]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - security/security.c
ARM: dts: tx6: add enet_out clock for FEC
[karo-tx-linux.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/security.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <net/flow.h>
29
30 #define MAX_LSM_EVM_XATTR       2
31
32 /* Boot-time LSM user choice */
33 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
34         CONFIG_DEFAULT_SECURITY;
35
36 static struct security_operations *security_ops;
37 static struct security_operations default_security_ops = {
38         .name   = "default",
39 };
40
41 static inline int __init verify(struct security_operations *ops)
42 {
43         /* verify the security_operations structure exists */
44         if (!ops)
45                 return -EINVAL;
46         security_fixup_ops(ops);
47         return 0;
48 }
49
50 static void __init do_security_initcalls(void)
51 {
52         initcall_t *call;
53         call = __security_initcall_start;
54         while (call < __security_initcall_end) {
55                 (*call) ();
56                 call++;
57         }
58 }
59
60 /**
61  * security_init - initializes the security framework
62  *
63  * This should be called early in the kernel initialization sequence.
64  */
65 int __init security_init(void)
66 {
67         printk(KERN_INFO "Security Framework initialized\n");
68
69         security_fixup_ops(&default_security_ops);
70         security_ops = &default_security_ops;
71         do_security_initcalls();
72
73         return 0;
74 }
75
76 void reset_security_ops(void)
77 {
78         security_ops = &default_security_ops;
79 }
80
81 /* Save user chosen LSM */
82 static int __init choose_lsm(char *str)
83 {
84         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
85         return 1;
86 }
87 __setup("security=", choose_lsm);
88
89 /**
90  * security_module_enable - Load given security module on boot ?
91  * @ops: a pointer to the struct security_operations that is to be checked.
92  *
93  * Each LSM must pass this method before registering its own operations
94  * to avoid security registration races. This method may also be used
95  * to check if your LSM is currently loaded during kernel initialization.
96  *
97  * Return true if:
98  *      -The passed LSM is the one chosen by user at boot time,
99  *      -or the passed LSM is configured as the default and the user did not
100  *       choose an alternate LSM at boot time.
101  * Otherwise, return false.
102  */
103 int __init security_module_enable(struct security_operations *ops)
104 {
105         return !strcmp(ops->name, chosen_lsm);
106 }
107
108 /**
109  * register_security - registers a security framework with the kernel
110  * @ops: a pointer to the struct security_options that is to be registered
111  *
112  * This function allows a security module to register itself with the
113  * kernel security subsystem.  Some rudimentary checking is done on the @ops
114  * value passed to this function. You'll need to check first if your LSM
115  * is allowed to register its @ops by calling security_module_enable(@ops).
116  *
117  * If there is already a security module registered with the kernel,
118  * an error will be returned.  Otherwise %0 is returned on success.
119  */
120 int __init register_security(struct security_operations *ops)
121 {
122         if (verify(ops)) {
123                 printk(KERN_DEBUG "%s could not verify "
124                        "security_operations structure.\n", __func__);
125                 return -EINVAL;
126         }
127
128         if (security_ops != &default_security_ops)
129                 return -EAGAIN;
130
131         security_ops = ops;
132
133         return 0;
134 }
135
136 /* Security operations */
137
138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139 {
140 #ifdef CONFIG_SECURITY_YAMA_STACKED
141         int rc;
142         rc = yama_ptrace_access_check(child, mode);
143         if (rc)
144                 return rc;
145 #endif
146         return security_ops->ptrace_access_check(child, mode);
147 }
148
149 int security_ptrace_traceme(struct task_struct *parent)
150 {
151 #ifdef CONFIG_SECURITY_YAMA_STACKED
152         int rc;
153         rc = yama_ptrace_traceme(parent);
154         if (rc)
155                 return rc;
156 #endif
157         return security_ops->ptrace_traceme(parent);
158 }
159
160 int security_capget(struct task_struct *target,
161                      kernel_cap_t *effective,
162                      kernel_cap_t *inheritable,
163                      kernel_cap_t *permitted)
164 {
165         return security_ops->capget(target, effective, inheritable, permitted);
166 }
167
168 int security_capset(struct cred *new, const struct cred *old,
169                     const kernel_cap_t *effective,
170                     const kernel_cap_t *inheritable,
171                     const kernel_cap_t *permitted)
172 {
173         return security_ops->capset(new, old,
174                                     effective, inheritable, permitted);
175 }
176
177 int security_capable(const struct cred *cred, struct user_namespace *ns,
178                      int cap)
179 {
180         return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
181 }
182
183 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
184                              int cap)
185 {
186         return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
187 }
188
189 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
190 {
191         return security_ops->quotactl(cmds, type, id, sb);
192 }
193
194 int security_quota_on(struct dentry *dentry)
195 {
196         return security_ops->quota_on(dentry);
197 }
198
199 int security_syslog(int type)
200 {
201         return security_ops->syslog(type);
202 }
203
204 int security_settime(const struct timespec *ts, const struct timezone *tz)
205 {
206         return security_ops->settime(ts, tz);
207 }
208
209 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
210 {
211         return security_ops->vm_enough_memory(mm, pages);
212 }
213
214 int security_bprm_set_creds(struct linux_binprm *bprm)
215 {
216         return security_ops->bprm_set_creds(bprm);
217 }
218
219 int security_bprm_check(struct linux_binprm *bprm)
220 {
221         int ret;
222
223         ret = security_ops->bprm_check_security(bprm);
224         if (ret)
225                 return ret;
226         return ima_bprm_check(bprm);
227 }
228
229 void security_bprm_committing_creds(struct linux_binprm *bprm)
230 {
231         security_ops->bprm_committing_creds(bprm);
232 }
233
234 void security_bprm_committed_creds(struct linux_binprm *bprm)
235 {
236         security_ops->bprm_committed_creds(bprm);
237 }
238
239 int security_bprm_secureexec(struct linux_binprm *bprm)
240 {
241         return security_ops->bprm_secureexec(bprm);
242 }
243
244 int security_sb_alloc(struct super_block *sb)
245 {
246         return security_ops->sb_alloc_security(sb);
247 }
248
249 void security_sb_free(struct super_block *sb)
250 {
251         security_ops->sb_free_security(sb);
252 }
253
254 int security_sb_copy_data(char *orig, char *copy)
255 {
256         return security_ops->sb_copy_data(orig, copy);
257 }
258 EXPORT_SYMBOL(security_sb_copy_data);
259
260 int security_sb_remount(struct super_block *sb, void *data)
261 {
262         return security_ops->sb_remount(sb, data);
263 }
264
265 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
266 {
267         return security_ops->sb_kern_mount(sb, flags, data);
268 }
269
270 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
271 {
272         return security_ops->sb_show_options(m, sb);
273 }
274
275 int security_sb_statfs(struct dentry *dentry)
276 {
277         return security_ops->sb_statfs(dentry);
278 }
279
280 int security_sb_mount(const char *dev_name, struct path *path,
281                        const char *type, unsigned long flags, void *data)
282 {
283         return security_ops->sb_mount(dev_name, path, type, flags, data);
284 }
285
286 int security_sb_umount(struct vfsmount *mnt, int flags)
287 {
288         return security_ops->sb_umount(mnt, flags);
289 }
290
291 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
292 {
293         return security_ops->sb_pivotroot(old_path, new_path);
294 }
295
296 int security_sb_set_mnt_opts(struct super_block *sb,
297                                 struct security_mnt_opts *opts,
298                                 unsigned long kern_flags,
299                                 unsigned long *set_kern_flags)
300 {
301         return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
302                                                 set_kern_flags);
303 }
304 EXPORT_SYMBOL(security_sb_set_mnt_opts);
305
306 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
307                                 struct super_block *newsb)
308 {
309         return security_ops->sb_clone_mnt_opts(oldsb, newsb);
310 }
311 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
312
313 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
314 {
315         return security_ops->sb_parse_opts_str(options, opts);
316 }
317 EXPORT_SYMBOL(security_sb_parse_opts_str);
318
319 int security_inode_alloc(struct inode *inode)
320 {
321         inode->i_security = NULL;
322         return security_ops->inode_alloc_security(inode);
323 }
324
325 void security_inode_free(struct inode *inode)
326 {
327         integrity_inode_free(inode);
328         security_ops->inode_free_security(inode);
329 }
330
331 int security_dentry_init_security(struct dentry *dentry, int mode,
332                                         struct qstr *name, void **ctx,
333                                         u32 *ctxlen)
334 {
335         return security_ops->dentry_init_security(dentry, mode, name,
336                                                         ctx, ctxlen);
337 }
338 EXPORT_SYMBOL(security_dentry_init_security);
339
340 int security_inode_init_security(struct inode *inode, struct inode *dir,
341                                  const struct qstr *qstr,
342                                  const initxattrs initxattrs, void *fs_data)
343 {
344         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
345         struct xattr *lsm_xattr, *evm_xattr, *xattr;
346         int ret;
347
348         if (unlikely(IS_PRIVATE(inode)))
349                 return 0;
350
351         if (!initxattrs)
352                 return security_ops->inode_init_security(inode, dir, qstr,
353                                                          NULL, NULL, NULL);
354         memset(new_xattrs, 0, sizeof(new_xattrs));
355         lsm_xattr = new_xattrs;
356         ret = security_ops->inode_init_security(inode, dir, qstr,
357                                                 &lsm_xattr->name,
358                                                 &lsm_xattr->value,
359                                                 &lsm_xattr->value_len);
360         if (ret)
361                 goto out;
362
363         evm_xattr = lsm_xattr + 1;
364         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
365         if (ret)
366                 goto out;
367         ret = initxattrs(inode, new_xattrs, fs_data);
368 out:
369         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
370                 kfree(xattr->value);
371         return (ret == -EOPNOTSUPP) ? 0 : ret;
372 }
373 EXPORT_SYMBOL(security_inode_init_security);
374
375 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
376                                      const struct qstr *qstr, const char **name,
377                                      void **value, size_t *len)
378 {
379         if (unlikely(IS_PRIVATE(inode)))
380                 return -EOPNOTSUPP;
381         return security_ops->inode_init_security(inode, dir, qstr, name, value,
382                                                  len);
383 }
384 EXPORT_SYMBOL(security_old_inode_init_security);
385
386 #ifdef CONFIG_SECURITY_PATH
387 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
388                         unsigned int dev)
389 {
390         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
391                 return 0;
392         return security_ops->path_mknod(dir, dentry, mode, dev);
393 }
394 EXPORT_SYMBOL(security_path_mknod);
395
396 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
397 {
398         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
399                 return 0;
400         return security_ops->path_mkdir(dir, dentry, mode);
401 }
402 EXPORT_SYMBOL(security_path_mkdir);
403
404 int security_path_rmdir(struct path *dir, struct dentry *dentry)
405 {
406         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
407                 return 0;
408         return security_ops->path_rmdir(dir, dentry);
409 }
410
411 int security_path_unlink(struct path *dir, struct dentry *dentry)
412 {
413         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
414                 return 0;
415         return security_ops->path_unlink(dir, dentry);
416 }
417 EXPORT_SYMBOL(security_path_unlink);
418
419 int security_path_symlink(struct path *dir, struct dentry *dentry,
420                           const char *old_name)
421 {
422         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
423                 return 0;
424         return security_ops->path_symlink(dir, dentry, old_name);
425 }
426
427 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
428                        struct dentry *new_dentry)
429 {
430         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
431                 return 0;
432         return security_ops->path_link(old_dentry, new_dir, new_dentry);
433 }
434
435 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
436                          struct path *new_dir, struct dentry *new_dentry,
437                          unsigned int flags)
438 {
439         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
440                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
441                 return 0;
442
443         if (flags & RENAME_EXCHANGE) {
444                 int err = security_ops->path_rename(new_dir, new_dentry,
445                                                     old_dir, old_dentry);
446                 if (err)
447                         return err;
448         }
449
450         return security_ops->path_rename(old_dir, old_dentry, new_dir,
451                                          new_dentry);
452 }
453 EXPORT_SYMBOL(security_path_rename);
454
455 int security_path_truncate(struct path *path)
456 {
457         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
458                 return 0;
459         return security_ops->path_truncate(path);
460 }
461
462 int security_path_chmod(struct path *path, umode_t mode)
463 {
464         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
465                 return 0;
466         return security_ops->path_chmod(path, mode);
467 }
468
469 int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
470 {
471         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
472                 return 0;
473         return security_ops->path_chown(path, uid, gid);
474 }
475
476 int security_path_chroot(struct path *path)
477 {
478         return security_ops->path_chroot(path);
479 }
480 #endif
481
482 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
483 {
484         if (unlikely(IS_PRIVATE(dir)))
485                 return 0;
486         return security_ops->inode_create(dir, dentry, mode);
487 }
488 EXPORT_SYMBOL_GPL(security_inode_create);
489
490 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
491                          struct dentry *new_dentry)
492 {
493         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
494                 return 0;
495         return security_ops->inode_link(old_dentry, dir, new_dentry);
496 }
497
498 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
499 {
500         if (unlikely(IS_PRIVATE(dentry->d_inode)))
501                 return 0;
502         return security_ops->inode_unlink(dir, dentry);
503 }
504
505 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
506                             const char *old_name)
507 {
508         if (unlikely(IS_PRIVATE(dir)))
509                 return 0;
510         return security_ops->inode_symlink(dir, dentry, old_name);
511 }
512
513 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
514 {
515         if (unlikely(IS_PRIVATE(dir)))
516                 return 0;
517         return security_ops->inode_mkdir(dir, dentry, mode);
518 }
519 EXPORT_SYMBOL_GPL(security_inode_mkdir);
520
521 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
522 {
523         if (unlikely(IS_PRIVATE(dentry->d_inode)))
524                 return 0;
525         return security_ops->inode_rmdir(dir, dentry);
526 }
527
528 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
529 {
530         if (unlikely(IS_PRIVATE(dir)))
531                 return 0;
532         return security_ops->inode_mknod(dir, dentry, mode, dev);
533 }
534
535 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
536                            struct inode *new_dir, struct dentry *new_dentry,
537                            unsigned int flags)
538 {
539         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
540             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
541                 return 0;
542
543         if (flags & RENAME_EXCHANGE) {
544                 int err = security_ops->inode_rename(new_dir, new_dentry,
545                                                      old_dir, old_dentry);
546                 if (err)
547                         return err;
548         }
549
550         return security_ops->inode_rename(old_dir, old_dentry,
551                                            new_dir, new_dentry);
552 }
553
554 int security_inode_readlink(struct dentry *dentry)
555 {
556         if (unlikely(IS_PRIVATE(dentry->d_inode)))
557                 return 0;
558         return security_ops->inode_readlink(dentry);
559 }
560
561 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
562 {
563         if (unlikely(IS_PRIVATE(dentry->d_inode)))
564                 return 0;
565         return security_ops->inode_follow_link(dentry, nd);
566 }
567
568 int security_inode_permission(struct inode *inode, int mask)
569 {
570         if (unlikely(IS_PRIVATE(inode)))
571                 return 0;
572         return security_ops->inode_permission(inode, mask);
573 }
574
575 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
576 {
577         int ret;
578
579         if (unlikely(IS_PRIVATE(dentry->d_inode)))
580                 return 0;
581         ret = security_ops->inode_setattr(dentry, attr);
582         if (ret)
583                 return ret;
584         return evm_inode_setattr(dentry, attr);
585 }
586 EXPORT_SYMBOL_GPL(security_inode_setattr);
587
588 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
589 {
590         if (unlikely(IS_PRIVATE(dentry->d_inode)))
591                 return 0;
592         return security_ops->inode_getattr(mnt, dentry);
593 }
594
595 int security_inode_setxattr(struct dentry *dentry, const char *name,
596                             const void *value, size_t size, int flags)
597 {
598         int ret;
599
600         if (unlikely(IS_PRIVATE(dentry->d_inode)))
601                 return 0;
602         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
603         if (ret)
604                 return ret;
605         ret = ima_inode_setxattr(dentry, name, value, size);
606         if (ret)
607                 return ret;
608         return evm_inode_setxattr(dentry, name, value, size);
609 }
610
611 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
612                                   const void *value, size_t size, int flags)
613 {
614         if (unlikely(IS_PRIVATE(dentry->d_inode)))
615                 return;
616         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
617         evm_inode_post_setxattr(dentry, name, value, size);
618 }
619
620 int security_inode_getxattr(struct dentry *dentry, const char *name)
621 {
622         if (unlikely(IS_PRIVATE(dentry->d_inode)))
623                 return 0;
624         return security_ops->inode_getxattr(dentry, name);
625 }
626
627 int security_inode_listxattr(struct dentry *dentry)
628 {
629         if (unlikely(IS_PRIVATE(dentry->d_inode)))
630                 return 0;
631         return security_ops->inode_listxattr(dentry);
632 }
633
634 int security_inode_removexattr(struct dentry *dentry, const char *name)
635 {
636         int ret;
637
638         if (unlikely(IS_PRIVATE(dentry->d_inode)))
639                 return 0;
640         ret = security_ops->inode_removexattr(dentry, name);
641         if (ret)
642                 return ret;
643         ret = ima_inode_removexattr(dentry, name);
644         if (ret)
645                 return ret;
646         return evm_inode_removexattr(dentry, name);
647 }
648
649 int security_inode_need_killpriv(struct dentry *dentry)
650 {
651         return security_ops->inode_need_killpriv(dentry);
652 }
653
654 int security_inode_killpriv(struct dentry *dentry)
655 {
656         return security_ops->inode_killpriv(dentry);
657 }
658
659 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
660 {
661         if (unlikely(IS_PRIVATE(inode)))
662                 return -EOPNOTSUPP;
663         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
664 }
665
666 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
667 {
668         if (unlikely(IS_PRIVATE(inode)))
669                 return -EOPNOTSUPP;
670         return security_ops->inode_setsecurity(inode, name, value, size, flags);
671 }
672
673 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
674 {
675         if (unlikely(IS_PRIVATE(inode)))
676                 return 0;
677         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
678 }
679 EXPORT_SYMBOL(security_inode_listsecurity);
680
681 void security_inode_getsecid(const struct inode *inode, u32 *secid)
682 {
683         security_ops->inode_getsecid(inode, secid);
684 }
685
686 int security_file_permission(struct file *file, int mask)
687 {
688         int ret;
689
690         ret = security_ops->file_permission(file, mask);
691         if (ret)
692                 return ret;
693
694         return fsnotify_perm(file, mask);
695 }
696
697 int security_file_alloc(struct file *file)
698 {
699         return security_ops->file_alloc_security(file);
700 }
701
702 void security_file_free(struct file *file)
703 {
704         security_ops->file_free_security(file);
705 }
706
707 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
708 {
709         return security_ops->file_ioctl(file, cmd, arg);
710 }
711
712 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
713 {
714         /*
715          * Does we have PROT_READ and does the application expect
716          * it to imply PROT_EXEC?  If not, nothing to talk about...
717          */
718         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
719                 return prot;
720         if (!(current->personality & READ_IMPLIES_EXEC))
721                 return prot;
722         /*
723          * if that's an anonymous mapping, let it.
724          */
725         if (!file)
726                 return prot | PROT_EXEC;
727         /*
728          * ditto if it's not on noexec mount, except that on !MMU we need
729          * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
730          */
731         if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
732 #ifndef CONFIG_MMU
733                 unsigned long caps = 0;
734                 struct address_space *mapping = file->f_mapping;
735                 if (mapping && mapping->backing_dev_info)
736                         caps = mapping->backing_dev_info->capabilities;
737                 if (!(caps & BDI_CAP_EXEC_MAP))
738                         return prot;
739 #endif
740                 return prot | PROT_EXEC;
741         }
742         /* anything on noexec mount won't get PROT_EXEC */
743         return prot;
744 }
745
746 int security_mmap_file(struct file *file, unsigned long prot,
747                         unsigned long flags)
748 {
749         int ret;
750         ret = security_ops->mmap_file(file, prot,
751                                         mmap_prot(file, prot), flags);
752         if (ret)
753                 return ret;
754         return ima_file_mmap(file, prot);
755 }
756
757 int security_mmap_addr(unsigned long addr)
758 {
759         return security_ops->mmap_addr(addr);
760 }
761
762 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
763                             unsigned long prot)
764 {
765         return security_ops->file_mprotect(vma, reqprot, prot);
766 }
767
768 int security_file_lock(struct file *file, unsigned int cmd)
769 {
770         return security_ops->file_lock(file, cmd);
771 }
772
773 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
774 {
775         return security_ops->file_fcntl(file, cmd, arg);
776 }
777
778 int security_file_set_fowner(struct file *file)
779 {
780         return security_ops->file_set_fowner(file);
781 }
782
783 int security_file_send_sigiotask(struct task_struct *tsk,
784                                   struct fown_struct *fown, int sig)
785 {
786         return security_ops->file_send_sigiotask(tsk, fown, sig);
787 }
788
789 int security_file_receive(struct file *file)
790 {
791         return security_ops->file_receive(file);
792 }
793
794 int security_file_open(struct file *file, const struct cred *cred)
795 {
796         int ret;
797
798         ret = security_ops->file_open(file, cred);
799         if (ret)
800                 return ret;
801
802         return fsnotify_perm(file, MAY_OPEN);
803 }
804
805 int security_task_create(unsigned long clone_flags)
806 {
807         return security_ops->task_create(clone_flags);
808 }
809
810 void security_task_free(struct task_struct *task)
811 {
812 #ifdef CONFIG_SECURITY_YAMA_STACKED
813         yama_task_free(task);
814 #endif
815         security_ops->task_free(task);
816 }
817
818 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
819 {
820         return security_ops->cred_alloc_blank(cred, gfp);
821 }
822
823 void security_cred_free(struct cred *cred)
824 {
825         security_ops->cred_free(cred);
826 }
827
828 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
829 {
830         return security_ops->cred_prepare(new, old, gfp);
831 }
832
833 void security_transfer_creds(struct cred *new, const struct cred *old)
834 {
835         security_ops->cred_transfer(new, old);
836 }
837
838 int security_kernel_act_as(struct cred *new, u32 secid)
839 {
840         return security_ops->kernel_act_as(new, secid);
841 }
842
843 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
844 {
845         return security_ops->kernel_create_files_as(new, inode);
846 }
847
848 int security_kernel_module_request(char *kmod_name)
849 {
850         return security_ops->kernel_module_request(kmod_name);
851 }
852
853 int security_kernel_module_from_file(struct file *file)
854 {
855         int ret;
856
857         ret = security_ops->kernel_module_from_file(file);
858         if (ret)
859                 return ret;
860         return ima_module_check(file);
861 }
862
863 int security_task_fix_setuid(struct cred *new, const struct cred *old,
864                              int flags)
865 {
866         return security_ops->task_fix_setuid(new, old, flags);
867 }
868
869 int security_task_setpgid(struct task_struct *p, pid_t pgid)
870 {
871         return security_ops->task_setpgid(p, pgid);
872 }
873
874 int security_task_getpgid(struct task_struct *p)
875 {
876         return security_ops->task_getpgid(p);
877 }
878
879 int security_task_getsid(struct task_struct *p)
880 {
881         return security_ops->task_getsid(p);
882 }
883
884 void security_task_getsecid(struct task_struct *p, u32 *secid)
885 {
886         security_ops->task_getsecid(p, secid);
887 }
888 EXPORT_SYMBOL(security_task_getsecid);
889
890 int security_task_setnice(struct task_struct *p, int nice)
891 {
892         return security_ops->task_setnice(p, nice);
893 }
894
895 int security_task_setioprio(struct task_struct *p, int ioprio)
896 {
897         return security_ops->task_setioprio(p, ioprio);
898 }
899
900 int security_task_getioprio(struct task_struct *p)
901 {
902         return security_ops->task_getioprio(p);
903 }
904
905 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
906                 struct rlimit *new_rlim)
907 {
908         return security_ops->task_setrlimit(p, resource, new_rlim);
909 }
910
911 int security_task_setscheduler(struct task_struct *p)
912 {
913         return security_ops->task_setscheduler(p);
914 }
915
916 int security_task_getscheduler(struct task_struct *p)
917 {
918         return security_ops->task_getscheduler(p);
919 }
920
921 int security_task_movememory(struct task_struct *p)
922 {
923         return security_ops->task_movememory(p);
924 }
925
926 int security_task_kill(struct task_struct *p, struct siginfo *info,
927                         int sig, u32 secid)
928 {
929         return security_ops->task_kill(p, info, sig, secid);
930 }
931
932 int security_task_wait(struct task_struct *p)
933 {
934         return security_ops->task_wait(p);
935 }
936
937 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
938                          unsigned long arg4, unsigned long arg5)
939 {
940 #ifdef CONFIG_SECURITY_YAMA_STACKED
941         int rc;
942         rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
943         if (rc != -ENOSYS)
944                 return rc;
945 #endif
946         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
947 }
948
949 void security_task_to_inode(struct task_struct *p, struct inode *inode)
950 {
951         security_ops->task_to_inode(p, inode);
952 }
953
954 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
955 {
956         return security_ops->ipc_permission(ipcp, flag);
957 }
958
959 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
960 {
961         security_ops->ipc_getsecid(ipcp, secid);
962 }
963
964 int security_msg_msg_alloc(struct msg_msg *msg)
965 {
966         return security_ops->msg_msg_alloc_security(msg);
967 }
968
969 void security_msg_msg_free(struct msg_msg *msg)
970 {
971         security_ops->msg_msg_free_security(msg);
972 }
973
974 int security_msg_queue_alloc(struct msg_queue *msq)
975 {
976         return security_ops->msg_queue_alloc_security(msq);
977 }
978
979 void security_msg_queue_free(struct msg_queue *msq)
980 {
981         security_ops->msg_queue_free_security(msq);
982 }
983
984 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
985 {
986         return security_ops->msg_queue_associate(msq, msqflg);
987 }
988
989 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
990 {
991         return security_ops->msg_queue_msgctl(msq, cmd);
992 }
993
994 int security_msg_queue_msgsnd(struct msg_queue *msq,
995                                struct msg_msg *msg, int msqflg)
996 {
997         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
998 }
999
1000 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1001                                struct task_struct *target, long type, int mode)
1002 {
1003         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
1004 }
1005
1006 int security_shm_alloc(struct shmid_kernel *shp)
1007 {
1008         return security_ops->shm_alloc_security(shp);
1009 }
1010
1011 void security_shm_free(struct shmid_kernel *shp)
1012 {
1013         security_ops->shm_free_security(shp);
1014 }
1015
1016 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1017 {
1018         return security_ops->shm_associate(shp, shmflg);
1019 }
1020
1021 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1022 {
1023         return security_ops->shm_shmctl(shp, cmd);
1024 }
1025
1026 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1027 {
1028         return security_ops->shm_shmat(shp, shmaddr, shmflg);
1029 }
1030
1031 int security_sem_alloc(struct sem_array *sma)
1032 {
1033         return security_ops->sem_alloc_security(sma);
1034 }
1035
1036 void security_sem_free(struct sem_array *sma)
1037 {
1038         security_ops->sem_free_security(sma);
1039 }
1040
1041 int security_sem_associate(struct sem_array *sma, int semflg)
1042 {
1043         return security_ops->sem_associate(sma, semflg);
1044 }
1045
1046 int security_sem_semctl(struct sem_array *sma, int cmd)
1047 {
1048         return security_ops->sem_semctl(sma, cmd);
1049 }
1050
1051 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1052                         unsigned nsops, int alter)
1053 {
1054         return security_ops->sem_semop(sma, sops, nsops, alter);
1055 }
1056
1057 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1058 {
1059         if (unlikely(inode && IS_PRIVATE(inode)))
1060                 return;
1061         security_ops->d_instantiate(dentry, inode);
1062 }
1063 EXPORT_SYMBOL(security_d_instantiate);
1064
1065 int security_getprocattr(struct task_struct *p, char *name, char **value)
1066 {
1067         return security_ops->getprocattr(p, name, value);
1068 }
1069
1070 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1071 {
1072         return security_ops->setprocattr(p, name, value, size);
1073 }
1074
1075 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1076 {
1077         return security_ops->netlink_send(sk, skb);
1078 }
1079
1080 int security_ismaclabel(const char *name)
1081 {
1082         return security_ops->ismaclabel(name);
1083 }
1084 EXPORT_SYMBOL(security_ismaclabel);
1085
1086 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1087 {
1088         return security_ops->secid_to_secctx(secid, secdata, seclen);
1089 }
1090 EXPORT_SYMBOL(security_secid_to_secctx);
1091
1092 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1093 {
1094         return security_ops->secctx_to_secid(secdata, seclen, secid);
1095 }
1096 EXPORT_SYMBOL(security_secctx_to_secid);
1097
1098 void security_release_secctx(char *secdata, u32 seclen)
1099 {
1100         security_ops->release_secctx(secdata, seclen);
1101 }
1102 EXPORT_SYMBOL(security_release_secctx);
1103
1104 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1105 {
1106         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1107 }
1108 EXPORT_SYMBOL(security_inode_notifysecctx);
1109
1110 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1111 {
1112         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1113 }
1114 EXPORT_SYMBOL(security_inode_setsecctx);
1115
1116 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1117 {
1118         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1119 }
1120 EXPORT_SYMBOL(security_inode_getsecctx);
1121
1122 #ifdef CONFIG_SECURITY_NETWORK
1123
1124 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1125 {
1126         return security_ops->unix_stream_connect(sock, other, newsk);
1127 }
1128 EXPORT_SYMBOL(security_unix_stream_connect);
1129
1130 int security_unix_may_send(struct socket *sock,  struct socket *other)
1131 {
1132         return security_ops->unix_may_send(sock, other);
1133 }
1134 EXPORT_SYMBOL(security_unix_may_send);
1135
1136 int security_socket_create(int family, int type, int protocol, int kern)
1137 {
1138         return security_ops->socket_create(family, type, protocol, kern);
1139 }
1140
1141 int security_socket_post_create(struct socket *sock, int family,
1142                                 int type, int protocol, int kern)
1143 {
1144         return security_ops->socket_post_create(sock, family, type,
1145                                                 protocol, kern);
1146 }
1147
1148 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1149 {
1150         return security_ops->socket_bind(sock, address, addrlen);
1151 }
1152
1153 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1154 {
1155         return security_ops->socket_connect(sock, address, addrlen);
1156 }
1157
1158 int security_socket_listen(struct socket *sock, int backlog)
1159 {
1160         return security_ops->socket_listen(sock, backlog);
1161 }
1162
1163 int security_socket_accept(struct socket *sock, struct socket *newsock)
1164 {
1165         return security_ops->socket_accept(sock, newsock);
1166 }
1167
1168 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1169 {
1170         return security_ops->socket_sendmsg(sock, msg, size);
1171 }
1172
1173 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1174                             int size, int flags)
1175 {
1176         return security_ops->socket_recvmsg(sock, msg, size, flags);
1177 }
1178
1179 int security_socket_getsockname(struct socket *sock)
1180 {
1181         return security_ops->socket_getsockname(sock);
1182 }
1183
1184 int security_socket_getpeername(struct socket *sock)
1185 {
1186         return security_ops->socket_getpeername(sock);
1187 }
1188
1189 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1190 {
1191         return security_ops->socket_getsockopt(sock, level, optname);
1192 }
1193
1194 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1195 {
1196         return security_ops->socket_setsockopt(sock, level, optname);
1197 }
1198
1199 int security_socket_shutdown(struct socket *sock, int how)
1200 {
1201         return security_ops->socket_shutdown(sock, how);
1202 }
1203
1204 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1205 {
1206         return security_ops->socket_sock_rcv_skb(sk, skb);
1207 }
1208 EXPORT_SYMBOL(security_sock_rcv_skb);
1209
1210 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1211                                       int __user *optlen, unsigned len)
1212 {
1213         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1214 }
1215
1216 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1217 {
1218         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1219 }
1220 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1221
1222 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1223 {
1224         return security_ops->sk_alloc_security(sk, family, priority);
1225 }
1226
1227 void security_sk_free(struct sock *sk)
1228 {
1229         security_ops->sk_free_security(sk);
1230 }
1231
1232 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1233 {
1234         security_ops->sk_clone_security(sk, newsk);
1235 }
1236 EXPORT_SYMBOL(security_sk_clone);
1237
1238 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1239 {
1240         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1241 }
1242 EXPORT_SYMBOL(security_sk_classify_flow);
1243
1244 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1245 {
1246         security_ops->req_classify_flow(req, fl);
1247 }
1248 EXPORT_SYMBOL(security_req_classify_flow);
1249
1250 void security_sock_graft(struct sock *sk, struct socket *parent)
1251 {
1252         security_ops->sock_graft(sk, parent);
1253 }
1254 EXPORT_SYMBOL(security_sock_graft);
1255
1256 int security_inet_conn_request(struct sock *sk,
1257                         struct sk_buff *skb, struct request_sock *req)
1258 {
1259         return security_ops->inet_conn_request(sk, skb, req);
1260 }
1261 EXPORT_SYMBOL(security_inet_conn_request);
1262
1263 void security_inet_csk_clone(struct sock *newsk,
1264                         const struct request_sock *req)
1265 {
1266         security_ops->inet_csk_clone(newsk, req);
1267 }
1268
1269 void security_inet_conn_established(struct sock *sk,
1270                         struct sk_buff *skb)
1271 {
1272         security_ops->inet_conn_established(sk, skb);
1273 }
1274
1275 int security_secmark_relabel_packet(u32 secid)
1276 {
1277         return security_ops->secmark_relabel_packet(secid);
1278 }
1279 EXPORT_SYMBOL(security_secmark_relabel_packet);
1280
1281 void security_secmark_refcount_inc(void)
1282 {
1283         security_ops->secmark_refcount_inc();
1284 }
1285 EXPORT_SYMBOL(security_secmark_refcount_inc);
1286
1287 void security_secmark_refcount_dec(void)
1288 {
1289         security_ops->secmark_refcount_dec();
1290 }
1291 EXPORT_SYMBOL(security_secmark_refcount_dec);
1292
1293 int security_tun_dev_alloc_security(void **security)
1294 {
1295         return security_ops->tun_dev_alloc_security(security);
1296 }
1297 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1298
1299 void security_tun_dev_free_security(void *security)
1300 {
1301         security_ops->tun_dev_free_security(security);
1302 }
1303 EXPORT_SYMBOL(security_tun_dev_free_security);
1304
1305 int security_tun_dev_create(void)
1306 {
1307         return security_ops->tun_dev_create();
1308 }
1309 EXPORT_SYMBOL(security_tun_dev_create);
1310
1311 int security_tun_dev_attach_queue(void *security)
1312 {
1313         return security_ops->tun_dev_attach_queue(security);
1314 }
1315 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1316
1317 int security_tun_dev_attach(struct sock *sk, void *security)
1318 {
1319         return security_ops->tun_dev_attach(sk, security);
1320 }
1321 EXPORT_SYMBOL(security_tun_dev_attach);
1322
1323 int security_tun_dev_open(void *security)
1324 {
1325         return security_ops->tun_dev_open(security);
1326 }
1327 EXPORT_SYMBOL(security_tun_dev_open);
1328
1329 void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1330 {
1331         security_ops->skb_owned_by(skb, sk);
1332 }
1333
1334 #endif  /* CONFIG_SECURITY_NETWORK */
1335
1336 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1337
1338 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1339                                struct xfrm_user_sec_ctx *sec_ctx,
1340                                gfp_t gfp)
1341 {
1342         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp);
1343 }
1344 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1345
1346 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1347                               struct xfrm_sec_ctx **new_ctxp)
1348 {
1349         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1350 }
1351
1352 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1353 {
1354         security_ops->xfrm_policy_free_security(ctx);
1355 }
1356 EXPORT_SYMBOL(security_xfrm_policy_free);
1357
1358 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1359 {
1360         return security_ops->xfrm_policy_delete_security(ctx);
1361 }
1362
1363 int security_xfrm_state_alloc(struct xfrm_state *x,
1364                               struct xfrm_user_sec_ctx *sec_ctx)
1365 {
1366         return security_ops->xfrm_state_alloc(x, sec_ctx);
1367 }
1368 EXPORT_SYMBOL(security_xfrm_state_alloc);
1369
1370 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1371                                       struct xfrm_sec_ctx *polsec, u32 secid)
1372 {
1373         return security_ops->xfrm_state_alloc_acquire(x, polsec, secid);
1374 }
1375
1376 int security_xfrm_state_delete(struct xfrm_state *x)
1377 {
1378         return security_ops->xfrm_state_delete_security(x);
1379 }
1380 EXPORT_SYMBOL(security_xfrm_state_delete);
1381
1382 void security_xfrm_state_free(struct xfrm_state *x)
1383 {
1384         security_ops->xfrm_state_free_security(x);
1385 }
1386
1387 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1388 {
1389         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1390 }
1391
1392 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1393                                        struct xfrm_policy *xp,
1394                                        const struct flowi *fl)
1395 {
1396         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1397 }
1398
1399 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1400 {
1401         return security_ops->xfrm_decode_session(skb, secid, 1);
1402 }
1403
1404 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1405 {
1406         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1407
1408         BUG_ON(rc);
1409 }
1410 EXPORT_SYMBOL(security_skb_classify_flow);
1411
1412 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1413
1414 #ifdef CONFIG_KEYS
1415
1416 int security_key_alloc(struct key *key, const struct cred *cred,
1417                        unsigned long flags)
1418 {
1419         return security_ops->key_alloc(key, cred, flags);
1420 }
1421
1422 void security_key_free(struct key *key)
1423 {
1424         security_ops->key_free(key);
1425 }
1426
1427 int security_key_permission(key_ref_t key_ref,
1428                             const struct cred *cred, unsigned perm)
1429 {
1430         return security_ops->key_permission(key_ref, cred, perm);
1431 }
1432
1433 int security_key_getsecurity(struct key *key, char **_buffer)
1434 {
1435         return security_ops->key_getsecurity(key, _buffer);
1436 }
1437
1438 #endif  /* CONFIG_KEYS */
1439
1440 #ifdef CONFIG_AUDIT
1441
1442 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1443 {
1444         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1445 }
1446
1447 int security_audit_rule_known(struct audit_krule *krule)
1448 {
1449         return security_ops->audit_rule_known(krule);
1450 }
1451
1452 void security_audit_rule_free(void *lsmrule)
1453 {
1454         security_ops->audit_rule_free(lsmrule);
1455 }
1456
1457 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1458                               struct audit_context *actx)
1459 {
1460         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1461 }
1462
1463 #endif /* CONFIG_AUDIT */