]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/zswap.c
fs/ncpfs/dir.c: remove unnecessary new_valid_dev() check
[karo-tx-linux.git] / mm / zswap.c
1 /*
2  * zswap.c - zswap driver file
3  *
4  * zswap is a backend for frontswap that takes pages that are in the process
5  * of being swapped out and attempts to compress and store them in a
6  * RAM-based memory pool.  This can result in a significant I/O reduction on
7  * the swap device and, in the case where decompressing from RAM is faster
8  * than reading from the swap device, can also improve workload performance.
9  *
10  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version 2
15  * of the License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21 */
22
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/module.h>
26 #include <linux/cpu.h>
27 #include <linux/highmem.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/frontswap.h>
33 #include <linux/rbtree.h>
34 #include <linux/swap.h>
35 #include <linux/crypto.h>
36 #include <linux/mempool.h>
37 #include <linux/zpool.h>
38
39 #include <linux/mm_types.h>
40 #include <linux/page-flags.h>
41 #include <linux/swapops.h>
42 #include <linux/writeback.h>
43 #include <linux/pagemap.h>
44
45 /*********************************
46 * statistics
47 **********************************/
48 /* Total bytes used by the compressed storage */
49 static u64 zswap_pool_total_size;
50 /* The number of compressed pages currently stored in zswap */
51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
52
53 /*
54  * The statistics below are not protected from concurrent access for
55  * performance reasons so they may not be a 100% accurate.  However,
56  * they do provide useful information on roughly how many times a
57  * certain event is occurring.
58 */
59
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Compressed page was too big for the allocator to (optimally) store */
67 static u64 zswap_reject_compress_poor;
68 /* Store failed because underlying allocator could not get memory */
69 static u64 zswap_reject_alloc_fail;
70 /* Store failed because the entry metadata could not be allocated (rare) */
71 static u64 zswap_reject_kmemcache_fail;
72 /* Duplicate store was encountered (rare) */
73 static u64 zswap_duplicate_entry;
74
75 /*********************************
76 * tunables
77 **********************************/
78
79 /* Enable/disable zswap (disabled by default) */
80 static bool zswap_enabled;
81 module_param_named(enabled, zswap_enabled, bool, 0644);
82
83 /* Crypto compressor to use */
84 #define ZSWAP_COMPRESSOR_DEFAULT "lzo"
85 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
86 static int zswap_compressor_param_set(const char *,
87                                       const struct kernel_param *);
88 static struct kernel_param_ops zswap_compressor_param_ops = {
89         .set =          zswap_compressor_param_set,
90         .get =          param_get_charp,
91         .free =         param_free_charp,
92 };
93 module_param_cb(compressor, &zswap_compressor_param_ops,
94                 &zswap_compressor, 0644);
95
96 /* Compressed storage zpool to use */
97 #define ZSWAP_ZPOOL_DEFAULT "zbud"
98 static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
99 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
100 static struct kernel_param_ops zswap_zpool_param_ops = {
101         .set =          zswap_zpool_param_set,
102         .get =          param_get_charp,
103         .free =         param_free_charp,
104 };
105 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
106
107 /* The maximum percentage of memory that the compressed pool can occupy */
108 static unsigned int zswap_max_pool_percent = 20;
109 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
110
111 /*********************************
112 * data structures
113 **********************************/
114
115 struct zswap_pool {
116         struct zpool *zpool;
117         struct crypto_comp * __percpu *tfm;
118         struct kref kref;
119         struct list_head list;
120         struct rcu_head rcu_head;
121         struct notifier_block notifier;
122         char tfm_name[CRYPTO_MAX_ALG_NAME];
123 };
124
125 /*
126  * struct zswap_entry
127  *
128  * This structure contains the metadata for tracking a single compressed
129  * page within zswap.
130  *
131  * rbnode - links the entry into red-black tree for the appropriate swap type
132  * offset - the swap offset for the entry.  Index into the red-black tree.
133  * refcount - the number of outstanding reference to the entry. This is needed
134  *            to protect against premature freeing of the entry by code
135  *            concurrent calls to load, invalidate, and writeback.  The lock
136  *            for the zswap_tree structure that contains the entry must
137  *            be held while changing the refcount.  Since the lock must
138  *            be held, there is no reason to also make refcount atomic.
139  * length - the length in bytes of the compressed page data.  Needed during
140  *          decompression
141  * pool - the zswap_pool the entry's data is in
142  * handle - zpool allocation handle that stores the compressed page data
143  */
144 struct zswap_entry {
145         struct rb_node rbnode;
146         pgoff_t offset;
147         int refcount;
148         unsigned int length;
149         struct zswap_pool *pool;
150         unsigned long handle;
151 };
152
153 struct zswap_header {
154         swp_entry_t swpentry;
155 };
156
157 /*
158  * The tree lock in the zswap_tree struct protects a few things:
159  * - the rbtree
160  * - the refcount field of each entry in the tree
161  */
162 struct zswap_tree {
163         struct rb_root rbroot;
164         spinlock_t lock;
165 };
166
167 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
168
169 /* RCU-protected iteration */
170 static LIST_HEAD(zswap_pools);
171 /* protects zswap_pools list modification */
172 static DEFINE_SPINLOCK(zswap_pools_lock);
173
174 /* used by param callback function */
175 static bool zswap_init_started;
176
177 /*********************************
178 * helpers and fwd declarations
179 **********************************/
180
181 #define zswap_pool_debug(msg, p)                                \
182         pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,         \
183                  zpool_get_type((p)->zpool))
184
185 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
186 static int zswap_pool_get(struct zswap_pool *pool);
187 static void zswap_pool_put(struct zswap_pool *pool);
188
189 static const struct zpool_ops zswap_zpool_ops = {
190         .evict = zswap_writeback_entry
191 };
192
193 static bool zswap_is_full(void)
194 {
195         return totalram_pages * zswap_max_pool_percent / 100 <
196                 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
197 }
198
199 static void zswap_update_total_size(void)
200 {
201         struct zswap_pool *pool;
202         u64 total = 0;
203
204         rcu_read_lock();
205
206         list_for_each_entry_rcu(pool, &zswap_pools, list)
207                 total += zpool_get_total_size(pool->zpool);
208
209         rcu_read_unlock();
210
211         zswap_pool_total_size = total;
212 }
213
214 /*********************************
215 * zswap entry functions
216 **********************************/
217 static struct kmem_cache *zswap_entry_cache;
218
219 static int __init zswap_entry_cache_create(void)
220 {
221         zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
222         return zswap_entry_cache == NULL;
223 }
224
225 static void __init zswap_entry_cache_destroy(void)
226 {
227         kmem_cache_destroy(zswap_entry_cache);
228 }
229
230 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
231 {
232         struct zswap_entry *entry;
233         entry = kmem_cache_alloc(zswap_entry_cache, gfp);
234         if (!entry)
235                 return NULL;
236         entry->refcount = 1;
237         RB_CLEAR_NODE(&entry->rbnode);
238         return entry;
239 }
240
241 static void zswap_entry_cache_free(struct zswap_entry *entry)
242 {
243         kmem_cache_free(zswap_entry_cache, entry);
244 }
245
246 /*********************************
247 * rbtree functions
248 **********************************/
249 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
250 {
251         struct rb_node *node = root->rb_node;
252         struct zswap_entry *entry;
253
254         while (node) {
255                 entry = rb_entry(node, struct zswap_entry, rbnode);
256                 if (entry->offset > offset)
257                         node = node->rb_left;
258                 else if (entry->offset < offset)
259                         node = node->rb_right;
260                 else
261                         return entry;
262         }
263         return NULL;
264 }
265
266 /*
267  * In the case that a entry with the same offset is found, a pointer to
268  * the existing entry is stored in dupentry and the function returns -EEXIST
269  */
270 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
271                         struct zswap_entry **dupentry)
272 {
273         struct rb_node **link = &root->rb_node, *parent = NULL;
274         struct zswap_entry *myentry;
275
276         while (*link) {
277                 parent = *link;
278                 myentry = rb_entry(parent, struct zswap_entry, rbnode);
279                 if (myentry->offset > entry->offset)
280                         link = &(*link)->rb_left;
281                 else if (myentry->offset < entry->offset)
282                         link = &(*link)->rb_right;
283                 else {
284                         *dupentry = myentry;
285                         return -EEXIST;
286                 }
287         }
288         rb_link_node(&entry->rbnode, parent, link);
289         rb_insert_color(&entry->rbnode, root);
290         return 0;
291 }
292
293 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
294 {
295         if (!RB_EMPTY_NODE(&entry->rbnode)) {
296                 rb_erase(&entry->rbnode, root);
297                 RB_CLEAR_NODE(&entry->rbnode);
298         }
299 }
300
301 /*
302  * Carries out the common pattern of freeing and entry's zpool allocation,
303  * freeing the entry itself, and decrementing the number of stored pages.
304  */
305 static void zswap_free_entry(struct zswap_entry *entry)
306 {
307         zpool_free(entry->pool->zpool, entry->handle);
308         zswap_pool_put(entry->pool);
309         zswap_entry_cache_free(entry);
310         atomic_dec(&zswap_stored_pages);
311         zswap_update_total_size();
312 }
313
314 /* caller must hold the tree lock */
315 static void zswap_entry_get(struct zswap_entry *entry)
316 {
317         entry->refcount++;
318 }
319
320 /* caller must hold the tree lock
321 * remove from the tree and free it, if nobody reference the entry
322 */
323 static void zswap_entry_put(struct zswap_tree *tree,
324                         struct zswap_entry *entry)
325 {
326         int refcount = --entry->refcount;
327
328         BUG_ON(refcount < 0);
329         if (refcount == 0) {
330                 zswap_rb_erase(&tree->rbroot, entry);
331                 zswap_free_entry(entry);
332         }
333 }
334
335 /* caller must hold the tree lock */
336 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
337                                 pgoff_t offset)
338 {
339         struct zswap_entry *entry;
340
341         entry = zswap_rb_search(root, offset);
342         if (entry)
343                 zswap_entry_get(entry);
344
345         return entry;
346 }
347
348 /*********************************
349 * per-cpu code
350 **********************************/
351 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
352
353 static int __zswap_cpu_dstmem_notifier(unsigned long action, unsigned long cpu)
354 {
355         u8 *dst;
356
357         switch (action) {
358         case CPU_UP_PREPARE:
359                 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
360                 if (!dst) {
361                         pr_err("can't allocate compressor buffer\n");
362                         return NOTIFY_BAD;
363                 }
364                 per_cpu(zswap_dstmem, cpu) = dst;
365                 break;
366         case CPU_DEAD:
367         case CPU_UP_CANCELED:
368                 dst = per_cpu(zswap_dstmem, cpu);
369                 kfree(dst);
370                 per_cpu(zswap_dstmem, cpu) = NULL;
371                 break;
372         default:
373                 break;
374         }
375         return NOTIFY_OK;
376 }
377
378 static int zswap_cpu_dstmem_notifier(struct notifier_block *nb,
379                                      unsigned long action, void *pcpu)
380 {
381         return __zswap_cpu_dstmem_notifier(action, (unsigned long)pcpu);
382 }
383
384 static struct notifier_block zswap_dstmem_notifier = {
385         .notifier_call =        zswap_cpu_dstmem_notifier,
386 };
387
388 static int __init zswap_cpu_dstmem_init(void)
389 {
390         unsigned long cpu;
391
392         cpu_notifier_register_begin();
393         for_each_online_cpu(cpu)
394                 if (__zswap_cpu_dstmem_notifier(CPU_UP_PREPARE, cpu) ==
395                     NOTIFY_BAD)
396                         goto cleanup;
397         __register_cpu_notifier(&zswap_dstmem_notifier);
398         cpu_notifier_register_done();
399         return 0;
400
401 cleanup:
402         for_each_online_cpu(cpu)
403                 __zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
404         cpu_notifier_register_done();
405         return -ENOMEM;
406 }
407
408 static void zswap_cpu_dstmem_destroy(void)
409 {
410         unsigned long cpu;
411
412         cpu_notifier_register_begin();
413         for_each_online_cpu(cpu)
414                 __zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
415         __unregister_cpu_notifier(&zswap_dstmem_notifier);
416         cpu_notifier_register_done();
417 }
418
419 static int __zswap_cpu_comp_notifier(struct zswap_pool *pool,
420                                      unsigned long action, unsigned long cpu)
421 {
422         struct crypto_comp *tfm;
423
424         switch (action) {
425         case CPU_UP_PREPARE:
426                 if (WARN_ON(*per_cpu_ptr(pool->tfm, cpu)))
427                         break;
428                 tfm = crypto_alloc_comp(pool->tfm_name, 0, 0);
429                 if (IS_ERR_OR_NULL(tfm)) {
430                         pr_err("could not alloc crypto comp %s : %ld\n",
431                                pool->tfm_name, PTR_ERR(tfm));
432                         return NOTIFY_BAD;
433                 }
434                 *per_cpu_ptr(pool->tfm, cpu) = tfm;
435                 break;
436         case CPU_DEAD:
437         case CPU_UP_CANCELED:
438                 tfm = *per_cpu_ptr(pool->tfm, cpu);
439                 if (!IS_ERR_OR_NULL(tfm))
440                         crypto_free_comp(tfm);
441                 *per_cpu_ptr(pool->tfm, cpu) = NULL;
442                 break;
443         default:
444                 break;
445         }
446         return NOTIFY_OK;
447 }
448
449 static int zswap_cpu_comp_notifier(struct notifier_block *nb,
450                                    unsigned long action, void *pcpu)
451 {
452         unsigned long cpu = (unsigned long)pcpu;
453         struct zswap_pool *pool = container_of(nb, typeof(*pool), notifier);
454
455         return __zswap_cpu_comp_notifier(pool, action, cpu);
456 }
457
458 static int zswap_cpu_comp_init(struct zswap_pool *pool)
459 {
460         unsigned long cpu;
461
462         memset(&pool->notifier, 0, sizeof(pool->notifier));
463         pool->notifier.notifier_call = zswap_cpu_comp_notifier;
464
465         cpu_notifier_register_begin();
466         for_each_online_cpu(cpu)
467                 if (__zswap_cpu_comp_notifier(pool, CPU_UP_PREPARE, cpu) ==
468                     NOTIFY_BAD)
469                         goto cleanup;
470         __register_cpu_notifier(&pool->notifier);
471         cpu_notifier_register_done();
472         return 0;
473
474 cleanup:
475         for_each_online_cpu(cpu)
476                 __zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
477         cpu_notifier_register_done();
478         return -ENOMEM;
479 }
480
481 static void zswap_cpu_comp_destroy(struct zswap_pool *pool)
482 {
483         unsigned long cpu;
484
485         cpu_notifier_register_begin();
486         for_each_online_cpu(cpu)
487                 __zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
488         __unregister_cpu_notifier(&pool->notifier);
489         cpu_notifier_register_done();
490 }
491
492 /*********************************
493 * pool functions
494 **********************************/
495
496 static struct zswap_pool *__zswap_pool_current(void)
497 {
498         struct zswap_pool *pool;
499
500         pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
501         WARN_ON(!pool);
502
503         return pool;
504 }
505
506 static struct zswap_pool *zswap_pool_current(void)
507 {
508         assert_spin_locked(&zswap_pools_lock);
509
510         return __zswap_pool_current();
511 }
512
513 static struct zswap_pool *zswap_pool_current_get(void)
514 {
515         struct zswap_pool *pool;
516
517         rcu_read_lock();
518
519         pool = __zswap_pool_current();
520         if (!pool || !zswap_pool_get(pool))
521                 pool = NULL;
522
523         rcu_read_unlock();
524
525         return pool;
526 }
527
528 static struct zswap_pool *zswap_pool_last_get(void)
529 {
530         struct zswap_pool *pool, *last = NULL;
531
532         rcu_read_lock();
533
534         list_for_each_entry_rcu(pool, &zswap_pools, list)
535                 last = pool;
536         if (!WARN_ON(!last) && !zswap_pool_get(last))
537                 last = NULL;
538
539         rcu_read_unlock();
540
541         return last;
542 }
543
544 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
545 {
546         struct zswap_pool *pool;
547
548         assert_spin_locked(&zswap_pools_lock);
549
550         list_for_each_entry_rcu(pool, &zswap_pools, list) {
551                 if (strncmp(pool->tfm_name, compressor, sizeof(pool->tfm_name)))
552                         continue;
553                 if (strncmp(zpool_get_type(pool->zpool), type,
554                             sizeof(zswap_zpool_type)))
555                         continue;
556                 /* if we can't get it, it's about to be destroyed */
557                 if (!zswap_pool_get(pool))
558                         continue;
559                 return pool;
560         }
561
562         return NULL;
563 }
564
565 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
566 {
567         struct zswap_pool *pool;
568         gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
569
570         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
571         if (!pool) {
572                 pr_err("pool alloc failed\n");
573                 return NULL;
574         }
575
576         pool->zpool = zpool_create_pool(type, "zswap", gfp, &zswap_zpool_ops);
577         if (!pool->zpool) {
578                 pr_err("%s zpool not available\n", type);
579                 goto error;
580         }
581         pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
582
583         strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
584         pool->tfm = alloc_percpu(struct crypto_comp *);
585         if (!pool->tfm) {
586                 pr_err("percpu alloc failed\n");
587                 goto error;
588         }
589
590         if (zswap_cpu_comp_init(pool))
591                 goto error;
592         pr_debug("using %s compressor\n", pool->tfm_name);
593
594         /* being the current pool takes 1 ref; this func expects the
595          * caller to always add the new pool as the current pool
596          */
597         kref_init(&pool->kref);
598         INIT_LIST_HEAD(&pool->list);
599
600         zswap_pool_debug("created", pool);
601
602         return pool;
603
604 error:
605         free_percpu(pool->tfm);
606         if (pool->zpool)
607                 zpool_destroy_pool(pool->zpool);
608         kfree(pool);
609         return NULL;
610 }
611
612 static __init struct zswap_pool *__zswap_pool_create_fallback(void)
613 {
614         if (!crypto_has_comp(zswap_compressor, 0, 0)) {
615                 if (!strcmp(zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT)) {
616                         pr_err("default compressor %s not available\n",
617                                zswap_compressor);
618                         return NULL;
619                 }
620                 pr_err("compressor %s not available, using default %s\n",
621                        zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT);
622                 param_free_charp(&zswap_compressor);
623                 zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
624         }
625         if (!zpool_has_pool(zswap_zpool_type)) {
626                 if (!strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) {
627                         pr_err("default zpool %s not available\n",
628                                zswap_zpool_type);
629                         return NULL;
630                 }
631                 pr_err("zpool %s not available, using default %s\n",
632                        zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT);
633                 param_free_charp(&zswap_zpool_type);
634                 zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
635         }
636
637         return zswap_pool_create(zswap_zpool_type, zswap_compressor);
638 }
639
640 static void zswap_pool_destroy(struct zswap_pool *pool)
641 {
642         zswap_pool_debug("destroying", pool);
643
644         zswap_cpu_comp_destroy(pool);
645         free_percpu(pool->tfm);
646         zpool_destroy_pool(pool->zpool);
647         kfree(pool);
648 }
649
650 static int __must_check zswap_pool_get(struct zswap_pool *pool)
651 {
652         return kref_get_unless_zero(&pool->kref);
653 }
654
655 static void __zswap_pool_release(struct rcu_head *head)
656 {
657         struct zswap_pool *pool = container_of(head, typeof(*pool), rcu_head);
658
659         /* nobody should have been able to get a kref... */
660         WARN_ON(kref_get_unless_zero(&pool->kref));
661
662         /* pool is now off zswap_pools list and has no references. */
663         zswap_pool_destroy(pool);
664 }
665
666 static void __zswap_pool_empty(struct kref *kref)
667 {
668         struct zswap_pool *pool;
669
670         pool = container_of(kref, typeof(*pool), kref);
671
672         spin_lock(&zswap_pools_lock);
673
674         WARN_ON(pool == zswap_pool_current());
675
676         list_del_rcu(&pool->list);
677         call_rcu(&pool->rcu_head, __zswap_pool_release);
678
679         spin_unlock(&zswap_pools_lock);
680 }
681
682 static void zswap_pool_put(struct zswap_pool *pool)
683 {
684         kref_put(&pool->kref, __zswap_pool_empty);
685 }
686
687 /*********************************
688 * param callbacks
689 **********************************/
690
691 /* val must be a null-terminated string */
692 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
693                              char *type, char *compressor)
694 {
695         struct zswap_pool *pool, *put_pool = NULL;
696         char *s = strstrip((char *)val);
697         int ret;
698
699         /* no change required */
700         if (!strcmp(s, *(char **)kp->arg))
701                 return 0;
702
703         /* if this is load-time (pre-init) param setting,
704          * don't create a pool; that's done during init.
705          */
706         if (!zswap_init_started)
707                 return param_set_charp(s, kp);
708
709         if (!type) {
710                 if (!zpool_has_pool(s)) {
711                         pr_err("zpool %s not available\n", s);
712                         return -ENOENT;
713                 }
714                 type = s;
715         } else if (!compressor) {
716                 if (!crypto_has_comp(s, 0, 0)) {
717                         pr_err("compressor %s not available\n", s);
718                         return -ENOENT;
719                 }
720                 compressor = s;
721         } else {
722                 WARN_ON(1);
723                 return -EINVAL;
724         }
725
726         spin_lock(&zswap_pools_lock);
727
728         pool = zswap_pool_find_get(type, compressor);
729         if (pool) {
730                 zswap_pool_debug("using existing", pool);
731                 list_del_rcu(&pool->list);
732         } else {
733                 spin_unlock(&zswap_pools_lock);
734                 pool = zswap_pool_create(type, compressor);
735                 spin_lock(&zswap_pools_lock);
736         }
737
738         if (pool)
739                 ret = param_set_charp(s, kp);
740         else
741                 ret = -EINVAL;
742
743         if (!ret) {
744                 put_pool = zswap_pool_current();
745                 list_add_rcu(&pool->list, &zswap_pools);
746         } else if (pool) {
747                 /* add the possibly pre-existing pool to the end of the pools
748                  * list; if it's new (and empty) then it'll be removed and
749                  * destroyed by the put after we drop the lock
750                  */
751                 list_add_tail_rcu(&pool->list, &zswap_pools);
752                 put_pool = pool;
753         }
754
755         spin_unlock(&zswap_pools_lock);
756
757         /* drop the ref from either the old current pool,
758          * or the new pool we failed to add
759          */
760         if (put_pool)
761                 zswap_pool_put(put_pool);
762
763         return ret;
764 }
765
766 static int zswap_compressor_param_set(const char *val,
767                                       const struct kernel_param *kp)
768 {
769         return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
770 }
771
772 static int zswap_zpool_param_set(const char *val,
773                                  const struct kernel_param *kp)
774 {
775         return __zswap_param_set(val, kp, NULL, zswap_compressor);
776 }
777
778 /*********************************
779 * writeback code
780 **********************************/
781 /* return enum for zswap_get_swap_cache_page */
782 enum zswap_get_swap_ret {
783         ZSWAP_SWAPCACHE_NEW,
784         ZSWAP_SWAPCACHE_EXIST,
785         ZSWAP_SWAPCACHE_FAIL,
786 };
787
788 /*
789  * zswap_get_swap_cache_page
790  *
791  * This is an adaption of read_swap_cache_async()
792  *
793  * This function tries to find a page with the given swap entry
794  * in the swapper_space address space (the swap cache).  If the page
795  * is found, it is returned in retpage.  Otherwise, a page is allocated,
796  * added to the swap cache, and returned in retpage.
797  *
798  * If success, the swap cache page is returned in retpage
799  * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
800  * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
801  *     the new page is added to swapcache and locked
802  * Returns ZSWAP_SWAPCACHE_FAIL on error
803  */
804 static int zswap_get_swap_cache_page(swp_entry_t entry,
805                                 struct page **retpage)
806 {
807         bool page_was_allocated;
808
809         *retpage = __read_swap_cache_async(entry, GFP_KERNEL,
810                         NULL, 0, &page_was_allocated);
811         if (page_was_allocated)
812                 return ZSWAP_SWAPCACHE_NEW;
813         if (!*retpage)
814                 return ZSWAP_SWAPCACHE_FAIL;
815         return ZSWAP_SWAPCACHE_EXIST;
816 }
817
818 /*
819  * Attempts to free an entry by adding a page to the swap cache,
820  * decompressing the entry data into the page, and issuing a
821  * bio write to write the page back to the swap device.
822  *
823  * This can be thought of as a "resumed writeback" of the page
824  * to the swap device.  We are basically resuming the same swap
825  * writeback path that was intercepted with the frontswap_store()
826  * in the first place.  After the page has been decompressed into
827  * the swap cache, the compressed version stored by zswap can be
828  * freed.
829  */
830 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
831 {
832         struct zswap_header *zhdr;
833         swp_entry_t swpentry;
834         struct zswap_tree *tree;
835         pgoff_t offset;
836         struct zswap_entry *entry;
837         struct page *page;
838         struct crypto_comp *tfm;
839         u8 *src, *dst;
840         unsigned int dlen;
841         int ret;
842         struct writeback_control wbc = {
843                 .sync_mode = WB_SYNC_NONE,
844         };
845
846         /* extract swpentry from data */
847         zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
848         swpentry = zhdr->swpentry; /* here */
849         zpool_unmap_handle(pool, handle);
850         tree = zswap_trees[swp_type(swpentry)];
851         offset = swp_offset(swpentry);
852
853         /* find and ref zswap entry */
854         spin_lock(&tree->lock);
855         entry = zswap_entry_find_get(&tree->rbroot, offset);
856         if (!entry) {
857                 /* entry was invalidated */
858                 spin_unlock(&tree->lock);
859                 return 0;
860         }
861         spin_unlock(&tree->lock);
862         BUG_ON(offset != entry->offset);
863
864         /* try to allocate swap cache page */
865         switch (zswap_get_swap_cache_page(swpentry, &page)) {
866         case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
867                 ret = -ENOMEM;
868                 goto fail;
869
870         case ZSWAP_SWAPCACHE_EXIST:
871                 /* page is already in the swap cache, ignore for now */
872                 page_cache_release(page);
873                 ret = -EEXIST;
874                 goto fail;
875
876         case ZSWAP_SWAPCACHE_NEW: /* page is locked */
877                 /* decompress */
878                 dlen = PAGE_SIZE;
879                 src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
880                                 ZPOOL_MM_RO) + sizeof(struct zswap_header);
881                 dst = kmap_atomic(page);
882                 tfm = *get_cpu_ptr(entry->pool->tfm);
883                 ret = crypto_comp_decompress(tfm, src, entry->length,
884                                              dst, &dlen);
885                 put_cpu_ptr(entry->pool->tfm);
886                 kunmap_atomic(dst);
887                 zpool_unmap_handle(entry->pool->zpool, entry->handle);
888                 BUG_ON(ret);
889                 BUG_ON(dlen != PAGE_SIZE);
890
891                 /* page is up to date */
892                 SetPageUptodate(page);
893         }
894
895         /* move it to the tail of the inactive list after end_writeback */
896         SetPageReclaim(page);
897
898         /* start writeback */
899         __swap_writepage(page, &wbc, end_swap_bio_write);
900         page_cache_release(page);
901         zswap_written_back_pages++;
902
903         spin_lock(&tree->lock);
904         /* drop local reference */
905         zswap_entry_put(tree, entry);
906
907         /*
908         * There are two possible situations for entry here:
909         * (1) refcount is 1(normal case),  entry is valid and on the tree
910         * (2) refcount is 0, entry is freed and not on the tree
911         *     because invalidate happened during writeback
912         *  search the tree and free the entry if find entry
913         */
914         if (entry == zswap_rb_search(&tree->rbroot, offset))
915                 zswap_entry_put(tree, entry);
916         spin_unlock(&tree->lock);
917
918         goto end;
919
920         /*
921         * if we get here due to ZSWAP_SWAPCACHE_EXIST
922         * a load may happening concurrently
923         * it is safe and okay to not free the entry
924         * if we free the entry in the following put
925         * it it either okay to return !0
926         */
927 fail:
928         spin_lock(&tree->lock);
929         zswap_entry_put(tree, entry);
930         spin_unlock(&tree->lock);
931
932 end:
933         return ret;
934 }
935
936 static int zswap_shrink(void)
937 {
938         struct zswap_pool *pool;
939         int ret;
940
941         pool = zswap_pool_last_get();
942         if (!pool)
943                 return -ENOENT;
944
945         ret = zpool_shrink(pool->zpool, 1, NULL);
946
947         zswap_pool_put(pool);
948
949         return ret;
950 }
951
952 /*********************************
953 * frontswap hooks
954 **********************************/
955 /* attempts to compress and store an single page */
956 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
957                                 struct page *page)
958 {
959         struct zswap_tree *tree = zswap_trees[type];
960         struct zswap_entry *entry, *dupentry;
961         struct crypto_comp *tfm;
962         int ret;
963         unsigned int dlen = PAGE_SIZE, len;
964         unsigned long handle;
965         char *buf;
966         u8 *src, *dst;
967         struct zswap_header *zhdr;
968
969         if (!zswap_enabled || !tree) {
970                 ret = -ENODEV;
971                 goto reject;
972         }
973
974         /* reclaim space if needed */
975         if (zswap_is_full()) {
976                 zswap_pool_limit_hit++;
977                 if (zswap_shrink()) {
978                         zswap_reject_reclaim_fail++;
979                         ret = -ENOMEM;
980                         goto reject;
981                 }
982         }
983
984         /* allocate entry */
985         entry = zswap_entry_cache_alloc(GFP_KERNEL);
986         if (!entry) {
987                 zswap_reject_kmemcache_fail++;
988                 ret = -ENOMEM;
989                 goto reject;
990         }
991
992         /* if entry is successfully added, it keeps the reference */
993         entry->pool = zswap_pool_current_get();
994         if (!entry->pool) {
995                 ret = -EINVAL;
996                 goto freepage;
997         }
998
999         /* compress */
1000         dst = get_cpu_var(zswap_dstmem);
1001         tfm = *get_cpu_ptr(entry->pool->tfm);
1002         src = kmap_atomic(page);
1003         ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen);
1004         kunmap_atomic(src);
1005         put_cpu_ptr(entry->pool->tfm);
1006         if (ret) {
1007                 ret = -EINVAL;
1008                 goto put_dstmem;
1009         }
1010
1011         /* store */
1012         len = dlen + sizeof(struct zswap_header);
1013         ret = zpool_malloc(entry->pool->zpool, len,
1014                            __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM,
1015                            &handle);
1016         if (ret == -ENOSPC) {
1017                 zswap_reject_compress_poor++;
1018                 goto put_dstmem;
1019         }
1020         if (ret) {
1021                 zswap_reject_alloc_fail++;
1022                 goto put_dstmem;
1023         }
1024         zhdr = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW);
1025         zhdr->swpentry = swp_entry(type, offset);
1026         buf = (u8 *)(zhdr + 1);
1027         memcpy(buf, dst, dlen);
1028         zpool_unmap_handle(entry->pool->zpool, handle);
1029         put_cpu_var(zswap_dstmem);
1030
1031         /* populate entry */
1032         entry->offset = offset;
1033         entry->handle = handle;
1034         entry->length = dlen;
1035
1036         /* map */
1037         spin_lock(&tree->lock);
1038         do {
1039                 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1040                 if (ret == -EEXIST) {
1041                         zswap_duplicate_entry++;
1042                         /* remove from rbtree */
1043                         zswap_rb_erase(&tree->rbroot, dupentry);
1044                         zswap_entry_put(tree, dupentry);
1045                 }
1046         } while (ret == -EEXIST);
1047         spin_unlock(&tree->lock);
1048
1049         /* update stats */
1050         atomic_inc(&zswap_stored_pages);
1051         zswap_update_total_size();
1052
1053         return 0;
1054
1055 put_dstmem:
1056         put_cpu_var(zswap_dstmem);
1057         zswap_pool_put(entry->pool);
1058 freepage:
1059         zswap_entry_cache_free(entry);
1060 reject:
1061         return ret;
1062 }
1063
1064 /*
1065  * returns 0 if the page was successfully decompressed
1066  * return -1 on entry not found or error
1067 */
1068 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1069                                 struct page *page)
1070 {
1071         struct zswap_tree *tree = zswap_trees[type];
1072         struct zswap_entry *entry;
1073         struct crypto_comp *tfm;
1074         u8 *src, *dst;
1075         unsigned int dlen;
1076         int ret;
1077
1078         /* find */
1079         spin_lock(&tree->lock);
1080         entry = zswap_entry_find_get(&tree->rbroot, offset);
1081         if (!entry) {
1082                 /* entry was written back */
1083                 spin_unlock(&tree->lock);
1084                 return -1;
1085         }
1086         spin_unlock(&tree->lock);
1087
1088         /* decompress */
1089         dlen = PAGE_SIZE;
1090         src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
1091                         ZPOOL_MM_RO) + sizeof(struct zswap_header);
1092         dst = kmap_atomic(page);
1093         tfm = *get_cpu_ptr(entry->pool->tfm);
1094         ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen);
1095         put_cpu_ptr(entry->pool->tfm);
1096         kunmap_atomic(dst);
1097         zpool_unmap_handle(entry->pool->zpool, entry->handle);
1098         BUG_ON(ret);
1099
1100         spin_lock(&tree->lock);
1101         zswap_entry_put(tree, entry);
1102         spin_unlock(&tree->lock);
1103
1104         return 0;
1105 }
1106
1107 /* frees an entry in zswap */
1108 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1109 {
1110         struct zswap_tree *tree = zswap_trees[type];
1111         struct zswap_entry *entry;
1112
1113         /* find */
1114         spin_lock(&tree->lock);
1115         entry = zswap_rb_search(&tree->rbroot, offset);
1116         if (!entry) {
1117                 /* entry was written back */
1118                 spin_unlock(&tree->lock);
1119                 return;
1120         }
1121
1122         /* remove from rbtree */
1123         zswap_rb_erase(&tree->rbroot, entry);
1124
1125         /* drop the initial reference from entry creation */
1126         zswap_entry_put(tree, entry);
1127
1128         spin_unlock(&tree->lock);
1129 }
1130
1131 /* frees all zswap entries for the given swap type */
1132 static void zswap_frontswap_invalidate_area(unsigned type)
1133 {
1134         struct zswap_tree *tree = zswap_trees[type];
1135         struct zswap_entry *entry, *n;
1136
1137         if (!tree)
1138                 return;
1139
1140         /* walk the tree and free everything */
1141         spin_lock(&tree->lock);
1142         rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1143                 zswap_free_entry(entry);
1144         tree->rbroot = RB_ROOT;
1145         spin_unlock(&tree->lock);
1146         kfree(tree);
1147         zswap_trees[type] = NULL;
1148 }
1149
1150 static void zswap_frontswap_init(unsigned type)
1151 {
1152         struct zswap_tree *tree;
1153
1154         tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
1155         if (!tree) {
1156                 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1157                 return;
1158         }
1159
1160         tree->rbroot = RB_ROOT;
1161         spin_lock_init(&tree->lock);
1162         zswap_trees[type] = tree;
1163 }
1164
1165 static struct frontswap_ops zswap_frontswap_ops = {
1166         .store = zswap_frontswap_store,
1167         .load = zswap_frontswap_load,
1168         .invalidate_page = zswap_frontswap_invalidate_page,
1169         .invalidate_area = zswap_frontswap_invalidate_area,
1170         .init = zswap_frontswap_init
1171 };
1172
1173 /*********************************
1174 * debugfs functions
1175 **********************************/
1176 #ifdef CONFIG_DEBUG_FS
1177 #include <linux/debugfs.h>
1178
1179 static struct dentry *zswap_debugfs_root;
1180
1181 static int __init zswap_debugfs_init(void)
1182 {
1183         if (!debugfs_initialized())
1184                 return -ENODEV;
1185
1186         zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1187         if (!zswap_debugfs_root)
1188                 return -ENOMEM;
1189
1190         debugfs_create_u64("pool_limit_hit", S_IRUGO,
1191                         zswap_debugfs_root, &zswap_pool_limit_hit);
1192         debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
1193                         zswap_debugfs_root, &zswap_reject_reclaim_fail);
1194         debugfs_create_u64("reject_alloc_fail", S_IRUGO,
1195                         zswap_debugfs_root, &zswap_reject_alloc_fail);
1196         debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
1197                         zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1198         debugfs_create_u64("reject_compress_poor", S_IRUGO,
1199                         zswap_debugfs_root, &zswap_reject_compress_poor);
1200         debugfs_create_u64("written_back_pages", S_IRUGO,
1201                         zswap_debugfs_root, &zswap_written_back_pages);
1202         debugfs_create_u64("duplicate_entry", S_IRUGO,
1203                         zswap_debugfs_root, &zswap_duplicate_entry);
1204         debugfs_create_u64("pool_total_size", S_IRUGO,
1205                         zswap_debugfs_root, &zswap_pool_total_size);
1206         debugfs_create_atomic_t("stored_pages", S_IRUGO,
1207                         zswap_debugfs_root, &zswap_stored_pages);
1208
1209         return 0;
1210 }
1211
1212 static void __exit zswap_debugfs_exit(void)
1213 {
1214         debugfs_remove_recursive(zswap_debugfs_root);
1215 }
1216 #else
1217 static int __init zswap_debugfs_init(void)
1218 {
1219         return 0;
1220 }
1221
1222 static void __exit zswap_debugfs_exit(void) { }
1223 #endif
1224
1225 /*********************************
1226 * module init and exit
1227 **********************************/
1228 static int __init init_zswap(void)
1229 {
1230         struct zswap_pool *pool;
1231
1232         zswap_init_started = true;
1233
1234         if (zswap_entry_cache_create()) {
1235                 pr_err("entry cache creation failed\n");
1236                 goto cache_fail;
1237         }
1238
1239         if (zswap_cpu_dstmem_init()) {
1240                 pr_err("dstmem alloc failed\n");
1241                 goto dstmem_fail;
1242         }
1243
1244         pool = __zswap_pool_create_fallback();
1245         if (!pool) {
1246                 pr_err("pool creation failed\n");
1247                 goto pool_fail;
1248         }
1249         pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1250                 zpool_get_type(pool->zpool));
1251
1252         list_add(&pool->list, &zswap_pools);
1253
1254         frontswap_register_ops(&zswap_frontswap_ops);
1255         if (zswap_debugfs_init())
1256                 pr_warn("debugfs initialization failed\n");
1257         return 0;
1258
1259 pool_fail:
1260         zswap_cpu_dstmem_destroy();
1261 dstmem_fail:
1262         zswap_entry_cache_destroy();
1263 cache_fail:
1264         return -ENOMEM;
1265 }
1266 /* must be late so crypto has time to come up */
1267 late_initcall(init_zswap);
1268
1269 MODULE_LICENSE("GPL");
1270 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1271 MODULE_DESCRIPTION("Compressed cache for swap pages");