
1980 {
1981         unsigned long pages_for_compaction;
1982         unsigned long inactive_lru_pages;
1983
1984         /* If not in reclaim/compaction mode, stop */
1985         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1986                 return false;
1987
1988         /* Consider stopping depending on scan and reclaim activity */
1989         if (sc->gfp_mask & __GFP_REPEAT) {
1990                 /*
1991                  * For __GFP_REPEAT allocations, stop reclaiming if the
1992                  * full LRU list has been scanned and we are still failing
1993                  * to reclaim pages. This full LRU scan is potentially
1994                  * expensive but a __GFP_REPEAT caller really wants to succeed
1995                  */
1996                 if (!nr_reclaimed && !nr_scanned)
1997                         return false;
1998         } else {
1999                 /*
2000                  * For non-__GFP_REPEAT allocations which can presumably
2001                  * fail without consequence, stop if we failed to reclaim
2002                  * any pages from the last SWAP_CLUSTER_MAX number of
2003                  * pages that were scanned. This will return to the
2004                  * caller faster at the risk reclaim/compaction and
2005                  * the resulting allocation attempt fails
2006                  */
2007                 if (!nr_reclaimed)
2008                         return false;
2009         }
2010
2011         /*
2012          * If we have not reclaimed enough pages for compaction and the
2013          * inactive lists are large enough, continue reclaiming
2014          */
2015         pages_for_compaction = (2UL << sc->order);
2016         inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2017         if (nr_swap_pages > 0)
2018                 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2019         if (sc->nr_reclaimed < pages_for_compaction &&
2020                         inactive_lru_pages > pages_for_compaction)
2021                 return true;
2022
2023         /* If compaction would go ahead or the allocation would succeed, stop */
2024         switch (compaction_suitable(mz->zone, sc->order)) {
2025         case COMPACT_PARTIAL:
2026         case COMPACT_CONTINUE:
2027                 return false;
2028         default:
2029                 return true;
2030         }
2031 }
2032
2033 /*
2034  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2035  */
2036 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2037                                    struct scan_control *sc)
2038 {
2039         unsigned long nr[NR_LRU_LISTS];
2040         unsigned long nr_to_scan;
2041         enum lru_list lru;
2042         unsigned long nr_reclaimed, nr_scanned;
2043         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2044         struct blk_plug plug;
2045
2046 restart:
2047         nr_reclaimed = 0;
2048         nr_scanned = sc->nr_scanned;
2049         get_scan_count(mz, sc, nr, priority);
2050
2051         blk_start_plug(&plug);
2052         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2053                                         nr[LRU_INACTIVE_FILE]) {
2054                 for_each_evictable_lru(lru) {
2055                         if (nr[lru]) {
2056                                 nr_to_scan = min_t(unsigned long,
2057                                                    nr[lru], SWAP_CLUSTER_MAX);
2058                                 nr[lru] -= nr_to_scan;
2059
2060                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
2061                                                             mz, sc, priority);
2062                         }
2063                 }
2064                 /*
2065                  * On large memory systems, scan >> priority can become
2066                  * really large. This is fine for the starting priority;
2067                  * we want to put equal scanning pressure on each zone.
2068                  * However, if the VM has a harder time of freeing pages,
2069                  * with multiple processes reclaiming pages, the total
2070                  * freeing target can get unreasonably large.
2071                  */
2072                 if (nr_reclaimed >= nr_to_reclaim)
2073                         nr_to_reclaim = 0;
2074                 else
2075                         nr_to_reclaim -= nr_reclaimed;
2076
2077                 if (!nr_to_reclaim && priority < DEF_PRIORITY)
2078                         break;
2079         }
2080         blk_finish_plug(&plug);
2081         sc->nr_reclaimed += nr_reclaimed;
2082
2083         /*
2084          * Even if we did not try to evict anon pages at all, we want to
2085          * rebalance the anon lru active/inactive ratio.
2086          */
2087         if (inactive_anon_is_low(mz))
2088                 shrink_active_list(SWAP_CLUSTER_MAX, mz,
2089                                    sc, priority, LRU_ACTIVE_ANON);
2090
2091         /* reclaim/compaction might need reclaim to continue */
2092         if (should_continue_reclaim(mz, nr_reclaimed,
2093                                         sc->nr_scanned - nr_scanned, sc))
2094                 goto restart;
2095
2096         throttle_vm_writeout(sc->gfp_mask);
2097 }
2098
2099 static void shrink_zone(int priority, struct zone *zone,
2100                         struct scan_control *sc)
2101 {
2102         struct mem_cgroup *root = sc->target_mem_cgroup;
2103         struct mem_cgroup_reclaim_cookie reclaim = {
2104                 .zone = zone,
2105                 .priority = priority,
2106         };
2107         struct mem_cgroup *memcg;
2108
2109         memcg = mem_cgroup_iter(root, NULL, &reclaim);
2110         do {
2111                 struct mem_cgroup_zone mz = {
2112                         .mem_cgroup = memcg,
2113                         .zone = zone,
2114                 };
2115
2116                 shrink_mem_cgroup_zone(priority, &mz, sc);
2117                 /*
2118                  * Limit reclaim has historically picked one memcg and
2119                  * scanned it with decreasing priority levels until
2120                  * nr_to_reclaim had been reclaimed.  This priority
2121                  * cycle is thus over after a single memcg.
2122                  *
2123                  * Direct reclaim and kswapd, on the other hand, have
2124                  * to scan all memory cgroups to fulfill the overall
2125                  * scan target for the zone.
2126                  */
2127                 if (!global_reclaim(sc)) {
2128                         mem_cgroup_iter_break(root, memcg);
2129                         break;
2130                 }
2131                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2132         } while (memcg);
2133 }
2134
2135 /* Returns true if compaction should go ahead for a high-order request */
2136 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2137 {
2138         unsigned long balance_gap, watermark;
2139         bool watermark_ok;
2140
2141         /* Do not consider compaction for orders reclaim is meant to satisfy */
2142         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2143                 return false;
2144
2145         /*
2146          * Compaction takes time to run and there are potentially other
2147          * callers using the pages just freed. Continue reclaiming until
2148          * there is a buffer of free pages available to give compaction
2149          * a reasonable chance of completing and allocating the page
2150          */
2151         balance_gap = min(low_wmark_pages(zone),
2152                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2153                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2154         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2155         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2156
2157         /*
2158          * If compaction is deferred, reclaim up to a point where
2159          * compaction will have a chance of success when re-enabled
2160          */
2161         if (compaction_deferred(zone, sc->order))
2162                 return watermark_ok;
2163
2164         /* If compaction is not ready to start, keep reclaiming */
2165         if (!compaction_suitable(zone, sc->order))
2166                 return false;
2167
2168         return watermark_ok;
2169 }
2170
2171 /*
2172  * This is the direct reclaim path, for page-allocating processes.  We only
2173  * try to reclaim pages from zones which will satisfy the caller's allocation
2174  * request.
2175  *
2176  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2177  * Because:
2178  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2179  *    allocation or
2180  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2181  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2182  *    zone defense algorithm.
2183  *
2184  * If a zone is deemed to be full of pinned pages then just give it a light
2185  * scan then give up on it.
2186  *
2187  * This function returns true if a zone is being reclaimed for a costly
2188  * high-order allocation and compaction is ready to begin. This indicates to
2189  * the caller that it should consider retrying the allocation instead of
2190  * further reclaim.
2191  */
2192 static bool shrink_zones(int priority, struct zonelist *zonelist,
2193                                         struct scan_control *sc)
2194 {
2195         struct zoneref *z;
2196         struct zone *zone;
2197         unsigned long nr_soft_reclaimed;
2198         unsigned long nr_soft_scanned;
2199         bool aborted_reclaim = false;
2200
2201         /*
2202          * If the number of buffer_heads in the machine exceeds the maximum
2203          * allowed level, force direct reclaim to scan the highmem zone as
2204          * highmem pages could be pinning lowmem pages storing buffer_heads
2205          */
2206         if (buffer_heads_over_limit)
2207                 sc->gfp_mask |= __GFP_HIGHMEM;
2208
2209         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2210                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2211                 if (!populated_zone(zone))
2212                         continue;
2213                 /*
2214                  * Take care memory controller reclaiming has small influence
2215                  * to global LRU.
2216                  */
2217                 if (global_reclaim(sc)) {
2218                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2219                                 continue;
2220                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2221                                 continue;       /* Let kswapd poll it */
2222                         if (COMPACTION_BUILD) {
2223                                 /*
2224                                  * If we already have plenty of memory free for
2225                                  * compaction in this zone, don't free any more.
2226                                  * Even though compaction is invoked for any
2227                                  * non-zero order, only frequent costly order
2228                                  * reclamation is disruptive enough to become a
2229                                  * noticeable problem, like transparent huge
2230                                  * page allocations.
2231                                  */
2232                                 if (compaction_ready(zone, sc)) {
2233                                         aborted_reclaim = true;
2234                                         continue;
2235                                 }
2236                         }
2237                         /*
2238                          * This steals pages from memory cgroups over softlimit
2239                          * and returns the number of reclaimed pages and
2240                          * scanned pages. This works for global memory pressure
2241                          * and balancing, not for a memcg's limit.
2242                          */
2243                         nr_soft_scanned = 0;
2244                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2245                                                 sc->order, sc->gfp_mask,
2246                                                 &nr_soft_scanned);
2247                         sc->nr_reclaimed += nr_soft_reclaimed;
2248                         sc->nr_scanned += nr_soft_scanned;
2249                         /* need some check for avoid more shrink_zone() */
2250                 }
2251
2252                 shrink_zone(priority, zone, sc);
2253         }
2254
2255         return aborted_reclaim;
2256 }
2257
2258 static bool zone_reclaimable(struct zone *zone)
2259 {
2260         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2261 }
2262
2263 /* All zones in zonelist are unreclaimable? */
2264 static bool all_unreclaimable(struct zonelist *zonelist,
2265                 struct scan_control *sc)
2266 {
2267         struct zoneref *z;
2268         struct zone *zone;
2269
2270         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2271                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2272                 if (!populated_zone(zone))
2273                         continue;
2274                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2275                         continue;
2276                 if (!zone->all_unreclaimable)
2277                         return false;
2278         }
2279
2280         return true;
2281 }
2282
2283 /*
2284  * This is the main entry point to direct page reclaim.
2285  *
2286  * If a full scan of the inactive list fails to free enough memory then we
2287  * are "out of memory" and something needs to be killed.
2288  *
2289  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2290  * high - the zone may be full of dirty or under-writeback pages, which this
2291  * caller can't do much about.  We kick the writeback threads and take explicit
2292  * naps in the hope that some of these pages can be written.  But if the
2293  * allocating task holds filesystem locks which prevent writeout this might not
2294  * work, and the allocation attempt will fail.
2295  *
2296  * returns:     0, if no pages reclaimed
2297  *              else, the number of pages reclaimed
2298  */
2299 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2300                                         struct scan_control *sc,
2301                                         struct shrink_control *shrink)
2302 {
2303         int priority;
2304         unsigned long total_scanned = 0;
2305         struct reclaim_state *reclaim_state = current->reclaim_state;
2306         struct zoneref *z;
2307         struct zone *zone;
2308         unsigned long writeback_threshold;
2309         bool aborted_reclaim;
2310
2311         delayacct_freepages_start();
2312
2313         if (global_reclaim(sc))
2314                 count_vm_event(ALLOCSTALL);
2315
2316         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2317                 sc->nr_scanned = 0;
2318                 if (!priority)
2319                         disable_swap_token(sc->target_mem_cgroup);
2320                 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2321
2322                 /*
2323                  * Don't shrink slabs when reclaiming memory from
2324                  * over limit cgroups
2325                  */
2326                 if (global_reclaim(sc)) {
2327                         unsigned long lru_pages = 0;
2328                         for_each_zone_zonelist(zone, z, zonelist,
2329                                         gfp_zone(sc->gfp_mask)) {
2330                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2331                                         continue;
2332
2333                                 lru_pages += zone_reclaimable_pages(zone);
2334                         }
2335
2336                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2337                         if (reclaim_state) {
2338                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2339                                 reclaim_state->reclaimed_slab = 0;
2340                         }
2341                 }
2342                 total_scanned += sc->nr_scanned;
2343                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2344                         goto out;
2345
2346                 /*
2347                  * Try to write back as many pages as we just scanned.  This
2348                  * tends to cause slow streaming writers to write data to the
2349                  * disk smoothly, at the dirtying rate, which is nice.   But
2350                  * that's undesirable in laptop mode, where we *want* lumpy
2351                  * writeout.  So in laptop mode, write out the whole world.
2352                  */
2353                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2354                 if (total_scanned > writeback_threshold) {
2355                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2356                                                 WB_REASON_TRY_TO_FREE_PAGES);
2357                         sc->may_writepage = 1;
2358                 }
2359
2360                 /* Take a nap, wait for some writeback to complete */
2361                 if (!sc->hibernation_mode && sc->nr_scanned &&
2362                     priority < DEF_PRIORITY - 2) {
2363                         struct zone *preferred_zone;
2364
2365                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2366                                                 &cpuset_current_mems_allowed,
2367                                                 &preferred_zone);
2368                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2369                 }
2370         }
2371
2372 out:
2373         delayacct_freepages_end();
2374
2375         if (sc->nr_reclaimed)
2376                 return sc->nr_reclaimed;
2377
2378         /*
2379          * As hibernation is going on, kswapd is freezed so that it can't mark
2380          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2381          * check.
2382          */
2383         if (oom_killer_disabled)
2384                 return 0;
2385
2386         /* Aborted reclaim to try compaction? don't OOM, then */
2387         if (aborted_reclaim)
2388                 return 1;
2389
2390         /* top priority shrink_zones still had more to do? don't OOM, then */
2391         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2392                 return 1;
2393
2394         return 0;
2395 }
2396
2397 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2398                                 gfp_t gfp_mask, nodemask_t *nodemask)
2399 {
2400         unsigned long nr_reclaimed;
2401         struct scan_control sc = {
2402                 .gfp_mask = gfp_mask,
2403                 .may_writepage = !laptop_mode,
2404                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2405                 .may_unmap = 1,
2406                 .may_swap = 1,
2407                 .order = order,
2408                 .target_mem_cgroup = NULL,
2409                 .nodemask = nodemask,
2410         };
2411         struct shrink_control shrink = {
2412                 .gfp_mask = sc.gfp_mask,
2413         };
2414
2415         trace_mm_vmscan_direct_reclaim_begin(order,
2416                                 sc.may_writepage,
2417                                 gfp_mask);
2418
2419         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2420
2421         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2422
2423         return nr_reclaimed;
2424 }
2425
2426 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2427
2428 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2429                                                 gfp_t gfp_mask, bool noswap,
2430                                                 struct zone *zone,
2431                                                 unsigned long *nr_scanned)
2432 {
2433         struct scan_control sc = {
2434                 .nr_scanned = 0,
2435                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2436                 .may_writepage = !laptop_mode,
2437                 .may_unmap = 1,
2438                 .may_swap = !noswap,
2439                 .order = 0,
2440                 .target_mem_cgroup = memcg,
2441         };
2442         struct mem_cgroup_zone mz = {
2443                 .mem_cgroup = memcg,
2444                 .zone = zone,
2445         };
2446
2447         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2448                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2449
2450         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2451                                                       sc.may_writepage,
2452                                                       sc.gfp_mask);
2453
2454         /*
2455          * NOTE: Although we can get the priority field, using it
2456          * here is not a good idea, since it limits the pages we can scan.
2457          * if we don't reclaim here, the shrink_zone from balance_pgdat
2458          * will pick up pages from other mem cgroup's as well. We hack
2459          * the priority and make it zero.
2460          */
2461         shrink_mem_cgroup_zone(0, &mz, &sc);
2462
2463         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2464
2465         *nr_scanned = sc.nr_scanned;
2466         return sc.nr_reclaimed;
2467 }
2468
2469 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2470                                            gfp_t gfp_mask,
2471                                            bool noswap)
2472 {
2473         struct zonelist *zonelist;
2474         unsigned long nr_reclaimed;
2475         int nid;
2476         struct scan_control sc = {
2477                 .may_writepage = !laptop_mode,
2478                 .may_unmap = 1,
2479                 .may_swap = !noswap,
2480                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2481                 .order = 0,
2482                 .target_mem_cgroup = memcg,
2483                 .nodemask = NULL, /* we don't care the placement */
2484                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2485                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2486         };
2487         struct shrink_control shrink = {
2488                 .gfp_mask = sc.gfp_mask,
2489         };
2490
2491         /*
2492          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2493          * take care of from where we get pages. So the node where we start the
2494          * scan does not need to be the current node.
2495          */
2496         nid = mem_cgroup_select_victim_node(memcg);
2497
2498         zonelist = NODE_DATA(nid)->node_zonelists;
2499
2500         trace_mm_vmscan_memcg_reclaim_begin(0,
2501                                             sc.may_writepage,
2502                                             sc.gfp_mask);
2503
2504         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2505
2506         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2507
2508         return nr_reclaimed;
2509 }
2510 #endif
2511
2512 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2513                             int priority)
2514 {
2515         struct mem_cgroup *memcg;
2516
2517         if (!total_swap_pages)
2518                 return;
2519
2520         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2521         do {
2522                 struct mem_cgroup_zone mz = {
2523                         .mem_cgroup = memcg,
2524                         .zone = zone,
2525                 };
2526
2527                 if (inactive_anon_is_low(&mz))
2528                         shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2529                                            sc, priority, LRU_ACTIVE_ANON);
2530
2531                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2532         } while (memcg);
2533 }
2534
2535 /*
2536  * pgdat_balanced is used when checking if a node is balanced for high-order
2537  * allocations. Only zones that meet watermarks and are in a zone allowed
2538  * by the callers classzone_idx are added to balanced_pages. The total of
2539  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2540  * for the node to be considered balanced. Forcing all zones to be balanced
2541  * for high orders can cause excessive reclaim when there are imbalanced zones.
2542  * The choice of 25% is due to
2543  *   o a 16M DMA zone that is balanced will not balance a zone on any
2544  *     reasonable sized machine
2545  *   o On all other machines, the top zone must be at least a reasonable
2546  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2547  *     would need to be at least 256M for it to be balance a whole node.
2548  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2549  *     to balance a node on its own. These seemed like reasonable ratios.
2550  */
2551 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2552                                                 int classzone_idx)
2553 {
2554         unsigned long present_pages = 0;
2555         int i;
2556
2557         for (i = 0; i <= classzone_idx; i++)
2558                 present_pages += pgdat->node_zones[i].present_pages;
2559
2560         /* A special case here: if zone has no page, we think it's balanced */
2561         return balanced_pages >= (present_pages >> 2);
2562 }
2563
2564 /* is kswapd sleeping prematurely? */
2565 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2566                                         int classzone_idx)
2567 {
2568         int i;
2569         unsigned long balanced = 0;
2570         bool all_zones_ok = true;
2571
2572         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2573         if (remaining)
2574                 return true;
2575
2576         /* Check the watermark levels */
2577         for (i = 0; i <= classzone_idx; i++) {
2578                 struct zone *zone = pgdat->node_zones + i;
2579
2580                 if (!populated_zone(zone))
2581                         continue;
2582
2583                 /*
2584                  * balance_pgdat() skips over all_unreclaimable after
2585                  * DEF_PRIORITY. Effectively, it considers them balanced so
2586                  * they must be considered balanced here as well if kswapd
2587                  * is to sleep
2588                  */
2589                 if (zone->all_unreclaimable) {
2590                         balanced += zone->present_pages;
2591                         continue;
2592                 }
2593
2594                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2595                                                         i, 0))
2596                         all_zones_ok = false;
2597                 else
2598                         balanced += zone->present_pages;
2599         }
2600
2601         /*
2602          * For high-order requests, the balanced zones must contain at least
2603          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2604          * must be balanced
2605          */
2606         if (order)
2607                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2608         else
2609                 return !all_zones_ok;
2610 }
2611
2612 /*
2613  * For kswapd, balance_pgdat() will work across all this node's zones until
2614  * they are all at high_wmark_pages(zone).
2615  *
2616  * Returns the final order kswapd was reclaiming at
2617  *
2618  * There is special handling here for zones which are full of pinned pages.
2619  * This can happen if the pages are all mlocked, or if they are all used by
2620  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2621  * What we do is to detect the case where all pages in the zone have been
2622  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2623  * dead and from now on, only perform a short scan.  Basically we're polling
2624  * the zone for when the problem goes away.
2625  *
2626  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2627  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2628  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2629  * lower zones regardless of the number of free pages in the lower zones. This
2630  * interoperates with the page allocator fallback scheme to ensure that aging
2631  * of pages is balanced across the zones.
2632  */
2633 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2634                                                         int *classzone_idx)
2635 {
2636         int all_zones_ok;
2637         unsigned long balanced;
2638         int priority;
2639         int i;
2640         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2641         unsigned long total_scanned;
2642         struct reclaim_state *reclaim_state = current->reclaim_state;
2643         unsigned long nr_soft_reclaimed;
2644         unsigned long nr_soft_scanned;
2645         struct scan_control sc = {
2646                 .gfp_mask = GFP_KERNEL,
2647                 .may_unmap = 1,
2648                 .may_swap = 1,
2649                 /*
2650                  * kswapd doesn't want to be bailed out while reclaim. because
2651                  * we want to put equal scanning pressure on each zone.
2652                  */
2653                 .nr_to_reclaim = ULONG_MAX,
2654                 .order = order,
2655                 .target_mem_cgroup = NULL,
2656         };
2657         struct shrink_control shrink = {
2658                 .gfp_mask = sc.gfp_mask,
2659         };
2660 loop_again:
2661         total_scanned = 0;
2662         sc.nr_reclaimed = 0;
2663         sc.may_writepage = !laptop_mode;
2664         count_vm_event(PAGEOUTRUN);
2665
2666         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2667                 unsigned long lru_pages = 0;
2668                 int has_under_min_watermark_zone = 0;
2669
2670                 /* The swap token gets in the way of swapout... */
2671                 if (!priority)
2672                         disable_swap_token(NULL);
2673
2674                 all_zones_ok = 1;
2675                 balanced = 0;
2676
2677                 /*
2678                  * Scan in the highmem->dma direction for the highest
2679                  * zone which needs scanning
2680                  */
2681                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2682                         struct zone *zone = pgdat->node_zones + i;
2683
2684                         if (!populated_zone(zone))
2685                                 continue;
2686
2687                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2688                                 continue;
2689
2690                         /*
2691                          * Do some background aging of the anon list, to give
2692                          * pages a chance to be referenced before reclaiming.
2693                          */
2694                         age_active_anon(zone, &sc, priority);
2695
2696                         /*
2697                          * If the number of buffer_heads in the machine
2698                          * exceeds the maximum allowed level and this node
2699                          * has a highmem zone, force kswapd to reclaim from
2700                          * it to relieve lowmem pressure.
2701                          */
2702                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2703                                 end_zone = i;
2704                                 break;
2705                         }
2706
2707                         if (!zone_watermark_ok_safe(zone, order,
2708                                         high_wmark_pages(zone), 0, 0)) {
2709                                 end_zone = i;
2710                                 break;
2711                         } else {
2712                                 /* If balanced, clear the congested flag */
2713                                 zone_clear_flag(zone, ZONE_CONGESTED);
2714                         }
2715                 }
2716                 if (i < 0)
2717                         goto out;
2718
2719                 for (i = 0; i <= end_zone; i++) {
2720                         struct zone *zone = pgdat->node_zones + i;
2721
2722                         lru_pages += zone_reclaimable_pages(zone);
2723                 }
2724
2725                 /*
2726                  * Now scan the zone in the dma->highmem direction, stopping
2727                  * at the last zone which needs scanning.
2728                  *
2729                  * We do this because the page allocator works in the opposite
2730                  * direction.  This prevents the page allocator from allocating
2731                  * pages behind kswapd's direction of progress, which would
2732                  * cause too much scanning of the lower zones.
2733                  */
2734                 for (i = 0; i <= end_zone; i++) {
2735                         struct zone *zone = pgdat->node_zones + i;
2736                         int nr_slab, testorder;
2737                         unsigned long balance_gap;
2738
2739                         if (!populated_zone(zone))
2740                                 continue;
2741
2742                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2743                                 continue;
2744
2745                         sc.nr_scanned = 0;
2746
2747                         nr_soft_scanned = 0;
2748                         /*
2749                          * Call soft limit reclaim before calling shrink_zone.
2750                          */
2751                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2752                                                         order, sc.gfp_mask,
2753                                                         &nr_soft_scanned);
2754                         sc.nr_reclaimed += nr_soft_reclaimed;
2755                         total_scanned += nr_soft_scanned;
2756
2757                         /*
2758                          * We put equal pressure on every zone, unless
2759                          * one zone has way too many pages free
2760                          * already. The "too many pages" is defined
2761                          * as the high wmark plus a "gap" where the
2762                          * gap is either the low watermark or 1%
2763                          * of the zone, whichever is smaller.
2764                          */
2765                         balance_gap = min(low_wmark_pages(zone),
2766                                 (zone->present_pages +
2767                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2768                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2769                         /*
2770                          * Kswapd reclaims only single pages with compaction
2771                          * enabled. Trying too hard to reclaim until contiguous
2772                          * free pages have become available can hurt performance
2773                          * by evicting too much useful data from memory.
2774                          * Do not reclaim more than needed for compaction.
2775                          */
2776                         testorder = order;
2777                         if (COMPACTION_BUILD && order &&
2778                                         compaction_suitable(zone, order) !=
2779                                                 COMPACT_SKIPPED)
2780                                 testorder = 0;
2781
2782                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2783                                     !zone_watermark_ok_safe(zone, testorder,
2784                                         high_wmark_pages(zone) + balance_gap,
2785                                         end_zone, 0)) {
2786                                 shrink_zone(priority, zone, &sc);
2787
2788                                 reclaim_state->reclaimed_slab = 0;
2789                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2790                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2791                                 total_scanned += sc.nr_scanned;
2792
2793                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2794                                         zone->all_unreclaimable = 1;
2795                         }
2796
2797                         /*
2798                          * If we've done a decent amount of scanning and
2799                          * the reclaim ratio is low, start doing writepage
2800                          * even in laptop mode
2801                          */
2802                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2803                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2804                                 sc.may_writepage = 1;
2805
2806                         if (zone->all_unreclaimable) {
2807                                 if (end_zone && end_zone == i)
2808                                         end_zone--;
2809                                 continue;
2810                         }
2811
2812                         if (!zone_watermark_ok_safe(zone, testorder,
2813                                         high_wmark_pages(zone), end_zone, 0)) {
2814                                 all_zones_ok = 0;
2815                                 /*
2816                                  * We are still under min water mark.  This
2817                                  * means that we have a GFP_ATOMIC allocation
2818                                  * failure risk. Hurry up!
2819                                  */
2820                                 if (!zone_watermark_ok_safe(zone, order,
2821                                             min_wmark_pages(zone), end_zone, 0))
2822                                         has_under_min_watermark_zone = 1;
2823                         } else {
2824                                 /*
2825                                  * If a zone reaches its high watermark,
2826                                  * consider it to be no longer congested. It's
2827                                  * possible there are dirty pages backed by
2828                                  * congested BDIs but as pressure is relieved,
2829                                  * spectulatively avoid congestion waits
2830                                  */
2831                                 zone_clear_flag(zone, ZONE_CONGESTED);
2832                                 if (i <= *classzone_idx)
2833                                         balanced += zone->present_pages;
2834                         }
2835
2836                 }
2837                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2838                         break;          /* kswapd: all done */
2839                 /*
2840                  * OK, kswapd is getting into trouble.  Take a nap, then take
2841                  * another pass across the zones.
2842                  */
2843                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2844                         if (has_under_min_watermark_zone)
2845                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2846                         else
2847                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2848                 }
2849
2850                 /*
2851                  * We do this so kswapd doesn't build up large priorities for
2852                  * example when it is freeing in parallel with allocators. It
2853                  * matches the direct reclaim path behaviour in terms of impact
2854                  * on zone->*_priority.
2855                  */
2856                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2857                         break;
2858         }
2859 out:
2860
2861         /*
2862          * order-0: All zones must meet high watermark for a balanced node
2863          * high-order: Balanced zones must make up at least 25% of the node
2864          *             for the node to be balanced
2865          */
2866         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2867                 cond_resched();
2868
2869                 try_to_freeze();
2870
2871                 /*
2872                  * Fragmentation may mean that the system cannot be
2873                  * rebalanced for high-order allocations in all zones.
2874                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2875                  * it means the zones have been fully scanned and are still
2876                  * not balanced. For high-order allocations, there is
2877                  * little point trying all over again as kswapd may
2878                  * infinite loop.
2879                  *
2880                  * Instead, recheck all watermarks at order-0 as they
2881                  * are the most important. If watermarks are ok, kswapd will go
2882                  * back to sleep. High-order users can still perform direct
2883                  * reclaim if they wish.
2884                  */
2885                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2886                         order = sc.order = 0;
2887
2888                 goto loop_again;
2889         }
2890
2891         /*
2892          * If kswapd was reclaiming at a higher order, it has the option of
2893          * sleeping without all zones being balanced. Before it does, it must
2894          * ensure that the watermarks for order-0 on *all* zones are met and
2895          * that the congestion flags are cleared. The congestion flag must
2896          * be cleared as kswapd is the only mechanism that clears the flag
2897          * and it is potentially going to sleep here.
2898          */
2899         if (order) {
2900                 int zones_need_compaction = 1;
2901
2902                 for (i = 0; i <= end_zone; i++) {
2903                         struct zone *zone = pgdat->node_zones + i;
2904
2905                         if (!populated_zone(zone))
2906                                 continue;
2907
2908                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2909                                 continue;
2910
2911                         /* Would compaction fail due to lack of free memory? */
2912                         if (COMPACTION_BUILD &&
2913                             compaction_suitable(zone, order) == COMPACT_SKIPPED)
2914                                 goto loop_again;
2915
2916                         /* Confirm the zone is balanced for order-0 */
2917                         if (!zone_watermark_ok(zone, 0,
2918                                         high_wmark_pages(zone), 0, 0)) {
2919                                 order = sc.order = 0;
2920                                 goto loop_again;
2921                         }
2922
2923                         /* Check if the memory needs to be defragmented. */
2924                         if (zone_watermark_ok(zone, order,
2925                                     low_wmark_pages(zone), *classzone_idx, 0))
2926                                 zones_need_compaction = 0;
2927
2928                         /* If balanced, clear the congested flag */
2929                         zone_clear_flag(zone, ZONE_CONGESTED);
2930                 }
2931
2932                 if (zones_need_compaction)
2933                         compact_pgdat(pgdat, order);
2934         }
2935
2936         /*
2937          * Return the order we were reclaiming at so sleeping_prematurely()
2938          * makes a decision on the order we were last reclaiming at. However,
2939          * if another caller entered the allocator slow path while kswapd
2940          * was awake, order will remain at the higher level
2941          */
2942         *classzone_idx = end_zone;
2943         return order;
2944 }
2945
2946 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2947 {
2948         long remaining = 0;
2949         DEFINE_WAIT(wait);
2950
2951         if (freezing(current) || kthread_should_stop())
2952                 return;
2953
2954         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2955
2956         /* Try to sleep for a short interval */
2957         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2958                 remaining = schedule_timeout(HZ/10);
2959                 finish_wait(&pgdat->kswapd_wait, &wait);
2960                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2961         }
2962
2963         /*
2964          * After a short sleep, check if it was a premature sleep. If not, then
2965          * go fully to sleep until explicitly woken up.
2966          */
2967         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2968                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2969
2970                 /*
2971                  * vmstat counters are not perfectly accurate and the estimated
2972                  * value for counters such as NR_FREE_PAGES can deviate from the
2973                  * true value by nr_online_cpus * threshold. To avoid the zone
2974                  * watermarks being breached while under pressure, we reduce the
2975                  * per-cpu vmstat threshold while kswapd is awake and restore
2976                  * them before going back to sleep.
2977                  */
2978                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2979                 schedule();
2980                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2981         } else {
2982                 if (remaining)
2983                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2984                 else
2985                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2986         }
2987         finish_wait(&pgdat->kswapd_wait, &wait);
2988 }
2989
2990 /*
2991  * The background pageout daemon, started as a kernel thread
2992  * from the init process.
2993  *
2994  * This basically trickles out pages so that we have _some_
2995  * free memory available even if there is no other activity
2996  * that frees anything up. This is needed for things like routing
2997  * etc, where we otherwise might have all activity going on in
2998  * asynchronous contexts that cannot page things out.
2999  *
3000  * If there are applications that are active memory-allocators
3001  * (most normal use), this basically shouldn't matter.
3002  */
3003 static int kswapd(void *p)
3004 {
3005         unsigned long order, new_order;
3006         unsigned balanced_order;
3007         int classzone_idx, new_classzone_idx;
3008         int balanced_classzone_idx;
3009         pg_data_t *pgdat = (pg_data_t*)p;
3010         struct task_struct *tsk = current;
3011
3012         struct reclaim_state reclaim_state = {
3013                 .reclaimed_slab = 0,
3014         };
3015         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3016
3017         lockdep_set_current_reclaim_state(GFP_KERNEL);
3018
3019         if (!cpumask_empty(cpumask))
3020                 set_cpus_allowed_ptr(tsk, cpumask);
3021         current->reclaim_state = &reclaim_state;
3022
3023         /*
3024          * Tell the memory management that we're a "memory allocator",
3025          * and that if we need more memory we should get access to it
3026          * regardless (see "__alloc_pages()"). "kswapd" should
3027          * never get caught in the normal page freeing logic.
3028          *
3029          * (Kswapd normally doesn't need memory anyway, but sometimes
3030          * you need a small amount of memory in order to be able to
3031          * page out something else, and this flag essentially protects
3032          * us from recursively trying to free more memory as we're
3033          * trying to free the first piece of memory in the first place).
3034          */
3035         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3036         set_freezable();
3037
3038         order = new_order = 0;
3039         balanced_order = 0;
3040         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3041         balanced_classzone_idx = classzone_idx;
3042         for ( ; ; ) {
3043                 int ret;
3044
3045                 /*
3046                  * If the last balance_pgdat was unsuccessful it's unlikely a
3047                  * new request of a similar or harder type will succeed soon
3048                  * so consider going to sleep on the basis we reclaimed at
3049                  */
3050                 if (balanced_classzone_idx >= new_classzone_idx &&
3051                                         balanced_order == new_order) {
3052                         new_order = pgdat->kswapd_max_order;
3053                         new_classzone_idx = pgdat->classzone_idx;
3054                         pgdat->kswapd_max_order =  0;
3055                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3056                 }
3057
3058                 if (order < new_order || classzone_idx > new_classzone_idx) {
3059                         /*
3060                          * Don't sleep if someone wants a larger 'order'
3061                          * allocation or has tigher zone constraints
3062                          */
3063                         order = new_order;
3064                         classzone_idx = new_classzone_idx;
3065                 } else {
3066                         kswapd_try_to_sleep(pgdat, balanced_order,
3067                                                 balanced_classzone_idx);
3068                         order = pgdat->kswapd_max_order;
3069                         classzone_idx = pgdat->classzone_idx;
3070                         new_order = order;
3071                         new_classzone_idx = classzone_idx;
3072                         pgdat->kswapd_max_order = 0;
3073                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3074                 }
3075
3076                 ret = try_to_freeze();
3077                 if (kthread_should_stop())
3078                         break;
3079
3080                 /*
3081                  * We can speed up thawing tasks if we don't call balance_pgdat
3082                  * after returning from the refrigerator
3083                  */
3084                 if (!ret) {
3085                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3086                         balanced_classzone_idx = classzone_idx;
3087                         balanced_order = balance_pgdat(pgdat, order,
3088                                                 &balanced_classzone_idx);
3089                 }
3090         }
3091         return 0;
3092 }
3093
3094 /*
3095  * A zone is low on free memory, so wake its kswapd task to service it.
3096  */
3097 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3098 {
3099         pg_data_t *pgdat;
3100
3101         if (!populated_zone(zone))
3102                 return;
3103
3104         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3105                 return;
3106         pgdat = zone->zone_pgdat;
3107         if (pgdat->kswapd_max_order < order) {
3108                 pgdat->kswapd_max_order = order;
3109                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3110         }
3111         if (!waitqueue_active(&pgdat->kswapd_wait))
3112                 return;
3113         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3114                 return;
3115
3116         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3117         wake_up_interruptible(&pgdat->kswapd_wait);
3118 }
3119
3120 /*
3121  * The reclaimable count would be mostly accurate.
3122  * The less reclaimable pages may be
3123  * - mlocked pages, which will be moved to unevictable list when encountered
3124  * - mapped pages, which may require several travels to be reclaimed
3125  * - dirty pages, which is not "instantly" reclaimable
3126  */
3127 unsigned long global_reclaimable_pages(void)
3128 {
3129         int nr;
3130
3131         nr = global_page_state(NR_ACTIVE_FILE) +
3132              global_page_state(NR_INACTIVE_FILE);
3133
3134         if (nr_swap_pages > 0)
3135                 nr += global_page_state(NR_ACTIVE_ANON) +
3136                       global_page_state(NR_INACTIVE_ANON);
3137
3138         return nr;
3139 }
3140
3141 unsigned long zone_reclaimable_pages(struct zone *zone)
3142 {
3143         int nr;
3144
3145         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3146              zone_page_state(zone, NR_INACTIVE_FILE);
3147
3148         if (nr_swap_pages > 0)
3149                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3150                       zone_page_state(zone, NR_INACTIVE_ANON);
3151
3152         return nr;
3153 }
3154
3155 #ifdef CONFIG_HIBERNATION
3156 /*
3157  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3158  * freed pages.
3159  *
3160  * Rather than trying to age LRUs the aim is to preserve the overall
3161  * LRU order by reclaiming preferentially
3162  * inactive > active > active referenced > active mapped
3163  */
3164 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3165 {
3166         struct reclaim_state reclaim_state;
3167         struct scan_control sc = {
3168                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3169                 .may_swap = 1,
3170                 .may_unmap = 1,
3171                 .may_writepage = 1,
3172                 .nr_to_reclaim = nr_to_reclaim,
3173                 .hibernation_mode = 1,
3174                 .order = 0,
3175         };
3176         struct shrink_control shrink = {
3177                 .gfp_mask = sc.gfp_mask,
3178         };
3179         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3180         struct task_struct *p = current;
3181         unsigned long nr_reclaimed;
3182
3183         p->flags |= PF_MEMALLOC;
3184         lockdep_set_current_reclaim_state(sc.gfp_mask);
3185         reclaim_state.reclaimed_slab = 0;
3186         p->reclaim_state = &reclaim_state;
3187
3188         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3189
3190         p->reclaim_state = NULL;
3191         lockdep_clear_current_reclaim_state();
3192         p->flags &= ~PF_MEMALLOC;
3193
3194         return nr_reclaimed;
3195 }
3196 #endif /* CONFIG_HIBERNATION */
3197
3198 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3199    not required for correctness.  So if the last cpu in a node goes
3200    away, we get changed to run anywhere: as the first one comes back,
3201    restore their cpu bindings. */
3202 static int __devinit cpu_callback(struct notifier_block *nfb,
3203                                   unsigned long action, void *hcpu)
3204 {
3205         int nid;
3206
3207         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3208                 for_each_node_state(nid, N_HIGH_MEMORY) {
3209                         pg_data_t *pgdat = NODE_DATA(nid);
3210                         const struct cpumask *mask;
3211
3212                         mask = cpumask_of_node(pgdat->node_id);
3213
3214                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3215                                 /* One of our CPUs online: restore mask */
3216                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3217                 }
3218         }
3219         return NOTIFY_OK;
3220 }
3221
3222 /*
3223  * This kswapd start function will be called by init and node-hot-add.
3224  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3225  */
3226 int kswapd_run(int nid)
3227 {
3228         pg_data_t *pgdat = NODE_DATA(nid);
3229         int ret = 0;
3230
3231         if (pgdat->kswapd)
3232                 return 0;
3233
3234         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3235         if (IS_ERR(pgdat->kswapd)) {
3236                 /* failure at boot is fatal */
3237                 BUG_ON(system_state == SYSTEM_BOOTING);
3238                 printk("Failed to start kswapd on node %d\n",nid);
3239                 ret = -1;
3240         }
3241         return ret;
3242 }
3243
3244 /*
3245  * Called by memory hotplug when all memory in a node is offlined.
3246  */
3247 void kswapd_stop(int nid)
3248 {
3249         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3250
3251         if (kswapd)
3252                 kthread_stop(kswapd);
3253 }
3254
3255 static int __init kswapd_init(void)
3256 {
3257         int nid;
3258
3259         swap_setup();
3260         for_each_node_state(nid, N_HIGH_MEMORY)
3261                 kswapd_run(nid);
3262         hotcpu_notifier(cpu_callback, 0);
3263         return 0;
3264 }
3265
3266 module_init(kswapd_init)
3267
3268 #ifdef CONFIG_NUMA
3269 /*
3270  * Zone reclaim mode
3271  *
3272  * If non-zero call zone_reclaim when the number of free pages falls below
3273  * the watermarks.
3274  */
3275 int zone_reclaim_mode __read_mostly;
3276
3277 #define RECLAIM_OFF 0
3278 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3279 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3280 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3281
3282 /*
3283  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3284  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3285  * a zone.
3286  */
3287 #define ZONE_RECLAIM_PRIORITY 4
3288
3289 /*
3290  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3291  * occur.
3292  */
3293 int sysctl_min_unmapped_ratio = 1;
3294
3295 /*
3296  * If the number of slab pages in a zone grows beyond this percentage then
3297  * slab reclaim needs to occur.
3298  */
3299 int sysctl_min_slab_ratio = 5;
3300
3301 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3302 {
3303         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3304         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3305                 zone_page_state(zone, NR_ACTIVE_FILE);
3306
3307         /*
3308          * It's possible for there to be more file mapped pages than
3309          * accounted for by the pages on the file LRU lists because
3310          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3311          */
3312         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3313 }
3314
3315 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3316 static long zone_pagecache_reclaimable(struct zone *zone)
3317 {
3318         long nr_pagecache_reclaimable;
3319         long delta = 0;
3320
3321         /*
3322          * If RECLAIM_SWAP is set, then all file pages are considered
3323          * potentially reclaimable. Otherwise, we have to worry about
3324          * pages like swapcache and zone_unmapped_file_pages() provides
3325          * a better estimate
3326          */
3327         if (zone_reclaim_mode & RECLAIM_SWAP)
3328                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3329         else
3330                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3331
3332         /* If we can't clean pages, remove dirty pages from consideration */
3333         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3334                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3335
3336         /* Watch for any possible underflows due to delta */
3337         if (unlikely(delta > nr_pagecache_reclaimable))
3338                 delta = nr_pagecache_reclaimable;
3339
3340         return nr_pagecache_reclaimable - delta;
3341 }
3342
3343 /*
3344  * Try to free up some pages from this zone through reclaim.
3345  */
3346 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3347 {
3348         /* Minimum pages needed in order to stay on node */
3349         const unsigned long nr_pages = 1 << order;
3350         struct task_struct *p = current;
3351         struct reclaim_state reclaim_state;
3352         int priority;
3353         struct scan_control sc = {
3354                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3355                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3356                 .may_swap = 1,
3357                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3358                                        SWAP_CLUSTER_MAX),
3359                 .gfp_mask = gfp_mask,
3360                 .order = order,
3361         };
3362         struct shrink_control shrink = {
3363                 .gfp_mask = sc.gfp_mask,
3364         };
3365         unsigned long nr_slab_pages0, nr_slab_pages1;
3366
3367         cond_resched();
3368         /*
3369          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3370          * and we also need to be able to write out pages for RECLAIM_WRITE
3371          * and RECLAIM_SWAP.
3372          */
3373         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3374         lockdep_set_current_reclaim_state(gfp_mask);
3375         reclaim_state.reclaimed_slab = 0;
3376         p->reclaim_state = &reclaim_state;
3377
3378         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3379                 /*
3380                  * Free memory by calling shrink zone with increasing
3381                  * priorities until we have enough memory freed.
3382                  */
3383                 priority = ZONE_RECLAIM_PRIORITY;
3384                 do {
3385                         shrink_zone(priority, zone, &sc);
3386                         priority--;
3387                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3388         }
3389
3390         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3391         if (nr_slab_pages0 > zone->min_slab_pages) {
3392                 /*
3393                  * shrink_slab() does not currently allow us to determine how
3394                  * many pages were freed in this zone. So we take the current
3395                  * number of slab pages and shake the slab until it is reduced
3396                  * by the same nr_pages that we used for reclaiming unmapped
3397                  * pages.
3398                  *
3399                  * Note that shrink_slab will free memory on all zones and may
3400                  * take a long time.
3401                  */
3402                 for (;;) {
3403                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3404
3405                         /* No reclaimable slab or very low memory pressure */
3406                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3407                                 break;
3408
3409                         /* Freed enough memory */
3410                         nr_slab_pages1 = zone_page_state(zone,
3411                                                         NR_SLAB_RECLAIMABLE);
3412                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3413                                 break;
3414                 }
3415
3416                 /*
3417                  * Update nr_reclaimed by the number of slab pages we
3418                  * reclaimed from this zone.
3419                  */
3420                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3421                 if (nr_slab_pages1 < nr_slab_pages0)
3422                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3423         }
3424
3425         p->reclaim_state = NULL;
3426         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3427         lockdep_clear_current_reclaim_state();
3428         return sc.nr_reclaimed >= nr_pages;
3429 }
3430
3431 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3432 {
3433         int node_id;
3434         int ret;
3435
3436         /*
3437          * Zone reclaim reclaims unmapped file backed pages and
3438          * slab pages if we are over the defined limits.
3439          *
3440          * A small portion of unmapped file backed pages is needed for
3441          * file I/O otherwise pages read by file I/O will be immediately
3442          * thrown out if the zone is overallocated. So we do not reclaim
3443          * if less than a specified percentage of the zone is used by
3444          * unmapped file backed pages.
3445          */
3446         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3447             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3448                 return ZONE_RECLAIM_FULL;
3449
3450         if (zone->all_unreclaimable)
3451                 return ZONE_RECLAIM_FULL;
3452
3453         /*
3454          * Do not scan if the allocation should not be delayed.
3455          */
3456         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3457                 return ZONE_RECLAIM_NOSCAN;
3458
3459         /*
3460          * Only run zone reclaim on the local zone or on zones that do not
3461          * have associated processors. This will favor the local processor
3462          * over remote processors and spread off node memory allocations
3463          * as wide as possible.
3464          */
3465         node_id = zone_to_nid(zone);
3466         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3467                 return ZONE_RECLAIM_NOSCAN;
3468
3469         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3470                 return ZONE_RECLAIM_NOSCAN;
3471
3472         ret = __zone_reclaim(zone, gfp_mask, order);
3473         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3474
3475         if (!ret)
3476                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3477
3478         return ret;
3479 }
3480 #endif
3481
3482 /*
3483  * page_evictable - test whether a page is evictable
3484  * @page: the page to test
3485  * @vma: the VMA in which the page is or will be mapped, may be NULL
3486  *
3487  * Test whether page is evictable--i.e., should be placed on active/inactive
3488  * lists vs unevictable list.  The vma argument is !NULL when called from the
3489  * fault path to determine how to instantate a new page.
3490  *
3491  * Reasons page might not be evictable:
3492  * (1) page's mapping marked unevictable
3493  * (2) page is part of an mlocked VMA
3494  *
3495  */
3496 int page_evictable(struct page *page, struct vm_area_struct *vma)
3497 {
3498
3499         if (mapping_unevictable(page_mapping(page)))
3500                 return 0;
3501
3502         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3503                 return 0;
3504
3505         return 1;
3506 }
3507
3508 #ifdef CONFIG_SHMEM
3509 /**
3510  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3511  * @pages:      array of pages to check
3512  * @nr_pages:   number of pages to check
3513  *
3514  * Checks pages for evictability and moves them to the appropriate lru list.
3515  *
3516  * This function is only used for SysV IPC SHM_UNLOCK.
3517  */
3518 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3519 {
3520         struct lruvec *lruvec;
3521         struct zone *zone = NULL;
3522         int pgscanned = 0;
3523         int pgrescued = 0;
3524         int i;
3525
3526         for (i = 0; i < nr_pages; i++) {
3527                 struct page *page = pages[i];
3528                 struct zone *pagezone;
3529
3530                 pgscanned++;
3531                 pagezone = page_zone(page);
3532                 if (pagezone != zone) {
3533                         if (zone)
3534                                 spin_unlock_irq(&zone->lru_lock);
3535                         zone = pagezone;
3536                         spin_lock_irq(&zone->lru_lock);
3537                 }
3538
3539                 if (!PageLRU(page) || !PageUnevictable(page))
3540                         continue;
3541
3542                 if (page_evictable(page, NULL)) {
3543                         enum lru_list lru = page_lru_base_type(page);
3544
3545                         VM_BUG_ON(PageActive(page));
3546                         ClearPageUnevictable(page);
3547                         __dec_zone_state(zone, NR_UNEVICTABLE);
3548                         lruvec = mem_cgroup_lru_move_lists(zone, page,
3549                                                 LRU_UNEVICTABLE, lru);
3550                         list_move(&page->lru, &lruvec->lists[lru]);
3551                         __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3552                         pgrescued++;
3553                 }
3554         }
3555
3556         if (zone) {
3557                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3558                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3559                 spin_unlock_irq(&zone->lru_lock);
3560         }
3561 }
3562 #endif /* CONFIG_SHMEM */
3563
3564 static void warn_scan_unevictable_pages(void)
3565 {
3566         printk_once(KERN_WARNING
3567                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3568                     "disabled for lack of a legitimate use case.  If you have "
3569                     "one, please send an email to linux-mm@kvack.org.\n",
3570                     current->comm);
3571 }
3572
3573 /*
3574  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3575  * all nodes' unevictable lists for evictable pages
3576  */
3577 unsigned long scan_unevictable_pages;
3578
3579 int scan_unevictable_handler(struct ctl_table *table, int write,
3580                            void __user *buffer,
3581                            size_t *length, loff_t *ppos)
3582 {
3583         warn_scan_unevictable_pages();
3584         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3585         scan_unevictable_pages = 0;
3586         return 0;
3587 }
3588
3589 #ifdef CONFIG_NUMA
3590 /*
3591  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3592  * a specified node's per zone unevictable lists for evictable pages.
3593  */
3594
3595 static ssize_t read_scan_unevictable_node(struct device *dev,
3596                                           struct device_attribute *attr,
3597                                           char *buf)
3598 {
3599         warn_scan_unevictable_pages();
3600         return sprintf(buf, "0\n");     /* always zero; should fit... */
3601 }
3602
3603 static ssize_t write_scan_unevictable_node(struct device *dev,
3604                                            struct device_attribute *attr,
3605                                         const char *buf, size_t count)
3606 {
3607         warn_scan_unevictable_pages();
3608         return 1;
3609 }
3610
3611
3612 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3613                         read_scan_unevictable_node,
3614                         write_scan_unevictable_node);
3615
3616 int scan_unevictable_register_node(struct node *node)
3617 {
3618         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3619 }
3620
3621 void scan_unevictable_unregister_node(struct node *node)
3622 {
3623         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3624 }
3625 #endif