]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - tools/perf/builtin-sched.c
i2c: sun6-p2wi: fix call to snprintf
[karo-tx-linux.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13
14 #include "util/parse-options.h"
15 #include "util/trace-event.h"
16
17 #include "util/debug.h"
18
19 #include <sys/prctl.h>
20 #include <sys/resource.h>
21
22 #include <semaphore.h>
23 #include <pthread.h>
24 #include <math.h>
25
26 #define PR_SET_NAME             15               /* Set process name */
27 #define MAX_CPUS                4096
28 #define COMM_LEN                20
29 #define SYM_LEN                 129
30 #define MAX_PID                 65536
31
32 struct sched_atom;
33
34 struct task_desc {
35         unsigned long           nr;
36         unsigned long           pid;
37         char                    comm[COMM_LEN];
38
39         unsigned long           nr_events;
40         unsigned long           curr_event;
41         struct sched_atom       **atoms;
42
43         pthread_t               thread;
44         sem_t                   sleep_sem;
45
46         sem_t                   ready_for_work;
47         sem_t                   work_done_sem;
48
49         u64                     cpu_usage;
50 };
51
52 enum sched_event_type {
53         SCHED_EVENT_RUN,
54         SCHED_EVENT_SLEEP,
55         SCHED_EVENT_WAKEUP,
56         SCHED_EVENT_MIGRATION,
57 };
58
59 struct sched_atom {
60         enum sched_event_type   type;
61         int                     specific_wait;
62         u64                     timestamp;
63         u64                     duration;
64         unsigned long           nr;
65         sem_t                   *wait_sem;
66         struct task_desc        *wakee;
67 };
68
69 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
70
71 enum thread_state {
72         THREAD_SLEEPING = 0,
73         THREAD_WAIT_CPU,
74         THREAD_SCHED_IN,
75         THREAD_IGNORE
76 };
77
78 struct work_atom {
79         struct list_head        list;
80         enum thread_state       state;
81         u64                     sched_out_time;
82         u64                     wake_up_time;
83         u64                     sched_in_time;
84         u64                     runtime;
85 };
86
87 struct work_atoms {
88         struct list_head        work_list;
89         struct thread           *thread;
90         struct rb_node          node;
91         u64                     max_lat;
92         u64                     max_lat_at;
93         u64                     total_lat;
94         u64                     nb_atoms;
95         u64                     total_runtime;
96 };
97
98 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
99
100 struct perf_sched;
101
102 struct trace_sched_handler {
103         int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
104                             struct perf_sample *sample, struct machine *machine);
105
106         int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107                              struct perf_sample *sample, struct machine *machine);
108
109         int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110                             struct perf_sample *sample, struct machine *machine);
111
112         /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
113         int (*fork_event)(struct perf_sched *sched, union perf_event *event,
114                           struct machine *machine);
115
116         int (*migrate_task_event)(struct perf_sched *sched,
117                                   struct perf_evsel *evsel,
118                                   struct perf_sample *sample,
119                                   struct machine *machine);
120 };
121
122 struct perf_sched {
123         struct perf_tool tool;
124         const char       *sort_order;
125         unsigned long    nr_tasks;
126         struct task_desc *pid_to_task[MAX_PID];
127         struct task_desc **tasks;
128         const struct trace_sched_handler *tp_handler;
129         pthread_mutex_t  start_work_mutex;
130         pthread_mutex_t  work_done_wait_mutex;
131         int              profile_cpu;
132 /*
133  * Track the current task - that way we can know whether there's any
134  * weird events, such as a task being switched away that is not current.
135  */
136         int              max_cpu;
137         u32              curr_pid[MAX_CPUS];
138         struct thread    *curr_thread[MAX_CPUS];
139         char             next_shortname1;
140         char             next_shortname2;
141         unsigned int     replay_repeat;
142         unsigned long    nr_run_events;
143         unsigned long    nr_sleep_events;
144         unsigned long    nr_wakeup_events;
145         unsigned long    nr_sleep_corrections;
146         unsigned long    nr_run_events_optimized;
147         unsigned long    targetless_wakeups;
148         unsigned long    multitarget_wakeups;
149         unsigned long    nr_runs;
150         unsigned long    nr_timestamps;
151         unsigned long    nr_unordered_timestamps;
152         unsigned long    nr_context_switch_bugs;
153         unsigned long    nr_events;
154         unsigned long    nr_lost_chunks;
155         unsigned long    nr_lost_events;
156         u64              run_measurement_overhead;
157         u64              sleep_measurement_overhead;
158         u64              start_time;
159         u64              cpu_usage;
160         u64              runavg_cpu_usage;
161         u64              parent_cpu_usage;
162         u64              runavg_parent_cpu_usage;
163         u64              sum_runtime;
164         u64              sum_fluct;
165         u64              run_avg;
166         u64              all_runtime;
167         u64              all_count;
168         u64              cpu_last_switched[MAX_CPUS];
169         struct rb_root   atom_root, sorted_atom_root;
170         struct list_head sort_list, cmp_pid;
171 };
172
173 static u64 get_nsecs(void)
174 {
175         struct timespec ts;
176
177         clock_gettime(CLOCK_MONOTONIC, &ts);
178
179         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
180 }
181
182 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
183 {
184         u64 T0 = get_nsecs(), T1;
185
186         do {
187                 T1 = get_nsecs();
188         } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
189 }
190
191 static void sleep_nsecs(u64 nsecs)
192 {
193         struct timespec ts;
194
195         ts.tv_nsec = nsecs % 999999999;
196         ts.tv_sec = nsecs / 999999999;
197
198         nanosleep(&ts, NULL);
199 }
200
201 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
202 {
203         u64 T0, T1, delta, min_delta = 1000000000ULL;
204         int i;
205
206         for (i = 0; i < 10; i++) {
207                 T0 = get_nsecs();
208                 burn_nsecs(sched, 0);
209                 T1 = get_nsecs();
210                 delta = T1-T0;
211                 min_delta = min(min_delta, delta);
212         }
213         sched->run_measurement_overhead = min_delta;
214
215         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
216 }
217
218 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
219 {
220         u64 T0, T1, delta, min_delta = 1000000000ULL;
221         int i;
222
223         for (i = 0; i < 10; i++) {
224                 T0 = get_nsecs();
225                 sleep_nsecs(10000);
226                 T1 = get_nsecs();
227                 delta = T1-T0;
228                 min_delta = min(min_delta, delta);
229         }
230         min_delta -= 10000;
231         sched->sleep_measurement_overhead = min_delta;
232
233         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
234 }
235
236 static struct sched_atom *
237 get_new_event(struct task_desc *task, u64 timestamp)
238 {
239         struct sched_atom *event = zalloc(sizeof(*event));
240         unsigned long idx = task->nr_events;
241         size_t size;
242
243         event->timestamp = timestamp;
244         event->nr = idx;
245
246         task->nr_events++;
247         size = sizeof(struct sched_atom *) * task->nr_events;
248         task->atoms = realloc(task->atoms, size);
249         BUG_ON(!task->atoms);
250
251         task->atoms[idx] = event;
252
253         return event;
254 }
255
256 static struct sched_atom *last_event(struct task_desc *task)
257 {
258         if (!task->nr_events)
259                 return NULL;
260
261         return task->atoms[task->nr_events - 1];
262 }
263
264 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
265                                 u64 timestamp, u64 duration)
266 {
267         struct sched_atom *event, *curr_event = last_event(task);
268
269         /*
270          * optimize an existing RUN event by merging this one
271          * to it:
272          */
273         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
274                 sched->nr_run_events_optimized++;
275                 curr_event->duration += duration;
276                 return;
277         }
278
279         event = get_new_event(task, timestamp);
280
281         event->type = SCHED_EVENT_RUN;
282         event->duration = duration;
283
284         sched->nr_run_events++;
285 }
286
287 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
288                                    u64 timestamp, struct task_desc *wakee)
289 {
290         struct sched_atom *event, *wakee_event;
291
292         event = get_new_event(task, timestamp);
293         event->type = SCHED_EVENT_WAKEUP;
294         event->wakee = wakee;
295
296         wakee_event = last_event(wakee);
297         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
298                 sched->targetless_wakeups++;
299                 return;
300         }
301         if (wakee_event->wait_sem) {
302                 sched->multitarget_wakeups++;
303                 return;
304         }
305
306         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
307         sem_init(wakee_event->wait_sem, 0, 0);
308         wakee_event->specific_wait = 1;
309         event->wait_sem = wakee_event->wait_sem;
310
311         sched->nr_wakeup_events++;
312 }
313
314 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
315                                   u64 timestamp, u64 task_state __maybe_unused)
316 {
317         struct sched_atom *event = get_new_event(task, timestamp);
318
319         event->type = SCHED_EVENT_SLEEP;
320
321         sched->nr_sleep_events++;
322 }
323
324 static struct task_desc *register_pid(struct perf_sched *sched,
325                                       unsigned long pid, const char *comm)
326 {
327         struct task_desc *task;
328
329         BUG_ON(pid >= MAX_PID);
330
331         task = sched->pid_to_task[pid];
332
333         if (task)
334                 return task;
335
336         task = zalloc(sizeof(*task));
337         task->pid = pid;
338         task->nr = sched->nr_tasks;
339         strcpy(task->comm, comm);
340         /*
341          * every task starts in sleeping state - this gets ignored
342          * if there's no wakeup pointing to this sleep state:
343          */
344         add_sched_event_sleep(sched, task, 0, 0);
345
346         sched->pid_to_task[pid] = task;
347         sched->nr_tasks++;
348         sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
349         BUG_ON(!sched->tasks);
350         sched->tasks[task->nr] = task;
351
352         if (verbose)
353                 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
354
355         return task;
356 }
357
358
359 static void print_task_traces(struct perf_sched *sched)
360 {
361         struct task_desc *task;
362         unsigned long i;
363
364         for (i = 0; i < sched->nr_tasks; i++) {
365                 task = sched->tasks[i];
366                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
367                         task->nr, task->comm, task->pid, task->nr_events);
368         }
369 }
370
371 static void add_cross_task_wakeups(struct perf_sched *sched)
372 {
373         struct task_desc *task1, *task2;
374         unsigned long i, j;
375
376         for (i = 0; i < sched->nr_tasks; i++) {
377                 task1 = sched->tasks[i];
378                 j = i + 1;
379                 if (j == sched->nr_tasks)
380                         j = 0;
381                 task2 = sched->tasks[j];
382                 add_sched_event_wakeup(sched, task1, 0, task2);
383         }
384 }
385
386 static void perf_sched__process_event(struct perf_sched *sched,
387                                       struct sched_atom *atom)
388 {
389         int ret = 0;
390
391         switch (atom->type) {
392                 case SCHED_EVENT_RUN:
393                         burn_nsecs(sched, atom->duration);
394                         break;
395                 case SCHED_EVENT_SLEEP:
396                         if (atom->wait_sem)
397                                 ret = sem_wait(atom->wait_sem);
398                         BUG_ON(ret);
399                         break;
400                 case SCHED_EVENT_WAKEUP:
401                         if (atom->wait_sem)
402                                 ret = sem_post(atom->wait_sem);
403                         BUG_ON(ret);
404                         break;
405                 case SCHED_EVENT_MIGRATION:
406                         break;
407                 default:
408                         BUG_ON(1);
409         }
410 }
411
412 static u64 get_cpu_usage_nsec_parent(void)
413 {
414         struct rusage ru;
415         u64 sum;
416         int err;
417
418         err = getrusage(RUSAGE_SELF, &ru);
419         BUG_ON(err);
420
421         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
422         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
423
424         return sum;
425 }
426
427 static int self_open_counters(void)
428 {
429         struct perf_event_attr attr;
430         int fd;
431
432         memset(&attr, 0, sizeof(attr));
433
434         attr.type = PERF_TYPE_SOFTWARE;
435         attr.config = PERF_COUNT_SW_TASK_CLOCK;
436
437         fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
438
439         if (fd < 0)
440                 pr_err("Error: sys_perf_event_open() syscall returned "
441                        "with %d (%s)\n", fd, strerror(errno));
442         return fd;
443 }
444
445 static u64 get_cpu_usage_nsec_self(int fd)
446 {
447         u64 runtime;
448         int ret;
449
450         ret = read(fd, &runtime, sizeof(runtime));
451         BUG_ON(ret != sizeof(runtime));
452
453         return runtime;
454 }
455
456 struct sched_thread_parms {
457         struct task_desc  *task;
458         struct perf_sched *sched;
459 };
460
461 static void *thread_func(void *ctx)
462 {
463         struct sched_thread_parms *parms = ctx;
464         struct task_desc *this_task = parms->task;
465         struct perf_sched *sched = parms->sched;
466         u64 cpu_usage_0, cpu_usage_1;
467         unsigned long i, ret;
468         char comm2[22];
469         int fd;
470
471         zfree(&parms);
472
473         sprintf(comm2, ":%s", this_task->comm);
474         prctl(PR_SET_NAME, comm2);
475         fd = self_open_counters();
476         if (fd < 0)
477                 return NULL;
478 again:
479         ret = sem_post(&this_task->ready_for_work);
480         BUG_ON(ret);
481         ret = pthread_mutex_lock(&sched->start_work_mutex);
482         BUG_ON(ret);
483         ret = pthread_mutex_unlock(&sched->start_work_mutex);
484         BUG_ON(ret);
485
486         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
487
488         for (i = 0; i < this_task->nr_events; i++) {
489                 this_task->curr_event = i;
490                 perf_sched__process_event(sched, this_task->atoms[i]);
491         }
492
493         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
494         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
495         ret = sem_post(&this_task->work_done_sem);
496         BUG_ON(ret);
497
498         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
499         BUG_ON(ret);
500         ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
501         BUG_ON(ret);
502
503         goto again;
504 }
505
506 static void create_tasks(struct perf_sched *sched)
507 {
508         struct task_desc *task;
509         pthread_attr_t attr;
510         unsigned long i;
511         int err;
512
513         err = pthread_attr_init(&attr);
514         BUG_ON(err);
515         err = pthread_attr_setstacksize(&attr,
516                         (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
517         BUG_ON(err);
518         err = pthread_mutex_lock(&sched->start_work_mutex);
519         BUG_ON(err);
520         err = pthread_mutex_lock(&sched->work_done_wait_mutex);
521         BUG_ON(err);
522         for (i = 0; i < sched->nr_tasks; i++) {
523                 struct sched_thread_parms *parms = malloc(sizeof(*parms));
524                 BUG_ON(parms == NULL);
525                 parms->task = task = sched->tasks[i];
526                 parms->sched = sched;
527                 sem_init(&task->sleep_sem, 0, 0);
528                 sem_init(&task->ready_for_work, 0, 0);
529                 sem_init(&task->work_done_sem, 0, 0);
530                 task->curr_event = 0;
531                 err = pthread_create(&task->thread, &attr, thread_func, parms);
532                 BUG_ON(err);
533         }
534 }
535
536 static void wait_for_tasks(struct perf_sched *sched)
537 {
538         u64 cpu_usage_0, cpu_usage_1;
539         struct task_desc *task;
540         unsigned long i, ret;
541
542         sched->start_time = get_nsecs();
543         sched->cpu_usage = 0;
544         pthread_mutex_unlock(&sched->work_done_wait_mutex);
545
546         for (i = 0; i < sched->nr_tasks; i++) {
547                 task = sched->tasks[i];
548                 ret = sem_wait(&task->ready_for_work);
549                 BUG_ON(ret);
550                 sem_init(&task->ready_for_work, 0, 0);
551         }
552         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
553         BUG_ON(ret);
554
555         cpu_usage_0 = get_cpu_usage_nsec_parent();
556
557         pthread_mutex_unlock(&sched->start_work_mutex);
558
559         for (i = 0; i < sched->nr_tasks; i++) {
560                 task = sched->tasks[i];
561                 ret = sem_wait(&task->work_done_sem);
562                 BUG_ON(ret);
563                 sem_init(&task->work_done_sem, 0, 0);
564                 sched->cpu_usage += task->cpu_usage;
565                 task->cpu_usage = 0;
566         }
567
568         cpu_usage_1 = get_cpu_usage_nsec_parent();
569         if (!sched->runavg_cpu_usage)
570                 sched->runavg_cpu_usage = sched->cpu_usage;
571         sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
572
573         sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
574         if (!sched->runavg_parent_cpu_usage)
575                 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
576         sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
577                                          sched->parent_cpu_usage)/10;
578
579         ret = pthread_mutex_lock(&sched->start_work_mutex);
580         BUG_ON(ret);
581
582         for (i = 0; i < sched->nr_tasks; i++) {
583                 task = sched->tasks[i];
584                 sem_init(&task->sleep_sem, 0, 0);
585                 task->curr_event = 0;
586         }
587 }
588
589 static void run_one_test(struct perf_sched *sched)
590 {
591         u64 T0, T1, delta, avg_delta, fluct;
592
593         T0 = get_nsecs();
594         wait_for_tasks(sched);
595         T1 = get_nsecs();
596
597         delta = T1 - T0;
598         sched->sum_runtime += delta;
599         sched->nr_runs++;
600
601         avg_delta = sched->sum_runtime / sched->nr_runs;
602         if (delta < avg_delta)
603                 fluct = avg_delta - delta;
604         else
605                 fluct = delta - avg_delta;
606         sched->sum_fluct += fluct;
607         if (!sched->run_avg)
608                 sched->run_avg = delta;
609         sched->run_avg = (sched->run_avg * 9 + delta) / 10;
610
611         printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
612
613         printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
614
615         printf("cpu: %0.2f / %0.2f",
616                 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
617
618 #if 0
619         /*
620          * rusage statistics done by the parent, these are less
621          * accurate than the sched->sum_exec_runtime based statistics:
622          */
623         printf(" [%0.2f / %0.2f]",
624                 (double)sched->parent_cpu_usage/1e6,
625                 (double)sched->runavg_parent_cpu_usage/1e6);
626 #endif
627
628         printf("\n");
629
630         if (sched->nr_sleep_corrections)
631                 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
632         sched->nr_sleep_corrections = 0;
633 }
634
635 static void test_calibrations(struct perf_sched *sched)
636 {
637         u64 T0, T1;
638
639         T0 = get_nsecs();
640         burn_nsecs(sched, 1e6);
641         T1 = get_nsecs();
642
643         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
644
645         T0 = get_nsecs();
646         sleep_nsecs(1e6);
647         T1 = get_nsecs();
648
649         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
650 }
651
652 static int
653 replay_wakeup_event(struct perf_sched *sched,
654                     struct perf_evsel *evsel, struct perf_sample *sample,
655                     struct machine *machine __maybe_unused)
656 {
657         const char *comm = perf_evsel__strval(evsel, sample, "comm");
658         const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
659         struct task_desc *waker, *wakee;
660
661         if (verbose) {
662                 printf("sched_wakeup event %p\n", evsel);
663
664                 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
665         }
666
667         waker = register_pid(sched, sample->tid, "<unknown>");
668         wakee = register_pid(sched, pid, comm);
669
670         add_sched_event_wakeup(sched, waker, sample->time, wakee);
671         return 0;
672 }
673
674 static int replay_switch_event(struct perf_sched *sched,
675                                struct perf_evsel *evsel,
676                                struct perf_sample *sample,
677                                struct machine *machine __maybe_unused)
678 {
679         const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
680                    *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
681         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
682                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
683         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
684         struct task_desc *prev, __maybe_unused *next;
685         u64 timestamp0, timestamp = sample->time;
686         int cpu = sample->cpu;
687         s64 delta;
688
689         if (verbose)
690                 printf("sched_switch event %p\n", evsel);
691
692         if (cpu >= MAX_CPUS || cpu < 0)
693                 return 0;
694
695         timestamp0 = sched->cpu_last_switched[cpu];
696         if (timestamp0)
697                 delta = timestamp - timestamp0;
698         else
699                 delta = 0;
700
701         if (delta < 0) {
702                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
703                 return -1;
704         }
705
706         pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
707                  prev_comm, prev_pid, next_comm, next_pid, delta);
708
709         prev = register_pid(sched, prev_pid, prev_comm);
710         next = register_pid(sched, next_pid, next_comm);
711
712         sched->cpu_last_switched[cpu] = timestamp;
713
714         add_sched_event_run(sched, prev, timestamp, delta);
715         add_sched_event_sleep(sched, prev, timestamp, prev_state);
716
717         return 0;
718 }
719
720 static int replay_fork_event(struct perf_sched *sched,
721                              union perf_event *event,
722                              struct machine *machine)
723 {
724         struct thread *child, *parent;
725
726         child = machine__findnew_thread(machine, event->fork.pid,
727                                         event->fork.tid);
728         parent = machine__findnew_thread(machine, event->fork.ppid,
729                                          event->fork.ptid);
730
731         if (child == NULL || parent == NULL) {
732                 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
733                                  child, parent);
734                 return 0;
735         }
736
737         if (verbose) {
738                 printf("fork event\n");
739                 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
740                 printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
741         }
742
743         register_pid(sched, parent->tid, thread__comm_str(parent));
744         register_pid(sched, child->tid, thread__comm_str(child));
745         return 0;
746 }
747
748 struct sort_dimension {
749         const char              *name;
750         sort_fn_t               cmp;
751         struct list_head        list;
752 };
753
754 static int
755 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
756 {
757         struct sort_dimension *sort;
758         int ret = 0;
759
760         BUG_ON(list_empty(list));
761
762         list_for_each_entry(sort, list, list) {
763                 ret = sort->cmp(l, r);
764                 if (ret)
765                         return ret;
766         }
767
768         return ret;
769 }
770
771 static struct work_atoms *
772 thread_atoms_search(struct rb_root *root, struct thread *thread,
773                          struct list_head *sort_list)
774 {
775         struct rb_node *node = root->rb_node;
776         struct work_atoms key = { .thread = thread };
777
778         while (node) {
779                 struct work_atoms *atoms;
780                 int cmp;
781
782                 atoms = container_of(node, struct work_atoms, node);
783
784                 cmp = thread_lat_cmp(sort_list, &key, atoms);
785                 if (cmp > 0)
786                         node = node->rb_left;
787                 else if (cmp < 0)
788                         node = node->rb_right;
789                 else {
790                         BUG_ON(thread != atoms->thread);
791                         return atoms;
792                 }
793         }
794         return NULL;
795 }
796
797 static void
798 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
799                          struct list_head *sort_list)
800 {
801         struct rb_node **new = &(root->rb_node), *parent = NULL;
802
803         while (*new) {
804                 struct work_atoms *this;
805                 int cmp;
806
807                 this = container_of(*new, struct work_atoms, node);
808                 parent = *new;
809
810                 cmp = thread_lat_cmp(sort_list, data, this);
811
812                 if (cmp > 0)
813                         new = &((*new)->rb_left);
814                 else
815                         new = &((*new)->rb_right);
816         }
817
818         rb_link_node(&data->node, parent, new);
819         rb_insert_color(&data->node, root);
820 }
821
822 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
823 {
824         struct work_atoms *atoms = zalloc(sizeof(*atoms));
825         if (!atoms) {
826                 pr_err("No memory at %s\n", __func__);
827                 return -1;
828         }
829
830         atoms->thread = thread;
831         INIT_LIST_HEAD(&atoms->work_list);
832         __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
833         return 0;
834 }
835
836 static char sched_out_state(u64 prev_state)
837 {
838         const char *str = TASK_STATE_TO_CHAR_STR;
839
840         return str[prev_state];
841 }
842
843 static int
844 add_sched_out_event(struct work_atoms *atoms,
845                     char run_state,
846                     u64 timestamp)
847 {
848         struct work_atom *atom = zalloc(sizeof(*atom));
849         if (!atom) {
850                 pr_err("Non memory at %s", __func__);
851                 return -1;
852         }
853
854         atom->sched_out_time = timestamp;
855
856         if (run_state == 'R') {
857                 atom->state = THREAD_WAIT_CPU;
858                 atom->wake_up_time = atom->sched_out_time;
859         }
860
861         list_add_tail(&atom->list, &atoms->work_list);
862         return 0;
863 }
864
865 static void
866 add_runtime_event(struct work_atoms *atoms, u64 delta,
867                   u64 timestamp __maybe_unused)
868 {
869         struct work_atom *atom;
870
871         BUG_ON(list_empty(&atoms->work_list));
872
873         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
874
875         atom->runtime += delta;
876         atoms->total_runtime += delta;
877 }
878
879 static void
880 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
881 {
882         struct work_atom *atom;
883         u64 delta;
884
885         if (list_empty(&atoms->work_list))
886                 return;
887
888         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
889
890         if (atom->state != THREAD_WAIT_CPU)
891                 return;
892
893         if (timestamp < atom->wake_up_time) {
894                 atom->state = THREAD_IGNORE;
895                 return;
896         }
897
898         atom->state = THREAD_SCHED_IN;
899         atom->sched_in_time = timestamp;
900
901         delta = atom->sched_in_time - atom->wake_up_time;
902         atoms->total_lat += delta;
903         if (delta > atoms->max_lat) {
904                 atoms->max_lat = delta;
905                 atoms->max_lat_at = timestamp;
906         }
907         atoms->nb_atoms++;
908 }
909
910 static int latency_switch_event(struct perf_sched *sched,
911                                 struct perf_evsel *evsel,
912                                 struct perf_sample *sample,
913                                 struct machine *machine)
914 {
915         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
916                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
917         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
918         struct work_atoms *out_events, *in_events;
919         struct thread *sched_out, *sched_in;
920         u64 timestamp0, timestamp = sample->time;
921         int cpu = sample->cpu;
922         s64 delta;
923
924         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
925
926         timestamp0 = sched->cpu_last_switched[cpu];
927         sched->cpu_last_switched[cpu] = timestamp;
928         if (timestamp0)
929                 delta = timestamp - timestamp0;
930         else
931                 delta = 0;
932
933         if (delta < 0) {
934                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
935                 return -1;
936         }
937
938         sched_out = machine__findnew_thread(machine, 0, prev_pid);
939         sched_in = machine__findnew_thread(machine, 0, next_pid);
940
941         out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
942         if (!out_events) {
943                 if (thread_atoms_insert(sched, sched_out))
944                         return -1;
945                 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
946                 if (!out_events) {
947                         pr_err("out-event: Internal tree error");
948                         return -1;
949                 }
950         }
951         if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
952                 return -1;
953
954         in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
955         if (!in_events) {
956                 if (thread_atoms_insert(sched, sched_in))
957                         return -1;
958                 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
959                 if (!in_events) {
960                         pr_err("in-event: Internal tree error");
961                         return -1;
962                 }
963                 /*
964                  * Take came in we have not heard about yet,
965                  * add in an initial atom in runnable state:
966                  */
967                 if (add_sched_out_event(in_events, 'R', timestamp))
968                         return -1;
969         }
970         add_sched_in_event(in_events, timestamp);
971
972         return 0;
973 }
974
975 static int latency_runtime_event(struct perf_sched *sched,
976                                  struct perf_evsel *evsel,
977                                  struct perf_sample *sample,
978                                  struct machine *machine)
979 {
980         const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
981         const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
982         struct thread *thread = machine__findnew_thread(machine, 0, pid);
983         struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
984         u64 timestamp = sample->time;
985         int cpu = sample->cpu;
986
987         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
988         if (!atoms) {
989                 if (thread_atoms_insert(sched, thread))
990                         return -1;
991                 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
992                 if (!atoms) {
993                         pr_err("in-event: Internal tree error");
994                         return -1;
995                 }
996                 if (add_sched_out_event(atoms, 'R', timestamp))
997                         return -1;
998         }
999
1000         add_runtime_event(atoms, runtime, timestamp);
1001         return 0;
1002 }
1003
1004 static int latency_wakeup_event(struct perf_sched *sched,
1005                                 struct perf_evsel *evsel,
1006                                 struct perf_sample *sample,
1007                                 struct machine *machine)
1008 {
1009         const u32 pid     = perf_evsel__intval(evsel, sample, "pid");
1010         struct work_atoms *atoms;
1011         struct work_atom *atom;
1012         struct thread *wakee;
1013         u64 timestamp = sample->time;
1014
1015         wakee = machine__findnew_thread(machine, 0, pid);
1016         atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1017         if (!atoms) {
1018                 if (thread_atoms_insert(sched, wakee))
1019                         return -1;
1020                 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1021                 if (!atoms) {
1022                         pr_err("wakeup-event: Internal tree error");
1023                         return -1;
1024                 }
1025                 if (add_sched_out_event(atoms, 'S', timestamp))
1026                         return -1;
1027         }
1028
1029         BUG_ON(list_empty(&atoms->work_list));
1030
1031         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1032
1033         /*
1034          * As we do not guarantee the wakeup event happens when
1035          * task is out of run queue, also may happen when task is
1036          * on run queue and wakeup only change ->state to TASK_RUNNING,
1037          * then we should not set the ->wake_up_time when wake up a
1038          * task which is on run queue.
1039          *
1040          * You WILL be missing events if you've recorded only
1041          * one CPU, or are only looking at only one, so don't
1042          * skip in this case.
1043          */
1044         if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1045                 return 0;
1046
1047         sched->nr_timestamps++;
1048         if (atom->sched_out_time > timestamp) {
1049                 sched->nr_unordered_timestamps++;
1050                 return 0;
1051         }
1052
1053         atom->state = THREAD_WAIT_CPU;
1054         atom->wake_up_time = timestamp;
1055         return 0;
1056 }
1057
1058 static int latency_migrate_task_event(struct perf_sched *sched,
1059                                       struct perf_evsel *evsel,
1060                                       struct perf_sample *sample,
1061                                       struct machine *machine)
1062 {
1063         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1064         u64 timestamp = sample->time;
1065         struct work_atoms *atoms;
1066         struct work_atom *atom;
1067         struct thread *migrant;
1068
1069         /*
1070          * Only need to worry about migration when profiling one CPU.
1071          */
1072         if (sched->profile_cpu == -1)
1073                 return 0;
1074
1075         migrant = machine__findnew_thread(machine, 0, pid);
1076         atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1077         if (!atoms) {
1078                 if (thread_atoms_insert(sched, migrant))
1079                         return -1;
1080                 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1081                 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1082                 if (!atoms) {
1083                         pr_err("migration-event: Internal tree error");
1084                         return -1;
1085                 }
1086                 if (add_sched_out_event(atoms, 'R', timestamp))
1087                         return -1;
1088         }
1089
1090         BUG_ON(list_empty(&atoms->work_list));
1091
1092         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1093         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1094
1095         sched->nr_timestamps++;
1096
1097         if (atom->sched_out_time > timestamp)
1098                 sched->nr_unordered_timestamps++;
1099
1100         return 0;
1101 }
1102
1103 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1104 {
1105         int i;
1106         int ret;
1107         u64 avg;
1108
1109         if (!work_list->nb_atoms)
1110                 return;
1111         /*
1112          * Ignore idle threads:
1113          */
1114         if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1115                 return;
1116
1117         sched->all_runtime += work_list->total_runtime;
1118         sched->all_count   += work_list->nb_atoms;
1119
1120         ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1121
1122         for (i = 0; i < 24 - ret; i++)
1123                 printf(" ");
1124
1125         avg = work_list->total_lat / work_list->nb_atoms;
1126
1127         printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1128               (double)work_list->total_runtime / 1e6,
1129                  work_list->nb_atoms, (double)avg / 1e6,
1130                  (double)work_list->max_lat / 1e6,
1131                  (double)work_list->max_lat_at / 1e9);
1132 }
1133
1134 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1135 {
1136         if (l->thread->tid < r->thread->tid)
1137                 return -1;
1138         if (l->thread->tid > r->thread->tid)
1139                 return 1;
1140
1141         return 0;
1142 }
1143
1144 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1145 {
1146         u64 avgl, avgr;
1147
1148         if (!l->nb_atoms)
1149                 return -1;
1150
1151         if (!r->nb_atoms)
1152                 return 1;
1153
1154         avgl = l->total_lat / l->nb_atoms;
1155         avgr = r->total_lat / r->nb_atoms;
1156
1157         if (avgl < avgr)
1158                 return -1;
1159         if (avgl > avgr)
1160                 return 1;
1161
1162         return 0;
1163 }
1164
1165 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1166 {
1167         if (l->max_lat < r->max_lat)
1168                 return -1;
1169         if (l->max_lat > r->max_lat)
1170                 return 1;
1171
1172         return 0;
1173 }
1174
1175 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1176 {
1177         if (l->nb_atoms < r->nb_atoms)
1178                 return -1;
1179         if (l->nb_atoms > r->nb_atoms)
1180                 return 1;
1181
1182         return 0;
1183 }
1184
1185 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1186 {
1187         if (l->total_runtime < r->total_runtime)
1188                 return -1;
1189         if (l->total_runtime > r->total_runtime)
1190                 return 1;
1191
1192         return 0;
1193 }
1194
1195 static int sort_dimension__add(const char *tok, struct list_head *list)
1196 {
1197         size_t i;
1198         static struct sort_dimension avg_sort_dimension = {
1199                 .name = "avg",
1200                 .cmp  = avg_cmp,
1201         };
1202         static struct sort_dimension max_sort_dimension = {
1203                 .name = "max",
1204                 .cmp  = max_cmp,
1205         };
1206         static struct sort_dimension pid_sort_dimension = {
1207                 .name = "pid",
1208                 .cmp  = pid_cmp,
1209         };
1210         static struct sort_dimension runtime_sort_dimension = {
1211                 .name = "runtime",
1212                 .cmp  = runtime_cmp,
1213         };
1214         static struct sort_dimension switch_sort_dimension = {
1215                 .name = "switch",
1216                 .cmp  = switch_cmp,
1217         };
1218         struct sort_dimension *available_sorts[] = {
1219                 &pid_sort_dimension,
1220                 &avg_sort_dimension,
1221                 &max_sort_dimension,
1222                 &switch_sort_dimension,
1223                 &runtime_sort_dimension,
1224         };
1225
1226         for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1227                 if (!strcmp(available_sorts[i]->name, tok)) {
1228                         list_add_tail(&available_sorts[i]->list, list);
1229
1230                         return 0;
1231                 }
1232         }
1233
1234         return -1;
1235 }
1236
1237 static void perf_sched__sort_lat(struct perf_sched *sched)
1238 {
1239         struct rb_node *node;
1240
1241         for (;;) {
1242                 struct work_atoms *data;
1243                 node = rb_first(&sched->atom_root);
1244                 if (!node)
1245                         break;
1246
1247                 rb_erase(node, &sched->atom_root);
1248                 data = rb_entry(node, struct work_atoms, node);
1249                 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1250         }
1251 }
1252
1253 static int process_sched_wakeup_event(struct perf_tool *tool,
1254                                       struct perf_evsel *evsel,
1255                                       struct perf_sample *sample,
1256                                       struct machine *machine)
1257 {
1258         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1259
1260         if (sched->tp_handler->wakeup_event)
1261                 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1262
1263         return 0;
1264 }
1265
1266 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1267                             struct perf_sample *sample, struct machine *machine)
1268 {
1269         const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1270         struct thread *sched_in;
1271         int new_shortname;
1272         u64 timestamp0, timestamp = sample->time;
1273         s64 delta;
1274         int cpu, this_cpu = sample->cpu;
1275
1276         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1277
1278         if (this_cpu > sched->max_cpu)
1279                 sched->max_cpu = this_cpu;
1280
1281         timestamp0 = sched->cpu_last_switched[this_cpu];
1282         sched->cpu_last_switched[this_cpu] = timestamp;
1283         if (timestamp0)
1284                 delta = timestamp - timestamp0;
1285         else
1286                 delta = 0;
1287
1288         if (delta < 0) {
1289                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1290                 return -1;
1291         }
1292
1293         sched_in = machine__findnew_thread(machine, 0, next_pid);
1294
1295         sched->curr_thread[this_cpu] = sched_in;
1296
1297         printf("  ");
1298
1299         new_shortname = 0;
1300         if (!sched_in->shortname[0]) {
1301                 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1302                         /*
1303                          * Don't allocate a letter-number for swapper:0
1304                          * as a shortname. Instead, we use '.' for it.
1305                          */
1306                         sched_in->shortname[0] = '.';
1307                         sched_in->shortname[1] = ' ';
1308                 } else {
1309                         sched_in->shortname[0] = sched->next_shortname1;
1310                         sched_in->shortname[1] = sched->next_shortname2;
1311
1312                         if (sched->next_shortname1 < 'Z') {
1313                                 sched->next_shortname1++;
1314                         } else {
1315                                 sched->next_shortname1 = 'A';
1316                                 if (sched->next_shortname2 < '9')
1317                                         sched->next_shortname2++;
1318                                 else
1319                                         sched->next_shortname2 = '0';
1320                         }
1321                 }
1322                 new_shortname = 1;
1323         }
1324
1325         for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1326                 if (cpu != this_cpu)
1327                         printf(" ");
1328                 else
1329                         printf("*");
1330
1331                 if (sched->curr_thread[cpu])
1332                         printf("%2s ", sched->curr_thread[cpu]->shortname);
1333                 else
1334                         printf("   ");
1335         }
1336
1337         printf("  %12.6f secs ", (double)timestamp/1e9);
1338         if (new_shortname) {
1339                 printf("%s => %s:%d\n",
1340                        sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1341         } else {
1342                 printf("\n");
1343         }
1344
1345         return 0;
1346 }
1347
1348 static int process_sched_switch_event(struct perf_tool *tool,
1349                                       struct perf_evsel *evsel,
1350                                       struct perf_sample *sample,
1351                                       struct machine *machine)
1352 {
1353         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1354         int this_cpu = sample->cpu, err = 0;
1355         u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1356             next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1357
1358         if (sched->curr_pid[this_cpu] != (u32)-1) {
1359                 /*
1360                  * Are we trying to switch away a PID that is
1361                  * not current?
1362                  */
1363                 if (sched->curr_pid[this_cpu] != prev_pid)
1364                         sched->nr_context_switch_bugs++;
1365         }
1366
1367         if (sched->tp_handler->switch_event)
1368                 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1369
1370         sched->curr_pid[this_cpu] = next_pid;
1371         return err;
1372 }
1373
1374 static int process_sched_runtime_event(struct perf_tool *tool,
1375                                        struct perf_evsel *evsel,
1376                                        struct perf_sample *sample,
1377                                        struct machine *machine)
1378 {
1379         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1380
1381         if (sched->tp_handler->runtime_event)
1382                 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1383
1384         return 0;
1385 }
1386
1387 static int perf_sched__process_fork_event(struct perf_tool *tool,
1388                                           union perf_event *event,
1389                                           struct perf_sample *sample,
1390                                           struct machine *machine)
1391 {
1392         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1393
1394         /* run the fork event through the perf machineruy */
1395         perf_event__process_fork(tool, event, sample, machine);
1396
1397         /* and then run additional processing needed for this command */
1398         if (sched->tp_handler->fork_event)
1399                 return sched->tp_handler->fork_event(sched, event, machine);
1400
1401         return 0;
1402 }
1403
1404 static int process_sched_migrate_task_event(struct perf_tool *tool,
1405                                             struct perf_evsel *evsel,
1406                                             struct perf_sample *sample,
1407                                             struct machine *machine)
1408 {
1409         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1410
1411         if (sched->tp_handler->migrate_task_event)
1412                 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1413
1414         return 0;
1415 }
1416
1417 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1418                                   struct perf_evsel *evsel,
1419                                   struct perf_sample *sample,
1420                                   struct machine *machine);
1421
1422 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1423                                                  union perf_event *event __maybe_unused,
1424                                                  struct perf_sample *sample,
1425                                                  struct perf_evsel *evsel,
1426                                                  struct machine *machine)
1427 {
1428         int err = 0;
1429
1430         evsel->hists.stats.total_period += sample->period;
1431         hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1432
1433         if (evsel->handler != NULL) {
1434                 tracepoint_handler f = evsel->handler;
1435                 err = f(tool, evsel, sample, machine);
1436         }
1437
1438         return err;
1439 }
1440
1441 static int perf_sched__read_events(struct perf_sched *sched,
1442                                    struct perf_session **psession)
1443 {
1444         const struct perf_evsel_str_handler handlers[] = {
1445                 { "sched:sched_switch",       process_sched_switch_event, },
1446                 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1447                 { "sched:sched_wakeup",       process_sched_wakeup_event, },
1448                 { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1449                 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1450         };
1451         struct perf_session *session;
1452         struct perf_data_file file = {
1453                 .path = input_name,
1454                 .mode = PERF_DATA_MODE_READ,
1455         };
1456
1457         session = perf_session__new(&file, false, &sched->tool);
1458         if (session == NULL) {
1459                 pr_debug("No Memory for session\n");
1460                 return -1;
1461         }
1462
1463         if (perf_session__set_tracepoints_handlers(session, handlers))
1464                 goto out_delete;
1465
1466         if (perf_session__has_traces(session, "record -R")) {
1467                 int err = perf_session__process_events(session, &sched->tool);
1468                 if (err) {
1469                         pr_err("Failed to process events, error %d", err);
1470                         goto out_delete;
1471                 }
1472
1473                 sched->nr_events      = session->stats.nr_events[0];
1474                 sched->nr_lost_events = session->stats.total_lost;
1475                 sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
1476         }
1477
1478         if (psession)
1479                 *psession = session;
1480         else
1481                 perf_session__delete(session);
1482
1483         return 0;
1484
1485 out_delete:
1486         perf_session__delete(session);
1487         return -1;
1488 }
1489
1490 static void print_bad_events(struct perf_sched *sched)
1491 {
1492         if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1493                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1494                         (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1495                         sched->nr_unordered_timestamps, sched->nr_timestamps);
1496         }
1497         if (sched->nr_lost_events && sched->nr_events) {
1498                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1499                         (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1500                         sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1501         }
1502         if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1503                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1504                         (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1505                         sched->nr_context_switch_bugs, sched->nr_timestamps);
1506                 if (sched->nr_lost_events)
1507                         printf(" (due to lost events?)");
1508                 printf("\n");
1509         }
1510 }
1511
1512 static int perf_sched__lat(struct perf_sched *sched)
1513 {
1514         struct rb_node *next;
1515         struct perf_session *session;
1516
1517         setup_pager();
1518
1519         /* save session -- references to threads are held in work_list */
1520         if (perf_sched__read_events(sched, &session))
1521                 return -1;
1522
1523         perf_sched__sort_lat(sched);
1524
1525         printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1526         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
1527         printf(" -----------------------------------------------------------------------------------------------------------------\n");
1528
1529         next = rb_first(&sched->sorted_atom_root);
1530
1531         while (next) {
1532                 struct work_atoms *work_list;
1533
1534                 work_list = rb_entry(next, struct work_atoms, node);
1535                 output_lat_thread(sched, work_list);
1536                 next = rb_next(next);
1537         }
1538
1539         printf(" -----------------------------------------------------------------------------------------------------------------\n");
1540         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1541                 (double)sched->all_runtime / 1e6, sched->all_count);
1542
1543         printf(" ---------------------------------------------------\n");
1544
1545         print_bad_events(sched);
1546         printf("\n");
1547
1548         perf_session__delete(session);
1549         return 0;
1550 }
1551
1552 static int perf_sched__map(struct perf_sched *sched)
1553 {
1554         sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1555
1556         setup_pager();
1557         if (perf_sched__read_events(sched, NULL))
1558                 return -1;
1559         print_bad_events(sched);
1560         return 0;
1561 }
1562
1563 static int perf_sched__replay(struct perf_sched *sched)
1564 {
1565         unsigned long i;
1566
1567         calibrate_run_measurement_overhead(sched);
1568         calibrate_sleep_measurement_overhead(sched);
1569
1570         test_calibrations(sched);
1571
1572         if (perf_sched__read_events(sched, NULL))
1573                 return -1;
1574
1575         printf("nr_run_events:        %ld\n", sched->nr_run_events);
1576         printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
1577         printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
1578
1579         if (sched->targetless_wakeups)
1580                 printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
1581         if (sched->multitarget_wakeups)
1582                 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1583         if (sched->nr_run_events_optimized)
1584                 printf("run atoms optimized: %ld\n",
1585                         sched->nr_run_events_optimized);
1586
1587         print_task_traces(sched);
1588         add_cross_task_wakeups(sched);
1589
1590         create_tasks(sched);
1591         printf("------------------------------------------------------------\n");
1592         for (i = 0; i < sched->replay_repeat; i++)
1593                 run_one_test(sched);
1594
1595         return 0;
1596 }
1597
1598 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1599                           const char * const usage_msg[])
1600 {
1601         char *tmp, *tok, *str = strdup(sched->sort_order);
1602
1603         for (tok = strtok_r(str, ", ", &tmp);
1604                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1605                 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1606                         error("Unknown --sort key: `%s'", tok);
1607                         usage_with_options(usage_msg, options);
1608                 }
1609         }
1610
1611         free(str);
1612
1613         sort_dimension__add("pid", &sched->cmp_pid);
1614 }
1615
1616 static int __cmd_record(int argc, const char **argv)
1617 {
1618         unsigned int rec_argc, i, j;
1619         const char **rec_argv;
1620         const char * const record_args[] = {
1621                 "record",
1622                 "-a",
1623                 "-R",
1624                 "-m", "1024",
1625                 "-c", "1",
1626                 "-e", "sched:sched_switch",
1627                 "-e", "sched:sched_stat_wait",
1628                 "-e", "sched:sched_stat_sleep",
1629                 "-e", "sched:sched_stat_iowait",
1630                 "-e", "sched:sched_stat_runtime",
1631                 "-e", "sched:sched_process_fork",
1632                 "-e", "sched:sched_wakeup",
1633                 "-e", "sched:sched_wakeup_new",
1634                 "-e", "sched:sched_migrate_task",
1635         };
1636
1637         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1638         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1639
1640         if (rec_argv == NULL)
1641                 return -ENOMEM;
1642
1643         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1644                 rec_argv[i] = strdup(record_args[i]);
1645
1646         for (j = 1; j < (unsigned int)argc; j++, i++)
1647                 rec_argv[i] = argv[j];
1648
1649         BUG_ON(i != rec_argc);
1650
1651         return cmd_record(i, rec_argv, NULL);
1652 }
1653
1654 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1655 {
1656         const char default_sort_order[] = "avg, max, switch, runtime";
1657         struct perf_sched sched = {
1658                 .tool = {
1659                         .sample          = perf_sched__process_tracepoint_sample,
1660                         .comm            = perf_event__process_comm,
1661                         .lost            = perf_event__process_lost,
1662                         .fork            = perf_sched__process_fork_event,
1663                         .ordered_samples = true,
1664                 },
1665                 .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
1666                 .sort_list            = LIST_HEAD_INIT(sched.sort_list),
1667                 .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
1668                 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1669                 .sort_order           = default_sort_order,
1670                 .replay_repeat        = 10,
1671                 .profile_cpu          = -1,
1672                 .next_shortname1      = 'A',
1673                 .next_shortname2      = '0',
1674         };
1675         const struct option latency_options[] = {
1676         OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1677                    "sort by key(s): runtime, switch, avg, max"),
1678         OPT_INCR('v', "verbose", &verbose,
1679                     "be more verbose (show symbol address, etc)"),
1680         OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1681                     "CPU to profile on"),
1682         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1683                     "dump raw trace in ASCII"),
1684         OPT_END()
1685         };
1686         const struct option replay_options[] = {
1687         OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1688                      "repeat the workload replay N times (-1: infinite)"),
1689         OPT_INCR('v', "verbose", &verbose,
1690                     "be more verbose (show symbol address, etc)"),
1691         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1692                     "dump raw trace in ASCII"),
1693         OPT_END()
1694         };
1695         const struct option sched_options[] = {
1696         OPT_STRING('i', "input", &input_name, "file",
1697                     "input file name"),
1698         OPT_INCR('v', "verbose", &verbose,
1699                     "be more verbose (show symbol address, etc)"),
1700         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1701                     "dump raw trace in ASCII"),
1702         OPT_END()
1703         };
1704         const char * const latency_usage[] = {
1705                 "perf sched latency [<options>]",
1706                 NULL
1707         };
1708         const char * const replay_usage[] = {
1709                 "perf sched replay [<options>]",
1710                 NULL
1711         };
1712         const char *const sched_subcommands[] = { "record", "latency", "map",
1713                                                   "replay", "script", NULL };
1714         const char *sched_usage[] = {
1715                 NULL,
1716                 NULL
1717         };
1718         struct trace_sched_handler lat_ops  = {
1719                 .wakeup_event       = latency_wakeup_event,
1720                 .switch_event       = latency_switch_event,
1721                 .runtime_event      = latency_runtime_event,
1722                 .migrate_task_event = latency_migrate_task_event,
1723         };
1724         struct trace_sched_handler map_ops  = {
1725                 .switch_event       = map_switch_event,
1726         };
1727         struct trace_sched_handler replay_ops  = {
1728                 .wakeup_event       = replay_wakeup_event,
1729                 .switch_event       = replay_switch_event,
1730                 .fork_event         = replay_fork_event,
1731         };
1732         unsigned int i;
1733
1734         for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1735                 sched.curr_pid[i] = -1;
1736
1737         argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
1738                                         sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1739         if (!argc)
1740                 usage_with_options(sched_usage, sched_options);
1741
1742         /*
1743          * Aliased to 'perf script' for now:
1744          */
1745         if (!strcmp(argv[0], "script"))
1746                 return cmd_script(argc, argv, prefix);
1747
1748         symbol__init();
1749         if (!strncmp(argv[0], "rec", 3)) {
1750                 return __cmd_record(argc, argv);
1751         } else if (!strncmp(argv[0], "lat", 3)) {
1752                 sched.tp_handler = &lat_ops;
1753                 if (argc > 1) {
1754                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1755                         if (argc)
1756                                 usage_with_options(latency_usage, latency_options);
1757                 }
1758                 setup_sorting(&sched, latency_options, latency_usage);
1759                 return perf_sched__lat(&sched);
1760         } else if (!strcmp(argv[0], "map")) {
1761                 sched.tp_handler = &map_ops;
1762                 setup_sorting(&sched, latency_options, latency_usage);
1763                 return perf_sched__map(&sched);
1764         } else if (!strncmp(argv[0], "rep", 3)) {
1765                 sched.tp_handler = &replay_ops;
1766                 if (argc) {
1767                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1768                         if (argc)
1769                                 usage_with_options(replay_usage, replay_options);
1770                 }
1771                 return perf_sched__replay(&sched);
1772         } else {
1773                 usage_with_options(sched_usage, sched_options);
1774         }
1775
1776         return 0;
1777 }