]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/zsmalloc.c
Merge tag 'char-misc-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[karo-tx-linux.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
56
57 #define ZSPAGE_MAGIC    0x58
58
59 /*
60  * This must be power of 2 and greater than of equal to sizeof(link_free).
61  * These two conditions ensure that any 'struct link_free' itself doesn't
62  * span more than 1 page which avoids complex case of mapping 2 pages simply
63  * to restore link_free pointer values.
64  */
65 #define ZS_ALIGN                8
66
67 /*
68  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
69  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
70  */
71 #define ZS_MAX_ZSPAGE_ORDER 2
72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
73
74 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
75
76 /*
77  * Object location (<PFN>, <obj_idx>) is encoded as
78  * as single (unsigned long) handle value.
79  *
80  * Note that object index <obj_idx> starts from 0.
81  *
82  * This is made more complicated by various memory models and PAE.
83  */
84
85 #ifndef MAX_PHYSMEM_BITS
86 #ifdef CONFIG_HIGHMEM64G
87 #define MAX_PHYSMEM_BITS 36
88 #else /* !CONFIG_HIGHMEM64G */
89 /*
90  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
91  * be PAGE_SHIFT
92  */
93 #define MAX_PHYSMEM_BITS BITS_PER_LONG
94 #endif
95 #endif
96 #define _PFN_BITS               (MAX_PHYSMEM_BITS - PAGE_SHIFT)
97
98 /*
99  * Memory for allocating for handle keeps object position by
100  * encoding <page, obj_idx> and the encoded value has a room
101  * in least bit(ie, look at obj_to_location).
102  * We use the bit to synchronize between object access by
103  * user and migration.
104  */
105 #define HANDLE_PIN_BIT  0
106
107 /*
108  * Head in allocated object should have OBJ_ALLOCATED_TAG
109  * to identify the object was allocated or not.
110  * It's okay to add the status bit in the least bit because
111  * header keeps handle which is 4byte-aligned address so we
112  * have room for two bit at least.
113  */
114 #define OBJ_ALLOCATED_TAG 1
115 #define OBJ_TAG_BITS 1
116 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
117 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
118
119 #define FULLNESS_BITS   2
120 #define CLASS_BITS      8
121 #define ISOLATED_BITS   3
122 #define MAGIC_VAL_BITS  8
123
124 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
125 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
126 #define ZS_MIN_ALLOC_SIZE \
127         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
128 /* each chunk includes extra space to keep handle */
129 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
130
131 /*
132  * On systems with 4K page size, this gives 255 size classes! There is a
133  * trader-off here:
134  *  - Large number of size classes is potentially wasteful as free page are
135  *    spread across these classes
136  *  - Small number of size classes causes large internal fragmentation
137  *  - Probably its better to use specific size classes (empirically
138  *    determined). NOTE: all those class sizes must be set as multiple of
139  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
140  *
141  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
142  *  (reason above)
143  */
144 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
145 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
146                                       ZS_SIZE_CLASS_DELTA) + 1)
147
148 enum fullness_group {
149         ZS_EMPTY,
150         ZS_ALMOST_EMPTY,
151         ZS_ALMOST_FULL,
152         ZS_FULL,
153         NR_ZS_FULLNESS,
154 };
155
156 enum zs_stat_type {
157         CLASS_EMPTY,
158         CLASS_ALMOST_EMPTY,
159         CLASS_ALMOST_FULL,
160         CLASS_FULL,
161         OBJ_ALLOCATED,
162         OBJ_USED,
163         NR_ZS_STAT_TYPE,
164 };
165
166 struct zs_size_stat {
167         unsigned long objs[NR_ZS_STAT_TYPE];
168 };
169
170 #ifdef CONFIG_ZSMALLOC_STAT
171 static struct dentry *zs_stat_root;
172 #endif
173
174 #ifdef CONFIG_COMPACTION
175 static struct vfsmount *zsmalloc_mnt;
176 #endif
177
178 /*
179  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
180  *      n <= N / f, where
181  * n = number of allocated objects
182  * N = total number of objects zspage can store
183  * f = fullness_threshold_frac
184  *
185  * Similarly, we assign zspage to:
186  *      ZS_ALMOST_FULL  when n > N / f
187  *      ZS_EMPTY        when n == 0
188  *      ZS_FULL         when n == N
189  *
190  * (see: fix_fullness_group())
191  */
192 static const int fullness_threshold_frac = 4;
193
194 struct size_class {
195         spinlock_t lock;
196         struct list_head fullness_list[NR_ZS_FULLNESS];
197         /*
198          * Size of objects stored in this class. Must be multiple
199          * of ZS_ALIGN.
200          */
201         int size;
202         int objs_per_zspage;
203         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
204         int pages_per_zspage;
205
206         unsigned int index;
207         struct zs_size_stat stats;
208 };
209
210 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
211 static void SetPageHugeObject(struct page *page)
212 {
213         SetPageOwnerPriv1(page);
214 }
215
216 static void ClearPageHugeObject(struct page *page)
217 {
218         ClearPageOwnerPriv1(page);
219 }
220
221 static int PageHugeObject(struct page *page)
222 {
223         return PageOwnerPriv1(page);
224 }
225
226 /*
227  * Placed within free objects to form a singly linked list.
228  * For every zspage, zspage->freeobj gives head of this list.
229  *
230  * This must be power of 2 and less than or equal to ZS_ALIGN
231  */
232 struct link_free {
233         union {
234                 /*
235                  * Free object index;
236                  * It's valid for non-allocated object
237                  */
238                 unsigned long next;
239                 /*
240                  * Handle of allocated object.
241                  */
242                 unsigned long handle;
243         };
244 };
245
246 struct zs_pool {
247         const char *name;
248
249         struct size_class *size_class[ZS_SIZE_CLASSES];
250         struct kmem_cache *handle_cachep;
251         struct kmem_cache *zspage_cachep;
252
253         atomic_long_t pages_allocated;
254
255         struct zs_pool_stats stats;
256
257         /* Compact classes */
258         struct shrinker shrinker;
259         /*
260          * To signify that register_shrinker() was successful
261          * and unregister_shrinker() will not Oops.
262          */
263         bool shrinker_enabled;
264 #ifdef CONFIG_ZSMALLOC_STAT
265         struct dentry *stat_dentry;
266 #endif
267 #ifdef CONFIG_COMPACTION
268         struct inode *inode;
269         struct work_struct free_work;
270 #endif
271 };
272
273 struct zspage {
274         struct {
275                 unsigned int fullness:FULLNESS_BITS;
276                 unsigned int class:CLASS_BITS + 1;
277                 unsigned int isolated:ISOLATED_BITS;
278                 unsigned int magic:MAGIC_VAL_BITS;
279         };
280         unsigned int inuse;
281         unsigned int freeobj;
282         struct page *first_page;
283         struct list_head list; /* fullness list */
284 #ifdef CONFIG_COMPACTION
285         rwlock_t lock;
286 #endif
287 };
288
289 struct mapping_area {
290 #ifdef CONFIG_PGTABLE_MAPPING
291         struct vm_struct *vm; /* vm area for mapping object that span pages */
292 #else
293         char *vm_buf; /* copy buffer for objects that span pages */
294 #endif
295         char *vm_addr; /* address of kmap_atomic()'ed pages */
296         enum zs_mapmode vm_mm; /* mapping mode */
297 };
298
299 #ifdef CONFIG_COMPACTION
300 static int zs_register_migration(struct zs_pool *pool);
301 static void zs_unregister_migration(struct zs_pool *pool);
302 static void migrate_lock_init(struct zspage *zspage);
303 static void migrate_read_lock(struct zspage *zspage);
304 static void migrate_read_unlock(struct zspage *zspage);
305 static void kick_deferred_free(struct zs_pool *pool);
306 static void init_deferred_free(struct zs_pool *pool);
307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
308 #else
309 static int zsmalloc_mount(void) { return 0; }
310 static void zsmalloc_unmount(void) {}
311 static int zs_register_migration(struct zs_pool *pool) { return 0; }
312 static void zs_unregister_migration(struct zs_pool *pool) {}
313 static void migrate_lock_init(struct zspage *zspage) {}
314 static void migrate_read_lock(struct zspage *zspage) {}
315 static void migrate_read_unlock(struct zspage *zspage) {}
316 static void kick_deferred_free(struct zs_pool *pool) {}
317 static void init_deferred_free(struct zs_pool *pool) {}
318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
319 #endif
320
321 static int create_cache(struct zs_pool *pool)
322 {
323         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
324                                         0, 0, NULL);
325         if (!pool->handle_cachep)
326                 return 1;
327
328         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
329                                         0, 0, NULL);
330         if (!pool->zspage_cachep) {
331                 kmem_cache_destroy(pool->handle_cachep);
332                 pool->handle_cachep = NULL;
333                 return 1;
334         }
335
336         return 0;
337 }
338
339 static void destroy_cache(struct zs_pool *pool)
340 {
341         kmem_cache_destroy(pool->handle_cachep);
342         kmem_cache_destroy(pool->zspage_cachep);
343 }
344
345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
346 {
347         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
348                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
349 }
350
351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
352 {
353         kmem_cache_free(pool->handle_cachep, (void *)handle);
354 }
355
356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
357 {
358         return kmem_cache_alloc(pool->zspage_cachep,
359                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
360 }
361
362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
363 {
364         kmem_cache_free(pool->zspage_cachep, zspage);
365 }
366
367 static void record_obj(unsigned long handle, unsigned long obj)
368 {
369         /*
370          * lsb of @obj represents handle lock while other bits
371          * represent object value the handle is pointing so
372          * updating shouldn't do store tearing.
373          */
374         WRITE_ONCE(*(unsigned long *)handle, obj);
375 }
376
377 /* zpool driver */
378
379 #ifdef CONFIG_ZPOOL
380
381 static void *zs_zpool_create(const char *name, gfp_t gfp,
382                              const struct zpool_ops *zpool_ops,
383                              struct zpool *zpool)
384 {
385         /*
386          * Ignore global gfp flags: zs_malloc() may be invoked from
387          * different contexts and its caller must provide a valid
388          * gfp mask.
389          */
390         return zs_create_pool(name);
391 }
392
393 static void zs_zpool_destroy(void *pool)
394 {
395         zs_destroy_pool(pool);
396 }
397
398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399                         unsigned long *handle)
400 {
401         *handle = zs_malloc(pool, size, gfp);
402         return *handle ? 0 : -1;
403 }
404 static void zs_zpool_free(void *pool, unsigned long handle)
405 {
406         zs_free(pool, handle);
407 }
408
409 static int zs_zpool_shrink(void *pool, unsigned int pages,
410                         unsigned int *reclaimed)
411 {
412         return -EINVAL;
413 }
414
415 static void *zs_zpool_map(void *pool, unsigned long handle,
416                         enum zpool_mapmode mm)
417 {
418         enum zs_mapmode zs_mm;
419
420         switch (mm) {
421         case ZPOOL_MM_RO:
422                 zs_mm = ZS_MM_RO;
423                 break;
424         case ZPOOL_MM_WO:
425                 zs_mm = ZS_MM_WO;
426                 break;
427         case ZPOOL_MM_RW: /* fallthru */
428         default:
429                 zs_mm = ZS_MM_RW;
430                 break;
431         }
432
433         return zs_map_object(pool, handle, zs_mm);
434 }
435 static void zs_zpool_unmap(void *pool, unsigned long handle)
436 {
437         zs_unmap_object(pool, handle);
438 }
439
440 static u64 zs_zpool_total_size(void *pool)
441 {
442         return zs_get_total_pages(pool) << PAGE_SHIFT;
443 }
444
445 static struct zpool_driver zs_zpool_driver = {
446         .type =         "zsmalloc",
447         .owner =        THIS_MODULE,
448         .create =       zs_zpool_create,
449         .destroy =      zs_zpool_destroy,
450         .malloc =       zs_zpool_malloc,
451         .free =         zs_zpool_free,
452         .shrink =       zs_zpool_shrink,
453         .map =          zs_zpool_map,
454         .unmap =        zs_zpool_unmap,
455         .total_size =   zs_zpool_total_size,
456 };
457
458 MODULE_ALIAS("zpool-zsmalloc");
459 #endif /* CONFIG_ZPOOL */
460
461 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
462 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
463
464 static bool is_zspage_isolated(struct zspage *zspage)
465 {
466         return zspage->isolated;
467 }
468
469 static __maybe_unused int is_first_page(struct page *page)
470 {
471         return PagePrivate(page);
472 }
473
474 /* Protected by class->lock */
475 static inline int get_zspage_inuse(struct zspage *zspage)
476 {
477         return zspage->inuse;
478 }
479
480 static inline void set_zspage_inuse(struct zspage *zspage, int val)
481 {
482         zspage->inuse = val;
483 }
484
485 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
486 {
487         zspage->inuse += val;
488 }
489
490 static inline struct page *get_first_page(struct zspage *zspage)
491 {
492         struct page *first_page = zspage->first_page;
493
494         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
495         return first_page;
496 }
497
498 static inline int get_first_obj_offset(struct page *page)
499 {
500         return page->units;
501 }
502
503 static inline void set_first_obj_offset(struct page *page, int offset)
504 {
505         page->units = offset;
506 }
507
508 static inline unsigned int get_freeobj(struct zspage *zspage)
509 {
510         return zspage->freeobj;
511 }
512
513 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
514 {
515         zspage->freeobj = obj;
516 }
517
518 static void get_zspage_mapping(struct zspage *zspage,
519                                 unsigned int *class_idx,
520                                 enum fullness_group *fullness)
521 {
522         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
523
524         *fullness = zspage->fullness;
525         *class_idx = zspage->class;
526 }
527
528 static void set_zspage_mapping(struct zspage *zspage,
529                                 unsigned int class_idx,
530                                 enum fullness_group fullness)
531 {
532         zspage->class = class_idx;
533         zspage->fullness = fullness;
534 }
535
536 /*
537  * zsmalloc divides the pool into various size classes where each
538  * class maintains a list of zspages where each zspage is divided
539  * into equal sized chunks. Each allocation falls into one of these
540  * classes depending on its size. This function returns index of the
541  * size class which has chunk size big enough to hold the give size.
542  */
543 static int get_size_class_index(int size)
544 {
545         int idx = 0;
546
547         if (likely(size > ZS_MIN_ALLOC_SIZE))
548                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
549                                 ZS_SIZE_CLASS_DELTA);
550
551         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
552 }
553
554 static inline void zs_stat_inc(struct size_class *class,
555                                 enum zs_stat_type type, unsigned long cnt)
556 {
557         class->stats.objs[type] += cnt;
558 }
559
560 static inline void zs_stat_dec(struct size_class *class,
561                                 enum zs_stat_type type, unsigned long cnt)
562 {
563         class->stats.objs[type] -= cnt;
564 }
565
566 static inline unsigned long zs_stat_get(struct size_class *class,
567                                 enum zs_stat_type type)
568 {
569         return class->stats.objs[type];
570 }
571
572 #ifdef CONFIG_ZSMALLOC_STAT
573
574 static void __init zs_stat_init(void)
575 {
576         if (!debugfs_initialized()) {
577                 pr_warn("debugfs not available, stat dir not created\n");
578                 return;
579         }
580
581         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
582         if (!zs_stat_root)
583                 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
584 }
585
586 static void __exit zs_stat_exit(void)
587 {
588         debugfs_remove_recursive(zs_stat_root);
589 }
590
591 static unsigned long zs_can_compact(struct size_class *class);
592
593 static int zs_stats_size_show(struct seq_file *s, void *v)
594 {
595         int i;
596         struct zs_pool *pool = s->private;
597         struct size_class *class;
598         int objs_per_zspage;
599         unsigned long class_almost_full, class_almost_empty;
600         unsigned long obj_allocated, obj_used, pages_used, freeable;
601         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
602         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
603         unsigned long total_freeable = 0;
604
605         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
606                         "class", "size", "almost_full", "almost_empty",
607                         "obj_allocated", "obj_used", "pages_used",
608                         "pages_per_zspage", "freeable");
609
610         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
611                 class = pool->size_class[i];
612
613                 if (class->index != i)
614                         continue;
615
616                 spin_lock(&class->lock);
617                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
618                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
619                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
620                 obj_used = zs_stat_get(class, OBJ_USED);
621                 freeable = zs_can_compact(class);
622                 spin_unlock(&class->lock);
623
624                 objs_per_zspage = class->objs_per_zspage;
625                 pages_used = obj_allocated / objs_per_zspage *
626                                 class->pages_per_zspage;
627
628                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
629                                 " %10lu %10lu %16d %8lu\n",
630                         i, class->size, class_almost_full, class_almost_empty,
631                         obj_allocated, obj_used, pages_used,
632                         class->pages_per_zspage, freeable);
633
634                 total_class_almost_full += class_almost_full;
635                 total_class_almost_empty += class_almost_empty;
636                 total_objs += obj_allocated;
637                 total_used_objs += obj_used;
638                 total_pages += pages_used;
639                 total_freeable += freeable;
640         }
641
642         seq_puts(s, "\n");
643         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
644                         "Total", "", total_class_almost_full,
645                         total_class_almost_empty, total_objs,
646                         total_used_objs, total_pages, "", total_freeable);
647
648         return 0;
649 }
650
651 static int zs_stats_size_open(struct inode *inode, struct file *file)
652 {
653         return single_open(file, zs_stats_size_show, inode->i_private);
654 }
655
656 static const struct file_operations zs_stat_size_ops = {
657         .open           = zs_stats_size_open,
658         .read           = seq_read,
659         .llseek         = seq_lseek,
660         .release        = single_release,
661 };
662
663 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
664 {
665         struct dentry *entry;
666
667         if (!zs_stat_root) {
668                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
669                 return;
670         }
671
672         entry = debugfs_create_dir(name, zs_stat_root);
673         if (!entry) {
674                 pr_warn("debugfs dir <%s> creation failed\n", name);
675                 return;
676         }
677         pool->stat_dentry = entry;
678
679         entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
680                         pool->stat_dentry, pool, &zs_stat_size_ops);
681         if (!entry) {
682                 pr_warn("%s: debugfs file entry <%s> creation failed\n",
683                                 name, "classes");
684                 debugfs_remove_recursive(pool->stat_dentry);
685                 pool->stat_dentry = NULL;
686         }
687 }
688
689 static void zs_pool_stat_destroy(struct zs_pool *pool)
690 {
691         debugfs_remove_recursive(pool->stat_dentry);
692 }
693
694 #else /* CONFIG_ZSMALLOC_STAT */
695 static void __init zs_stat_init(void)
696 {
697 }
698
699 static void __exit zs_stat_exit(void)
700 {
701 }
702
703 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
704 {
705 }
706
707 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
708 {
709 }
710 #endif
711
712
713 /*
714  * For each size class, zspages are divided into different groups
715  * depending on how "full" they are. This was done so that we could
716  * easily find empty or nearly empty zspages when we try to shrink
717  * the pool (not yet implemented). This function returns fullness
718  * status of the given page.
719  */
720 static enum fullness_group get_fullness_group(struct size_class *class,
721                                                 struct zspage *zspage)
722 {
723         int inuse, objs_per_zspage;
724         enum fullness_group fg;
725
726         inuse = get_zspage_inuse(zspage);
727         objs_per_zspage = class->objs_per_zspage;
728
729         if (inuse == 0)
730                 fg = ZS_EMPTY;
731         else if (inuse == objs_per_zspage)
732                 fg = ZS_FULL;
733         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
734                 fg = ZS_ALMOST_EMPTY;
735         else
736                 fg = ZS_ALMOST_FULL;
737
738         return fg;
739 }
740
741 /*
742  * Each size class maintains various freelists and zspages are assigned
743  * to one of these freelists based on the number of live objects they
744  * have. This functions inserts the given zspage into the freelist
745  * identified by <class, fullness_group>.
746  */
747 static void insert_zspage(struct size_class *class,
748                                 struct zspage *zspage,
749                                 enum fullness_group fullness)
750 {
751         struct zspage *head;
752
753         zs_stat_inc(class, fullness, 1);
754         head = list_first_entry_or_null(&class->fullness_list[fullness],
755                                         struct zspage, list);
756         /*
757          * We want to see more ZS_FULL pages and less almost empty/full.
758          * Put pages with higher ->inuse first.
759          */
760         if (head) {
761                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
762                         list_add(&zspage->list, &head->list);
763                         return;
764                 }
765         }
766         list_add(&zspage->list, &class->fullness_list[fullness]);
767 }
768
769 /*
770  * This function removes the given zspage from the freelist identified
771  * by <class, fullness_group>.
772  */
773 static void remove_zspage(struct size_class *class,
774                                 struct zspage *zspage,
775                                 enum fullness_group fullness)
776 {
777         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
778         VM_BUG_ON(is_zspage_isolated(zspage));
779
780         list_del_init(&zspage->list);
781         zs_stat_dec(class, fullness, 1);
782 }
783
784 /*
785  * Each size class maintains zspages in different fullness groups depending
786  * on the number of live objects they contain. When allocating or freeing
787  * objects, the fullness status of the page can change, say, from ALMOST_FULL
788  * to ALMOST_EMPTY when freeing an object. This function checks if such
789  * a status change has occurred for the given page and accordingly moves the
790  * page from the freelist of the old fullness group to that of the new
791  * fullness group.
792  */
793 static enum fullness_group fix_fullness_group(struct size_class *class,
794                                                 struct zspage *zspage)
795 {
796         int class_idx;
797         enum fullness_group currfg, newfg;
798
799         get_zspage_mapping(zspage, &class_idx, &currfg);
800         newfg = get_fullness_group(class, zspage);
801         if (newfg == currfg)
802                 goto out;
803
804         if (!is_zspage_isolated(zspage)) {
805                 remove_zspage(class, zspage, currfg);
806                 insert_zspage(class, zspage, newfg);
807         }
808
809         set_zspage_mapping(zspage, class_idx, newfg);
810
811 out:
812         return newfg;
813 }
814
815 /*
816  * We have to decide on how many pages to link together
817  * to form a zspage for each size class. This is important
818  * to reduce wastage due to unusable space left at end of
819  * each zspage which is given as:
820  *     wastage = Zp % class_size
821  *     usage = Zp - wastage
822  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
823  *
824  * For example, for size class of 3/8 * PAGE_SIZE, we should
825  * link together 3 PAGE_SIZE sized pages to form a zspage
826  * since then we can perfectly fit in 8 such objects.
827  */
828 static int get_pages_per_zspage(int class_size)
829 {
830         int i, max_usedpc = 0;
831         /* zspage order which gives maximum used size per KB */
832         int max_usedpc_order = 1;
833
834         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
835                 int zspage_size;
836                 int waste, usedpc;
837
838                 zspage_size = i * PAGE_SIZE;
839                 waste = zspage_size % class_size;
840                 usedpc = (zspage_size - waste) * 100 / zspage_size;
841
842                 if (usedpc > max_usedpc) {
843                         max_usedpc = usedpc;
844                         max_usedpc_order = i;
845                 }
846         }
847
848         return max_usedpc_order;
849 }
850
851 static struct zspage *get_zspage(struct page *page)
852 {
853         struct zspage *zspage = (struct zspage *)page->private;
854
855         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
856         return zspage;
857 }
858
859 static struct page *get_next_page(struct page *page)
860 {
861         if (unlikely(PageHugeObject(page)))
862                 return NULL;
863
864         return page->freelist;
865 }
866
867 /**
868  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
869  * @page: page object resides in zspage
870  * @obj_idx: object index
871  */
872 static void obj_to_location(unsigned long obj, struct page **page,
873                                 unsigned int *obj_idx)
874 {
875         obj >>= OBJ_TAG_BITS;
876         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
877         *obj_idx = (obj & OBJ_INDEX_MASK);
878 }
879
880 /**
881  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
882  * @page: page object resides in zspage
883  * @obj_idx: object index
884  */
885 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
886 {
887         unsigned long obj;
888
889         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
890         obj |= obj_idx & OBJ_INDEX_MASK;
891         obj <<= OBJ_TAG_BITS;
892
893         return obj;
894 }
895
896 static unsigned long handle_to_obj(unsigned long handle)
897 {
898         return *(unsigned long *)handle;
899 }
900
901 static unsigned long obj_to_head(struct page *page, void *obj)
902 {
903         if (unlikely(PageHugeObject(page))) {
904                 VM_BUG_ON_PAGE(!is_first_page(page), page);
905                 return page->index;
906         } else
907                 return *(unsigned long *)obj;
908 }
909
910 static inline int testpin_tag(unsigned long handle)
911 {
912         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
913 }
914
915 static inline int trypin_tag(unsigned long handle)
916 {
917         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
918 }
919
920 static void pin_tag(unsigned long handle)
921 {
922         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
923 }
924
925 static void unpin_tag(unsigned long handle)
926 {
927         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
928 }
929
930 static void reset_page(struct page *page)
931 {
932         __ClearPageMovable(page);
933         ClearPagePrivate(page);
934         set_page_private(page, 0);
935         page_mapcount_reset(page);
936         ClearPageHugeObject(page);
937         page->freelist = NULL;
938 }
939
940 /*
941  * To prevent zspage destroy during migration, zspage freeing should
942  * hold locks of all pages in the zspage.
943  */
944 void lock_zspage(struct zspage *zspage)
945 {
946         struct page *page = get_first_page(zspage);
947
948         do {
949                 lock_page(page);
950         } while ((page = get_next_page(page)) != NULL);
951 }
952
953 int trylock_zspage(struct zspage *zspage)
954 {
955         struct page *cursor, *fail;
956
957         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
958                                         get_next_page(cursor)) {
959                 if (!trylock_page(cursor)) {
960                         fail = cursor;
961                         goto unlock;
962                 }
963         }
964
965         return 1;
966 unlock:
967         for (cursor = get_first_page(zspage); cursor != fail; cursor =
968                                         get_next_page(cursor))
969                 unlock_page(cursor);
970
971         return 0;
972 }
973
974 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
975                                 struct zspage *zspage)
976 {
977         struct page *page, *next;
978         enum fullness_group fg;
979         unsigned int class_idx;
980
981         get_zspage_mapping(zspage, &class_idx, &fg);
982
983         assert_spin_locked(&class->lock);
984
985         VM_BUG_ON(get_zspage_inuse(zspage));
986         VM_BUG_ON(fg != ZS_EMPTY);
987
988         next = page = get_first_page(zspage);
989         do {
990                 VM_BUG_ON_PAGE(!PageLocked(page), page);
991                 next = get_next_page(page);
992                 reset_page(page);
993                 unlock_page(page);
994                 dec_zone_page_state(page, NR_ZSPAGES);
995                 put_page(page);
996                 page = next;
997         } while (page != NULL);
998
999         cache_free_zspage(pool, zspage);
1000
1001         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1002         atomic_long_sub(class->pages_per_zspage,
1003                                         &pool->pages_allocated);
1004 }
1005
1006 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1007                                 struct zspage *zspage)
1008 {
1009         VM_BUG_ON(get_zspage_inuse(zspage));
1010         VM_BUG_ON(list_empty(&zspage->list));
1011
1012         if (!trylock_zspage(zspage)) {
1013                 kick_deferred_free(pool);
1014                 return;
1015         }
1016
1017         remove_zspage(class, zspage, ZS_EMPTY);
1018         __free_zspage(pool, class, zspage);
1019 }
1020
1021 /* Initialize a newly allocated zspage */
1022 static void init_zspage(struct size_class *class, struct zspage *zspage)
1023 {
1024         unsigned int freeobj = 1;
1025         unsigned long off = 0;
1026         struct page *page = get_first_page(zspage);
1027
1028         while (page) {
1029                 struct page *next_page;
1030                 struct link_free *link;
1031                 void *vaddr;
1032
1033                 set_first_obj_offset(page, off);
1034
1035                 vaddr = kmap_atomic(page);
1036                 link = (struct link_free *)vaddr + off / sizeof(*link);
1037
1038                 while ((off += class->size) < PAGE_SIZE) {
1039                         link->next = freeobj++ << OBJ_TAG_BITS;
1040                         link += class->size / sizeof(*link);
1041                 }
1042
1043                 /*
1044                  * We now come to the last (full or partial) object on this
1045                  * page, which must point to the first object on the next
1046                  * page (if present)
1047                  */
1048                 next_page = get_next_page(page);
1049                 if (next_page) {
1050                         link->next = freeobj++ << OBJ_TAG_BITS;
1051                 } else {
1052                         /*
1053                          * Reset OBJ_TAG_BITS bit to last link to tell
1054                          * whether it's allocated object or not.
1055                          */
1056                         link->next = -1 << OBJ_TAG_BITS;
1057                 }
1058                 kunmap_atomic(vaddr);
1059                 page = next_page;
1060                 off %= PAGE_SIZE;
1061         }
1062
1063         set_freeobj(zspage, 0);
1064 }
1065
1066 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1067                                 struct page *pages[])
1068 {
1069         int i;
1070         struct page *page;
1071         struct page *prev_page = NULL;
1072         int nr_pages = class->pages_per_zspage;
1073
1074         /*
1075          * Allocate individual pages and link them together as:
1076          * 1. all pages are linked together using page->freelist
1077          * 2. each sub-page point to zspage using page->private
1078          *
1079          * we set PG_private to identify the first page (i.e. no other sub-page
1080          * has this flag set).
1081          */
1082         for (i = 0; i < nr_pages; i++) {
1083                 page = pages[i];
1084                 set_page_private(page, (unsigned long)zspage);
1085                 page->freelist = NULL;
1086                 if (i == 0) {
1087                         zspage->first_page = page;
1088                         SetPagePrivate(page);
1089                         if (unlikely(class->objs_per_zspage == 1 &&
1090                                         class->pages_per_zspage == 1))
1091                                 SetPageHugeObject(page);
1092                 } else {
1093                         prev_page->freelist = page;
1094                 }
1095                 prev_page = page;
1096         }
1097 }
1098
1099 /*
1100  * Allocate a zspage for the given size class
1101  */
1102 static struct zspage *alloc_zspage(struct zs_pool *pool,
1103                                         struct size_class *class,
1104                                         gfp_t gfp)
1105 {
1106         int i;
1107         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1108         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1109
1110         if (!zspage)
1111                 return NULL;
1112
1113         memset(zspage, 0, sizeof(struct zspage));
1114         zspage->magic = ZSPAGE_MAGIC;
1115         migrate_lock_init(zspage);
1116
1117         for (i = 0; i < class->pages_per_zspage; i++) {
1118                 struct page *page;
1119
1120                 page = alloc_page(gfp);
1121                 if (!page) {
1122                         while (--i >= 0) {
1123                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1124                                 __free_page(pages[i]);
1125                         }
1126                         cache_free_zspage(pool, zspage);
1127                         return NULL;
1128                 }
1129
1130                 inc_zone_page_state(page, NR_ZSPAGES);
1131                 pages[i] = page;
1132         }
1133
1134         create_page_chain(class, zspage, pages);
1135         init_zspage(class, zspage);
1136
1137         return zspage;
1138 }
1139
1140 static struct zspage *find_get_zspage(struct size_class *class)
1141 {
1142         int i;
1143         struct zspage *zspage;
1144
1145         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1146                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1147                                 struct zspage, list);
1148                 if (zspage)
1149                         break;
1150         }
1151
1152         return zspage;
1153 }
1154
1155 #ifdef CONFIG_PGTABLE_MAPPING
1156 static inline int __zs_cpu_up(struct mapping_area *area)
1157 {
1158         /*
1159          * Make sure we don't leak memory if a cpu UP notification
1160          * and zs_init() race and both call zs_cpu_up() on the same cpu
1161          */
1162         if (area->vm)
1163                 return 0;
1164         area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1165         if (!area->vm)
1166                 return -ENOMEM;
1167         return 0;
1168 }
1169
1170 static inline void __zs_cpu_down(struct mapping_area *area)
1171 {
1172         if (area->vm)
1173                 free_vm_area(area->vm);
1174         area->vm = NULL;
1175 }
1176
1177 static inline void *__zs_map_object(struct mapping_area *area,
1178                                 struct page *pages[2], int off, int size)
1179 {
1180         BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1181         area->vm_addr = area->vm->addr;
1182         return area->vm_addr + off;
1183 }
1184
1185 static inline void __zs_unmap_object(struct mapping_area *area,
1186                                 struct page *pages[2], int off, int size)
1187 {
1188         unsigned long addr = (unsigned long)area->vm_addr;
1189
1190         unmap_kernel_range(addr, PAGE_SIZE * 2);
1191 }
1192
1193 #else /* CONFIG_PGTABLE_MAPPING */
1194
1195 static inline int __zs_cpu_up(struct mapping_area *area)
1196 {
1197         /*
1198          * Make sure we don't leak memory if a cpu UP notification
1199          * and zs_init() race and both call zs_cpu_up() on the same cpu
1200          */
1201         if (area->vm_buf)
1202                 return 0;
1203         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1204         if (!area->vm_buf)
1205                 return -ENOMEM;
1206         return 0;
1207 }
1208
1209 static inline void __zs_cpu_down(struct mapping_area *area)
1210 {
1211         kfree(area->vm_buf);
1212         area->vm_buf = NULL;
1213 }
1214
1215 static void *__zs_map_object(struct mapping_area *area,
1216                         struct page *pages[2], int off, int size)
1217 {
1218         int sizes[2];
1219         void *addr;
1220         char *buf = area->vm_buf;
1221
1222         /* disable page faults to match kmap_atomic() return conditions */
1223         pagefault_disable();
1224
1225         /* no read fastpath */
1226         if (area->vm_mm == ZS_MM_WO)
1227                 goto out;
1228
1229         sizes[0] = PAGE_SIZE - off;
1230         sizes[1] = size - sizes[0];
1231
1232         /* copy object to per-cpu buffer */
1233         addr = kmap_atomic(pages[0]);
1234         memcpy(buf, addr + off, sizes[0]);
1235         kunmap_atomic(addr);
1236         addr = kmap_atomic(pages[1]);
1237         memcpy(buf + sizes[0], addr, sizes[1]);
1238         kunmap_atomic(addr);
1239 out:
1240         return area->vm_buf;
1241 }
1242
1243 static void __zs_unmap_object(struct mapping_area *area,
1244                         struct page *pages[2], int off, int size)
1245 {
1246         int sizes[2];
1247         void *addr;
1248         char *buf;
1249
1250         /* no write fastpath */
1251         if (area->vm_mm == ZS_MM_RO)
1252                 goto out;
1253
1254         buf = area->vm_buf;
1255         buf = buf + ZS_HANDLE_SIZE;
1256         size -= ZS_HANDLE_SIZE;
1257         off += ZS_HANDLE_SIZE;
1258
1259         sizes[0] = PAGE_SIZE - off;
1260         sizes[1] = size - sizes[0];
1261
1262         /* copy per-cpu buffer to object */
1263         addr = kmap_atomic(pages[0]);
1264         memcpy(addr + off, buf, sizes[0]);
1265         kunmap_atomic(addr);
1266         addr = kmap_atomic(pages[1]);
1267         memcpy(addr, buf + sizes[0], sizes[1]);
1268         kunmap_atomic(addr);
1269
1270 out:
1271         /* enable page faults to match kunmap_atomic() return conditions */
1272         pagefault_enable();
1273 }
1274
1275 #endif /* CONFIG_PGTABLE_MAPPING */
1276
1277 static int zs_cpu_prepare(unsigned int cpu)
1278 {
1279         struct mapping_area *area;
1280
1281         area = &per_cpu(zs_map_area, cpu);
1282         return __zs_cpu_up(area);
1283 }
1284
1285 static int zs_cpu_dead(unsigned int cpu)
1286 {
1287         struct mapping_area *area;
1288
1289         area = &per_cpu(zs_map_area, cpu);
1290         __zs_cpu_down(area);
1291         return 0;
1292 }
1293
1294 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1295                                         int objs_per_zspage)
1296 {
1297         if (prev->pages_per_zspage == pages_per_zspage &&
1298                 prev->objs_per_zspage == objs_per_zspage)
1299                 return true;
1300
1301         return false;
1302 }
1303
1304 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1305 {
1306         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1307 }
1308
1309 unsigned long zs_get_total_pages(struct zs_pool *pool)
1310 {
1311         return atomic_long_read(&pool->pages_allocated);
1312 }
1313 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1314
1315 /**
1316  * zs_map_object - get address of allocated object from handle.
1317  * @pool: pool from which the object was allocated
1318  * @handle: handle returned from zs_malloc
1319  *
1320  * Before using an object allocated from zs_malloc, it must be mapped using
1321  * this function. When done with the object, it must be unmapped using
1322  * zs_unmap_object.
1323  *
1324  * Only one object can be mapped per cpu at a time. There is no protection
1325  * against nested mappings.
1326  *
1327  * This function returns with preemption and page faults disabled.
1328  */
1329 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1330                         enum zs_mapmode mm)
1331 {
1332         struct zspage *zspage;
1333         struct page *page;
1334         unsigned long obj, off;
1335         unsigned int obj_idx;
1336
1337         unsigned int class_idx;
1338         enum fullness_group fg;
1339         struct size_class *class;
1340         struct mapping_area *area;
1341         struct page *pages[2];
1342         void *ret;
1343
1344         /*
1345          * Because we use per-cpu mapping areas shared among the
1346          * pools/users, we can't allow mapping in interrupt context
1347          * because it can corrupt another users mappings.
1348          */
1349         WARN_ON_ONCE(in_interrupt());
1350
1351         /* From now on, migration cannot move the object */
1352         pin_tag(handle);
1353
1354         obj = handle_to_obj(handle);
1355         obj_to_location(obj, &page, &obj_idx);
1356         zspage = get_zspage(page);
1357
1358         /* migration cannot move any subpage in this zspage */
1359         migrate_read_lock(zspage);
1360
1361         get_zspage_mapping(zspage, &class_idx, &fg);
1362         class = pool->size_class[class_idx];
1363         off = (class->size * obj_idx) & ~PAGE_MASK;
1364
1365         area = &get_cpu_var(zs_map_area);
1366         area->vm_mm = mm;
1367         if (off + class->size <= PAGE_SIZE) {
1368                 /* this object is contained entirely within a page */
1369                 area->vm_addr = kmap_atomic(page);
1370                 ret = area->vm_addr + off;
1371                 goto out;
1372         }
1373
1374         /* this object spans two pages */
1375         pages[0] = page;
1376         pages[1] = get_next_page(page);
1377         BUG_ON(!pages[1]);
1378
1379         ret = __zs_map_object(area, pages, off, class->size);
1380 out:
1381         if (likely(!PageHugeObject(page)))
1382                 ret += ZS_HANDLE_SIZE;
1383
1384         return ret;
1385 }
1386 EXPORT_SYMBOL_GPL(zs_map_object);
1387
1388 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1389 {
1390         struct zspage *zspage;
1391         struct page *page;
1392         unsigned long obj, off;
1393         unsigned int obj_idx;
1394
1395         unsigned int class_idx;
1396         enum fullness_group fg;
1397         struct size_class *class;
1398         struct mapping_area *area;
1399
1400         obj = handle_to_obj(handle);
1401         obj_to_location(obj, &page, &obj_idx);
1402         zspage = get_zspage(page);
1403         get_zspage_mapping(zspage, &class_idx, &fg);
1404         class = pool->size_class[class_idx];
1405         off = (class->size * obj_idx) & ~PAGE_MASK;
1406
1407         area = this_cpu_ptr(&zs_map_area);
1408         if (off + class->size <= PAGE_SIZE)
1409                 kunmap_atomic(area->vm_addr);
1410         else {
1411                 struct page *pages[2];
1412
1413                 pages[0] = page;
1414                 pages[1] = get_next_page(page);
1415                 BUG_ON(!pages[1]);
1416
1417                 __zs_unmap_object(area, pages, off, class->size);
1418         }
1419         put_cpu_var(zs_map_area);
1420
1421         migrate_read_unlock(zspage);
1422         unpin_tag(handle);
1423 }
1424 EXPORT_SYMBOL_GPL(zs_unmap_object);
1425
1426 static unsigned long obj_malloc(struct size_class *class,
1427                                 struct zspage *zspage, unsigned long handle)
1428 {
1429         int i, nr_page, offset;
1430         unsigned long obj;
1431         struct link_free *link;
1432
1433         struct page *m_page;
1434         unsigned long m_offset;
1435         void *vaddr;
1436
1437         handle |= OBJ_ALLOCATED_TAG;
1438         obj = get_freeobj(zspage);
1439
1440         offset = obj * class->size;
1441         nr_page = offset >> PAGE_SHIFT;
1442         m_offset = offset & ~PAGE_MASK;
1443         m_page = get_first_page(zspage);
1444
1445         for (i = 0; i < nr_page; i++)
1446                 m_page = get_next_page(m_page);
1447
1448         vaddr = kmap_atomic(m_page);
1449         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1450         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1451         if (likely(!PageHugeObject(m_page)))
1452                 /* record handle in the header of allocated chunk */
1453                 link->handle = handle;
1454         else
1455                 /* record handle to page->index */
1456                 zspage->first_page->index = handle;
1457
1458         kunmap_atomic(vaddr);
1459         mod_zspage_inuse(zspage, 1);
1460         zs_stat_inc(class, OBJ_USED, 1);
1461
1462         obj = location_to_obj(m_page, obj);
1463
1464         return obj;
1465 }
1466
1467
1468 /**
1469  * zs_malloc - Allocate block of given size from pool.
1470  * @pool: pool to allocate from
1471  * @size: size of block to allocate
1472  * @gfp: gfp flags when allocating object
1473  *
1474  * On success, handle to the allocated object is returned,
1475  * otherwise 0.
1476  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1477  */
1478 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1479 {
1480         unsigned long handle, obj;
1481         struct size_class *class;
1482         enum fullness_group newfg;
1483         struct zspage *zspage;
1484
1485         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1486                 return 0;
1487
1488         handle = cache_alloc_handle(pool, gfp);
1489         if (!handle)
1490                 return 0;
1491
1492         /* extra space in chunk to keep the handle */
1493         size += ZS_HANDLE_SIZE;
1494         class = pool->size_class[get_size_class_index(size)];
1495
1496         spin_lock(&class->lock);
1497         zspage = find_get_zspage(class);
1498         if (likely(zspage)) {
1499                 obj = obj_malloc(class, zspage, handle);
1500                 /* Now move the zspage to another fullness group, if required */
1501                 fix_fullness_group(class, zspage);
1502                 record_obj(handle, obj);
1503                 spin_unlock(&class->lock);
1504
1505                 return handle;
1506         }
1507
1508         spin_unlock(&class->lock);
1509
1510         zspage = alloc_zspage(pool, class, gfp);
1511         if (!zspage) {
1512                 cache_free_handle(pool, handle);
1513                 return 0;
1514         }
1515
1516         spin_lock(&class->lock);
1517         obj = obj_malloc(class, zspage, handle);
1518         newfg = get_fullness_group(class, zspage);
1519         insert_zspage(class, zspage, newfg);
1520         set_zspage_mapping(zspage, class->index, newfg);
1521         record_obj(handle, obj);
1522         atomic_long_add(class->pages_per_zspage,
1523                                 &pool->pages_allocated);
1524         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1525
1526         /* We completely set up zspage so mark them as movable */
1527         SetZsPageMovable(pool, zspage);
1528         spin_unlock(&class->lock);
1529
1530         return handle;
1531 }
1532 EXPORT_SYMBOL_GPL(zs_malloc);
1533
1534 static void obj_free(struct size_class *class, unsigned long obj)
1535 {
1536         struct link_free *link;
1537         struct zspage *zspage;
1538         struct page *f_page;
1539         unsigned long f_offset;
1540         unsigned int f_objidx;
1541         void *vaddr;
1542
1543         obj &= ~OBJ_ALLOCATED_TAG;
1544         obj_to_location(obj, &f_page, &f_objidx);
1545         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1546         zspage = get_zspage(f_page);
1547
1548         vaddr = kmap_atomic(f_page);
1549
1550         /* Insert this object in containing zspage's freelist */
1551         link = (struct link_free *)(vaddr + f_offset);
1552         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1553         kunmap_atomic(vaddr);
1554         set_freeobj(zspage, f_objidx);
1555         mod_zspage_inuse(zspage, -1);
1556         zs_stat_dec(class, OBJ_USED, 1);
1557 }
1558
1559 void zs_free(struct zs_pool *pool, unsigned long handle)
1560 {
1561         struct zspage *zspage;
1562         struct page *f_page;
1563         unsigned long obj;
1564         unsigned int f_objidx;
1565         int class_idx;
1566         struct size_class *class;
1567         enum fullness_group fullness;
1568         bool isolated;
1569
1570         if (unlikely(!handle))
1571                 return;
1572
1573         pin_tag(handle);
1574         obj = handle_to_obj(handle);
1575         obj_to_location(obj, &f_page, &f_objidx);
1576         zspage = get_zspage(f_page);
1577
1578         migrate_read_lock(zspage);
1579
1580         get_zspage_mapping(zspage, &class_idx, &fullness);
1581         class = pool->size_class[class_idx];
1582
1583         spin_lock(&class->lock);
1584         obj_free(class, obj);
1585         fullness = fix_fullness_group(class, zspage);
1586         if (fullness != ZS_EMPTY) {
1587                 migrate_read_unlock(zspage);
1588                 goto out;
1589         }
1590
1591         isolated = is_zspage_isolated(zspage);
1592         migrate_read_unlock(zspage);
1593         /* If zspage is isolated, zs_page_putback will free the zspage */
1594         if (likely(!isolated))
1595                 free_zspage(pool, class, zspage);
1596 out:
1597
1598         spin_unlock(&class->lock);
1599         unpin_tag(handle);
1600         cache_free_handle(pool, handle);
1601 }
1602 EXPORT_SYMBOL_GPL(zs_free);
1603
1604 static void zs_object_copy(struct size_class *class, unsigned long dst,
1605                                 unsigned long src)
1606 {
1607         struct page *s_page, *d_page;
1608         unsigned int s_objidx, d_objidx;
1609         unsigned long s_off, d_off;
1610         void *s_addr, *d_addr;
1611         int s_size, d_size, size;
1612         int written = 0;
1613
1614         s_size = d_size = class->size;
1615
1616         obj_to_location(src, &s_page, &s_objidx);
1617         obj_to_location(dst, &d_page, &d_objidx);
1618
1619         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1620         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1621
1622         if (s_off + class->size > PAGE_SIZE)
1623                 s_size = PAGE_SIZE - s_off;
1624
1625         if (d_off + class->size > PAGE_SIZE)
1626                 d_size = PAGE_SIZE - d_off;
1627
1628         s_addr = kmap_atomic(s_page);
1629         d_addr = kmap_atomic(d_page);
1630
1631         while (1) {
1632                 size = min(s_size, d_size);
1633                 memcpy(d_addr + d_off, s_addr + s_off, size);
1634                 written += size;
1635
1636                 if (written == class->size)
1637                         break;
1638
1639                 s_off += size;
1640                 s_size -= size;
1641                 d_off += size;
1642                 d_size -= size;
1643
1644                 if (s_off >= PAGE_SIZE) {
1645                         kunmap_atomic(d_addr);
1646                         kunmap_atomic(s_addr);
1647                         s_page = get_next_page(s_page);
1648                         s_addr = kmap_atomic(s_page);
1649                         d_addr = kmap_atomic(d_page);
1650                         s_size = class->size - written;
1651                         s_off = 0;
1652                 }
1653
1654                 if (d_off >= PAGE_SIZE) {
1655                         kunmap_atomic(d_addr);
1656                         d_page = get_next_page(d_page);
1657                         d_addr = kmap_atomic(d_page);
1658                         d_size = class->size - written;
1659                         d_off = 0;
1660                 }
1661         }
1662
1663         kunmap_atomic(d_addr);
1664         kunmap_atomic(s_addr);
1665 }
1666
1667 /*
1668  * Find alloced object in zspage from index object and
1669  * return handle.
1670  */
1671 static unsigned long find_alloced_obj(struct size_class *class,
1672                                         struct page *page, int *obj_idx)
1673 {
1674         unsigned long head;
1675         int offset = 0;
1676         int index = *obj_idx;
1677         unsigned long handle = 0;
1678         void *addr = kmap_atomic(page);
1679
1680         offset = get_first_obj_offset(page);
1681         offset += class->size * index;
1682
1683         while (offset < PAGE_SIZE) {
1684                 head = obj_to_head(page, addr + offset);
1685                 if (head & OBJ_ALLOCATED_TAG) {
1686                         handle = head & ~OBJ_ALLOCATED_TAG;
1687                         if (trypin_tag(handle))
1688                                 break;
1689                         handle = 0;
1690                 }
1691
1692                 offset += class->size;
1693                 index++;
1694         }
1695
1696         kunmap_atomic(addr);
1697
1698         *obj_idx = index;
1699
1700         return handle;
1701 }
1702
1703 struct zs_compact_control {
1704         /* Source spage for migration which could be a subpage of zspage */
1705         struct page *s_page;
1706         /* Destination page for migration which should be a first page
1707          * of zspage. */
1708         struct page *d_page;
1709          /* Starting object index within @s_page which used for live object
1710           * in the subpage. */
1711         int obj_idx;
1712 };
1713
1714 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1715                                 struct zs_compact_control *cc)
1716 {
1717         unsigned long used_obj, free_obj;
1718         unsigned long handle;
1719         struct page *s_page = cc->s_page;
1720         struct page *d_page = cc->d_page;
1721         int obj_idx = cc->obj_idx;
1722         int ret = 0;
1723
1724         while (1) {
1725                 handle = find_alloced_obj(class, s_page, &obj_idx);
1726                 if (!handle) {
1727                         s_page = get_next_page(s_page);
1728                         if (!s_page)
1729                                 break;
1730                         obj_idx = 0;
1731                         continue;
1732                 }
1733
1734                 /* Stop if there is no more space */
1735                 if (zspage_full(class, get_zspage(d_page))) {
1736                         unpin_tag(handle);
1737                         ret = -ENOMEM;
1738                         break;
1739                 }
1740
1741                 used_obj = handle_to_obj(handle);
1742                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1743                 zs_object_copy(class, free_obj, used_obj);
1744                 obj_idx++;
1745                 /*
1746                  * record_obj updates handle's value to free_obj and it will
1747                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1748                  * breaks synchronization using pin_tag(e,g, zs_free) so
1749                  * let's keep the lock bit.
1750                  */
1751                 free_obj |= BIT(HANDLE_PIN_BIT);
1752                 record_obj(handle, free_obj);
1753                 unpin_tag(handle);
1754                 obj_free(class, used_obj);
1755         }
1756
1757         /* Remember last position in this iteration */
1758         cc->s_page = s_page;
1759         cc->obj_idx = obj_idx;
1760
1761         return ret;
1762 }
1763
1764 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1765 {
1766         int i;
1767         struct zspage *zspage;
1768         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1769
1770         if (!source) {
1771                 fg[0] = ZS_ALMOST_FULL;
1772                 fg[1] = ZS_ALMOST_EMPTY;
1773         }
1774
1775         for (i = 0; i < 2; i++) {
1776                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1777                                                         struct zspage, list);
1778                 if (zspage) {
1779                         VM_BUG_ON(is_zspage_isolated(zspage));
1780                         remove_zspage(class, zspage, fg[i]);
1781                         return zspage;
1782                 }
1783         }
1784
1785         return zspage;
1786 }
1787
1788 /*
1789  * putback_zspage - add @zspage into right class's fullness list
1790  * @class: destination class
1791  * @zspage: target page
1792  *
1793  * Return @zspage's fullness_group
1794  */
1795 static enum fullness_group putback_zspage(struct size_class *class,
1796                         struct zspage *zspage)
1797 {
1798         enum fullness_group fullness;
1799
1800         VM_BUG_ON(is_zspage_isolated(zspage));
1801
1802         fullness = get_fullness_group(class, zspage);
1803         insert_zspage(class, zspage, fullness);
1804         set_zspage_mapping(zspage, class->index, fullness);
1805
1806         return fullness;
1807 }
1808
1809 #ifdef CONFIG_COMPACTION
1810 static struct dentry *zs_mount(struct file_system_type *fs_type,
1811                                 int flags, const char *dev_name, void *data)
1812 {
1813         static const struct dentry_operations ops = {
1814                 .d_dname = simple_dname,
1815         };
1816
1817         return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1818 }
1819
1820 static struct file_system_type zsmalloc_fs = {
1821         .name           = "zsmalloc",
1822         .mount          = zs_mount,
1823         .kill_sb        = kill_anon_super,
1824 };
1825
1826 static int zsmalloc_mount(void)
1827 {
1828         int ret = 0;
1829
1830         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1831         if (IS_ERR(zsmalloc_mnt))
1832                 ret = PTR_ERR(zsmalloc_mnt);
1833
1834         return ret;
1835 }
1836
1837 static void zsmalloc_unmount(void)
1838 {
1839         kern_unmount(zsmalloc_mnt);
1840 }
1841
1842 static void migrate_lock_init(struct zspage *zspage)
1843 {
1844         rwlock_init(&zspage->lock);
1845 }
1846
1847 static void migrate_read_lock(struct zspage *zspage)
1848 {
1849         read_lock(&zspage->lock);
1850 }
1851
1852 static void migrate_read_unlock(struct zspage *zspage)
1853 {
1854         read_unlock(&zspage->lock);
1855 }
1856
1857 static void migrate_write_lock(struct zspage *zspage)
1858 {
1859         write_lock(&zspage->lock);
1860 }
1861
1862 static void migrate_write_unlock(struct zspage *zspage)
1863 {
1864         write_unlock(&zspage->lock);
1865 }
1866
1867 /* Number of isolated subpage for *page migration* in this zspage */
1868 static void inc_zspage_isolation(struct zspage *zspage)
1869 {
1870         zspage->isolated++;
1871 }
1872
1873 static void dec_zspage_isolation(struct zspage *zspage)
1874 {
1875         zspage->isolated--;
1876 }
1877
1878 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1879                                 struct page *newpage, struct page *oldpage)
1880 {
1881         struct page *page;
1882         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1883         int idx = 0;
1884
1885         page = get_first_page(zspage);
1886         do {
1887                 if (page == oldpage)
1888                         pages[idx] = newpage;
1889                 else
1890                         pages[idx] = page;
1891                 idx++;
1892         } while ((page = get_next_page(page)) != NULL);
1893
1894         create_page_chain(class, zspage, pages);
1895         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1896         if (unlikely(PageHugeObject(oldpage)))
1897                 newpage->index = oldpage->index;
1898         __SetPageMovable(newpage, page_mapping(oldpage));
1899 }
1900
1901 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1902 {
1903         struct zs_pool *pool;
1904         struct size_class *class;
1905         int class_idx;
1906         enum fullness_group fullness;
1907         struct zspage *zspage;
1908         struct address_space *mapping;
1909
1910         /*
1911          * Page is locked so zspage couldn't be destroyed. For detail, look at
1912          * lock_zspage in free_zspage.
1913          */
1914         VM_BUG_ON_PAGE(!PageMovable(page), page);
1915         VM_BUG_ON_PAGE(PageIsolated(page), page);
1916
1917         zspage = get_zspage(page);
1918
1919         /*
1920          * Without class lock, fullness could be stale while class_idx is okay
1921          * because class_idx is constant unless page is freed so we should get
1922          * fullness again under class lock.
1923          */
1924         get_zspage_mapping(zspage, &class_idx, &fullness);
1925         mapping = page_mapping(page);
1926         pool = mapping->private_data;
1927         class = pool->size_class[class_idx];
1928
1929         spin_lock(&class->lock);
1930         if (get_zspage_inuse(zspage) == 0) {
1931                 spin_unlock(&class->lock);
1932                 return false;
1933         }
1934
1935         /* zspage is isolated for object migration */
1936         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1937                 spin_unlock(&class->lock);
1938                 return false;
1939         }
1940
1941         /*
1942          * If this is first time isolation for the zspage, isolate zspage from
1943          * size_class to prevent further object allocation from the zspage.
1944          */
1945         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1946                 get_zspage_mapping(zspage, &class_idx, &fullness);
1947                 remove_zspage(class, zspage, fullness);
1948         }
1949
1950         inc_zspage_isolation(zspage);
1951         spin_unlock(&class->lock);
1952
1953         return true;
1954 }
1955
1956 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1957                 struct page *page, enum migrate_mode mode)
1958 {
1959         struct zs_pool *pool;
1960         struct size_class *class;
1961         int class_idx;
1962         enum fullness_group fullness;
1963         struct zspage *zspage;
1964         struct page *dummy;
1965         void *s_addr, *d_addr, *addr;
1966         int offset, pos;
1967         unsigned long handle, head;
1968         unsigned long old_obj, new_obj;
1969         unsigned int obj_idx;
1970         int ret = -EAGAIN;
1971
1972         VM_BUG_ON_PAGE(!PageMovable(page), page);
1973         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1974
1975         zspage = get_zspage(page);
1976
1977         /* Concurrent compactor cannot migrate any subpage in zspage */
1978         migrate_write_lock(zspage);
1979         get_zspage_mapping(zspage, &class_idx, &fullness);
1980         pool = mapping->private_data;
1981         class = pool->size_class[class_idx];
1982         offset = get_first_obj_offset(page);
1983
1984         spin_lock(&class->lock);
1985         if (!get_zspage_inuse(zspage)) {
1986                 ret = -EBUSY;
1987                 goto unlock_class;
1988         }
1989
1990         pos = offset;
1991         s_addr = kmap_atomic(page);
1992         while (pos < PAGE_SIZE) {
1993                 head = obj_to_head(page, s_addr + pos);
1994                 if (head & OBJ_ALLOCATED_TAG) {
1995                         handle = head & ~OBJ_ALLOCATED_TAG;
1996                         if (!trypin_tag(handle))
1997                                 goto unpin_objects;
1998                 }
1999                 pos += class->size;
2000         }
2001
2002         /*
2003          * Here, any user cannot access all objects in the zspage so let's move.
2004          */
2005         d_addr = kmap_atomic(newpage);
2006         memcpy(d_addr, s_addr, PAGE_SIZE);
2007         kunmap_atomic(d_addr);
2008
2009         for (addr = s_addr + offset; addr < s_addr + pos;
2010                                         addr += class->size) {
2011                 head = obj_to_head(page, addr);
2012                 if (head & OBJ_ALLOCATED_TAG) {
2013                         handle = head & ~OBJ_ALLOCATED_TAG;
2014                         if (!testpin_tag(handle))
2015                                 BUG();
2016
2017                         old_obj = handle_to_obj(handle);
2018                         obj_to_location(old_obj, &dummy, &obj_idx);
2019                         new_obj = (unsigned long)location_to_obj(newpage,
2020                                                                 obj_idx);
2021                         new_obj |= BIT(HANDLE_PIN_BIT);
2022                         record_obj(handle, new_obj);
2023                 }
2024         }
2025
2026         replace_sub_page(class, zspage, newpage, page);
2027         get_page(newpage);
2028
2029         dec_zspage_isolation(zspage);
2030
2031         /*
2032          * Page migration is done so let's putback isolated zspage to
2033          * the list if @page is final isolated subpage in the zspage.
2034          */
2035         if (!is_zspage_isolated(zspage))
2036                 putback_zspage(class, zspage);
2037
2038         reset_page(page);
2039         put_page(page);
2040         page = newpage;
2041
2042         ret = MIGRATEPAGE_SUCCESS;
2043 unpin_objects:
2044         for (addr = s_addr + offset; addr < s_addr + pos;
2045                                                 addr += class->size) {
2046                 head = obj_to_head(page, addr);
2047                 if (head & OBJ_ALLOCATED_TAG) {
2048                         handle = head & ~OBJ_ALLOCATED_TAG;
2049                         if (!testpin_tag(handle))
2050                                 BUG();
2051                         unpin_tag(handle);
2052                 }
2053         }
2054         kunmap_atomic(s_addr);
2055 unlock_class:
2056         spin_unlock(&class->lock);
2057         migrate_write_unlock(zspage);
2058
2059         return ret;
2060 }
2061
2062 void zs_page_putback(struct page *page)
2063 {
2064         struct zs_pool *pool;
2065         struct size_class *class;
2066         int class_idx;
2067         enum fullness_group fg;
2068         struct address_space *mapping;
2069         struct zspage *zspage;
2070
2071         VM_BUG_ON_PAGE(!PageMovable(page), page);
2072         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2073
2074         zspage = get_zspage(page);
2075         get_zspage_mapping(zspage, &class_idx, &fg);
2076         mapping = page_mapping(page);
2077         pool = mapping->private_data;
2078         class = pool->size_class[class_idx];
2079
2080         spin_lock(&class->lock);
2081         dec_zspage_isolation(zspage);
2082         if (!is_zspage_isolated(zspage)) {
2083                 fg = putback_zspage(class, zspage);
2084                 /*
2085                  * Due to page_lock, we cannot free zspage immediately
2086                  * so let's defer.
2087                  */
2088                 if (fg == ZS_EMPTY)
2089                         schedule_work(&pool->free_work);
2090         }
2091         spin_unlock(&class->lock);
2092 }
2093
2094 const struct address_space_operations zsmalloc_aops = {
2095         .isolate_page = zs_page_isolate,
2096         .migratepage = zs_page_migrate,
2097         .putback_page = zs_page_putback,
2098 };
2099
2100 static int zs_register_migration(struct zs_pool *pool)
2101 {
2102         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2103         if (IS_ERR(pool->inode)) {
2104                 pool->inode = NULL;
2105                 return 1;
2106         }
2107
2108         pool->inode->i_mapping->private_data = pool;
2109         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2110         return 0;
2111 }
2112
2113 static void zs_unregister_migration(struct zs_pool *pool)
2114 {
2115         flush_work(&pool->free_work);
2116         iput(pool->inode);
2117 }
2118
2119 /*
2120  * Caller should hold page_lock of all pages in the zspage
2121  * In here, we cannot use zspage meta data.
2122  */
2123 static void async_free_zspage(struct work_struct *work)
2124 {
2125         int i;
2126         struct size_class *class;
2127         unsigned int class_idx;
2128         enum fullness_group fullness;
2129         struct zspage *zspage, *tmp;
2130         LIST_HEAD(free_pages);
2131         struct zs_pool *pool = container_of(work, struct zs_pool,
2132                                         free_work);
2133
2134         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2135                 class = pool->size_class[i];
2136                 if (class->index != i)
2137                         continue;
2138
2139                 spin_lock(&class->lock);
2140                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2141                 spin_unlock(&class->lock);
2142         }
2143
2144
2145         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2146                 list_del(&zspage->list);
2147                 lock_zspage(zspage);
2148
2149                 get_zspage_mapping(zspage, &class_idx, &fullness);
2150                 VM_BUG_ON(fullness != ZS_EMPTY);
2151                 class = pool->size_class[class_idx];
2152                 spin_lock(&class->lock);
2153                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2154                 spin_unlock(&class->lock);
2155         }
2156 };
2157
2158 static void kick_deferred_free(struct zs_pool *pool)
2159 {
2160         schedule_work(&pool->free_work);
2161 }
2162
2163 static void init_deferred_free(struct zs_pool *pool)
2164 {
2165         INIT_WORK(&pool->free_work, async_free_zspage);
2166 }
2167
2168 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2169 {
2170         struct page *page = get_first_page(zspage);
2171
2172         do {
2173                 WARN_ON(!trylock_page(page));
2174                 __SetPageMovable(page, pool->inode->i_mapping);
2175                 unlock_page(page);
2176         } while ((page = get_next_page(page)) != NULL);
2177 }
2178 #endif
2179
2180 /*
2181  *
2182  * Based on the number of unused allocated objects calculate
2183  * and return the number of pages that we can free.
2184  */
2185 static unsigned long zs_can_compact(struct size_class *class)
2186 {
2187         unsigned long obj_wasted;
2188         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2189         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2190
2191         if (obj_allocated <= obj_used)
2192                 return 0;
2193
2194         obj_wasted = obj_allocated - obj_used;
2195         obj_wasted /= class->objs_per_zspage;
2196
2197         return obj_wasted * class->pages_per_zspage;
2198 }
2199
2200 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2201 {
2202         struct zs_compact_control cc;
2203         struct zspage *src_zspage;
2204         struct zspage *dst_zspage = NULL;
2205
2206         spin_lock(&class->lock);
2207         while ((src_zspage = isolate_zspage(class, true))) {
2208
2209                 if (!zs_can_compact(class))
2210                         break;
2211
2212                 cc.obj_idx = 0;
2213                 cc.s_page = get_first_page(src_zspage);
2214
2215                 while ((dst_zspage = isolate_zspage(class, false))) {
2216                         cc.d_page = get_first_page(dst_zspage);
2217                         /*
2218                          * If there is no more space in dst_page, resched
2219                          * and see if anyone had allocated another zspage.
2220                          */
2221                         if (!migrate_zspage(pool, class, &cc))
2222                                 break;
2223
2224                         putback_zspage(class, dst_zspage);
2225                 }
2226
2227                 /* Stop if we couldn't find slot */
2228                 if (dst_zspage == NULL)
2229                         break;
2230
2231                 putback_zspage(class, dst_zspage);
2232                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2233                         free_zspage(pool, class, src_zspage);
2234                         pool->stats.pages_compacted += class->pages_per_zspage;
2235                 }
2236                 spin_unlock(&class->lock);
2237                 cond_resched();
2238                 spin_lock(&class->lock);
2239         }
2240
2241         if (src_zspage)
2242                 putback_zspage(class, src_zspage);
2243
2244         spin_unlock(&class->lock);
2245 }
2246
2247 unsigned long zs_compact(struct zs_pool *pool)
2248 {
2249         int i;
2250         struct size_class *class;
2251
2252         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2253                 class = pool->size_class[i];
2254                 if (!class)
2255                         continue;
2256                 if (class->index != i)
2257                         continue;
2258                 __zs_compact(pool, class);
2259         }
2260
2261         return pool->stats.pages_compacted;
2262 }
2263 EXPORT_SYMBOL_GPL(zs_compact);
2264
2265 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2266 {
2267         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2268 }
2269 EXPORT_SYMBOL_GPL(zs_pool_stats);
2270
2271 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2272                 struct shrink_control *sc)
2273 {
2274         unsigned long pages_freed;
2275         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2276                         shrinker);
2277
2278         pages_freed = pool->stats.pages_compacted;
2279         /*
2280          * Compact classes and calculate compaction delta.
2281          * Can run concurrently with a manually triggered
2282          * (by user) compaction.
2283          */
2284         pages_freed = zs_compact(pool) - pages_freed;
2285
2286         return pages_freed ? pages_freed : SHRINK_STOP;
2287 }
2288
2289 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2290                 struct shrink_control *sc)
2291 {
2292         int i;
2293         struct size_class *class;
2294         unsigned long pages_to_free = 0;
2295         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2296                         shrinker);
2297
2298         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2299                 class = pool->size_class[i];
2300                 if (!class)
2301                         continue;
2302                 if (class->index != i)
2303                         continue;
2304
2305                 pages_to_free += zs_can_compact(class);
2306         }
2307
2308         return pages_to_free;
2309 }
2310
2311 static void zs_unregister_shrinker(struct zs_pool *pool)
2312 {
2313         if (pool->shrinker_enabled) {
2314                 unregister_shrinker(&pool->shrinker);
2315                 pool->shrinker_enabled = false;
2316         }
2317 }
2318
2319 static int zs_register_shrinker(struct zs_pool *pool)
2320 {
2321         pool->shrinker.scan_objects = zs_shrinker_scan;
2322         pool->shrinker.count_objects = zs_shrinker_count;
2323         pool->shrinker.batch = 0;
2324         pool->shrinker.seeks = DEFAULT_SEEKS;
2325
2326         return register_shrinker(&pool->shrinker);
2327 }
2328
2329 /**
2330  * zs_create_pool - Creates an allocation pool to work from.
2331  * @name: pool name to be created
2332  *
2333  * This function must be called before anything when using
2334  * the zsmalloc allocator.
2335  *
2336  * On success, a pointer to the newly created pool is returned,
2337  * otherwise NULL.
2338  */
2339 struct zs_pool *zs_create_pool(const char *name)
2340 {
2341         int i;
2342         struct zs_pool *pool;
2343         struct size_class *prev_class = NULL;
2344
2345         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2346         if (!pool)
2347                 return NULL;
2348
2349         init_deferred_free(pool);
2350
2351         pool->name = kstrdup(name, GFP_KERNEL);
2352         if (!pool->name)
2353                 goto err;
2354
2355         if (create_cache(pool))
2356                 goto err;
2357
2358         /*
2359          * Iterate reversely, because, size of size_class that we want to use
2360          * for merging should be larger or equal to current size.
2361          */
2362         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2363                 int size;
2364                 int pages_per_zspage;
2365                 int objs_per_zspage;
2366                 struct size_class *class;
2367                 int fullness = 0;
2368
2369                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2370                 if (size > ZS_MAX_ALLOC_SIZE)
2371                         size = ZS_MAX_ALLOC_SIZE;
2372                 pages_per_zspage = get_pages_per_zspage(size);
2373                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2374
2375                 /*
2376                  * size_class is used for normal zsmalloc operation such
2377                  * as alloc/free for that size. Although it is natural that we
2378                  * have one size_class for each size, there is a chance that we
2379                  * can get more memory utilization if we use one size_class for
2380                  * many different sizes whose size_class have same
2381                  * characteristics. So, we makes size_class point to
2382                  * previous size_class if possible.
2383                  */
2384                 if (prev_class) {
2385                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2386                                 pool->size_class[i] = prev_class;
2387                                 continue;
2388                         }
2389                 }
2390
2391                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2392                 if (!class)
2393                         goto err;
2394
2395                 class->size = size;
2396                 class->index = i;
2397                 class->pages_per_zspage = pages_per_zspage;
2398                 class->objs_per_zspage = objs_per_zspage;
2399                 spin_lock_init(&class->lock);
2400                 pool->size_class[i] = class;
2401                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2402                                                         fullness++)
2403                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2404
2405                 prev_class = class;
2406         }
2407
2408         /* debug only, don't abort if it fails */
2409         zs_pool_stat_create(pool, name);
2410
2411         if (zs_register_migration(pool))
2412                 goto err;
2413
2414         /*
2415          * Not critical, we still can use the pool
2416          * and user can trigger compaction manually.
2417          */
2418         if (zs_register_shrinker(pool) == 0)
2419                 pool->shrinker_enabled = true;
2420         return pool;
2421
2422 err:
2423         zs_destroy_pool(pool);
2424         return NULL;
2425 }
2426 EXPORT_SYMBOL_GPL(zs_create_pool);
2427
2428 void zs_destroy_pool(struct zs_pool *pool)
2429 {
2430         int i;
2431
2432         zs_unregister_shrinker(pool);
2433         zs_unregister_migration(pool);
2434         zs_pool_stat_destroy(pool);
2435
2436         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2437                 int fg;
2438                 struct size_class *class = pool->size_class[i];
2439
2440                 if (!class)
2441                         continue;
2442
2443                 if (class->index != i)
2444                         continue;
2445
2446                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2447                         if (!list_empty(&class->fullness_list[fg])) {
2448                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2449                                         class->size, fg);
2450                         }
2451                 }
2452                 kfree(class);
2453         }
2454
2455         destroy_cache(pool);
2456         kfree(pool->name);
2457         kfree(pool);
2458 }
2459 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2460
2461 static int __init zs_init(void)
2462 {
2463         int ret;
2464
2465         ret = zsmalloc_mount();
2466         if (ret)
2467                 goto out;
2468
2469         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2470                                 zs_cpu_prepare, zs_cpu_dead);
2471         if (ret)
2472                 goto hp_setup_fail;
2473
2474 #ifdef CONFIG_ZPOOL
2475         zpool_register_driver(&zs_zpool_driver);
2476 #endif
2477
2478         zs_stat_init();
2479
2480         return 0;
2481
2482 hp_setup_fail:
2483         zsmalloc_unmount();
2484 out:
2485         return ret;
2486 }
2487
2488 static void __exit zs_exit(void)
2489 {
2490 #ifdef CONFIG_ZPOOL
2491         zpool_unregister_driver(&zs_zpool_driver);
2492 #endif
2493         zsmalloc_unmount();
2494         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2495
2496         zs_stat_exit();
2497 }
2498
2499 module_init(zs_init);
2500 module_exit(zs_exit);
2501
2502 MODULE_LICENSE("Dual BSD/GPL");
2503 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");