]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - virt/kvm/arm/vgic/vgic-its.c
Merge tag 'for-linus-20170812' of git://git.infradead.org/linux-mtd
[karo-tx-linux.git] / virt / kvm / arm / vgic / vgic-its.c
1 /*
2  * GICv3 ITS emulation
3  *
4  * Copyright (C) 2015,2016 ARM Ltd.
5  * Author: Andre Przywara <andre.przywara@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26 #include <linux/list_sort.h>
27
28 #include <linux/irqchip/arm-gic-v3.h>
29
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33
34 #include "vgic.h"
35 #include "vgic-mmio.h"
36
37 static int vgic_its_save_tables_v0(struct vgic_its *its);
38 static int vgic_its_restore_tables_v0(struct vgic_its *its);
39 static int vgic_its_commit_v0(struct vgic_its *its);
40 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
41                              struct kvm_vcpu *filter_vcpu);
42
43 /*
44  * Creates a new (reference to a) struct vgic_irq for a given LPI.
45  * If this LPI is already mapped on another ITS, we increase its refcount
46  * and return a pointer to the existing structure.
47  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
48  * This function returns a pointer to the _unlocked_ structure.
49  */
50 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
51                                      struct kvm_vcpu *vcpu)
52 {
53         struct vgic_dist *dist = &kvm->arch.vgic;
54         struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
55         int ret;
56
57         /* In this case there is no put, since we keep the reference. */
58         if (irq)
59                 return irq;
60
61         irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
62         if (!irq)
63                 return ERR_PTR(-ENOMEM);
64
65         INIT_LIST_HEAD(&irq->lpi_list);
66         INIT_LIST_HEAD(&irq->ap_list);
67         spin_lock_init(&irq->irq_lock);
68
69         irq->config = VGIC_CONFIG_EDGE;
70         kref_init(&irq->refcount);
71         irq->intid = intid;
72         irq->target_vcpu = vcpu;
73
74         spin_lock(&dist->lpi_list_lock);
75
76         /*
77          * There could be a race with another vgic_add_lpi(), so we need to
78          * check that we don't add a second list entry with the same LPI.
79          */
80         list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
81                 if (oldirq->intid != intid)
82                         continue;
83
84                 /* Someone was faster with adding this LPI, lets use that. */
85                 kfree(irq);
86                 irq = oldirq;
87
88                 /*
89                  * This increases the refcount, the caller is expected to
90                  * call vgic_put_irq() on the returned pointer once it's
91                  * finished with the IRQ.
92                  */
93                 vgic_get_irq_kref(irq);
94
95                 goto out_unlock;
96         }
97
98         list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
99         dist->lpi_list_count++;
100
101 out_unlock:
102         spin_unlock(&dist->lpi_list_lock);
103
104         /*
105          * We "cache" the configuration table entries in our struct vgic_irq's.
106          * However we only have those structs for mapped IRQs, so we read in
107          * the respective config data from memory here upon mapping the LPI.
108          */
109         ret = update_lpi_config(kvm, irq, NULL);
110         if (ret)
111                 return ERR_PTR(ret);
112
113         ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
114         if (ret)
115                 return ERR_PTR(ret);
116
117         return irq;
118 }
119
120 struct its_device {
121         struct list_head dev_list;
122
123         /* the head for the list of ITTEs */
124         struct list_head itt_head;
125         u32 num_eventid_bits;
126         gpa_t itt_addr;
127         u32 device_id;
128 };
129
130 #define COLLECTION_NOT_MAPPED ((u32)~0)
131
132 struct its_collection {
133         struct list_head coll_list;
134
135         u32 collection_id;
136         u32 target_addr;
137 };
138
139 #define its_is_collection_mapped(coll) ((coll) && \
140                                 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
141
142 struct its_ite {
143         struct list_head ite_list;
144
145         struct vgic_irq *irq;
146         struct its_collection *collection;
147         u32 lpi;
148         u32 event_id;
149 };
150
151 /**
152  * struct vgic_its_abi - ITS abi ops and settings
153  * @cte_esz: collection table entry size
154  * @dte_esz: device table entry size
155  * @ite_esz: interrupt translation table entry size
156  * @save tables: save the ITS tables into guest RAM
157  * @restore_tables: restore the ITS internal structs from tables
158  *  stored in guest RAM
159  * @commit: initialize the registers which expose the ABI settings,
160  *  especially the entry sizes
161  */
162 struct vgic_its_abi {
163         int cte_esz;
164         int dte_esz;
165         int ite_esz;
166         int (*save_tables)(struct vgic_its *its);
167         int (*restore_tables)(struct vgic_its *its);
168         int (*commit)(struct vgic_its *its);
169 };
170
171 static const struct vgic_its_abi its_table_abi_versions[] = {
172         [0] = {.cte_esz = 8, .dte_esz = 8, .ite_esz = 8,
173          .save_tables = vgic_its_save_tables_v0,
174          .restore_tables = vgic_its_restore_tables_v0,
175          .commit = vgic_its_commit_v0,
176         },
177 };
178
179 #define NR_ITS_ABIS     ARRAY_SIZE(its_table_abi_versions)
180
181 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
182 {
183         return &its_table_abi_versions[its->abi_rev];
184 }
185
186 int vgic_its_set_abi(struct vgic_its *its, int rev)
187 {
188         const struct vgic_its_abi *abi;
189
190         its->abi_rev = rev;
191         abi = vgic_its_get_abi(its);
192         return abi->commit(its);
193 }
194
195 /*
196  * Find and returns a device in the device table for an ITS.
197  * Must be called with the its_lock mutex held.
198  */
199 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
200 {
201         struct its_device *device;
202
203         list_for_each_entry(device, &its->device_list, dev_list)
204                 if (device_id == device->device_id)
205                         return device;
206
207         return NULL;
208 }
209
210 /*
211  * Find and returns an interrupt translation table entry (ITTE) for a given
212  * Device ID/Event ID pair on an ITS.
213  * Must be called with the its_lock mutex held.
214  */
215 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
216                                   u32 event_id)
217 {
218         struct its_device *device;
219         struct its_ite *ite;
220
221         device = find_its_device(its, device_id);
222         if (device == NULL)
223                 return NULL;
224
225         list_for_each_entry(ite, &device->itt_head, ite_list)
226                 if (ite->event_id == event_id)
227                         return ite;
228
229         return NULL;
230 }
231
232 /* To be used as an iterator this macro misses the enclosing parentheses */
233 #define for_each_lpi_its(dev, ite, its) \
234         list_for_each_entry(dev, &(its)->device_list, dev_list) \
235                 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
236
237 /*
238  * We only implement 48 bits of PA at the moment, although the ITS
239  * supports more. Let's be restrictive here.
240  */
241 #define BASER_ADDRESS(x)        ((x) & GENMASK_ULL(47, 16))
242 #define CBASER_ADDRESS(x)       ((x) & GENMASK_ULL(47, 12))
243
244 #define GIC_LPI_OFFSET 8192
245
246 #define VITS_TYPER_IDBITS 16
247 #define VITS_TYPER_DEVBITS 16
248 #define VITS_DTE_MAX_DEVID_OFFSET       (BIT(14) - 1)
249 #define VITS_ITE_MAX_EVENTID_OFFSET     (BIT(16) - 1)
250
251 /*
252  * Finds and returns a collection in the ITS collection table.
253  * Must be called with the its_lock mutex held.
254  */
255 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
256 {
257         struct its_collection *collection;
258
259         list_for_each_entry(collection, &its->collection_list, coll_list) {
260                 if (coll_id == collection->collection_id)
261                         return collection;
262         }
263
264         return NULL;
265 }
266
267 #define LPI_PROP_ENABLE_BIT(p)  ((p) & LPI_PROP_ENABLED)
268 #define LPI_PROP_PRIORITY(p)    ((p) & 0xfc)
269
270 /*
271  * Reads the configuration data for a given LPI from guest memory and
272  * updates the fields in struct vgic_irq.
273  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
274  * VCPU. Unconditionally applies if filter_vcpu is NULL.
275  */
276 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
277                              struct kvm_vcpu *filter_vcpu)
278 {
279         u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
280         u8 prop;
281         int ret;
282
283         ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
284                              &prop, 1);
285
286         if (ret)
287                 return ret;
288
289         spin_lock(&irq->irq_lock);
290
291         if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
292                 irq->priority = LPI_PROP_PRIORITY(prop);
293                 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
294
295                 vgic_queue_irq_unlock(kvm, irq);
296         } else {
297                 spin_unlock(&irq->irq_lock);
298         }
299
300         return 0;
301 }
302
303 /*
304  * Create a snapshot of the current LPIs targeting @vcpu, so that we can
305  * enumerate those LPIs without holding any lock.
306  * Returns their number and puts the kmalloc'ed array into intid_ptr.
307  */
308 static int vgic_copy_lpi_list(struct kvm_vcpu *vcpu, u32 **intid_ptr)
309 {
310         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
311         struct vgic_irq *irq;
312         u32 *intids;
313         int irq_count = dist->lpi_list_count, i = 0;
314
315         /*
316          * We use the current value of the list length, which may change
317          * after the kmalloc. We don't care, because the guest shouldn't
318          * change anything while the command handling is still running,
319          * and in the worst case we would miss a new IRQ, which one wouldn't
320          * expect to be covered by this command anyway.
321          */
322         intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
323         if (!intids)
324                 return -ENOMEM;
325
326         spin_lock(&dist->lpi_list_lock);
327         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
328                 /* We don't need to "get" the IRQ, as we hold the list lock. */
329                 if (irq->target_vcpu != vcpu)
330                         continue;
331                 intids[i++] = irq->intid;
332         }
333         spin_unlock(&dist->lpi_list_lock);
334
335         *intid_ptr = intids;
336         return i;
337 }
338
339 /*
340  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
341  * is targeting) to the VGIC's view, which deals with target VCPUs.
342  * Needs to be called whenever either the collection for a LPIs has
343  * changed or the collection itself got retargeted.
344  */
345 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
346 {
347         struct kvm_vcpu *vcpu;
348
349         if (!its_is_collection_mapped(ite->collection))
350                 return;
351
352         vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
353
354         spin_lock(&ite->irq->irq_lock);
355         ite->irq->target_vcpu = vcpu;
356         spin_unlock(&ite->irq->irq_lock);
357 }
358
359 /*
360  * Updates the target VCPU for every LPI targeting this collection.
361  * Must be called with the its_lock mutex held.
362  */
363 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
364                                        struct its_collection *coll)
365 {
366         struct its_device *device;
367         struct its_ite *ite;
368
369         for_each_lpi_its(device, ite, its) {
370                 if (!ite->collection || coll != ite->collection)
371                         continue;
372
373                 update_affinity_ite(kvm, ite);
374         }
375 }
376
377 static u32 max_lpis_propbaser(u64 propbaser)
378 {
379         int nr_idbits = (propbaser & 0x1f) + 1;
380
381         return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
382 }
383
384 /*
385  * Sync the pending table pending bit of LPIs targeting @vcpu
386  * with our own data structures. This relies on the LPI being
387  * mapped before.
388  */
389 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
390 {
391         gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
392         struct vgic_irq *irq;
393         int last_byte_offset = -1;
394         int ret = 0;
395         u32 *intids;
396         int nr_irqs, i;
397
398         nr_irqs = vgic_copy_lpi_list(vcpu, &intids);
399         if (nr_irqs < 0)
400                 return nr_irqs;
401
402         for (i = 0; i < nr_irqs; i++) {
403                 int byte_offset, bit_nr;
404                 u8 pendmask;
405
406                 byte_offset = intids[i] / BITS_PER_BYTE;
407                 bit_nr = intids[i] % BITS_PER_BYTE;
408
409                 /*
410                  * For contiguously allocated LPIs chances are we just read
411                  * this very same byte in the last iteration. Reuse that.
412                  */
413                 if (byte_offset != last_byte_offset) {
414                         ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
415                                              &pendmask, 1);
416                         if (ret) {
417                                 kfree(intids);
418                                 return ret;
419                         }
420                         last_byte_offset = byte_offset;
421                 }
422
423                 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
424                 spin_lock(&irq->irq_lock);
425                 irq->pending_latch = pendmask & (1U << bit_nr);
426                 vgic_queue_irq_unlock(vcpu->kvm, irq);
427                 vgic_put_irq(vcpu->kvm, irq);
428         }
429
430         kfree(intids);
431
432         return ret;
433 }
434
435 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
436                                               struct vgic_its *its,
437                                               gpa_t addr, unsigned int len)
438 {
439         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
440         u64 reg = GITS_TYPER_PLPIS;
441
442         /*
443          * We use linear CPU numbers for redistributor addressing,
444          * so GITS_TYPER.PTA is 0.
445          * Also we force all PROPBASER registers to be the same, so
446          * CommonLPIAff is 0 as well.
447          * To avoid memory waste in the guest, we keep the number of IDBits and
448          * DevBits low - as least for the time being.
449          */
450         reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
451         reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
452         reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
453
454         return extract_bytes(reg, addr & 7, len);
455 }
456
457 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
458                                              struct vgic_its *its,
459                                              gpa_t addr, unsigned int len)
460 {
461         u32 val;
462
463         val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
464         val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
465         return val;
466 }
467
468 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
469                                             struct vgic_its *its,
470                                             gpa_t addr, unsigned int len,
471                                             unsigned long val)
472 {
473         u32 rev = GITS_IIDR_REV(val);
474
475         if (rev >= NR_ITS_ABIS)
476                 return -EINVAL;
477         return vgic_its_set_abi(its, rev);
478 }
479
480 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
481                                                struct vgic_its *its,
482                                                gpa_t addr, unsigned int len)
483 {
484         switch (addr & 0xffff) {
485         case GITS_PIDR0:
486                 return 0x92;    /* part number, bits[7:0] */
487         case GITS_PIDR1:
488                 return 0xb4;    /* part number, bits[11:8] */
489         case GITS_PIDR2:
490                 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
491         case GITS_PIDR4:
492                 return 0x40;    /* This is a 64K software visible page */
493         /* The following are the ID registers for (any) GIC. */
494         case GITS_CIDR0:
495                 return 0x0d;
496         case GITS_CIDR1:
497                 return 0xf0;
498         case GITS_CIDR2:
499                 return 0x05;
500         case GITS_CIDR3:
501                 return 0xb1;
502         }
503
504         return 0;
505 }
506
507 /*
508  * Find the target VCPU and the LPI number for a given devid/eventid pair
509  * and make this IRQ pending, possibly injecting it.
510  * Must be called with the its_lock mutex held.
511  * Returns 0 on success, a positive error value for any ITS mapping
512  * related errors and negative error values for generic errors.
513  */
514 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
515                                 u32 devid, u32 eventid)
516 {
517         struct kvm_vcpu *vcpu;
518         struct its_ite *ite;
519
520         if (!its->enabled)
521                 return -EBUSY;
522
523         ite = find_ite(its, devid, eventid);
524         if (!ite || !its_is_collection_mapped(ite->collection))
525                 return E_ITS_INT_UNMAPPED_INTERRUPT;
526
527         vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
528         if (!vcpu)
529                 return E_ITS_INT_UNMAPPED_INTERRUPT;
530
531         if (!vcpu->arch.vgic_cpu.lpis_enabled)
532                 return -EBUSY;
533
534         spin_lock(&ite->irq->irq_lock);
535         ite->irq->pending_latch = true;
536         vgic_queue_irq_unlock(kvm, ite->irq);
537
538         return 0;
539 }
540
541 static struct vgic_io_device *vgic_get_its_iodev(struct kvm_io_device *dev)
542 {
543         struct vgic_io_device *iodev;
544
545         if (dev->ops != &kvm_io_gic_ops)
546                 return NULL;
547
548         iodev = container_of(dev, struct vgic_io_device, dev);
549
550         if (iodev->iodev_type != IODEV_ITS)
551                 return NULL;
552
553         return iodev;
554 }
555
556 /*
557  * Queries the KVM IO bus framework to get the ITS pointer from the given
558  * doorbell address.
559  * We then call vgic_its_trigger_msi() with the decoded data.
560  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
561  */
562 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
563 {
564         u64 address;
565         struct kvm_io_device *kvm_io_dev;
566         struct vgic_io_device *iodev;
567         int ret;
568
569         if (!vgic_has_its(kvm))
570                 return -ENODEV;
571
572         if (!(msi->flags & KVM_MSI_VALID_DEVID))
573                 return -EINVAL;
574
575         address = (u64)msi->address_hi << 32 | msi->address_lo;
576
577         kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
578         if (!kvm_io_dev)
579                 return -EINVAL;
580
581         iodev = vgic_get_its_iodev(kvm_io_dev);
582         if (!iodev)
583                 return -EINVAL;
584
585         mutex_lock(&iodev->its->its_lock);
586         ret = vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data);
587         mutex_unlock(&iodev->its->its_lock);
588
589         if (ret < 0)
590                 return ret;
591
592         /*
593          * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
594          * if the guest has blocked the MSI. So we map any LPI mapping
595          * related error to that.
596          */
597         if (ret)
598                 return 0;
599         else
600                 return 1;
601 }
602
603 /* Requires the its_lock to be held. */
604 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
605 {
606         list_del(&ite->ite_list);
607
608         /* This put matches the get in vgic_add_lpi. */
609         if (ite->irq)
610                 vgic_put_irq(kvm, ite->irq);
611
612         kfree(ite);
613 }
614
615 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
616 {
617         return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
618 }
619
620 #define its_cmd_get_command(cmd)        its_cmd_mask_field(cmd, 0,  0,  8)
621 #define its_cmd_get_deviceid(cmd)       its_cmd_mask_field(cmd, 0, 32, 32)
622 #define its_cmd_get_size(cmd)           (its_cmd_mask_field(cmd, 1,  0,  5) + 1)
623 #define its_cmd_get_id(cmd)             its_cmd_mask_field(cmd, 1,  0, 32)
624 #define its_cmd_get_physical_id(cmd)    its_cmd_mask_field(cmd, 1, 32, 32)
625 #define its_cmd_get_collection(cmd)     its_cmd_mask_field(cmd, 2,  0, 16)
626 #define its_cmd_get_ittaddr(cmd)        (its_cmd_mask_field(cmd, 2,  8, 44) << 8)
627 #define its_cmd_get_target_addr(cmd)    its_cmd_mask_field(cmd, 2, 16, 32)
628 #define its_cmd_get_validbit(cmd)       its_cmd_mask_field(cmd, 2, 63,  1)
629
630 /*
631  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
632  * Must be called with the its_lock mutex held.
633  */
634 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
635                                        u64 *its_cmd)
636 {
637         u32 device_id = its_cmd_get_deviceid(its_cmd);
638         u32 event_id = its_cmd_get_id(its_cmd);
639         struct its_ite *ite;
640
641
642         ite = find_ite(its, device_id, event_id);
643         if (ite && ite->collection) {
644                 /*
645                  * Though the spec talks about removing the pending state, we
646                  * don't bother here since we clear the ITTE anyway and the
647                  * pending state is a property of the ITTE struct.
648                  */
649                 its_free_ite(kvm, ite);
650                 return 0;
651         }
652
653         return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
654 }
655
656 /*
657  * The MOVI command moves an ITTE to a different collection.
658  * Must be called with the its_lock mutex held.
659  */
660 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
661                                     u64 *its_cmd)
662 {
663         u32 device_id = its_cmd_get_deviceid(its_cmd);
664         u32 event_id = its_cmd_get_id(its_cmd);
665         u32 coll_id = its_cmd_get_collection(its_cmd);
666         struct kvm_vcpu *vcpu;
667         struct its_ite *ite;
668         struct its_collection *collection;
669
670         ite = find_ite(its, device_id, event_id);
671         if (!ite)
672                 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
673
674         if (!its_is_collection_mapped(ite->collection))
675                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
676
677         collection = find_collection(its, coll_id);
678         if (!its_is_collection_mapped(collection))
679                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
680
681         ite->collection = collection;
682         vcpu = kvm_get_vcpu(kvm, collection->target_addr);
683
684         spin_lock(&ite->irq->irq_lock);
685         ite->irq->target_vcpu = vcpu;
686         spin_unlock(&ite->irq->irq_lock);
687
688         return 0;
689 }
690
691 /*
692  * Check whether an ID can be stored into the corresponding guest table.
693  * For a direct table this is pretty easy, but gets a bit nasty for
694  * indirect tables. We check whether the resulting guest physical address
695  * is actually valid (covered by a memslot and guest accessible).
696  * For this we have to read the respective first level entry.
697  */
698 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
699                               gpa_t *eaddr)
700 {
701         int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
702         u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
703         int esz = GITS_BASER_ENTRY_SIZE(baser);
704         int index;
705         gfn_t gfn;
706
707         switch (type) {
708         case GITS_BASER_TYPE_DEVICE:
709                 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
710                         return false;
711                 break;
712         case GITS_BASER_TYPE_COLLECTION:
713                 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
714                 if (id >= BIT_ULL(16))
715                         return false;
716                 break;
717         default:
718                 return false;
719         }
720
721         if (!(baser & GITS_BASER_INDIRECT)) {
722                 phys_addr_t addr;
723
724                 if (id >= (l1_tbl_size / esz))
725                         return false;
726
727                 addr = BASER_ADDRESS(baser) + id * esz;
728                 gfn = addr >> PAGE_SHIFT;
729
730                 if (eaddr)
731                         *eaddr = addr;
732                 return kvm_is_visible_gfn(its->dev->kvm, gfn);
733         }
734
735         /* calculate and check the index into the 1st level */
736         index = id / (SZ_64K / esz);
737         if (index >= (l1_tbl_size / sizeof(u64)))
738                 return false;
739
740         /* Each 1st level entry is represented by a 64-bit value. */
741         if (kvm_read_guest(its->dev->kvm,
742                            BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
743                            &indirect_ptr, sizeof(indirect_ptr)))
744                 return false;
745
746         indirect_ptr = le64_to_cpu(indirect_ptr);
747
748         /* check the valid bit of the first level entry */
749         if (!(indirect_ptr & BIT_ULL(63)))
750                 return false;
751
752         /*
753          * Mask the guest physical address and calculate the frame number.
754          * Any address beyond our supported 48 bits of PA will be caught
755          * by the actual check in the final step.
756          */
757         indirect_ptr &= GENMASK_ULL(51, 16);
758
759         /* Find the address of the actual entry */
760         index = id % (SZ_64K / esz);
761         indirect_ptr += index * esz;
762         gfn = indirect_ptr >> PAGE_SHIFT;
763
764         if (eaddr)
765                 *eaddr = indirect_ptr;
766         return kvm_is_visible_gfn(its->dev->kvm, gfn);
767 }
768
769 static int vgic_its_alloc_collection(struct vgic_its *its,
770                                      struct its_collection **colp,
771                                      u32 coll_id)
772 {
773         struct its_collection *collection;
774
775         if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
776                 return E_ITS_MAPC_COLLECTION_OOR;
777
778         collection = kzalloc(sizeof(*collection), GFP_KERNEL);
779
780         collection->collection_id = coll_id;
781         collection->target_addr = COLLECTION_NOT_MAPPED;
782
783         list_add_tail(&collection->coll_list, &its->collection_list);
784         *colp = collection;
785
786         return 0;
787 }
788
789 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
790 {
791         struct its_collection *collection;
792         struct its_device *device;
793         struct its_ite *ite;
794
795         /*
796          * Clearing the mapping for that collection ID removes the
797          * entry from the list. If there wasn't any before, we can
798          * go home early.
799          */
800         collection = find_collection(its, coll_id);
801         if (!collection)
802                 return;
803
804         for_each_lpi_its(device, ite, its)
805                 if (ite->collection &&
806                     ite->collection->collection_id == coll_id)
807                         ite->collection = NULL;
808
809         list_del(&collection->coll_list);
810         kfree(collection);
811 }
812
813 /* Must be called with its_lock mutex held */
814 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
815                                           struct its_collection *collection,
816                                           u32 lpi_id, u32 event_id)
817 {
818         struct its_ite *ite;
819
820         ite = kzalloc(sizeof(*ite), GFP_KERNEL);
821         if (!ite)
822                 return ERR_PTR(-ENOMEM);
823
824         ite->event_id   = event_id;
825         ite->collection = collection;
826         ite->lpi = lpi_id;
827
828         list_add_tail(&ite->ite_list, &device->itt_head);
829         return ite;
830 }
831
832 /*
833  * The MAPTI and MAPI commands map LPIs to ITTEs.
834  * Must be called with its_lock mutex held.
835  */
836 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
837                                     u64 *its_cmd)
838 {
839         u32 device_id = its_cmd_get_deviceid(its_cmd);
840         u32 event_id = its_cmd_get_id(its_cmd);
841         u32 coll_id = its_cmd_get_collection(its_cmd);
842         struct its_ite *ite;
843         struct kvm_vcpu *vcpu = NULL;
844         struct its_device *device;
845         struct its_collection *collection, *new_coll = NULL;
846         struct vgic_irq *irq;
847         int lpi_nr;
848
849         device = find_its_device(its, device_id);
850         if (!device)
851                 return E_ITS_MAPTI_UNMAPPED_DEVICE;
852
853         if (event_id >= BIT_ULL(device->num_eventid_bits))
854                 return E_ITS_MAPTI_ID_OOR;
855
856         if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
857                 lpi_nr = its_cmd_get_physical_id(its_cmd);
858         else
859                 lpi_nr = event_id;
860         if (lpi_nr < GIC_LPI_OFFSET ||
861             lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
862                 return E_ITS_MAPTI_PHYSICALID_OOR;
863
864         /* If there is an existing mapping, behavior is UNPREDICTABLE. */
865         if (find_ite(its, device_id, event_id))
866                 return 0;
867
868         collection = find_collection(its, coll_id);
869         if (!collection) {
870                 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
871                 if (ret)
872                         return ret;
873                 new_coll = collection;
874         }
875
876         ite = vgic_its_alloc_ite(device, collection, lpi_nr, event_id);
877         if (IS_ERR(ite)) {
878                 if (new_coll)
879                         vgic_its_free_collection(its, coll_id);
880                 return PTR_ERR(ite);
881         }
882
883         if (its_is_collection_mapped(collection))
884                 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
885
886         irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
887         if (IS_ERR(irq)) {
888                 if (new_coll)
889                         vgic_its_free_collection(its, coll_id);
890                 its_free_ite(kvm, ite);
891                 return PTR_ERR(irq);
892         }
893         ite->irq = irq;
894
895         return 0;
896 }
897
898 /* Requires the its_lock to be held. */
899 static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
900 {
901         struct its_ite *ite, *temp;
902
903         /*
904          * The spec says that unmapping a device with still valid
905          * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
906          * since we cannot leave the memory unreferenced.
907          */
908         list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
909                 its_free_ite(kvm, ite);
910
911         list_del(&device->dev_list);
912         kfree(device);
913 }
914
915 /* Must be called with its_lock mutex held */
916 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
917                                                 u32 device_id, gpa_t itt_addr,
918                                                 u8 num_eventid_bits)
919 {
920         struct its_device *device;
921
922         device = kzalloc(sizeof(*device), GFP_KERNEL);
923         if (!device)
924                 return ERR_PTR(-ENOMEM);
925
926         device->device_id = device_id;
927         device->itt_addr = itt_addr;
928         device->num_eventid_bits = num_eventid_bits;
929         INIT_LIST_HEAD(&device->itt_head);
930
931         list_add_tail(&device->dev_list, &its->device_list);
932         return device;
933 }
934
935 /*
936  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
937  * Must be called with the its_lock mutex held.
938  */
939 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
940                                     u64 *its_cmd)
941 {
942         u32 device_id = its_cmd_get_deviceid(its_cmd);
943         bool valid = its_cmd_get_validbit(its_cmd);
944         u8 num_eventid_bits = its_cmd_get_size(its_cmd);
945         gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
946         struct its_device *device;
947
948         if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
949                 return E_ITS_MAPD_DEVICE_OOR;
950
951         if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
952                 return E_ITS_MAPD_ITTSIZE_OOR;
953
954         device = find_its_device(its, device_id);
955
956         /*
957          * The spec says that calling MAPD on an already mapped device
958          * invalidates all cached data for this device. We implement this
959          * by removing the mapping and re-establishing it.
960          */
961         if (device)
962                 vgic_its_unmap_device(kvm, device);
963
964         /*
965          * The spec does not say whether unmapping a not-mapped device
966          * is an error, so we are done in any case.
967          */
968         if (!valid)
969                 return 0;
970
971         device = vgic_its_alloc_device(its, device_id, itt_addr,
972                                        num_eventid_bits);
973         if (IS_ERR(device))
974                 return PTR_ERR(device);
975
976         return 0;
977 }
978
979 /*
980  * The MAPC command maps collection IDs to redistributors.
981  * Must be called with the its_lock mutex held.
982  */
983 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
984                                     u64 *its_cmd)
985 {
986         u16 coll_id;
987         u32 target_addr;
988         struct its_collection *collection;
989         bool valid;
990
991         valid = its_cmd_get_validbit(its_cmd);
992         coll_id = its_cmd_get_collection(its_cmd);
993         target_addr = its_cmd_get_target_addr(its_cmd);
994
995         if (target_addr >= atomic_read(&kvm->online_vcpus))
996                 return E_ITS_MAPC_PROCNUM_OOR;
997
998         if (!valid) {
999                 vgic_its_free_collection(its, coll_id);
1000         } else {
1001                 collection = find_collection(its, coll_id);
1002
1003                 if (!collection) {
1004                         int ret;
1005
1006                         ret = vgic_its_alloc_collection(its, &collection,
1007                                                         coll_id);
1008                         if (ret)
1009                                 return ret;
1010                         collection->target_addr = target_addr;
1011                 } else {
1012                         collection->target_addr = target_addr;
1013                         update_affinity_collection(kvm, its, collection);
1014                 }
1015         }
1016
1017         return 0;
1018 }
1019
1020 /*
1021  * The CLEAR command removes the pending state for a particular LPI.
1022  * Must be called with the its_lock mutex held.
1023  */
1024 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1025                                      u64 *its_cmd)
1026 {
1027         u32 device_id = its_cmd_get_deviceid(its_cmd);
1028         u32 event_id = its_cmd_get_id(its_cmd);
1029         struct its_ite *ite;
1030
1031
1032         ite = find_ite(its, device_id, event_id);
1033         if (!ite)
1034                 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1035
1036         ite->irq->pending_latch = false;
1037
1038         return 0;
1039 }
1040
1041 /*
1042  * The INV command syncs the configuration bits from the memory table.
1043  * Must be called with the its_lock mutex held.
1044  */
1045 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1046                                    u64 *its_cmd)
1047 {
1048         u32 device_id = its_cmd_get_deviceid(its_cmd);
1049         u32 event_id = its_cmd_get_id(its_cmd);
1050         struct its_ite *ite;
1051
1052
1053         ite = find_ite(its, device_id, event_id);
1054         if (!ite)
1055                 return E_ITS_INV_UNMAPPED_INTERRUPT;
1056
1057         return update_lpi_config(kvm, ite->irq, NULL);
1058 }
1059
1060 /*
1061  * The INVALL command requests flushing of all IRQ data in this collection.
1062  * Find the VCPU mapped to that collection, then iterate over the VM's list
1063  * of mapped LPIs and update the configuration for each IRQ which targets
1064  * the specified vcpu. The configuration will be read from the in-memory
1065  * configuration table.
1066  * Must be called with the its_lock mutex held.
1067  */
1068 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1069                                       u64 *its_cmd)
1070 {
1071         u32 coll_id = its_cmd_get_collection(its_cmd);
1072         struct its_collection *collection;
1073         struct kvm_vcpu *vcpu;
1074         struct vgic_irq *irq;
1075         u32 *intids;
1076         int irq_count, i;
1077
1078         collection = find_collection(its, coll_id);
1079         if (!its_is_collection_mapped(collection))
1080                 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1081
1082         vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1083
1084         irq_count = vgic_copy_lpi_list(vcpu, &intids);
1085         if (irq_count < 0)
1086                 return irq_count;
1087
1088         for (i = 0; i < irq_count; i++) {
1089                 irq = vgic_get_irq(kvm, NULL, intids[i]);
1090                 if (!irq)
1091                         continue;
1092                 update_lpi_config(kvm, irq, vcpu);
1093                 vgic_put_irq(kvm, irq);
1094         }
1095
1096         kfree(intids);
1097
1098         return 0;
1099 }
1100
1101 /*
1102  * The MOVALL command moves the pending state of all IRQs targeting one
1103  * redistributor to another. We don't hold the pending state in the VCPUs,
1104  * but in the IRQs instead, so there is really not much to do for us here.
1105  * However the spec says that no IRQ must target the old redistributor
1106  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1107  * This command affects all LPIs in the system that target that redistributor.
1108  */
1109 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1110                                       u64 *its_cmd)
1111 {
1112         struct vgic_dist *dist = &kvm->arch.vgic;
1113         u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1114         u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1115         struct kvm_vcpu *vcpu1, *vcpu2;
1116         struct vgic_irq *irq;
1117
1118         if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1119             target2_addr >= atomic_read(&kvm->online_vcpus))
1120                 return E_ITS_MOVALL_PROCNUM_OOR;
1121
1122         if (target1_addr == target2_addr)
1123                 return 0;
1124
1125         vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1126         vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1127
1128         spin_lock(&dist->lpi_list_lock);
1129
1130         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
1131                 spin_lock(&irq->irq_lock);
1132
1133                 if (irq->target_vcpu == vcpu1)
1134                         irq->target_vcpu = vcpu2;
1135
1136                 spin_unlock(&irq->irq_lock);
1137         }
1138
1139         spin_unlock(&dist->lpi_list_lock);
1140
1141         return 0;
1142 }
1143
1144 /*
1145  * The INT command injects the LPI associated with that DevID/EvID pair.
1146  * Must be called with the its_lock mutex held.
1147  */
1148 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1149                                    u64 *its_cmd)
1150 {
1151         u32 msi_data = its_cmd_get_id(its_cmd);
1152         u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1153
1154         return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1155 }
1156
1157 /*
1158  * This function is called with the its_cmd lock held, but the ITS data
1159  * structure lock dropped.
1160  */
1161 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1162                                    u64 *its_cmd)
1163 {
1164         int ret = -ENODEV;
1165
1166         mutex_lock(&its->its_lock);
1167         switch (its_cmd_get_command(its_cmd)) {
1168         case GITS_CMD_MAPD:
1169                 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1170                 break;
1171         case GITS_CMD_MAPC:
1172                 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1173                 break;
1174         case GITS_CMD_MAPI:
1175                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1176                 break;
1177         case GITS_CMD_MAPTI:
1178                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1179                 break;
1180         case GITS_CMD_MOVI:
1181                 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1182                 break;
1183         case GITS_CMD_DISCARD:
1184                 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1185                 break;
1186         case GITS_CMD_CLEAR:
1187                 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1188                 break;
1189         case GITS_CMD_MOVALL:
1190                 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1191                 break;
1192         case GITS_CMD_INT:
1193                 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1194                 break;
1195         case GITS_CMD_INV:
1196                 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1197                 break;
1198         case GITS_CMD_INVALL:
1199                 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1200                 break;
1201         case GITS_CMD_SYNC:
1202                 /* we ignore this command: we are in sync all of the time */
1203                 ret = 0;
1204                 break;
1205         }
1206         mutex_unlock(&its->its_lock);
1207
1208         return ret;
1209 }
1210
1211 static u64 vgic_sanitise_its_baser(u64 reg)
1212 {
1213         reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1214                                   GITS_BASER_SHAREABILITY_SHIFT,
1215                                   vgic_sanitise_shareability);
1216         reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1217                                   GITS_BASER_INNER_CACHEABILITY_SHIFT,
1218                                   vgic_sanitise_inner_cacheability);
1219         reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1220                                   GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1221                                   vgic_sanitise_outer_cacheability);
1222
1223         /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1224         reg &= ~GENMASK_ULL(15, 12);
1225
1226         /* We support only one (ITS) page size: 64K */
1227         reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1228
1229         return reg;
1230 }
1231
1232 static u64 vgic_sanitise_its_cbaser(u64 reg)
1233 {
1234         reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1235                                   GITS_CBASER_SHAREABILITY_SHIFT,
1236                                   vgic_sanitise_shareability);
1237         reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1238                                   GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1239                                   vgic_sanitise_inner_cacheability);
1240         reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1241                                   GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1242                                   vgic_sanitise_outer_cacheability);
1243
1244         /*
1245          * Sanitise the physical address to be 64k aligned.
1246          * Also limit the physical addresses to 48 bits.
1247          */
1248         reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1249
1250         return reg;
1251 }
1252
1253 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1254                                                struct vgic_its *its,
1255                                                gpa_t addr, unsigned int len)
1256 {
1257         return extract_bytes(its->cbaser, addr & 7, len);
1258 }
1259
1260 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1261                                        gpa_t addr, unsigned int len,
1262                                        unsigned long val)
1263 {
1264         /* When GITS_CTLR.Enable is 1, this register is RO. */
1265         if (its->enabled)
1266                 return;
1267
1268         mutex_lock(&its->cmd_lock);
1269         its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1270         its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1271         its->creadr = 0;
1272         /*
1273          * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1274          * it to CREADR to make sure we start with an empty command buffer.
1275          */
1276         its->cwriter = its->creadr;
1277         mutex_unlock(&its->cmd_lock);
1278 }
1279
1280 #define ITS_CMD_BUFFER_SIZE(baser)      ((((baser) & 0xff) + 1) << 12)
1281 #define ITS_CMD_SIZE                    32
1282 #define ITS_CMD_OFFSET(reg)             ((reg) & GENMASK(19, 5))
1283
1284 /* Must be called with the cmd_lock held. */
1285 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1286 {
1287         gpa_t cbaser;
1288         u64 cmd_buf[4];
1289
1290         /* Commands are only processed when the ITS is enabled. */
1291         if (!its->enabled)
1292                 return;
1293
1294         cbaser = CBASER_ADDRESS(its->cbaser);
1295
1296         while (its->cwriter != its->creadr) {
1297                 int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1298                                          cmd_buf, ITS_CMD_SIZE);
1299                 /*
1300                  * If kvm_read_guest() fails, this could be due to the guest
1301                  * programming a bogus value in CBASER or something else going
1302                  * wrong from which we cannot easily recover.
1303                  * According to section 6.3.2 in the GICv3 spec we can just
1304                  * ignore that command then.
1305                  */
1306                 if (!ret)
1307                         vgic_its_handle_command(kvm, its, cmd_buf);
1308
1309                 its->creadr += ITS_CMD_SIZE;
1310                 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1311                         its->creadr = 0;
1312         }
1313 }
1314
1315 /*
1316  * By writing to CWRITER the guest announces new commands to be processed.
1317  * To avoid any races in the first place, we take the its_cmd lock, which
1318  * protects our ring buffer variables, so that there is only one user
1319  * per ITS handling commands at a given time.
1320  */
1321 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1322                                         gpa_t addr, unsigned int len,
1323                                         unsigned long val)
1324 {
1325         u64 reg;
1326
1327         if (!its)
1328                 return;
1329
1330         mutex_lock(&its->cmd_lock);
1331
1332         reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1333         reg = ITS_CMD_OFFSET(reg);
1334         if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1335                 mutex_unlock(&its->cmd_lock);
1336                 return;
1337         }
1338         its->cwriter = reg;
1339
1340         vgic_its_process_commands(kvm, its);
1341
1342         mutex_unlock(&its->cmd_lock);
1343 }
1344
1345 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1346                                                 struct vgic_its *its,
1347                                                 gpa_t addr, unsigned int len)
1348 {
1349         return extract_bytes(its->cwriter, addr & 0x7, len);
1350 }
1351
1352 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1353                                                struct vgic_its *its,
1354                                                gpa_t addr, unsigned int len)
1355 {
1356         return extract_bytes(its->creadr, addr & 0x7, len);
1357 }
1358
1359 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1360                                               struct vgic_its *its,
1361                                               gpa_t addr, unsigned int len,
1362                                               unsigned long val)
1363 {
1364         u32 cmd_offset;
1365         int ret = 0;
1366
1367         mutex_lock(&its->cmd_lock);
1368
1369         if (its->enabled) {
1370                 ret = -EBUSY;
1371                 goto out;
1372         }
1373
1374         cmd_offset = ITS_CMD_OFFSET(val);
1375         if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1376                 ret = -EINVAL;
1377                 goto out;
1378         }
1379
1380         its->creadr = cmd_offset;
1381 out:
1382         mutex_unlock(&its->cmd_lock);
1383         return ret;
1384 }
1385
1386 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1387 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1388                                               struct vgic_its *its,
1389                                               gpa_t addr, unsigned int len)
1390 {
1391         u64 reg;
1392
1393         switch (BASER_INDEX(addr)) {
1394         case 0:
1395                 reg = its->baser_device_table;
1396                 break;
1397         case 1:
1398                 reg = its->baser_coll_table;
1399                 break;
1400         default:
1401                 reg = 0;
1402                 break;
1403         }
1404
1405         return extract_bytes(reg, addr & 7, len);
1406 }
1407
1408 #define GITS_BASER_RO_MASK      (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1409 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1410                                       struct vgic_its *its,
1411                                       gpa_t addr, unsigned int len,
1412                                       unsigned long val)
1413 {
1414         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1415         u64 entry_size, device_type;
1416         u64 reg, *regptr, clearbits = 0;
1417
1418         /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1419         if (its->enabled)
1420                 return;
1421
1422         switch (BASER_INDEX(addr)) {
1423         case 0:
1424                 regptr = &its->baser_device_table;
1425                 entry_size = abi->dte_esz;
1426                 device_type = GITS_BASER_TYPE_DEVICE;
1427                 break;
1428         case 1:
1429                 regptr = &its->baser_coll_table;
1430                 entry_size = abi->cte_esz;
1431                 device_type = GITS_BASER_TYPE_COLLECTION;
1432                 clearbits = GITS_BASER_INDIRECT;
1433                 break;
1434         default:
1435                 return;
1436         }
1437
1438         reg = update_64bit_reg(*regptr, addr & 7, len, val);
1439         reg &= ~GITS_BASER_RO_MASK;
1440         reg &= ~clearbits;
1441
1442         reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1443         reg |= device_type << GITS_BASER_TYPE_SHIFT;
1444         reg = vgic_sanitise_its_baser(reg);
1445
1446         *regptr = reg;
1447 }
1448
1449 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1450                                              struct vgic_its *its,
1451                                              gpa_t addr, unsigned int len)
1452 {
1453         u32 reg = 0;
1454
1455         mutex_lock(&its->cmd_lock);
1456         if (its->creadr == its->cwriter)
1457                 reg |= GITS_CTLR_QUIESCENT;
1458         if (its->enabled)
1459                 reg |= GITS_CTLR_ENABLE;
1460         mutex_unlock(&its->cmd_lock);
1461
1462         return reg;
1463 }
1464
1465 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1466                                      gpa_t addr, unsigned int len,
1467                                      unsigned long val)
1468 {
1469         mutex_lock(&its->cmd_lock);
1470
1471         its->enabled = !!(val & GITS_CTLR_ENABLE);
1472
1473         /*
1474          * Try to process any pending commands. This function bails out early
1475          * if the ITS is disabled or no commands have been queued.
1476          */
1477         vgic_its_process_commands(kvm, its);
1478
1479         mutex_unlock(&its->cmd_lock);
1480 }
1481
1482 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)             \
1483 {                                                               \
1484         .reg_offset = off,                                      \
1485         .len = length,                                          \
1486         .access_flags = acc,                                    \
1487         .its_read = rd,                                         \
1488         .its_write = wr,                                        \
1489 }
1490
1491 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1492 {                                                               \
1493         .reg_offset = off,                                      \
1494         .len = length,                                          \
1495         .access_flags = acc,                                    \
1496         .its_read = rd,                                         \
1497         .its_write = wr,                                        \
1498         .uaccess_its_write = uwr,                               \
1499 }
1500
1501 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1502                               gpa_t addr, unsigned int len, unsigned long val)
1503 {
1504         /* Ignore */
1505 }
1506
1507 static struct vgic_register_region its_registers[] = {
1508         REGISTER_ITS_DESC(GITS_CTLR,
1509                 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1510                 VGIC_ACCESS_32bit),
1511         REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1512                 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1513                 vgic_mmio_uaccess_write_its_iidr, 4,
1514                 VGIC_ACCESS_32bit),
1515         REGISTER_ITS_DESC(GITS_TYPER,
1516                 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1517                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1518         REGISTER_ITS_DESC(GITS_CBASER,
1519                 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1520                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1521         REGISTER_ITS_DESC(GITS_CWRITER,
1522                 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1523                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1524         REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1525                 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1526                 vgic_mmio_uaccess_write_its_creadr, 8,
1527                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1528         REGISTER_ITS_DESC(GITS_BASER,
1529                 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1530                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1531         REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1532                 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1533                 VGIC_ACCESS_32bit),
1534 };
1535
1536 /* This is called on setting the LPI enable bit in the redistributor. */
1537 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1538 {
1539         if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1540                 its_sync_lpi_pending_table(vcpu);
1541 }
1542
1543 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1544                                    u64 addr)
1545 {
1546         struct vgic_io_device *iodev = &its->iodev;
1547         int ret;
1548
1549         mutex_lock(&kvm->slots_lock);
1550         if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1551                 ret = -EBUSY;
1552                 goto out;
1553         }
1554
1555         its->vgic_its_base = addr;
1556         iodev->regions = its_registers;
1557         iodev->nr_regions = ARRAY_SIZE(its_registers);
1558         kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1559
1560         iodev->base_addr = its->vgic_its_base;
1561         iodev->iodev_type = IODEV_ITS;
1562         iodev->its = its;
1563         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1564                                       KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1565 out:
1566         mutex_unlock(&kvm->slots_lock);
1567
1568         return ret;
1569 }
1570
1571 #define INITIAL_BASER_VALUE                                               \
1572         (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)                | \
1573          GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)         | \
1574          GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)             | \
1575          GITS_BASER_PAGE_SIZE_64K)
1576
1577 #define INITIAL_PROPBASER_VALUE                                           \
1578         (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)            | \
1579          GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)     | \
1580          GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1581
1582 static int vgic_its_create(struct kvm_device *dev, u32 type)
1583 {
1584         struct vgic_its *its;
1585
1586         if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1587                 return -ENODEV;
1588
1589         its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1590         if (!its)
1591                 return -ENOMEM;
1592
1593         mutex_init(&its->its_lock);
1594         mutex_init(&its->cmd_lock);
1595
1596         its->vgic_its_base = VGIC_ADDR_UNDEF;
1597
1598         INIT_LIST_HEAD(&its->device_list);
1599         INIT_LIST_HEAD(&its->collection_list);
1600
1601         dev->kvm->arch.vgic.msis_require_devid = true;
1602         dev->kvm->arch.vgic.has_its = true;
1603         its->enabled = false;
1604         its->dev = dev;
1605
1606         its->baser_device_table = INITIAL_BASER_VALUE                   |
1607                 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1608         its->baser_coll_table = INITIAL_BASER_VALUE |
1609                 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1610         dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1611
1612         dev->private = its;
1613
1614         return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1615 }
1616
1617 static void vgic_its_free_device(struct kvm *kvm, struct its_device *dev)
1618 {
1619         struct its_ite *ite, *tmp;
1620
1621         list_for_each_entry_safe(ite, tmp, &dev->itt_head, ite_list)
1622                 its_free_ite(kvm, ite);
1623         list_del(&dev->dev_list);
1624         kfree(dev);
1625 }
1626
1627 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1628 {
1629         struct kvm *kvm = kvm_dev->kvm;
1630         struct vgic_its *its = kvm_dev->private;
1631         struct list_head *cur, *temp;
1632
1633         /*
1634          * We may end up here without the lists ever having been initialized.
1635          * Check this and bail out early to avoid dereferencing a NULL pointer.
1636          */
1637         if (!its->device_list.next)
1638                 return;
1639
1640         mutex_lock(&its->its_lock);
1641         list_for_each_safe(cur, temp, &its->device_list) {
1642                 struct its_device *dev;
1643
1644                 dev = list_entry(cur, struct its_device, dev_list);
1645                 vgic_its_free_device(kvm, dev);
1646         }
1647
1648         list_for_each_safe(cur, temp, &its->collection_list) {
1649                 struct its_collection *coll;
1650
1651                 coll = list_entry(cur, struct its_collection, coll_list);
1652                 list_del(cur);
1653                 kfree(coll);
1654         }
1655         mutex_unlock(&its->its_lock);
1656
1657         kfree(its);
1658 }
1659
1660 int vgic_its_has_attr_regs(struct kvm_device *dev,
1661                            struct kvm_device_attr *attr)
1662 {
1663         const struct vgic_register_region *region;
1664         gpa_t offset = attr->attr;
1665         int align;
1666
1667         align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1668
1669         if (offset & align)
1670                 return -EINVAL;
1671
1672         region = vgic_find_mmio_region(its_registers,
1673                                        ARRAY_SIZE(its_registers),
1674                                        offset);
1675         if (!region)
1676                 return -ENXIO;
1677
1678         return 0;
1679 }
1680
1681 int vgic_its_attr_regs_access(struct kvm_device *dev,
1682                               struct kvm_device_attr *attr,
1683                               u64 *reg, bool is_write)
1684 {
1685         const struct vgic_register_region *region;
1686         struct vgic_its *its;
1687         gpa_t addr, offset;
1688         unsigned int len;
1689         int align, ret = 0;
1690
1691         its = dev->private;
1692         offset = attr->attr;
1693
1694         /*
1695          * Although the spec supports upper/lower 32-bit accesses to
1696          * 64-bit ITS registers, the userspace ABI requires 64-bit
1697          * accesses to all 64-bit wide registers. We therefore only
1698          * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1699          * registers
1700          */
1701         if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1702                 align = 0x3;
1703         else
1704                 align = 0x7;
1705
1706         if (offset & align)
1707                 return -EINVAL;
1708
1709         mutex_lock(&dev->kvm->lock);
1710
1711         if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1712                 ret = -ENXIO;
1713                 goto out;
1714         }
1715
1716         region = vgic_find_mmio_region(its_registers,
1717                                        ARRAY_SIZE(its_registers),
1718                                        offset);
1719         if (!region) {
1720                 ret = -ENXIO;
1721                 goto out;
1722         }
1723
1724         if (!lock_all_vcpus(dev->kvm)) {
1725                 ret = -EBUSY;
1726                 goto out;
1727         }
1728
1729         addr = its->vgic_its_base + offset;
1730
1731         len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1732
1733         if (is_write) {
1734                 if (region->uaccess_its_write)
1735                         ret = region->uaccess_its_write(dev->kvm, its, addr,
1736                                                         len, *reg);
1737                 else
1738                         region->its_write(dev->kvm, its, addr, len, *reg);
1739         } else {
1740                 *reg = region->its_read(dev->kvm, its, addr, len);
1741         }
1742         unlock_all_vcpus(dev->kvm);
1743 out:
1744         mutex_unlock(&dev->kvm->lock);
1745         return ret;
1746 }
1747
1748 static u32 compute_next_devid_offset(struct list_head *h,
1749                                      struct its_device *dev)
1750 {
1751         struct its_device *next;
1752         u32 next_offset;
1753
1754         if (list_is_last(&dev->dev_list, h))
1755                 return 0;
1756         next = list_next_entry(dev, dev_list);
1757         next_offset = next->device_id - dev->device_id;
1758
1759         return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
1760 }
1761
1762 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
1763 {
1764         struct its_ite *next;
1765         u32 next_offset;
1766
1767         if (list_is_last(&ite->ite_list, h))
1768                 return 0;
1769         next = list_next_entry(ite, ite_list);
1770         next_offset = next->event_id - ite->event_id;
1771
1772         return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
1773 }
1774
1775 /**
1776  * entry_fn_t - Callback called on a table entry restore path
1777  * @its: its handle
1778  * @id: id of the entry
1779  * @entry: pointer to the entry
1780  * @opaque: pointer to an opaque data
1781  *
1782  * Return: < 0 on error, 0 if last element was identified, id offset to next
1783  * element otherwise
1784  */
1785 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
1786                           void *opaque);
1787
1788 /**
1789  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
1790  * to each entry
1791  *
1792  * @its: its handle
1793  * @base: base gpa of the table
1794  * @size: size of the table in bytes
1795  * @esz: entry size in bytes
1796  * @start_id: the ID of the first entry in the table
1797  * (non zero for 2d level tables)
1798  * @fn: function to apply on each entry
1799  *
1800  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
1801  * (the last element may not be found on second level tables)
1802  */
1803 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, int esz,
1804                           int start_id, entry_fn_t fn, void *opaque)
1805 {
1806         void *entry = kzalloc(esz, GFP_KERNEL);
1807         struct kvm *kvm = its->dev->kvm;
1808         unsigned long len = size;
1809         int id = start_id;
1810         gpa_t gpa = base;
1811         int ret;
1812
1813         while (len > 0) {
1814                 int next_offset;
1815                 size_t byte_offset;
1816
1817                 ret = kvm_read_guest(kvm, gpa, entry, esz);
1818                 if (ret)
1819                         goto out;
1820
1821                 next_offset = fn(its, id, entry, opaque);
1822                 if (next_offset <= 0) {
1823                         ret = next_offset;
1824                         goto out;
1825                 }
1826
1827                 byte_offset = next_offset * esz;
1828                 id += next_offset;
1829                 gpa += byte_offset;
1830                 len -= byte_offset;
1831         }
1832         ret =  1;
1833
1834 out:
1835         kfree(entry);
1836         return ret;
1837 }
1838
1839 /**
1840  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
1841  */
1842 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
1843                               struct its_ite *ite, gpa_t gpa, int ite_esz)
1844 {
1845         struct kvm *kvm = its->dev->kvm;
1846         u32 next_offset;
1847         u64 val;
1848
1849         next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
1850         val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
1851                ((u64)ite->lpi << KVM_ITS_ITE_PINTID_SHIFT) |
1852                 ite->collection->collection_id;
1853         val = cpu_to_le64(val);
1854         return kvm_write_guest(kvm, gpa, &val, ite_esz);
1855 }
1856
1857 /**
1858  * vgic_its_restore_ite - restore an interrupt translation entry
1859  * @event_id: id used for indexing
1860  * @ptr: pointer to the ITE entry
1861  * @opaque: pointer to the its_device
1862  */
1863 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
1864                                 void *ptr, void *opaque)
1865 {
1866         struct its_device *dev = (struct its_device *)opaque;
1867         struct its_collection *collection;
1868         struct kvm *kvm = its->dev->kvm;
1869         struct kvm_vcpu *vcpu = NULL;
1870         u64 val;
1871         u64 *p = (u64 *)ptr;
1872         struct vgic_irq *irq;
1873         u32 coll_id, lpi_id;
1874         struct its_ite *ite;
1875         u32 offset;
1876
1877         val = *p;
1878
1879         val = le64_to_cpu(val);
1880
1881         coll_id = val & KVM_ITS_ITE_ICID_MASK;
1882         lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
1883
1884         if (!lpi_id)
1885                 return 1; /* invalid entry, no choice but to scan next entry */
1886
1887         if (lpi_id < VGIC_MIN_LPI)
1888                 return -EINVAL;
1889
1890         offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
1891         if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
1892                 return -EINVAL;
1893
1894         collection = find_collection(its, coll_id);
1895         if (!collection)
1896                 return -EINVAL;
1897
1898         ite = vgic_its_alloc_ite(dev, collection, lpi_id, event_id);
1899         if (IS_ERR(ite))
1900                 return PTR_ERR(ite);
1901
1902         if (its_is_collection_mapped(collection))
1903                 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1904
1905         irq = vgic_add_lpi(kvm, lpi_id, vcpu);
1906         if (IS_ERR(irq))
1907                 return PTR_ERR(irq);
1908         ite->irq = irq;
1909
1910         return offset;
1911 }
1912
1913 static int vgic_its_ite_cmp(void *priv, struct list_head *a,
1914                             struct list_head *b)
1915 {
1916         struct its_ite *itea = container_of(a, struct its_ite, ite_list);
1917         struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
1918
1919         if (itea->event_id < iteb->event_id)
1920                 return -1;
1921         else
1922                 return 1;
1923 }
1924
1925 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
1926 {
1927         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1928         gpa_t base = device->itt_addr;
1929         struct its_ite *ite;
1930         int ret;
1931         int ite_esz = abi->ite_esz;
1932
1933         list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
1934
1935         list_for_each_entry(ite, &device->itt_head, ite_list) {
1936                 gpa_t gpa = base + ite->event_id * ite_esz;
1937
1938                 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
1939                 if (ret)
1940                         return ret;
1941         }
1942         return 0;
1943 }
1944
1945 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
1946 {
1947         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1948         gpa_t base = dev->itt_addr;
1949         int ret;
1950         int ite_esz = abi->ite_esz;
1951         size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
1952
1953         ret = scan_its_table(its, base, max_size, ite_esz, 0,
1954                              vgic_its_restore_ite, dev);
1955
1956         return ret;
1957 }
1958
1959 /**
1960  * vgic_its_save_dte - Save a device table entry at a given GPA
1961  *
1962  * @its: ITS handle
1963  * @dev: ITS device
1964  * @ptr: GPA
1965  */
1966 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
1967                              gpa_t ptr, int dte_esz)
1968 {
1969         struct kvm *kvm = its->dev->kvm;
1970         u64 val, itt_addr_field;
1971         u32 next_offset;
1972
1973         itt_addr_field = dev->itt_addr >> 8;
1974         next_offset = compute_next_devid_offset(&its->device_list, dev);
1975         val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
1976                ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
1977                (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
1978                 (dev->num_eventid_bits - 1));
1979         val = cpu_to_le64(val);
1980         return kvm_write_guest(kvm, ptr, &val, dte_esz);
1981 }
1982
1983 /**
1984  * vgic_its_restore_dte - restore a device table entry
1985  *
1986  * @its: its handle
1987  * @id: device id the DTE corresponds to
1988  * @ptr: kernel VA where the 8 byte DTE is located
1989  * @opaque: unused
1990  *
1991  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
1992  * next dte otherwise
1993  */
1994 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
1995                                 void *ptr, void *opaque)
1996 {
1997         struct its_device *dev;
1998         gpa_t itt_addr;
1999         u8 num_eventid_bits;
2000         u64 entry = *(u64 *)ptr;
2001         bool valid;
2002         u32 offset;
2003         int ret;
2004
2005         entry = le64_to_cpu(entry);
2006
2007         valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2008         num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2009         itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2010                         >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2011
2012         if (!valid)
2013                 return 1;
2014
2015         /* dte entry is valid */
2016         offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2017
2018         dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2019         if (IS_ERR(dev))
2020                 return PTR_ERR(dev);
2021
2022         ret = vgic_its_restore_itt(its, dev);
2023         if (ret) {
2024                 vgic_its_free_device(its->dev->kvm, dev);
2025                 return ret;
2026         }
2027
2028         return offset;
2029 }
2030
2031 static int vgic_its_device_cmp(void *priv, struct list_head *a,
2032                                struct list_head *b)
2033 {
2034         struct its_device *deva = container_of(a, struct its_device, dev_list);
2035         struct its_device *devb = container_of(b, struct its_device, dev_list);
2036
2037         if (deva->device_id < devb->device_id)
2038                 return -1;
2039         else
2040                 return 1;
2041 }
2042
2043 /**
2044  * vgic_its_save_device_tables - Save the device table and all ITT
2045  * into guest RAM
2046  *
2047  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2048  * returns the GPA of the device entry
2049  */
2050 static int vgic_its_save_device_tables(struct vgic_its *its)
2051 {
2052         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2053         struct its_device *dev;
2054         int dte_esz = abi->dte_esz;
2055         u64 baser;
2056
2057         baser = its->baser_device_table;
2058
2059         list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2060
2061         list_for_each_entry(dev, &its->device_list, dev_list) {
2062                 int ret;
2063                 gpa_t eaddr;
2064
2065                 if (!vgic_its_check_id(its, baser,
2066                                        dev->device_id, &eaddr))
2067                         return -EINVAL;
2068
2069                 ret = vgic_its_save_itt(its, dev);
2070                 if (ret)
2071                         return ret;
2072
2073                 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2074                 if (ret)
2075                         return ret;
2076         }
2077         return 0;
2078 }
2079
2080 /**
2081  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2082  *
2083  * @its: its handle
2084  * @id: index of the entry in the L1 table
2085  * @addr: kernel VA
2086  * @opaque: unused
2087  *
2088  * L1 table entries are scanned by steps of 1 entry
2089  * Return < 0 if error, 0 if last dte was found when scanning the L2
2090  * table, +1 otherwise (meaning next L1 entry must be scanned)
2091  */
2092 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2093                          void *opaque)
2094 {
2095         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2096         int l2_start_id = id * (SZ_64K / abi->dte_esz);
2097         u64 entry = *(u64 *)addr;
2098         int dte_esz = abi->dte_esz;
2099         gpa_t gpa;
2100         int ret;
2101
2102         entry = le64_to_cpu(entry);
2103
2104         if (!(entry & KVM_ITS_L1E_VALID_MASK))
2105                 return 1;
2106
2107         gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2108
2109         ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2110                              l2_start_id, vgic_its_restore_dte, NULL);
2111
2112         if (ret <= 0)
2113                 return ret;
2114
2115         return 1;
2116 }
2117
2118 /**
2119  * vgic_its_restore_device_tables - Restore the device table and all ITT
2120  * from guest RAM to internal data structs
2121  */
2122 static int vgic_its_restore_device_tables(struct vgic_its *its)
2123 {
2124         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2125         u64 baser = its->baser_device_table;
2126         int l1_esz, ret;
2127         int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2128         gpa_t l1_gpa;
2129
2130         if (!(baser & GITS_BASER_VALID))
2131                 return 0;
2132
2133         l1_gpa = BASER_ADDRESS(baser);
2134
2135         if (baser & GITS_BASER_INDIRECT) {
2136                 l1_esz = GITS_LVL1_ENTRY_SIZE;
2137                 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2138                                      handle_l1_dte, NULL);
2139         } else {
2140                 l1_esz = abi->dte_esz;
2141                 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2142                                      vgic_its_restore_dte, NULL);
2143         }
2144
2145         if (ret > 0)
2146                 ret = -EINVAL;
2147
2148         return ret;
2149 }
2150
2151 static int vgic_its_save_cte(struct vgic_its *its,
2152                              struct its_collection *collection,
2153                              gpa_t gpa, int esz)
2154 {
2155         u64 val;
2156
2157         val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2158                ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2159                collection->collection_id);
2160         val = cpu_to_le64(val);
2161         return kvm_write_guest(its->dev->kvm, gpa, &val, esz);
2162 }
2163
2164 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2165 {
2166         struct its_collection *collection;
2167         struct kvm *kvm = its->dev->kvm;
2168         u32 target_addr, coll_id;
2169         u64 val;
2170         int ret;
2171
2172         BUG_ON(esz > sizeof(val));
2173         ret = kvm_read_guest(kvm, gpa, &val, esz);
2174         if (ret)
2175                 return ret;
2176         val = le64_to_cpu(val);
2177         if (!(val & KVM_ITS_CTE_VALID_MASK))
2178                 return 0;
2179
2180         target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2181         coll_id = val & KVM_ITS_CTE_ICID_MASK;
2182
2183         if (target_addr >= atomic_read(&kvm->online_vcpus))
2184                 return -EINVAL;
2185
2186         collection = find_collection(its, coll_id);
2187         if (collection)
2188                 return -EEXIST;
2189         ret = vgic_its_alloc_collection(its, &collection, coll_id);
2190         if (ret)
2191                 return ret;
2192         collection->target_addr = target_addr;
2193         return 1;
2194 }
2195
2196 /**
2197  * vgic_its_save_collection_table - Save the collection table into
2198  * guest RAM
2199  */
2200 static int vgic_its_save_collection_table(struct vgic_its *its)
2201 {
2202         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2203         struct its_collection *collection;
2204         u64 val;
2205         gpa_t gpa;
2206         size_t max_size, filled = 0;
2207         int ret, cte_esz = abi->cte_esz;
2208
2209         gpa = BASER_ADDRESS(its->baser_coll_table);
2210         if (!gpa)
2211                 return 0;
2212
2213         max_size = GITS_BASER_NR_PAGES(its->baser_coll_table) * SZ_64K;
2214
2215         list_for_each_entry(collection, &its->collection_list, coll_list) {
2216                 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2217                 if (ret)
2218                         return ret;
2219                 gpa += cte_esz;
2220                 filled += cte_esz;
2221         }
2222
2223         if (filled == max_size)
2224                 return 0;
2225
2226         /*
2227          * table is not fully filled, add a last dummy element
2228          * with valid bit unset
2229          */
2230         val = 0;
2231         BUG_ON(cte_esz > sizeof(val));
2232         ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz);
2233         return ret;
2234 }
2235
2236 /**
2237  * vgic_its_restore_collection_table - reads the collection table
2238  * in guest memory and restores the ITS internal state. Requires the
2239  * BASER registers to be restored before.
2240  */
2241 static int vgic_its_restore_collection_table(struct vgic_its *its)
2242 {
2243         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2244         int cte_esz = abi->cte_esz;
2245         size_t max_size, read = 0;
2246         gpa_t gpa;
2247         int ret;
2248
2249         if (!(its->baser_coll_table & GITS_BASER_VALID))
2250                 return 0;
2251
2252         gpa = BASER_ADDRESS(its->baser_coll_table);
2253
2254         max_size = GITS_BASER_NR_PAGES(its->baser_coll_table) * SZ_64K;
2255
2256         while (read < max_size) {
2257                 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2258                 if (ret <= 0)
2259                         break;
2260                 gpa += cte_esz;
2261                 read += cte_esz;
2262         }
2263         return ret;
2264 }
2265
2266 /**
2267  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2268  * according to v0 ABI
2269  */
2270 static int vgic_its_save_tables_v0(struct vgic_its *its)
2271 {
2272         struct kvm *kvm = its->dev->kvm;
2273         int ret;
2274
2275         mutex_lock(&kvm->lock);
2276         mutex_lock(&its->its_lock);
2277
2278         if (!lock_all_vcpus(kvm)) {
2279                 mutex_unlock(&its->its_lock);
2280                 mutex_unlock(&kvm->lock);
2281                 return -EBUSY;
2282         }
2283
2284         ret = vgic_its_save_device_tables(its);
2285         if (ret)
2286                 goto out;
2287
2288         ret = vgic_its_save_collection_table(its);
2289
2290 out:
2291         unlock_all_vcpus(kvm);
2292         mutex_unlock(&its->its_lock);
2293         mutex_unlock(&kvm->lock);
2294         return ret;
2295 }
2296
2297 /**
2298  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2299  * to internal data structs according to V0 ABI
2300  *
2301  */
2302 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2303 {
2304         struct kvm *kvm = its->dev->kvm;
2305         int ret;
2306
2307         mutex_lock(&kvm->lock);
2308         mutex_lock(&its->its_lock);
2309
2310         if (!lock_all_vcpus(kvm)) {
2311                 mutex_unlock(&its->its_lock);
2312                 mutex_unlock(&kvm->lock);
2313                 return -EBUSY;
2314         }
2315
2316         ret = vgic_its_restore_collection_table(its);
2317         if (ret)
2318                 goto out;
2319
2320         ret = vgic_its_restore_device_tables(its);
2321 out:
2322         unlock_all_vcpus(kvm);
2323         mutex_unlock(&its->its_lock);
2324         mutex_unlock(&kvm->lock);
2325
2326         return ret;
2327 }
2328
2329 static int vgic_its_commit_v0(struct vgic_its *its)
2330 {
2331         const struct vgic_its_abi *abi;
2332
2333         abi = vgic_its_get_abi(its);
2334         its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2335         its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2336
2337         its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2338                                         << GITS_BASER_ENTRY_SIZE_SHIFT);
2339
2340         its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2341                                         << GITS_BASER_ENTRY_SIZE_SHIFT);
2342         return 0;
2343 }
2344
2345 static int vgic_its_has_attr(struct kvm_device *dev,
2346                              struct kvm_device_attr *attr)
2347 {
2348         switch (attr->group) {
2349         case KVM_DEV_ARM_VGIC_GRP_ADDR:
2350                 switch (attr->attr) {
2351                 case KVM_VGIC_ITS_ADDR_TYPE:
2352                         return 0;
2353                 }
2354                 break;
2355         case KVM_DEV_ARM_VGIC_GRP_CTRL:
2356                 switch (attr->attr) {
2357                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2358                         return 0;
2359                 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2360                         return 0;
2361                 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2362                         return 0;
2363                 }
2364                 break;
2365         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2366                 return vgic_its_has_attr_regs(dev, attr);
2367         }
2368         return -ENXIO;
2369 }
2370
2371 static int vgic_its_set_attr(struct kvm_device *dev,
2372                              struct kvm_device_attr *attr)
2373 {
2374         struct vgic_its *its = dev->private;
2375         int ret;
2376
2377         switch (attr->group) {
2378         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2379                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2380                 unsigned long type = (unsigned long)attr->attr;
2381                 u64 addr;
2382
2383                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2384                         return -ENODEV;
2385
2386                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2387                         return -EFAULT;
2388
2389                 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2390                                         addr, SZ_64K);
2391                 if (ret)
2392                         return ret;
2393
2394                 return vgic_register_its_iodev(dev->kvm, its, addr);
2395         }
2396         case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2397                 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2398
2399                 switch (attr->attr) {
2400                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2401                         /* Nothing to do */
2402                         return 0;
2403                 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2404                         return abi->save_tables(its);
2405                 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2406                         return abi->restore_tables(its);
2407                 }
2408         }
2409         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2410                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2411                 u64 reg;
2412
2413                 if (get_user(reg, uaddr))
2414                         return -EFAULT;
2415
2416                 return vgic_its_attr_regs_access(dev, attr, &reg, true);
2417         }
2418         }
2419         return -ENXIO;
2420 }
2421
2422 static int vgic_its_get_attr(struct kvm_device *dev,
2423                              struct kvm_device_attr *attr)
2424 {
2425         switch (attr->group) {
2426         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2427                 struct vgic_its *its = dev->private;
2428                 u64 addr = its->vgic_its_base;
2429                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2430                 unsigned long type = (unsigned long)attr->attr;
2431
2432                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2433                         return -ENODEV;
2434
2435                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2436                         return -EFAULT;
2437                 break;
2438         }
2439         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2440                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2441                 u64 reg;
2442                 int ret;
2443
2444                 ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2445                 if (ret)
2446                         return ret;
2447                 return put_user(reg, uaddr);
2448         }
2449         default:
2450                 return -ENXIO;
2451         }
2452
2453         return 0;
2454 }
2455
2456 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2457         .name = "kvm-arm-vgic-its",
2458         .create = vgic_its_create,
2459         .destroy = vgic_its_destroy,
2460         .set_attr = vgic_its_set_attr,
2461         .get_attr = vgic_its_get_attr,
2462         .has_attr = vgic_its_has_attr,
2463 };
2464
2465 int kvm_vgic_register_its_device(void)
2466 {
2467         return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2468                                        KVM_DEV_TYPE_ARM_VGIC_ITS);
2469 }