]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - virt/kvm/kvm_main.c
Merge tag 'fbdev-v4.13-rc5' of git://github.com/bzolnier/linux
[karo-tx-linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138
139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
140 {
141         if (pfn_valid(pfn))
142                 return PageReserved(pfn_to_page(pfn));
143
144         return true;
145 }
146
147 /*
148  * Switches to specified vcpu, until a matching vcpu_put()
149  */
150 int vcpu_load(struct kvm_vcpu *vcpu)
151 {
152         int cpu;
153
154         if (mutex_lock_killable(&vcpu->mutex))
155                 return -EINTR;
156         cpu = get_cpu();
157         preempt_notifier_register(&vcpu->preempt_notifier);
158         kvm_arch_vcpu_load(vcpu, cpu);
159         put_cpu();
160         return 0;
161 }
162 EXPORT_SYMBOL_GPL(vcpu_load);
163
164 void vcpu_put(struct kvm_vcpu *vcpu)
165 {
166         preempt_disable();
167         kvm_arch_vcpu_put(vcpu);
168         preempt_notifier_unregister(&vcpu->preempt_notifier);
169         preempt_enable();
170         mutex_unlock(&vcpu->mutex);
171 }
172 EXPORT_SYMBOL_GPL(vcpu_put);
173
174 /* TODO: merge with kvm_arch_vcpu_should_kick */
175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
176 {
177         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
178
179         /*
180          * We need to wait for the VCPU to reenable interrupts and get out of
181          * READING_SHADOW_PAGE_TABLES mode.
182          */
183         if (req & KVM_REQUEST_WAIT)
184                 return mode != OUTSIDE_GUEST_MODE;
185
186         /*
187          * Need to kick a running VCPU, but otherwise there is nothing to do.
188          */
189         return mode == IN_GUEST_MODE;
190 }
191
192 static void ack_flush(void *_completed)
193 {
194 }
195
196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
197 {
198         if (unlikely(!cpus))
199                 cpus = cpu_online_mask;
200
201         if (cpumask_empty(cpus))
202                 return false;
203
204         smp_call_function_many(cpus, ack_flush, NULL, wait);
205         return true;
206 }
207
208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
209 {
210         int i, cpu, me;
211         cpumask_var_t cpus;
212         bool called;
213         struct kvm_vcpu *vcpu;
214
215         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
216
217         me = get_cpu();
218         kvm_for_each_vcpu(i, vcpu, kvm) {
219                 kvm_make_request(req, vcpu);
220                 cpu = vcpu->cpu;
221
222                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
223                         continue;
224
225                 if (cpus != NULL && cpu != -1 && cpu != me &&
226                     kvm_request_needs_ipi(vcpu, req))
227                         __cpumask_set_cpu(cpu, cpus);
228         }
229         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
230         put_cpu();
231         free_cpumask_var(cpus);
232         return called;
233 }
234
235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
236 void kvm_flush_remote_tlbs(struct kvm *kvm)
237 {
238         /*
239          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
240          * kvm_make_all_cpus_request.
241          */
242         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
243
244         /*
245          * We want to publish modifications to the page tables before reading
246          * mode. Pairs with a memory barrier in arch-specific code.
247          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
248          * and smp_mb in walk_shadow_page_lockless_begin/end.
249          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
250          *
251          * There is already an smp_mb__after_atomic() before
252          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
253          * barrier here.
254          */
255         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
256                 ++kvm->stat.remote_tlb_flush;
257         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
258 }
259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
260 #endif
261
262 void kvm_reload_remote_mmus(struct kvm *kvm)
263 {
264         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
265 }
266
267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
268 {
269         struct page *page;
270         int r;
271
272         mutex_init(&vcpu->mutex);
273         vcpu->cpu = -1;
274         vcpu->kvm = kvm;
275         vcpu->vcpu_id = id;
276         vcpu->pid = NULL;
277         init_swait_queue_head(&vcpu->wq);
278         kvm_async_pf_vcpu_init(vcpu);
279
280         vcpu->pre_pcpu = -1;
281         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
282
283         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
284         if (!page) {
285                 r = -ENOMEM;
286                 goto fail;
287         }
288         vcpu->run = page_address(page);
289
290         kvm_vcpu_set_in_spin_loop(vcpu, false);
291         kvm_vcpu_set_dy_eligible(vcpu, false);
292         vcpu->preempted = false;
293
294         r = kvm_arch_vcpu_init(vcpu);
295         if (r < 0)
296                 goto fail_free_run;
297         return 0;
298
299 fail_free_run:
300         free_page((unsigned long)vcpu->run);
301 fail:
302         return r;
303 }
304 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
305
306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
307 {
308         /*
309          * no need for rcu_read_lock as VCPU_RUN is the only place that
310          * will change the vcpu->pid pointer and on uninit all file
311          * descriptors are already gone.
312          */
313         put_pid(rcu_dereference_protected(vcpu->pid, 1));
314         kvm_arch_vcpu_uninit(vcpu);
315         free_page((unsigned long)vcpu->run);
316 }
317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
318
319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
321 {
322         return container_of(mn, struct kvm, mmu_notifier);
323 }
324
325 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
326                                              struct mm_struct *mm,
327                                              unsigned long address)
328 {
329         struct kvm *kvm = mmu_notifier_to_kvm(mn);
330         int need_tlb_flush, idx;
331
332         /*
333          * When ->invalidate_page runs, the linux pte has been zapped
334          * already but the page is still allocated until
335          * ->invalidate_page returns. So if we increase the sequence
336          * here the kvm page fault will notice if the spte can't be
337          * established because the page is going to be freed. If
338          * instead the kvm page fault establishes the spte before
339          * ->invalidate_page runs, kvm_unmap_hva will release it
340          * before returning.
341          *
342          * The sequence increase only need to be seen at spin_unlock
343          * time, and not at spin_lock time.
344          *
345          * Increasing the sequence after the spin_unlock would be
346          * unsafe because the kvm page fault could then establish the
347          * pte after kvm_unmap_hva returned, without noticing the page
348          * is going to be freed.
349          */
350         idx = srcu_read_lock(&kvm->srcu);
351         spin_lock(&kvm->mmu_lock);
352
353         kvm->mmu_notifier_seq++;
354         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
355         /* we've to flush the tlb before the pages can be freed */
356         if (need_tlb_flush)
357                 kvm_flush_remote_tlbs(kvm);
358
359         spin_unlock(&kvm->mmu_lock);
360
361         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
362
363         srcu_read_unlock(&kvm->srcu, idx);
364 }
365
366 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
367                                         struct mm_struct *mm,
368                                         unsigned long address,
369                                         pte_t pte)
370 {
371         struct kvm *kvm = mmu_notifier_to_kvm(mn);
372         int idx;
373
374         idx = srcu_read_lock(&kvm->srcu);
375         spin_lock(&kvm->mmu_lock);
376         kvm->mmu_notifier_seq++;
377         kvm_set_spte_hva(kvm, address, pte);
378         spin_unlock(&kvm->mmu_lock);
379         srcu_read_unlock(&kvm->srcu, idx);
380 }
381
382 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
383                                                     struct mm_struct *mm,
384                                                     unsigned long start,
385                                                     unsigned long end)
386 {
387         struct kvm *kvm = mmu_notifier_to_kvm(mn);
388         int need_tlb_flush = 0, idx;
389
390         idx = srcu_read_lock(&kvm->srcu);
391         spin_lock(&kvm->mmu_lock);
392         /*
393          * The count increase must become visible at unlock time as no
394          * spte can be established without taking the mmu_lock and
395          * count is also read inside the mmu_lock critical section.
396          */
397         kvm->mmu_notifier_count++;
398         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
399         need_tlb_flush |= kvm->tlbs_dirty;
400         /* we've to flush the tlb before the pages can be freed */
401         if (need_tlb_flush)
402                 kvm_flush_remote_tlbs(kvm);
403
404         spin_unlock(&kvm->mmu_lock);
405         srcu_read_unlock(&kvm->srcu, idx);
406 }
407
408 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
409                                                   struct mm_struct *mm,
410                                                   unsigned long start,
411                                                   unsigned long end)
412 {
413         struct kvm *kvm = mmu_notifier_to_kvm(mn);
414
415         spin_lock(&kvm->mmu_lock);
416         /*
417          * This sequence increase will notify the kvm page fault that
418          * the page that is going to be mapped in the spte could have
419          * been freed.
420          */
421         kvm->mmu_notifier_seq++;
422         smp_wmb();
423         /*
424          * The above sequence increase must be visible before the
425          * below count decrease, which is ensured by the smp_wmb above
426          * in conjunction with the smp_rmb in mmu_notifier_retry().
427          */
428         kvm->mmu_notifier_count--;
429         spin_unlock(&kvm->mmu_lock);
430
431         BUG_ON(kvm->mmu_notifier_count < 0);
432 }
433
434 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
435                                               struct mm_struct *mm,
436                                               unsigned long start,
437                                               unsigned long end)
438 {
439         struct kvm *kvm = mmu_notifier_to_kvm(mn);
440         int young, idx;
441
442         idx = srcu_read_lock(&kvm->srcu);
443         spin_lock(&kvm->mmu_lock);
444
445         young = kvm_age_hva(kvm, start, end);
446         if (young)
447                 kvm_flush_remote_tlbs(kvm);
448
449         spin_unlock(&kvm->mmu_lock);
450         srcu_read_unlock(&kvm->srcu, idx);
451
452         return young;
453 }
454
455 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
456                                         struct mm_struct *mm,
457                                         unsigned long start,
458                                         unsigned long end)
459 {
460         struct kvm *kvm = mmu_notifier_to_kvm(mn);
461         int young, idx;
462
463         idx = srcu_read_lock(&kvm->srcu);
464         spin_lock(&kvm->mmu_lock);
465         /*
466          * Even though we do not flush TLB, this will still adversely
467          * affect performance on pre-Haswell Intel EPT, where there is
468          * no EPT Access Bit to clear so that we have to tear down EPT
469          * tables instead. If we find this unacceptable, we can always
470          * add a parameter to kvm_age_hva so that it effectively doesn't
471          * do anything on clear_young.
472          *
473          * Also note that currently we never issue secondary TLB flushes
474          * from clear_young, leaving this job up to the regular system
475          * cadence. If we find this inaccurate, we might come up with a
476          * more sophisticated heuristic later.
477          */
478         young = kvm_age_hva(kvm, start, end);
479         spin_unlock(&kvm->mmu_lock);
480         srcu_read_unlock(&kvm->srcu, idx);
481
482         return young;
483 }
484
485 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
486                                        struct mm_struct *mm,
487                                        unsigned long address)
488 {
489         struct kvm *kvm = mmu_notifier_to_kvm(mn);
490         int young, idx;
491
492         idx = srcu_read_lock(&kvm->srcu);
493         spin_lock(&kvm->mmu_lock);
494         young = kvm_test_age_hva(kvm, address);
495         spin_unlock(&kvm->mmu_lock);
496         srcu_read_unlock(&kvm->srcu, idx);
497
498         return young;
499 }
500
501 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
502                                      struct mm_struct *mm)
503 {
504         struct kvm *kvm = mmu_notifier_to_kvm(mn);
505         int idx;
506
507         idx = srcu_read_lock(&kvm->srcu);
508         kvm_arch_flush_shadow_all(kvm);
509         srcu_read_unlock(&kvm->srcu, idx);
510 }
511
512 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
513         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
514         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
515         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
516         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
517         .clear_young            = kvm_mmu_notifier_clear_young,
518         .test_young             = kvm_mmu_notifier_test_young,
519         .change_pte             = kvm_mmu_notifier_change_pte,
520         .release                = kvm_mmu_notifier_release,
521 };
522
523 static int kvm_init_mmu_notifier(struct kvm *kvm)
524 {
525         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
526         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
527 }
528
529 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
530
531 static int kvm_init_mmu_notifier(struct kvm *kvm)
532 {
533         return 0;
534 }
535
536 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
537
538 static struct kvm_memslots *kvm_alloc_memslots(void)
539 {
540         int i;
541         struct kvm_memslots *slots;
542
543         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
544         if (!slots)
545                 return NULL;
546
547         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
548                 slots->id_to_index[i] = slots->memslots[i].id = i;
549
550         return slots;
551 }
552
553 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
554 {
555         if (!memslot->dirty_bitmap)
556                 return;
557
558         kvfree(memslot->dirty_bitmap);
559         memslot->dirty_bitmap = NULL;
560 }
561
562 /*
563  * Free any memory in @free but not in @dont.
564  */
565 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
566                               struct kvm_memory_slot *dont)
567 {
568         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
569                 kvm_destroy_dirty_bitmap(free);
570
571         kvm_arch_free_memslot(kvm, free, dont);
572
573         free->npages = 0;
574 }
575
576 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
577 {
578         struct kvm_memory_slot *memslot;
579
580         if (!slots)
581                 return;
582
583         kvm_for_each_memslot(memslot, slots)
584                 kvm_free_memslot(kvm, memslot, NULL);
585
586         kvfree(slots);
587 }
588
589 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
590 {
591         int i;
592
593         if (!kvm->debugfs_dentry)
594                 return;
595
596         debugfs_remove_recursive(kvm->debugfs_dentry);
597
598         if (kvm->debugfs_stat_data) {
599                 for (i = 0; i < kvm_debugfs_num_entries; i++)
600                         kfree(kvm->debugfs_stat_data[i]);
601                 kfree(kvm->debugfs_stat_data);
602         }
603 }
604
605 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
606 {
607         char dir_name[ITOA_MAX_LEN * 2];
608         struct kvm_stat_data *stat_data;
609         struct kvm_stats_debugfs_item *p;
610
611         if (!debugfs_initialized())
612                 return 0;
613
614         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
615         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
616                                                  kvm_debugfs_dir);
617         if (!kvm->debugfs_dentry)
618                 return -ENOMEM;
619
620         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
621                                          sizeof(*kvm->debugfs_stat_data),
622                                          GFP_KERNEL);
623         if (!kvm->debugfs_stat_data)
624                 return -ENOMEM;
625
626         for (p = debugfs_entries; p->name; p++) {
627                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
628                 if (!stat_data)
629                         return -ENOMEM;
630
631                 stat_data->kvm = kvm;
632                 stat_data->offset = p->offset;
633                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
634                 if (!debugfs_create_file(p->name, 0644,
635                                          kvm->debugfs_dentry,
636                                          stat_data,
637                                          stat_fops_per_vm[p->kind]))
638                         return -ENOMEM;
639         }
640         return 0;
641 }
642
643 static struct kvm *kvm_create_vm(unsigned long type)
644 {
645         int r, i;
646         struct kvm *kvm = kvm_arch_alloc_vm();
647
648         if (!kvm)
649                 return ERR_PTR(-ENOMEM);
650
651         spin_lock_init(&kvm->mmu_lock);
652         mmgrab(current->mm);
653         kvm->mm = current->mm;
654         kvm_eventfd_init(kvm);
655         mutex_init(&kvm->lock);
656         mutex_init(&kvm->irq_lock);
657         mutex_init(&kvm->slots_lock);
658         refcount_set(&kvm->users_count, 1);
659         INIT_LIST_HEAD(&kvm->devices);
660
661         r = kvm_arch_init_vm(kvm, type);
662         if (r)
663                 goto out_err_no_disable;
664
665         r = hardware_enable_all();
666         if (r)
667                 goto out_err_no_disable;
668
669 #ifdef CONFIG_HAVE_KVM_IRQFD
670         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
671 #endif
672
673         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
674
675         r = -ENOMEM;
676         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
677                 struct kvm_memslots *slots = kvm_alloc_memslots();
678                 if (!slots)
679                         goto out_err_no_srcu;
680                 /*
681                  * Generations must be different for each address space.
682                  * Init kvm generation close to the maximum to easily test the
683                  * code of handling generation number wrap-around.
684                  */
685                 slots->generation = i * 2 - 150;
686                 rcu_assign_pointer(kvm->memslots[i], slots);
687         }
688
689         if (init_srcu_struct(&kvm->srcu))
690                 goto out_err_no_srcu;
691         if (init_srcu_struct(&kvm->irq_srcu))
692                 goto out_err_no_irq_srcu;
693         for (i = 0; i < KVM_NR_BUSES; i++) {
694                 rcu_assign_pointer(kvm->buses[i],
695                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
696                 if (!kvm->buses[i])
697                         goto out_err;
698         }
699
700         r = kvm_init_mmu_notifier(kvm);
701         if (r)
702                 goto out_err;
703
704         spin_lock(&kvm_lock);
705         list_add(&kvm->vm_list, &vm_list);
706         spin_unlock(&kvm_lock);
707
708         preempt_notifier_inc();
709
710         return kvm;
711
712 out_err:
713         cleanup_srcu_struct(&kvm->irq_srcu);
714 out_err_no_irq_srcu:
715         cleanup_srcu_struct(&kvm->srcu);
716 out_err_no_srcu:
717         hardware_disable_all();
718 out_err_no_disable:
719         for (i = 0; i < KVM_NR_BUSES; i++)
720                 kfree(kvm_get_bus(kvm, i));
721         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
722                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
723         kvm_arch_free_vm(kvm);
724         mmdrop(current->mm);
725         return ERR_PTR(r);
726 }
727
728 static void kvm_destroy_devices(struct kvm *kvm)
729 {
730         struct kvm_device *dev, *tmp;
731
732         /*
733          * We do not need to take the kvm->lock here, because nobody else
734          * has a reference to the struct kvm at this point and therefore
735          * cannot access the devices list anyhow.
736          */
737         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
738                 list_del(&dev->vm_node);
739                 dev->ops->destroy(dev);
740         }
741 }
742
743 static void kvm_destroy_vm(struct kvm *kvm)
744 {
745         int i;
746         struct mm_struct *mm = kvm->mm;
747
748         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
749         kvm_destroy_vm_debugfs(kvm);
750         kvm_arch_sync_events(kvm);
751         spin_lock(&kvm_lock);
752         list_del(&kvm->vm_list);
753         spin_unlock(&kvm_lock);
754         kvm_free_irq_routing(kvm);
755         for (i = 0; i < KVM_NR_BUSES; i++) {
756                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
757
758                 if (bus)
759                         kvm_io_bus_destroy(bus);
760                 kvm->buses[i] = NULL;
761         }
762         kvm_coalesced_mmio_free(kvm);
763 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
764         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
765 #else
766         kvm_arch_flush_shadow_all(kvm);
767 #endif
768         kvm_arch_destroy_vm(kvm);
769         kvm_destroy_devices(kvm);
770         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
771                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
772         cleanup_srcu_struct(&kvm->irq_srcu);
773         cleanup_srcu_struct(&kvm->srcu);
774         kvm_arch_free_vm(kvm);
775         preempt_notifier_dec();
776         hardware_disable_all();
777         mmdrop(mm);
778 }
779
780 void kvm_get_kvm(struct kvm *kvm)
781 {
782         refcount_inc(&kvm->users_count);
783 }
784 EXPORT_SYMBOL_GPL(kvm_get_kvm);
785
786 void kvm_put_kvm(struct kvm *kvm)
787 {
788         if (refcount_dec_and_test(&kvm->users_count))
789                 kvm_destroy_vm(kvm);
790 }
791 EXPORT_SYMBOL_GPL(kvm_put_kvm);
792
793
794 static int kvm_vm_release(struct inode *inode, struct file *filp)
795 {
796         struct kvm *kvm = filp->private_data;
797
798         kvm_irqfd_release(kvm);
799
800         kvm_put_kvm(kvm);
801         return 0;
802 }
803
804 /*
805  * Allocation size is twice as large as the actual dirty bitmap size.
806  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
807  */
808 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
809 {
810         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
811
812         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
813         if (!memslot->dirty_bitmap)
814                 return -ENOMEM;
815
816         return 0;
817 }
818
819 /*
820  * Insert memslot and re-sort memslots based on their GFN,
821  * so binary search could be used to lookup GFN.
822  * Sorting algorithm takes advantage of having initially
823  * sorted array and known changed memslot position.
824  */
825 static void update_memslots(struct kvm_memslots *slots,
826                             struct kvm_memory_slot *new)
827 {
828         int id = new->id;
829         int i = slots->id_to_index[id];
830         struct kvm_memory_slot *mslots = slots->memslots;
831
832         WARN_ON(mslots[i].id != id);
833         if (!new->npages) {
834                 WARN_ON(!mslots[i].npages);
835                 if (mslots[i].npages)
836                         slots->used_slots--;
837         } else {
838                 if (!mslots[i].npages)
839                         slots->used_slots++;
840         }
841
842         while (i < KVM_MEM_SLOTS_NUM - 1 &&
843                new->base_gfn <= mslots[i + 1].base_gfn) {
844                 if (!mslots[i + 1].npages)
845                         break;
846                 mslots[i] = mslots[i + 1];
847                 slots->id_to_index[mslots[i].id] = i;
848                 i++;
849         }
850
851         /*
852          * The ">=" is needed when creating a slot with base_gfn == 0,
853          * so that it moves before all those with base_gfn == npages == 0.
854          *
855          * On the other hand, if new->npages is zero, the above loop has
856          * already left i pointing to the beginning of the empty part of
857          * mslots, and the ">=" would move the hole backwards in this
858          * case---which is wrong.  So skip the loop when deleting a slot.
859          */
860         if (new->npages) {
861                 while (i > 0 &&
862                        new->base_gfn >= mslots[i - 1].base_gfn) {
863                         mslots[i] = mslots[i - 1];
864                         slots->id_to_index[mslots[i].id] = i;
865                         i--;
866                 }
867         } else
868                 WARN_ON_ONCE(i != slots->used_slots);
869
870         mslots[i] = *new;
871         slots->id_to_index[mslots[i].id] = i;
872 }
873
874 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
875 {
876         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
877
878 #ifdef __KVM_HAVE_READONLY_MEM
879         valid_flags |= KVM_MEM_READONLY;
880 #endif
881
882         if (mem->flags & ~valid_flags)
883                 return -EINVAL;
884
885         return 0;
886 }
887
888 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
889                 int as_id, struct kvm_memslots *slots)
890 {
891         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
892
893         /*
894          * Set the low bit in the generation, which disables SPTE caching
895          * until the end of synchronize_srcu_expedited.
896          */
897         WARN_ON(old_memslots->generation & 1);
898         slots->generation = old_memslots->generation + 1;
899
900         rcu_assign_pointer(kvm->memslots[as_id], slots);
901         synchronize_srcu_expedited(&kvm->srcu);
902
903         /*
904          * Increment the new memslot generation a second time. This prevents
905          * vm exits that race with memslot updates from caching a memslot
906          * generation that will (potentially) be valid forever.
907          *
908          * Generations must be unique even across address spaces.  We do not need
909          * a global counter for that, instead the generation space is evenly split
910          * across address spaces.  For example, with two address spaces, address
911          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
912          * use generations 2, 6, 10, 14, ...
913          */
914         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
915
916         kvm_arch_memslots_updated(kvm, slots);
917
918         return old_memslots;
919 }
920
921 /*
922  * Allocate some memory and give it an address in the guest physical address
923  * space.
924  *
925  * Discontiguous memory is allowed, mostly for framebuffers.
926  *
927  * Must be called holding kvm->slots_lock for write.
928  */
929 int __kvm_set_memory_region(struct kvm *kvm,
930                             const struct kvm_userspace_memory_region *mem)
931 {
932         int r;
933         gfn_t base_gfn;
934         unsigned long npages;
935         struct kvm_memory_slot *slot;
936         struct kvm_memory_slot old, new;
937         struct kvm_memslots *slots = NULL, *old_memslots;
938         int as_id, id;
939         enum kvm_mr_change change;
940
941         r = check_memory_region_flags(mem);
942         if (r)
943                 goto out;
944
945         r = -EINVAL;
946         as_id = mem->slot >> 16;
947         id = (u16)mem->slot;
948
949         /* General sanity checks */
950         if (mem->memory_size & (PAGE_SIZE - 1))
951                 goto out;
952         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
953                 goto out;
954         /* We can read the guest memory with __xxx_user() later on. */
955         if ((id < KVM_USER_MEM_SLOTS) &&
956             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
957              !access_ok(VERIFY_WRITE,
958                         (void __user *)(unsigned long)mem->userspace_addr,
959                         mem->memory_size)))
960                 goto out;
961         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
962                 goto out;
963         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
964                 goto out;
965
966         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
967         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
968         npages = mem->memory_size >> PAGE_SHIFT;
969
970         if (npages > KVM_MEM_MAX_NR_PAGES)
971                 goto out;
972
973         new = old = *slot;
974
975         new.id = id;
976         new.base_gfn = base_gfn;
977         new.npages = npages;
978         new.flags = mem->flags;
979
980         if (npages) {
981                 if (!old.npages)
982                         change = KVM_MR_CREATE;
983                 else { /* Modify an existing slot. */
984                         if ((mem->userspace_addr != old.userspace_addr) ||
985                             (npages != old.npages) ||
986                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
987                                 goto out;
988
989                         if (base_gfn != old.base_gfn)
990                                 change = KVM_MR_MOVE;
991                         else if (new.flags != old.flags)
992                                 change = KVM_MR_FLAGS_ONLY;
993                         else { /* Nothing to change. */
994                                 r = 0;
995                                 goto out;
996                         }
997                 }
998         } else {
999                 if (!old.npages)
1000                         goto out;
1001
1002                 change = KVM_MR_DELETE;
1003                 new.base_gfn = 0;
1004                 new.flags = 0;
1005         }
1006
1007         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1008                 /* Check for overlaps */
1009                 r = -EEXIST;
1010                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1011                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
1012                             (slot->id == id))
1013                                 continue;
1014                         if (!((base_gfn + npages <= slot->base_gfn) ||
1015                               (base_gfn >= slot->base_gfn + slot->npages)))
1016                                 goto out;
1017                 }
1018         }
1019
1020         /* Free page dirty bitmap if unneeded */
1021         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1022                 new.dirty_bitmap = NULL;
1023
1024         r = -ENOMEM;
1025         if (change == KVM_MR_CREATE) {
1026                 new.userspace_addr = mem->userspace_addr;
1027
1028                 if (kvm_arch_create_memslot(kvm, &new, npages))
1029                         goto out_free;
1030         }
1031
1032         /* Allocate page dirty bitmap if needed */
1033         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1034                 if (kvm_create_dirty_bitmap(&new) < 0)
1035                         goto out_free;
1036         }
1037
1038         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1039         if (!slots)
1040                 goto out_free;
1041         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1042
1043         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1044                 slot = id_to_memslot(slots, id);
1045                 slot->flags |= KVM_MEMSLOT_INVALID;
1046
1047                 old_memslots = install_new_memslots(kvm, as_id, slots);
1048
1049                 /* From this point no new shadow pages pointing to a deleted,
1050                  * or moved, memslot will be created.
1051                  *
1052                  * validation of sp->gfn happens in:
1053                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1054                  *      - kvm_is_visible_gfn (mmu_check_roots)
1055                  */
1056                 kvm_arch_flush_shadow_memslot(kvm, slot);
1057
1058                 /*
1059                  * We can re-use the old_memslots from above, the only difference
1060                  * from the currently installed memslots is the invalid flag.  This
1061                  * will get overwritten by update_memslots anyway.
1062                  */
1063                 slots = old_memslots;
1064         }
1065
1066         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1067         if (r)
1068                 goto out_slots;
1069
1070         /* actual memory is freed via old in kvm_free_memslot below */
1071         if (change == KVM_MR_DELETE) {
1072                 new.dirty_bitmap = NULL;
1073                 memset(&new.arch, 0, sizeof(new.arch));
1074         }
1075
1076         update_memslots(slots, &new);
1077         old_memslots = install_new_memslots(kvm, as_id, slots);
1078
1079         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1080
1081         kvm_free_memslot(kvm, &old, &new);
1082         kvfree(old_memslots);
1083         return 0;
1084
1085 out_slots:
1086         kvfree(slots);
1087 out_free:
1088         kvm_free_memslot(kvm, &new, &old);
1089 out:
1090         return r;
1091 }
1092 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1093
1094 int kvm_set_memory_region(struct kvm *kvm,
1095                           const struct kvm_userspace_memory_region *mem)
1096 {
1097         int r;
1098
1099         mutex_lock(&kvm->slots_lock);
1100         r = __kvm_set_memory_region(kvm, mem);
1101         mutex_unlock(&kvm->slots_lock);
1102         return r;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1105
1106 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1107                                           struct kvm_userspace_memory_region *mem)
1108 {
1109         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1110                 return -EINVAL;
1111
1112         return kvm_set_memory_region(kvm, mem);
1113 }
1114
1115 int kvm_get_dirty_log(struct kvm *kvm,
1116                         struct kvm_dirty_log *log, int *is_dirty)
1117 {
1118         struct kvm_memslots *slots;
1119         struct kvm_memory_slot *memslot;
1120         int i, as_id, id;
1121         unsigned long n;
1122         unsigned long any = 0;
1123
1124         as_id = log->slot >> 16;
1125         id = (u16)log->slot;
1126         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1127                 return -EINVAL;
1128
1129         slots = __kvm_memslots(kvm, as_id);
1130         memslot = id_to_memslot(slots, id);
1131         if (!memslot->dirty_bitmap)
1132                 return -ENOENT;
1133
1134         n = kvm_dirty_bitmap_bytes(memslot);
1135
1136         for (i = 0; !any && i < n/sizeof(long); ++i)
1137                 any = memslot->dirty_bitmap[i];
1138
1139         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1140                 return -EFAULT;
1141
1142         if (any)
1143                 *is_dirty = 1;
1144         return 0;
1145 }
1146 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1147
1148 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1149 /**
1150  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1151  *      are dirty write protect them for next write.
1152  * @kvm:        pointer to kvm instance
1153  * @log:        slot id and address to which we copy the log
1154  * @is_dirty:   flag set if any page is dirty
1155  *
1156  * We need to keep it in mind that VCPU threads can write to the bitmap
1157  * concurrently. So, to avoid losing track of dirty pages we keep the
1158  * following order:
1159  *
1160  *    1. Take a snapshot of the bit and clear it if needed.
1161  *    2. Write protect the corresponding page.
1162  *    3. Copy the snapshot to the userspace.
1163  *    4. Upon return caller flushes TLB's if needed.
1164  *
1165  * Between 2 and 4, the guest may write to the page using the remaining TLB
1166  * entry.  This is not a problem because the page is reported dirty using
1167  * the snapshot taken before and step 4 ensures that writes done after
1168  * exiting to userspace will be logged for the next call.
1169  *
1170  */
1171 int kvm_get_dirty_log_protect(struct kvm *kvm,
1172                         struct kvm_dirty_log *log, bool *is_dirty)
1173 {
1174         struct kvm_memslots *slots;
1175         struct kvm_memory_slot *memslot;
1176         int i, as_id, id;
1177         unsigned long n;
1178         unsigned long *dirty_bitmap;
1179         unsigned long *dirty_bitmap_buffer;
1180
1181         as_id = log->slot >> 16;
1182         id = (u16)log->slot;
1183         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1184                 return -EINVAL;
1185
1186         slots = __kvm_memslots(kvm, as_id);
1187         memslot = id_to_memslot(slots, id);
1188
1189         dirty_bitmap = memslot->dirty_bitmap;
1190         if (!dirty_bitmap)
1191                 return -ENOENT;
1192
1193         n = kvm_dirty_bitmap_bytes(memslot);
1194
1195         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1196         memset(dirty_bitmap_buffer, 0, n);
1197
1198         spin_lock(&kvm->mmu_lock);
1199         *is_dirty = false;
1200         for (i = 0; i < n / sizeof(long); i++) {
1201                 unsigned long mask;
1202                 gfn_t offset;
1203
1204                 if (!dirty_bitmap[i])
1205                         continue;
1206
1207                 *is_dirty = true;
1208
1209                 mask = xchg(&dirty_bitmap[i], 0);
1210                 dirty_bitmap_buffer[i] = mask;
1211
1212                 if (mask) {
1213                         offset = i * BITS_PER_LONG;
1214                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1215                                                                 offset, mask);
1216                 }
1217         }
1218
1219         spin_unlock(&kvm->mmu_lock);
1220         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1221                 return -EFAULT;
1222         return 0;
1223 }
1224 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1225 #endif
1226
1227 bool kvm_largepages_enabled(void)
1228 {
1229         return largepages_enabled;
1230 }
1231
1232 void kvm_disable_largepages(void)
1233 {
1234         largepages_enabled = false;
1235 }
1236 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1237
1238 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1239 {
1240         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1241 }
1242 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1243
1244 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1245 {
1246         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1247 }
1248
1249 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1250 {
1251         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1252
1253         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1254               memslot->flags & KVM_MEMSLOT_INVALID)
1255                 return false;
1256
1257         return true;
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1260
1261 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1262 {
1263         struct vm_area_struct *vma;
1264         unsigned long addr, size;
1265
1266         size = PAGE_SIZE;
1267
1268         addr = gfn_to_hva(kvm, gfn);
1269         if (kvm_is_error_hva(addr))
1270                 return PAGE_SIZE;
1271
1272         down_read(&current->mm->mmap_sem);
1273         vma = find_vma(current->mm, addr);
1274         if (!vma)
1275                 goto out;
1276
1277         size = vma_kernel_pagesize(vma);
1278
1279 out:
1280         up_read(&current->mm->mmap_sem);
1281
1282         return size;
1283 }
1284
1285 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1286 {
1287         return slot->flags & KVM_MEM_READONLY;
1288 }
1289
1290 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1291                                        gfn_t *nr_pages, bool write)
1292 {
1293         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1294                 return KVM_HVA_ERR_BAD;
1295
1296         if (memslot_is_readonly(slot) && write)
1297                 return KVM_HVA_ERR_RO_BAD;
1298
1299         if (nr_pages)
1300                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1301
1302         return __gfn_to_hva_memslot(slot, gfn);
1303 }
1304
1305 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1306                                      gfn_t *nr_pages)
1307 {
1308         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1309 }
1310
1311 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1312                                         gfn_t gfn)
1313 {
1314         return gfn_to_hva_many(slot, gfn, NULL);
1315 }
1316 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1317
1318 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1319 {
1320         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1321 }
1322 EXPORT_SYMBOL_GPL(gfn_to_hva);
1323
1324 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1325 {
1326         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1329
1330 /*
1331  * If writable is set to false, the hva returned by this function is only
1332  * allowed to be read.
1333  */
1334 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1335                                       gfn_t gfn, bool *writable)
1336 {
1337         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1338
1339         if (!kvm_is_error_hva(hva) && writable)
1340                 *writable = !memslot_is_readonly(slot);
1341
1342         return hva;
1343 }
1344
1345 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1346 {
1347         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1348
1349         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1350 }
1351
1352 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1353 {
1354         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1355
1356         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1357 }
1358
1359 static int get_user_page_nowait(unsigned long start, int write,
1360                 struct page **page)
1361 {
1362         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1363
1364         if (write)
1365                 flags |= FOLL_WRITE;
1366
1367         return get_user_pages(start, 1, flags, page, NULL);
1368 }
1369
1370 static inline int check_user_page_hwpoison(unsigned long addr)
1371 {
1372         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1373
1374         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1375         return rc == -EHWPOISON;
1376 }
1377
1378 /*
1379  * The atomic path to get the writable pfn which will be stored in @pfn,
1380  * true indicates success, otherwise false is returned.
1381  */
1382 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1383                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1384 {
1385         struct page *page[1];
1386         int npages;
1387
1388         if (!(async || atomic))
1389                 return false;
1390
1391         /*
1392          * Fast pin a writable pfn only if it is a write fault request
1393          * or the caller allows to map a writable pfn for a read fault
1394          * request.
1395          */
1396         if (!(write_fault || writable))
1397                 return false;
1398
1399         npages = __get_user_pages_fast(addr, 1, 1, page);
1400         if (npages == 1) {
1401                 *pfn = page_to_pfn(page[0]);
1402
1403                 if (writable)
1404                         *writable = true;
1405                 return true;
1406         }
1407
1408         return false;
1409 }
1410
1411 /*
1412  * The slow path to get the pfn of the specified host virtual address,
1413  * 1 indicates success, -errno is returned if error is detected.
1414  */
1415 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1416                            bool *writable, kvm_pfn_t *pfn)
1417 {
1418         struct page *page[1];
1419         int npages = 0;
1420
1421         might_sleep();
1422
1423         if (writable)
1424                 *writable = write_fault;
1425
1426         if (async) {
1427                 down_read(&current->mm->mmap_sem);
1428                 npages = get_user_page_nowait(addr, write_fault, page);
1429                 up_read(&current->mm->mmap_sem);
1430         } else {
1431                 unsigned int flags = FOLL_HWPOISON;
1432
1433                 if (write_fault)
1434                         flags |= FOLL_WRITE;
1435
1436                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1437         }
1438         if (npages != 1)
1439                 return npages;
1440
1441         /* map read fault as writable if possible */
1442         if (unlikely(!write_fault) && writable) {
1443                 struct page *wpage[1];
1444
1445                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1446                 if (npages == 1) {
1447                         *writable = true;
1448                         put_page(page[0]);
1449                         page[0] = wpage[0];
1450                 }
1451
1452                 npages = 1;
1453         }
1454         *pfn = page_to_pfn(page[0]);
1455         return npages;
1456 }
1457
1458 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1459 {
1460         if (unlikely(!(vma->vm_flags & VM_READ)))
1461                 return false;
1462
1463         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1464                 return false;
1465
1466         return true;
1467 }
1468
1469 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1470                                unsigned long addr, bool *async,
1471                                bool write_fault, kvm_pfn_t *p_pfn)
1472 {
1473         unsigned long pfn;
1474         int r;
1475
1476         r = follow_pfn(vma, addr, &pfn);
1477         if (r) {
1478                 /*
1479                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1480                  * not call the fault handler, so do it here.
1481                  */
1482                 bool unlocked = false;
1483                 r = fixup_user_fault(current, current->mm, addr,
1484                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1485                                      &unlocked);
1486                 if (unlocked)
1487                         return -EAGAIN;
1488                 if (r)
1489                         return r;
1490
1491                 r = follow_pfn(vma, addr, &pfn);
1492                 if (r)
1493                         return r;
1494
1495         }
1496
1497
1498         /*
1499          * Get a reference here because callers of *hva_to_pfn* and
1500          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1501          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1502          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1503          * simply do nothing for reserved pfns.
1504          *
1505          * Whoever called remap_pfn_range is also going to call e.g.
1506          * unmap_mapping_range before the underlying pages are freed,
1507          * causing a call to our MMU notifier.
1508          */ 
1509         kvm_get_pfn(pfn);
1510
1511         *p_pfn = pfn;
1512         return 0;
1513 }
1514
1515 /*
1516  * Pin guest page in memory and return its pfn.
1517  * @addr: host virtual address which maps memory to the guest
1518  * @atomic: whether this function can sleep
1519  * @async: whether this function need to wait IO complete if the
1520  *         host page is not in the memory
1521  * @write_fault: whether we should get a writable host page
1522  * @writable: whether it allows to map a writable host page for !@write_fault
1523  *
1524  * The function will map a writable host page for these two cases:
1525  * 1): @write_fault = true
1526  * 2): @write_fault = false && @writable, @writable will tell the caller
1527  *     whether the mapping is writable.
1528  */
1529 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1530                         bool write_fault, bool *writable)
1531 {
1532         struct vm_area_struct *vma;
1533         kvm_pfn_t pfn = 0;
1534         int npages, r;
1535
1536         /* we can do it either atomically or asynchronously, not both */
1537         BUG_ON(atomic && async);
1538
1539         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1540                 return pfn;
1541
1542         if (atomic)
1543                 return KVM_PFN_ERR_FAULT;
1544
1545         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1546         if (npages == 1)
1547                 return pfn;
1548
1549         down_read(&current->mm->mmap_sem);
1550         if (npages == -EHWPOISON ||
1551               (!async && check_user_page_hwpoison(addr))) {
1552                 pfn = KVM_PFN_ERR_HWPOISON;
1553                 goto exit;
1554         }
1555
1556 retry:
1557         vma = find_vma_intersection(current->mm, addr, addr + 1);
1558
1559         if (vma == NULL)
1560                 pfn = KVM_PFN_ERR_FAULT;
1561         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1562                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1563                 if (r == -EAGAIN)
1564                         goto retry;
1565                 if (r < 0)
1566                         pfn = KVM_PFN_ERR_FAULT;
1567         } else {
1568                 if (async && vma_is_valid(vma, write_fault))
1569                         *async = true;
1570                 pfn = KVM_PFN_ERR_FAULT;
1571         }
1572 exit:
1573         up_read(&current->mm->mmap_sem);
1574         return pfn;
1575 }
1576
1577 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1578                                bool atomic, bool *async, bool write_fault,
1579                                bool *writable)
1580 {
1581         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1582
1583         if (addr == KVM_HVA_ERR_RO_BAD) {
1584                 if (writable)
1585                         *writable = false;
1586                 return KVM_PFN_ERR_RO_FAULT;
1587         }
1588
1589         if (kvm_is_error_hva(addr)) {
1590                 if (writable)
1591                         *writable = false;
1592                 return KVM_PFN_NOSLOT;
1593         }
1594
1595         /* Do not map writable pfn in the readonly memslot. */
1596         if (writable && memslot_is_readonly(slot)) {
1597                 *writable = false;
1598                 writable = NULL;
1599         }
1600
1601         return hva_to_pfn(addr, atomic, async, write_fault,
1602                           writable);
1603 }
1604 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1605
1606 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1607                       bool *writable)
1608 {
1609         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1610                                     write_fault, writable);
1611 }
1612 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1613
1614 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1615 {
1616         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1617 }
1618 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1619
1620 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1621 {
1622         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1623 }
1624 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1625
1626 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1627 {
1628         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1629 }
1630 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1631
1632 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1633 {
1634         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1635 }
1636 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1637
1638 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1639 {
1640         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1641 }
1642 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1643
1644 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1645 {
1646         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1647 }
1648 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1649
1650 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1651                             struct page **pages, int nr_pages)
1652 {
1653         unsigned long addr;
1654         gfn_t entry;
1655
1656         addr = gfn_to_hva_many(slot, gfn, &entry);
1657         if (kvm_is_error_hva(addr))
1658                 return -1;
1659
1660         if (entry < nr_pages)
1661                 return 0;
1662
1663         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1664 }
1665 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1666
1667 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1668 {
1669         if (is_error_noslot_pfn(pfn))
1670                 return KVM_ERR_PTR_BAD_PAGE;
1671
1672         if (kvm_is_reserved_pfn(pfn)) {
1673                 WARN_ON(1);
1674                 return KVM_ERR_PTR_BAD_PAGE;
1675         }
1676
1677         return pfn_to_page(pfn);
1678 }
1679
1680 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1681 {
1682         kvm_pfn_t pfn;
1683
1684         pfn = gfn_to_pfn(kvm, gfn);
1685
1686         return kvm_pfn_to_page(pfn);
1687 }
1688 EXPORT_SYMBOL_GPL(gfn_to_page);
1689
1690 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1691 {
1692         kvm_pfn_t pfn;
1693
1694         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1695
1696         return kvm_pfn_to_page(pfn);
1697 }
1698 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1699
1700 void kvm_release_page_clean(struct page *page)
1701 {
1702         WARN_ON(is_error_page(page));
1703
1704         kvm_release_pfn_clean(page_to_pfn(page));
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1707
1708 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1709 {
1710         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1711                 put_page(pfn_to_page(pfn));
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1714
1715 void kvm_release_page_dirty(struct page *page)
1716 {
1717         WARN_ON(is_error_page(page));
1718
1719         kvm_release_pfn_dirty(page_to_pfn(page));
1720 }
1721 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1722
1723 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1724 {
1725         kvm_set_pfn_dirty(pfn);
1726         kvm_release_pfn_clean(pfn);
1727 }
1728
1729 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1730 {
1731         if (!kvm_is_reserved_pfn(pfn)) {
1732                 struct page *page = pfn_to_page(pfn);
1733
1734                 if (!PageReserved(page))
1735                         SetPageDirty(page);
1736         }
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1739
1740 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1741 {
1742         if (!kvm_is_reserved_pfn(pfn))
1743                 mark_page_accessed(pfn_to_page(pfn));
1744 }
1745 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1746
1747 void kvm_get_pfn(kvm_pfn_t pfn)
1748 {
1749         if (!kvm_is_reserved_pfn(pfn))
1750                 get_page(pfn_to_page(pfn));
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1753
1754 static int next_segment(unsigned long len, int offset)
1755 {
1756         if (len > PAGE_SIZE - offset)
1757                 return PAGE_SIZE - offset;
1758         else
1759                 return len;
1760 }
1761
1762 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1763                                  void *data, int offset, int len)
1764 {
1765         int r;
1766         unsigned long addr;
1767
1768         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1769         if (kvm_is_error_hva(addr))
1770                 return -EFAULT;
1771         r = __copy_from_user(data, (void __user *)addr + offset, len);
1772         if (r)
1773                 return -EFAULT;
1774         return 0;
1775 }
1776
1777 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1778                         int len)
1779 {
1780         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1781
1782         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1785
1786 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1787                              int offset, int len)
1788 {
1789         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1790
1791         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1794
1795 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1796 {
1797         gfn_t gfn = gpa >> PAGE_SHIFT;
1798         int seg;
1799         int offset = offset_in_page(gpa);
1800         int ret;
1801
1802         while ((seg = next_segment(len, offset)) != 0) {
1803                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1804                 if (ret < 0)
1805                         return ret;
1806                 offset = 0;
1807                 len -= seg;
1808                 data += seg;
1809                 ++gfn;
1810         }
1811         return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(kvm_read_guest);
1814
1815 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1816 {
1817         gfn_t gfn = gpa >> PAGE_SHIFT;
1818         int seg;
1819         int offset = offset_in_page(gpa);
1820         int ret;
1821
1822         while ((seg = next_segment(len, offset)) != 0) {
1823                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1824                 if (ret < 0)
1825                         return ret;
1826                 offset = 0;
1827                 len -= seg;
1828                 data += seg;
1829                 ++gfn;
1830         }
1831         return 0;
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1834
1835 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1836                                    void *data, int offset, unsigned long len)
1837 {
1838         int r;
1839         unsigned long addr;
1840
1841         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1842         if (kvm_is_error_hva(addr))
1843                 return -EFAULT;
1844         pagefault_disable();
1845         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1846         pagefault_enable();
1847         if (r)
1848                 return -EFAULT;
1849         return 0;
1850 }
1851
1852 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1853                           unsigned long len)
1854 {
1855         gfn_t gfn = gpa >> PAGE_SHIFT;
1856         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1857         int offset = offset_in_page(gpa);
1858
1859         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1860 }
1861 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1862
1863 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1864                                void *data, unsigned long len)
1865 {
1866         gfn_t gfn = gpa >> PAGE_SHIFT;
1867         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1868         int offset = offset_in_page(gpa);
1869
1870         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1871 }
1872 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1873
1874 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1875                                   const void *data, int offset, int len)
1876 {
1877         int r;
1878         unsigned long addr;
1879
1880         addr = gfn_to_hva_memslot(memslot, gfn);
1881         if (kvm_is_error_hva(addr))
1882                 return -EFAULT;
1883         r = __copy_to_user((void __user *)addr + offset, data, len);
1884         if (r)
1885                 return -EFAULT;
1886         mark_page_dirty_in_slot(memslot, gfn);
1887         return 0;
1888 }
1889
1890 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1891                          const void *data, int offset, int len)
1892 {
1893         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1894
1895         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1898
1899 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1900                               const void *data, int offset, int len)
1901 {
1902         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1903
1904         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1905 }
1906 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1907
1908 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1909                     unsigned long len)
1910 {
1911         gfn_t gfn = gpa >> PAGE_SHIFT;
1912         int seg;
1913         int offset = offset_in_page(gpa);
1914         int ret;
1915
1916         while ((seg = next_segment(len, offset)) != 0) {
1917                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1918                 if (ret < 0)
1919                         return ret;
1920                 offset = 0;
1921                 len -= seg;
1922                 data += seg;
1923                 ++gfn;
1924         }
1925         return 0;
1926 }
1927 EXPORT_SYMBOL_GPL(kvm_write_guest);
1928
1929 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1930                          unsigned long len)
1931 {
1932         gfn_t gfn = gpa >> PAGE_SHIFT;
1933         int seg;
1934         int offset = offset_in_page(gpa);
1935         int ret;
1936
1937         while ((seg = next_segment(len, offset)) != 0) {
1938                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1939                 if (ret < 0)
1940                         return ret;
1941                 offset = 0;
1942                 len -= seg;
1943                 data += seg;
1944                 ++gfn;
1945         }
1946         return 0;
1947 }
1948 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1949
1950 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1951                                        struct gfn_to_hva_cache *ghc,
1952                                        gpa_t gpa, unsigned long len)
1953 {
1954         int offset = offset_in_page(gpa);
1955         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1956         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1957         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1958         gfn_t nr_pages_avail;
1959
1960         ghc->gpa = gpa;
1961         ghc->generation = slots->generation;
1962         ghc->len = len;
1963         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1964         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1965         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1966                 ghc->hva += offset;
1967         } else {
1968                 /*
1969                  * If the requested region crosses two memslots, we still
1970                  * verify that the entire region is valid here.
1971                  */
1972                 while (start_gfn <= end_gfn) {
1973                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1974                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1975                                                    &nr_pages_avail);
1976                         if (kvm_is_error_hva(ghc->hva))
1977                                 return -EFAULT;
1978                         start_gfn += nr_pages_avail;
1979                 }
1980                 /* Use the slow path for cross page reads and writes. */
1981                 ghc->memslot = NULL;
1982         }
1983         return 0;
1984 }
1985
1986 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1987                               gpa_t gpa, unsigned long len)
1988 {
1989         struct kvm_memslots *slots = kvm_memslots(kvm);
1990         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1991 }
1992 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1993
1994 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1995                            void *data, int offset, unsigned long len)
1996 {
1997         struct kvm_memslots *slots = kvm_memslots(kvm);
1998         int r;
1999         gpa_t gpa = ghc->gpa + offset;
2000
2001         BUG_ON(len + offset > ghc->len);
2002
2003         if (slots->generation != ghc->generation)
2004                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2005
2006         if (unlikely(!ghc->memslot))
2007                 return kvm_write_guest(kvm, gpa, data, len);
2008
2009         if (kvm_is_error_hva(ghc->hva))
2010                 return -EFAULT;
2011
2012         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2013         if (r)
2014                 return -EFAULT;
2015         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2016
2017         return 0;
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2020
2021 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2022                            void *data, unsigned long len)
2023 {
2024         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2027
2028 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2029                            void *data, unsigned long len)
2030 {
2031         struct kvm_memslots *slots = kvm_memslots(kvm);
2032         int r;
2033
2034         BUG_ON(len > ghc->len);
2035
2036         if (slots->generation != ghc->generation)
2037                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2038
2039         if (unlikely(!ghc->memslot))
2040                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2041
2042         if (kvm_is_error_hva(ghc->hva))
2043                 return -EFAULT;
2044
2045         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2046         if (r)
2047                 return -EFAULT;
2048
2049         return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2052
2053 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2054 {
2055         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2056
2057         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2058 }
2059 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2060
2061 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2062 {
2063         gfn_t gfn = gpa >> PAGE_SHIFT;
2064         int seg;
2065         int offset = offset_in_page(gpa);
2066         int ret;
2067
2068         while ((seg = next_segment(len, offset)) != 0) {
2069                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2070                 if (ret < 0)
2071                         return ret;
2072                 offset = 0;
2073                 len -= seg;
2074                 ++gfn;
2075         }
2076         return 0;
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2079
2080 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2081                                     gfn_t gfn)
2082 {
2083         if (memslot && memslot->dirty_bitmap) {
2084                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2085
2086                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2087         }
2088 }
2089
2090 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2091 {
2092         struct kvm_memory_slot *memslot;
2093
2094         memslot = gfn_to_memslot(kvm, gfn);
2095         mark_page_dirty_in_slot(memslot, gfn);
2096 }
2097 EXPORT_SYMBOL_GPL(mark_page_dirty);
2098
2099 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2100 {
2101         struct kvm_memory_slot *memslot;
2102
2103         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2104         mark_page_dirty_in_slot(memslot, gfn);
2105 }
2106 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2107
2108 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2109 {
2110         unsigned int old, val, grow;
2111
2112         old = val = vcpu->halt_poll_ns;
2113         grow = READ_ONCE(halt_poll_ns_grow);
2114         /* 10us base */
2115         if (val == 0 && grow)
2116                 val = 10000;
2117         else
2118                 val *= grow;
2119
2120         if (val > halt_poll_ns)
2121                 val = halt_poll_ns;
2122
2123         vcpu->halt_poll_ns = val;
2124         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2125 }
2126
2127 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2128 {
2129         unsigned int old, val, shrink;
2130
2131         old = val = vcpu->halt_poll_ns;
2132         shrink = READ_ONCE(halt_poll_ns_shrink);
2133         if (shrink == 0)
2134                 val = 0;
2135         else
2136                 val /= shrink;
2137
2138         vcpu->halt_poll_ns = val;
2139         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2140 }
2141
2142 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2143 {
2144         if (kvm_arch_vcpu_runnable(vcpu)) {
2145                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2146                 return -EINTR;
2147         }
2148         if (kvm_cpu_has_pending_timer(vcpu))
2149                 return -EINTR;
2150         if (signal_pending(current))
2151                 return -EINTR;
2152
2153         return 0;
2154 }
2155
2156 /*
2157  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2158  */
2159 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2160 {
2161         ktime_t start, cur;
2162         DECLARE_SWAITQUEUE(wait);
2163         bool waited = false;
2164         u64 block_ns;
2165
2166         start = cur = ktime_get();
2167         if (vcpu->halt_poll_ns) {
2168                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2169
2170                 ++vcpu->stat.halt_attempted_poll;
2171                 do {
2172                         /*
2173                          * This sets KVM_REQ_UNHALT if an interrupt
2174                          * arrives.
2175                          */
2176                         if (kvm_vcpu_check_block(vcpu) < 0) {
2177                                 ++vcpu->stat.halt_successful_poll;
2178                                 if (!vcpu_valid_wakeup(vcpu))
2179                                         ++vcpu->stat.halt_poll_invalid;
2180                                 goto out;
2181                         }
2182                         cur = ktime_get();
2183                 } while (single_task_running() && ktime_before(cur, stop));
2184         }
2185
2186         kvm_arch_vcpu_blocking(vcpu);
2187
2188         for (;;) {
2189                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2190
2191                 if (kvm_vcpu_check_block(vcpu) < 0)
2192                         break;
2193
2194                 waited = true;
2195                 schedule();
2196         }
2197
2198         finish_swait(&vcpu->wq, &wait);
2199         cur = ktime_get();
2200
2201         kvm_arch_vcpu_unblocking(vcpu);
2202 out:
2203         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2204
2205         if (!vcpu_valid_wakeup(vcpu))
2206                 shrink_halt_poll_ns(vcpu);
2207         else if (halt_poll_ns) {
2208                 if (block_ns <= vcpu->halt_poll_ns)
2209                         ;
2210                 /* we had a long block, shrink polling */
2211                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2212                         shrink_halt_poll_ns(vcpu);
2213                 /* we had a short halt and our poll time is too small */
2214                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2215                         block_ns < halt_poll_ns)
2216                         grow_halt_poll_ns(vcpu);
2217         } else
2218                 vcpu->halt_poll_ns = 0;
2219
2220         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2221         kvm_arch_vcpu_block_finish(vcpu);
2222 }
2223 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2224
2225 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2226 {
2227         struct swait_queue_head *wqp;
2228
2229         wqp = kvm_arch_vcpu_wq(vcpu);
2230         if (swait_active(wqp)) {
2231                 swake_up(wqp);
2232                 ++vcpu->stat.halt_wakeup;
2233                 return true;
2234         }
2235
2236         return false;
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2239
2240 #ifndef CONFIG_S390
2241 /*
2242  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2243  */
2244 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2245 {
2246         int me;
2247         int cpu = vcpu->cpu;
2248
2249         if (kvm_vcpu_wake_up(vcpu))
2250                 return;
2251
2252         me = get_cpu();
2253         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2254                 if (kvm_arch_vcpu_should_kick(vcpu))
2255                         smp_send_reschedule(cpu);
2256         put_cpu();
2257 }
2258 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2259 #endif /* !CONFIG_S390 */
2260
2261 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2262 {
2263         struct pid *pid;
2264         struct task_struct *task = NULL;
2265         int ret = 0;
2266
2267         rcu_read_lock();
2268         pid = rcu_dereference(target->pid);
2269         if (pid)
2270                 task = get_pid_task(pid, PIDTYPE_PID);
2271         rcu_read_unlock();
2272         if (!task)
2273                 return ret;
2274         ret = yield_to(task, 1);
2275         put_task_struct(task);
2276
2277         return ret;
2278 }
2279 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2280
2281 /*
2282  * Helper that checks whether a VCPU is eligible for directed yield.
2283  * Most eligible candidate to yield is decided by following heuristics:
2284  *
2285  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2286  *  (preempted lock holder), indicated by @in_spin_loop.
2287  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2288  *
2289  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2290  *  chance last time (mostly it has become eligible now since we have probably
2291  *  yielded to lockholder in last iteration. This is done by toggling
2292  *  @dy_eligible each time a VCPU checked for eligibility.)
2293  *
2294  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2295  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2296  *  burning. Giving priority for a potential lock-holder increases lock
2297  *  progress.
2298  *
2299  *  Since algorithm is based on heuristics, accessing another VCPU data without
2300  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2301  *  and continue with next VCPU and so on.
2302  */
2303 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2304 {
2305 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2306         bool eligible;
2307
2308         eligible = !vcpu->spin_loop.in_spin_loop ||
2309                     vcpu->spin_loop.dy_eligible;
2310
2311         if (vcpu->spin_loop.in_spin_loop)
2312                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2313
2314         return eligible;
2315 #else
2316         return true;
2317 #endif
2318 }
2319
2320 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2321 {
2322         struct kvm *kvm = me->kvm;
2323         struct kvm_vcpu *vcpu;
2324         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2325         int yielded = 0;
2326         int try = 3;
2327         int pass;
2328         int i;
2329
2330         kvm_vcpu_set_in_spin_loop(me, true);
2331         /*
2332          * We boost the priority of a VCPU that is runnable but not
2333          * currently running, because it got preempted by something
2334          * else and called schedule in __vcpu_run.  Hopefully that
2335          * VCPU is holding the lock that we need and will release it.
2336          * We approximate round-robin by starting at the last boosted VCPU.
2337          */
2338         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2339                 kvm_for_each_vcpu(i, vcpu, kvm) {
2340                         if (!pass && i <= last_boosted_vcpu) {
2341                                 i = last_boosted_vcpu;
2342                                 continue;
2343                         } else if (pass && i > last_boosted_vcpu)
2344                                 break;
2345                         if (!ACCESS_ONCE(vcpu->preempted))
2346                                 continue;
2347                         if (vcpu == me)
2348                                 continue;
2349                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2350                                 continue;
2351                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2352                                 continue;
2353
2354                         yielded = kvm_vcpu_yield_to(vcpu);
2355                         if (yielded > 0) {
2356                                 kvm->last_boosted_vcpu = i;
2357                                 break;
2358                         } else if (yielded < 0) {
2359                                 try--;
2360                                 if (!try)
2361                                         break;
2362                         }
2363                 }
2364         }
2365         kvm_vcpu_set_in_spin_loop(me, false);
2366
2367         /* Ensure vcpu is not eligible during next spinloop */
2368         kvm_vcpu_set_dy_eligible(me, false);
2369 }
2370 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2371
2372 static int kvm_vcpu_fault(struct vm_fault *vmf)
2373 {
2374         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2375         struct page *page;
2376
2377         if (vmf->pgoff == 0)
2378                 page = virt_to_page(vcpu->run);
2379 #ifdef CONFIG_X86
2380         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2381                 page = virt_to_page(vcpu->arch.pio_data);
2382 #endif
2383 #ifdef CONFIG_KVM_MMIO
2384         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2385                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2386 #endif
2387         else
2388                 return kvm_arch_vcpu_fault(vcpu, vmf);
2389         get_page(page);
2390         vmf->page = page;
2391         return 0;
2392 }
2393
2394 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2395         .fault = kvm_vcpu_fault,
2396 };
2397
2398 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2399 {
2400         vma->vm_ops = &kvm_vcpu_vm_ops;
2401         return 0;
2402 }
2403
2404 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2405 {
2406         struct kvm_vcpu *vcpu = filp->private_data;
2407
2408         debugfs_remove_recursive(vcpu->debugfs_dentry);
2409         kvm_put_kvm(vcpu->kvm);
2410         return 0;
2411 }
2412
2413 static struct file_operations kvm_vcpu_fops = {
2414         .release        = kvm_vcpu_release,
2415         .unlocked_ioctl = kvm_vcpu_ioctl,
2416 #ifdef CONFIG_KVM_COMPAT
2417         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2418 #endif
2419         .mmap           = kvm_vcpu_mmap,
2420         .llseek         = noop_llseek,
2421 };
2422
2423 /*
2424  * Allocates an inode for the vcpu.
2425  */
2426 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2427 {
2428         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2429 }
2430
2431 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2432 {
2433         char dir_name[ITOA_MAX_LEN * 2];
2434         int ret;
2435
2436         if (!kvm_arch_has_vcpu_debugfs())
2437                 return 0;
2438
2439         if (!debugfs_initialized())
2440                 return 0;
2441
2442         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2443         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2444                                                                 vcpu->kvm->debugfs_dentry);
2445         if (!vcpu->debugfs_dentry)
2446                 return -ENOMEM;
2447
2448         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2449         if (ret < 0) {
2450                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2451                 return ret;
2452         }
2453
2454         return 0;
2455 }
2456
2457 /*
2458  * Creates some virtual cpus.  Good luck creating more than one.
2459  */
2460 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2461 {
2462         int r;
2463         struct kvm_vcpu *vcpu;
2464
2465         if (id >= KVM_MAX_VCPU_ID)
2466                 return -EINVAL;
2467
2468         mutex_lock(&kvm->lock);
2469         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2470                 mutex_unlock(&kvm->lock);
2471                 return -EINVAL;
2472         }
2473
2474         kvm->created_vcpus++;
2475         mutex_unlock(&kvm->lock);
2476
2477         vcpu = kvm_arch_vcpu_create(kvm, id);
2478         if (IS_ERR(vcpu)) {
2479                 r = PTR_ERR(vcpu);
2480                 goto vcpu_decrement;
2481         }
2482
2483         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2484
2485         r = kvm_arch_vcpu_setup(vcpu);
2486         if (r)
2487                 goto vcpu_destroy;
2488
2489         r = kvm_create_vcpu_debugfs(vcpu);
2490         if (r)
2491                 goto vcpu_destroy;
2492
2493         mutex_lock(&kvm->lock);
2494         if (kvm_get_vcpu_by_id(kvm, id)) {
2495                 r = -EEXIST;
2496                 goto unlock_vcpu_destroy;
2497         }
2498
2499         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2500
2501         /* Now it's all set up, let userspace reach it */
2502         kvm_get_kvm(kvm);
2503         r = create_vcpu_fd(vcpu);
2504         if (r < 0) {
2505                 kvm_put_kvm(kvm);
2506                 goto unlock_vcpu_destroy;
2507         }
2508
2509         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2510
2511         /*
2512          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2513          * before kvm->online_vcpu's incremented value.
2514          */
2515         smp_wmb();
2516         atomic_inc(&kvm->online_vcpus);
2517
2518         mutex_unlock(&kvm->lock);
2519         kvm_arch_vcpu_postcreate(vcpu);
2520         return r;
2521
2522 unlock_vcpu_destroy:
2523         mutex_unlock(&kvm->lock);
2524         debugfs_remove_recursive(vcpu->debugfs_dentry);
2525 vcpu_destroy:
2526         kvm_arch_vcpu_destroy(vcpu);
2527 vcpu_decrement:
2528         mutex_lock(&kvm->lock);
2529         kvm->created_vcpus--;
2530         mutex_unlock(&kvm->lock);
2531         return r;
2532 }
2533
2534 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2535 {
2536         if (sigset) {
2537                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2538                 vcpu->sigset_active = 1;
2539                 vcpu->sigset = *sigset;
2540         } else
2541                 vcpu->sigset_active = 0;
2542         return 0;
2543 }
2544
2545 static long kvm_vcpu_ioctl(struct file *filp,
2546                            unsigned int ioctl, unsigned long arg)
2547 {
2548         struct kvm_vcpu *vcpu = filp->private_data;
2549         void __user *argp = (void __user *)arg;
2550         int r;
2551         struct kvm_fpu *fpu = NULL;
2552         struct kvm_sregs *kvm_sregs = NULL;
2553
2554         if (vcpu->kvm->mm != current->mm)
2555                 return -EIO;
2556
2557         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2558                 return -EINVAL;
2559
2560 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2561         /*
2562          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2563          * so vcpu_load() would break it.
2564          */
2565         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2566                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2567 #endif
2568
2569
2570         r = vcpu_load(vcpu);
2571         if (r)
2572                 return r;
2573         switch (ioctl) {
2574         case KVM_RUN: {
2575                 struct pid *oldpid;
2576                 r = -EINVAL;
2577                 if (arg)
2578                         goto out;
2579                 oldpid = rcu_access_pointer(vcpu->pid);
2580                 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2581                         /* The thread running this VCPU changed. */
2582                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2583
2584                         rcu_assign_pointer(vcpu->pid, newpid);
2585                         if (oldpid)
2586                                 synchronize_rcu();
2587                         put_pid(oldpid);
2588                 }
2589                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2590                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2591                 break;
2592         }
2593         case KVM_GET_REGS: {
2594                 struct kvm_regs *kvm_regs;
2595
2596                 r = -ENOMEM;
2597                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2598                 if (!kvm_regs)
2599                         goto out;
2600                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2601                 if (r)
2602                         goto out_free1;
2603                 r = -EFAULT;
2604                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2605                         goto out_free1;
2606                 r = 0;
2607 out_free1:
2608                 kfree(kvm_regs);
2609                 break;
2610         }
2611         case KVM_SET_REGS: {
2612                 struct kvm_regs *kvm_regs;
2613
2614                 r = -ENOMEM;
2615                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2616                 if (IS_ERR(kvm_regs)) {
2617                         r = PTR_ERR(kvm_regs);
2618                         goto out;
2619                 }
2620                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2621                 kfree(kvm_regs);
2622                 break;
2623         }
2624         case KVM_GET_SREGS: {
2625                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2626                 r = -ENOMEM;
2627                 if (!kvm_sregs)
2628                         goto out;
2629                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2630                 if (r)
2631                         goto out;
2632                 r = -EFAULT;
2633                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2634                         goto out;
2635                 r = 0;
2636                 break;
2637         }
2638         case KVM_SET_SREGS: {
2639                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2640                 if (IS_ERR(kvm_sregs)) {
2641                         r = PTR_ERR(kvm_sregs);
2642                         kvm_sregs = NULL;
2643                         goto out;
2644                 }
2645                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2646                 break;
2647         }
2648         case KVM_GET_MP_STATE: {
2649                 struct kvm_mp_state mp_state;
2650
2651                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2652                 if (r)
2653                         goto out;
2654                 r = -EFAULT;
2655                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2656                         goto out;
2657                 r = 0;
2658                 break;
2659         }
2660         case KVM_SET_MP_STATE: {
2661                 struct kvm_mp_state mp_state;
2662
2663                 r = -EFAULT;
2664                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2665                         goto out;
2666                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2667                 break;
2668         }
2669         case KVM_TRANSLATE: {
2670                 struct kvm_translation tr;
2671
2672                 r = -EFAULT;
2673                 if (copy_from_user(&tr, argp, sizeof(tr)))
2674                         goto out;
2675                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2676                 if (r)
2677                         goto out;
2678                 r = -EFAULT;
2679                 if (copy_to_user(argp, &tr, sizeof(tr)))
2680                         goto out;
2681                 r = 0;
2682                 break;
2683         }
2684         case KVM_SET_GUEST_DEBUG: {
2685                 struct kvm_guest_debug dbg;
2686
2687                 r = -EFAULT;
2688                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2689                         goto out;
2690                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2691                 break;
2692         }
2693         case KVM_SET_SIGNAL_MASK: {
2694                 struct kvm_signal_mask __user *sigmask_arg = argp;
2695                 struct kvm_signal_mask kvm_sigmask;
2696                 sigset_t sigset, *p;
2697
2698                 p = NULL;
2699                 if (argp) {
2700                         r = -EFAULT;
2701                         if (copy_from_user(&kvm_sigmask, argp,
2702                                            sizeof(kvm_sigmask)))
2703                                 goto out;
2704                         r = -EINVAL;
2705                         if (kvm_sigmask.len != sizeof(sigset))
2706                                 goto out;
2707                         r = -EFAULT;
2708                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2709                                            sizeof(sigset)))
2710                                 goto out;
2711                         p = &sigset;
2712                 }
2713                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2714                 break;
2715         }
2716         case KVM_GET_FPU: {
2717                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2718                 r = -ENOMEM;
2719                 if (!fpu)
2720                         goto out;
2721                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2722                 if (r)
2723                         goto out;
2724                 r = -EFAULT;
2725                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2726                         goto out;
2727                 r = 0;
2728                 break;
2729         }
2730         case KVM_SET_FPU: {
2731                 fpu = memdup_user(argp, sizeof(*fpu));
2732                 if (IS_ERR(fpu)) {
2733                         r = PTR_ERR(fpu);
2734                         fpu = NULL;
2735                         goto out;
2736                 }
2737                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2738                 break;
2739         }
2740         default:
2741                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2742         }
2743 out:
2744         vcpu_put(vcpu);
2745         kfree(fpu);
2746         kfree(kvm_sregs);
2747         return r;
2748 }
2749
2750 #ifdef CONFIG_KVM_COMPAT
2751 static long kvm_vcpu_compat_ioctl(struct file *filp,
2752                                   unsigned int ioctl, unsigned long arg)
2753 {
2754         struct kvm_vcpu *vcpu = filp->private_data;
2755         void __user *argp = compat_ptr(arg);
2756         int r;
2757
2758         if (vcpu->kvm->mm != current->mm)
2759                 return -EIO;
2760
2761         switch (ioctl) {
2762         case KVM_SET_SIGNAL_MASK: {
2763                 struct kvm_signal_mask __user *sigmask_arg = argp;
2764                 struct kvm_signal_mask kvm_sigmask;
2765                 compat_sigset_t csigset;
2766                 sigset_t sigset;
2767
2768                 if (argp) {
2769                         r = -EFAULT;
2770                         if (copy_from_user(&kvm_sigmask, argp,
2771                                            sizeof(kvm_sigmask)))
2772                                 goto out;
2773                         r = -EINVAL;
2774                         if (kvm_sigmask.len != sizeof(csigset))
2775                                 goto out;
2776                         r = -EFAULT;
2777                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2778                                            sizeof(csigset)))
2779                                 goto out;
2780                         sigset_from_compat(&sigset, &csigset);
2781                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2782                 } else
2783                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2784                 break;
2785         }
2786         default:
2787                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2788         }
2789
2790 out:
2791         return r;
2792 }
2793 #endif
2794
2795 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2796                                  int (*accessor)(struct kvm_device *dev,
2797                                                  struct kvm_device_attr *attr),
2798                                  unsigned long arg)
2799 {
2800         struct kvm_device_attr attr;
2801
2802         if (!accessor)
2803                 return -EPERM;
2804
2805         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2806                 return -EFAULT;
2807
2808         return accessor(dev, &attr);
2809 }
2810
2811 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2812                              unsigned long arg)
2813 {
2814         struct kvm_device *dev = filp->private_data;
2815
2816         switch (ioctl) {
2817         case KVM_SET_DEVICE_ATTR:
2818                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2819         case KVM_GET_DEVICE_ATTR:
2820                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2821         case KVM_HAS_DEVICE_ATTR:
2822                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2823         default:
2824                 if (dev->ops->ioctl)
2825                         return dev->ops->ioctl(dev, ioctl, arg);
2826
2827                 return -ENOTTY;
2828         }
2829 }
2830
2831 static int kvm_device_release(struct inode *inode, struct file *filp)
2832 {
2833         struct kvm_device *dev = filp->private_data;
2834         struct kvm *kvm = dev->kvm;
2835
2836         kvm_put_kvm(kvm);
2837         return 0;
2838 }
2839
2840 static const struct file_operations kvm_device_fops = {
2841         .unlocked_ioctl = kvm_device_ioctl,
2842 #ifdef CONFIG_KVM_COMPAT
2843         .compat_ioctl = kvm_device_ioctl,
2844 #endif
2845         .release = kvm_device_release,
2846 };
2847
2848 struct kvm_device *kvm_device_from_filp(struct file *filp)
2849 {
2850         if (filp->f_op != &kvm_device_fops)
2851                 return NULL;
2852
2853         return filp->private_data;
2854 }
2855
2856 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2857 #ifdef CONFIG_KVM_MPIC
2858         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2859         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2860 #endif
2861 };
2862
2863 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2864 {
2865         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2866                 return -ENOSPC;
2867
2868         if (kvm_device_ops_table[type] != NULL)
2869                 return -EEXIST;
2870
2871         kvm_device_ops_table[type] = ops;
2872         return 0;
2873 }
2874
2875 void kvm_unregister_device_ops(u32 type)
2876 {
2877         if (kvm_device_ops_table[type] != NULL)
2878                 kvm_device_ops_table[type] = NULL;
2879 }
2880
2881 static int kvm_ioctl_create_device(struct kvm *kvm,
2882                                    struct kvm_create_device *cd)
2883 {
2884         struct kvm_device_ops *ops = NULL;
2885         struct kvm_device *dev;
2886         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2887         int ret;
2888
2889         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2890                 return -ENODEV;
2891
2892         ops = kvm_device_ops_table[cd->type];
2893         if (ops == NULL)
2894                 return -ENODEV;
2895
2896         if (test)
2897                 return 0;
2898
2899         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2900         if (!dev)
2901                 return -ENOMEM;
2902
2903         dev->ops = ops;
2904         dev->kvm = kvm;
2905
2906         mutex_lock(&kvm->lock);
2907         ret = ops->create(dev, cd->type);
2908         if (ret < 0) {
2909                 mutex_unlock(&kvm->lock);
2910                 kfree(dev);
2911                 return ret;
2912         }
2913         list_add(&dev->vm_node, &kvm->devices);
2914         mutex_unlock(&kvm->lock);
2915
2916         if (ops->init)
2917                 ops->init(dev);
2918
2919         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2920         if (ret < 0) {
2921                 mutex_lock(&kvm->lock);
2922                 list_del(&dev->vm_node);
2923                 mutex_unlock(&kvm->lock);
2924                 ops->destroy(dev);
2925                 return ret;
2926         }
2927
2928         kvm_get_kvm(kvm);
2929         cd->fd = ret;
2930         return 0;
2931 }
2932
2933 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2934 {
2935         switch (arg) {
2936         case KVM_CAP_USER_MEMORY:
2937         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2938         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2939         case KVM_CAP_INTERNAL_ERROR_DATA:
2940 #ifdef CONFIG_HAVE_KVM_MSI
2941         case KVM_CAP_SIGNAL_MSI:
2942 #endif
2943 #ifdef CONFIG_HAVE_KVM_IRQFD
2944         case KVM_CAP_IRQFD:
2945         case KVM_CAP_IRQFD_RESAMPLE:
2946 #endif
2947         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2948         case KVM_CAP_CHECK_EXTENSION_VM:
2949                 return 1;
2950 #ifdef CONFIG_KVM_MMIO
2951         case KVM_CAP_COALESCED_MMIO:
2952                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2953 #endif
2954 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2955         case KVM_CAP_IRQ_ROUTING:
2956                 return KVM_MAX_IRQ_ROUTES;
2957 #endif
2958 #if KVM_ADDRESS_SPACE_NUM > 1
2959         case KVM_CAP_MULTI_ADDRESS_SPACE:
2960                 return KVM_ADDRESS_SPACE_NUM;
2961 #endif
2962         case KVM_CAP_MAX_VCPU_ID:
2963                 return KVM_MAX_VCPU_ID;
2964         default:
2965                 break;
2966         }
2967         return kvm_vm_ioctl_check_extension(kvm, arg);
2968 }
2969
2970 static long kvm_vm_ioctl(struct file *filp,
2971                            unsigned int ioctl, unsigned long arg)
2972 {
2973         struct kvm *kvm = filp->private_data;
2974         void __user *argp = (void __user *)arg;
2975         int r;
2976
2977         if (kvm->mm != current->mm)
2978                 return -EIO;
2979         switch (ioctl) {
2980         case KVM_CREATE_VCPU:
2981                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2982                 break;
2983         case KVM_SET_USER_MEMORY_REGION: {
2984                 struct kvm_userspace_memory_region kvm_userspace_mem;
2985
2986                 r = -EFAULT;
2987                 if (copy_from_user(&kvm_userspace_mem, argp,
2988                                                 sizeof(kvm_userspace_mem)))
2989                         goto out;
2990
2991                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2992                 break;
2993         }
2994         case KVM_GET_DIRTY_LOG: {
2995                 struct kvm_dirty_log log;
2996
2997                 r = -EFAULT;
2998                 if (copy_from_user(&log, argp, sizeof(log)))
2999                         goto out;
3000                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3001                 break;
3002         }
3003 #ifdef CONFIG_KVM_MMIO
3004         case KVM_REGISTER_COALESCED_MMIO: {
3005                 struct kvm_coalesced_mmio_zone zone;
3006
3007                 r = -EFAULT;
3008                 if (copy_from_user(&zone, argp, sizeof(zone)))
3009                         goto out;
3010                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3011                 break;
3012         }
3013         case KVM_UNREGISTER_COALESCED_MMIO: {
3014                 struct kvm_coalesced_mmio_zone zone;
3015
3016                 r = -EFAULT;
3017                 if (copy_from_user(&zone, argp, sizeof(zone)))
3018                         goto out;
3019                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3020                 break;
3021         }
3022 #endif
3023         case KVM_IRQFD: {
3024                 struct kvm_irqfd data;
3025
3026                 r = -EFAULT;
3027                 if (copy_from_user(&data, argp, sizeof(data)))
3028                         goto out;
3029                 r = kvm_irqfd(kvm, &data);
3030                 break;
3031         }
3032         case KVM_IOEVENTFD: {
3033                 struct kvm_ioeventfd data;
3034
3035                 r = -EFAULT;
3036                 if (copy_from_user(&data, argp, sizeof(data)))
3037                         goto out;
3038                 r = kvm_ioeventfd(kvm, &data);
3039                 break;
3040         }
3041 #ifdef CONFIG_HAVE_KVM_MSI
3042         case KVM_SIGNAL_MSI: {
3043                 struct kvm_msi msi;
3044
3045                 r = -EFAULT;
3046                 if (copy_from_user(&msi, argp, sizeof(msi)))
3047                         goto out;
3048                 r = kvm_send_userspace_msi(kvm, &msi);
3049                 break;
3050         }
3051 #endif
3052 #ifdef __KVM_HAVE_IRQ_LINE
3053         case KVM_IRQ_LINE_STATUS:
3054         case KVM_IRQ_LINE: {
3055                 struct kvm_irq_level irq_event;
3056
3057                 r = -EFAULT;
3058                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3059                         goto out;
3060
3061                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3062                                         ioctl == KVM_IRQ_LINE_STATUS);
3063                 if (r)
3064                         goto out;
3065
3066                 r = -EFAULT;
3067                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3068                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3069                                 goto out;
3070                 }
3071
3072                 r = 0;
3073                 break;
3074         }
3075 #endif
3076 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3077         case KVM_SET_GSI_ROUTING: {
3078                 struct kvm_irq_routing routing;
3079                 struct kvm_irq_routing __user *urouting;
3080                 struct kvm_irq_routing_entry *entries = NULL;
3081
3082                 r = -EFAULT;
3083                 if (copy_from_user(&routing, argp, sizeof(routing)))
3084                         goto out;
3085                 r = -EINVAL;
3086                 if (!kvm_arch_can_set_irq_routing(kvm))
3087                         goto out;
3088                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3089                         goto out;
3090                 if (routing.flags)
3091                         goto out;
3092                 if (routing.nr) {
3093                         r = -ENOMEM;
3094                         entries = vmalloc(routing.nr * sizeof(*entries));
3095                         if (!entries)
3096                                 goto out;
3097                         r = -EFAULT;
3098                         urouting = argp;
3099                         if (copy_from_user(entries, urouting->entries,
3100                                            routing.nr * sizeof(*entries)))
3101                                 goto out_free_irq_routing;
3102                 }
3103                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3104                                         routing.flags);
3105 out_free_irq_routing:
3106                 vfree(entries);
3107                 break;
3108         }
3109 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3110         case KVM_CREATE_DEVICE: {
3111                 struct kvm_create_device cd;
3112
3113                 r = -EFAULT;
3114                 if (copy_from_user(&cd, argp, sizeof(cd)))
3115                         goto out;
3116
3117                 r = kvm_ioctl_create_device(kvm, &cd);
3118                 if (r)
3119                         goto out;
3120
3121                 r = -EFAULT;
3122                 if (copy_to_user(argp, &cd, sizeof(cd)))
3123                         goto out;
3124
3125                 r = 0;
3126                 break;
3127         }
3128         case KVM_CHECK_EXTENSION:
3129                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3130                 break;
3131         default:
3132                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3133         }
3134 out:
3135         return r;
3136 }
3137
3138 #ifdef CONFIG_KVM_COMPAT
3139 struct compat_kvm_dirty_log {
3140         __u32 slot;
3141         __u32 padding1;
3142         union {
3143                 compat_uptr_t dirty_bitmap; /* one bit per page */
3144                 __u64 padding2;
3145         };
3146 };
3147
3148 static long kvm_vm_compat_ioctl(struct file *filp,
3149                            unsigned int ioctl, unsigned long arg)
3150 {
3151         struct kvm *kvm = filp->private_data;
3152         int r;
3153
3154         if (kvm->mm != current->mm)
3155                 return -EIO;
3156         switch (ioctl) {
3157         case KVM_GET_DIRTY_LOG: {
3158                 struct compat_kvm_dirty_log compat_log;
3159                 struct kvm_dirty_log log;
3160
3161                 if (copy_from_user(&compat_log, (void __user *)arg,
3162                                    sizeof(compat_log)))
3163                         return -EFAULT;
3164                 log.slot         = compat_log.slot;
3165                 log.padding1     = compat_log.padding1;
3166                 log.padding2     = compat_log.padding2;
3167                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3168
3169                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3170                 break;
3171         }
3172         default:
3173                 r = kvm_vm_ioctl(filp, ioctl, arg);
3174         }
3175         return r;
3176 }
3177 #endif
3178
3179 static struct file_operations kvm_vm_fops = {
3180         .release        = kvm_vm_release,
3181         .unlocked_ioctl = kvm_vm_ioctl,
3182 #ifdef CONFIG_KVM_COMPAT
3183         .compat_ioctl   = kvm_vm_compat_ioctl,
3184 #endif
3185         .llseek         = noop_llseek,
3186 };
3187
3188 static int kvm_dev_ioctl_create_vm(unsigned long type)
3189 {
3190         int r;
3191         struct kvm *kvm;
3192         struct file *file;
3193
3194         kvm = kvm_create_vm(type);
3195         if (IS_ERR(kvm))
3196                 return PTR_ERR(kvm);
3197 #ifdef CONFIG_KVM_MMIO
3198         r = kvm_coalesced_mmio_init(kvm);
3199         if (r < 0) {
3200                 kvm_put_kvm(kvm);
3201                 return r;
3202         }
3203 #endif
3204         r = get_unused_fd_flags(O_CLOEXEC);
3205         if (r < 0) {
3206                 kvm_put_kvm(kvm);
3207                 return r;
3208         }
3209         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3210         if (IS_ERR(file)) {
3211                 put_unused_fd(r);
3212                 kvm_put_kvm(kvm);
3213                 return PTR_ERR(file);
3214         }
3215
3216         /*
3217          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3218          * already set, with ->release() being kvm_vm_release().  In error
3219          * cases it will be called by the final fput(file) and will take
3220          * care of doing kvm_put_kvm(kvm).
3221          */
3222         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3223                 put_unused_fd(r);
3224                 fput(file);
3225                 return -ENOMEM;
3226         }
3227         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3228
3229         fd_install(r, file);
3230         return r;
3231 }
3232
3233 static long kvm_dev_ioctl(struct file *filp,
3234                           unsigned int ioctl, unsigned long arg)
3235 {
3236         long r = -EINVAL;
3237
3238         switch (ioctl) {
3239         case KVM_GET_API_VERSION:
3240                 if (arg)
3241                         goto out;
3242                 r = KVM_API_VERSION;
3243                 break;
3244         case KVM_CREATE_VM:
3245                 r = kvm_dev_ioctl_create_vm(arg);
3246                 break;
3247         case KVM_CHECK_EXTENSION:
3248                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3249                 break;
3250         case KVM_GET_VCPU_MMAP_SIZE:
3251                 if (arg)
3252                         goto out;
3253                 r = PAGE_SIZE;     /* struct kvm_run */
3254 #ifdef CONFIG_X86
3255                 r += PAGE_SIZE;    /* pio data page */
3256 #endif
3257 #ifdef CONFIG_KVM_MMIO
3258                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3259 #endif
3260                 break;
3261         case KVM_TRACE_ENABLE:
3262         case KVM_TRACE_PAUSE:
3263         case KVM_TRACE_DISABLE:
3264                 r = -EOPNOTSUPP;
3265                 break;
3266         default:
3267                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3268         }
3269 out:
3270         return r;
3271 }
3272
3273 static struct file_operations kvm_chardev_ops = {
3274         .unlocked_ioctl = kvm_dev_ioctl,
3275         .compat_ioctl   = kvm_dev_ioctl,
3276         .llseek         = noop_llseek,
3277 };
3278
3279 static struct miscdevice kvm_dev = {
3280         KVM_MINOR,
3281         "kvm",
3282         &kvm_chardev_ops,
3283 };
3284
3285 static void hardware_enable_nolock(void *junk)
3286 {
3287         int cpu = raw_smp_processor_id();
3288         int r;
3289
3290         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3291                 return;
3292
3293         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3294
3295         r = kvm_arch_hardware_enable();
3296
3297         if (r) {
3298                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3299                 atomic_inc(&hardware_enable_failed);
3300                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3301         }
3302 }
3303
3304 static int kvm_starting_cpu(unsigned int cpu)
3305 {
3306         raw_spin_lock(&kvm_count_lock);
3307         if (kvm_usage_count)
3308                 hardware_enable_nolock(NULL);
3309         raw_spin_unlock(&kvm_count_lock);
3310         return 0;
3311 }
3312
3313 static void hardware_disable_nolock(void *junk)
3314 {
3315         int cpu = raw_smp_processor_id();
3316
3317         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3318                 return;
3319         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3320         kvm_arch_hardware_disable();
3321 }
3322
3323 static int kvm_dying_cpu(unsigned int cpu)
3324 {
3325         raw_spin_lock(&kvm_count_lock);
3326         if (kvm_usage_count)
3327                 hardware_disable_nolock(NULL);
3328         raw_spin_unlock(&kvm_count_lock);
3329         return 0;
3330 }
3331
3332 static void hardware_disable_all_nolock(void)
3333 {
3334         BUG_ON(!kvm_usage_count);
3335
3336         kvm_usage_count--;
3337         if (!kvm_usage_count)
3338                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3339 }
3340
3341 static void hardware_disable_all(void)
3342 {
3343         raw_spin_lock(&kvm_count_lock);
3344         hardware_disable_all_nolock();
3345         raw_spin_unlock(&kvm_count_lock);
3346 }
3347
3348 static int hardware_enable_all(void)
3349 {
3350         int r = 0;
3351
3352         raw_spin_lock(&kvm_count_lock);
3353
3354         kvm_usage_count++;
3355         if (kvm_usage_count == 1) {
3356                 atomic_set(&hardware_enable_failed, 0);
3357                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3358
3359                 if (atomic_read(&hardware_enable_failed)) {
3360                         hardware_disable_all_nolock();
3361                         r = -EBUSY;
3362                 }
3363         }
3364
3365         raw_spin_unlock(&kvm_count_lock);
3366
3367         return r;
3368 }
3369
3370 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3371                       void *v)
3372 {
3373         /*
3374          * Some (well, at least mine) BIOSes hang on reboot if
3375          * in vmx root mode.
3376          *
3377          * And Intel TXT required VMX off for all cpu when system shutdown.
3378          */
3379         pr_info("kvm: exiting hardware virtualization\n");
3380         kvm_rebooting = true;
3381         on_each_cpu(hardware_disable_nolock, NULL, 1);
3382         return NOTIFY_OK;
3383 }
3384
3385 static struct notifier_block kvm_reboot_notifier = {
3386         .notifier_call = kvm_reboot,
3387         .priority = 0,
3388 };
3389
3390 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3391 {
3392         int i;
3393
3394         for (i = 0; i < bus->dev_count; i++) {
3395                 struct kvm_io_device *pos = bus->range[i].dev;
3396
3397                 kvm_iodevice_destructor(pos);
3398         }
3399         kfree(bus);
3400 }
3401
3402 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3403                                  const struct kvm_io_range *r2)
3404 {
3405         gpa_t addr1 = r1->addr;
3406         gpa_t addr2 = r2->addr;
3407
3408         if (addr1 < addr2)
3409                 return -1;
3410
3411         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3412          * accept any overlapping write.  Any order is acceptable for
3413          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3414          * we process all of them.
3415          */
3416         if (r2->len) {
3417                 addr1 += r1->len;
3418                 addr2 += r2->len;
3419         }
3420
3421         if (addr1 > addr2)
3422                 return 1;
3423
3424         return 0;
3425 }
3426
3427 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3428 {
3429         return kvm_io_bus_cmp(p1, p2);
3430 }
3431
3432 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3433                           gpa_t addr, int len)
3434 {
3435         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3436                 .addr = addr,
3437                 .len = len,
3438                 .dev = dev,
3439         };
3440
3441         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3442                 kvm_io_bus_sort_cmp, NULL);
3443
3444         return 0;
3445 }
3446
3447 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3448                              gpa_t addr, int len)
3449 {
3450         struct kvm_io_range *range, key;
3451         int off;
3452
3453         key = (struct kvm_io_range) {
3454                 .addr = addr,
3455                 .len = len,
3456         };
3457
3458         range = bsearch(&key, bus->range, bus->dev_count,
3459                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3460         if (range == NULL)
3461                 return -ENOENT;
3462
3463         off = range - bus->range;
3464
3465         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3466                 off--;
3467
3468         return off;
3469 }
3470
3471 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3472                               struct kvm_io_range *range, const void *val)
3473 {
3474         int idx;
3475
3476         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3477         if (idx < 0)
3478                 return -EOPNOTSUPP;
3479
3480         while (idx < bus->dev_count &&
3481                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3482                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3483                                         range->len, val))
3484                         return idx;
3485                 idx++;
3486         }
3487
3488         return -EOPNOTSUPP;
3489 }
3490
3491 /* kvm_io_bus_write - called under kvm->slots_lock */
3492 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3493                      int len, const void *val)
3494 {
3495         struct kvm_io_bus *bus;
3496         struct kvm_io_range range;
3497         int r;
3498
3499         range = (struct kvm_io_range) {
3500                 .addr = addr,
3501                 .len = len,
3502         };
3503
3504         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3505         if (!bus)
3506                 return -ENOMEM;
3507         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3508         return r < 0 ? r : 0;
3509 }
3510
3511 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3512 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3513                             gpa_t addr, int len, const void *val, long cookie)
3514 {
3515         struct kvm_io_bus *bus;
3516         struct kvm_io_range range;
3517
3518         range = (struct kvm_io_range) {
3519                 .addr = addr,
3520                 .len = len,
3521         };
3522
3523         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3524         if (!bus)
3525                 return -ENOMEM;
3526
3527         /* First try the device referenced by cookie. */
3528         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3529             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3530                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3531                                         val))
3532                         return cookie;
3533
3534         /*
3535          * cookie contained garbage; fall back to search and return the
3536          * correct cookie value.
3537          */
3538         return __kvm_io_bus_write(vcpu, bus, &range, val);
3539 }
3540
3541 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3542                              struct kvm_io_range *range, void *val)
3543 {
3544         int idx;
3545
3546         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3547         if (idx < 0)
3548                 return -EOPNOTSUPP;
3549
3550         while (idx < bus->dev_count &&
3551                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3552                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3553                                        range->len, val))
3554                         return idx;
3555                 idx++;
3556         }
3557
3558         return -EOPNOTSUPP;
3559 }
3560 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3561
3562 /* kvm_io_bus_read - called under kvm->slots_lock */
3563 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3564                     int len, void *val)
3565 {
3566         struct kvm_io_bus *bus;
3567         struct kvm_io_range range;
3568         int r;
3569
3570         range = (struct kvm_io_range) {
3571                 .addr = addr,
3572                 .len = len,
3573         };
3574
3575         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3576         if (!bus)
3577                 return -ENOMEM;
3578         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3579         return r < 0 ? r : 0;
3580 }
3581
3582
3583 /* Caller must hold slots_lock. */
3584 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3585                             int len, struct kvm_io_device *dev)
3586 {
3587         struct kvm_io_bus *new_bus, *bus;
3588
3589         bus = kvm_get_bus(kvm, bus_idx);
3590         if (!bus)
3591                 return -ENOMEM;
3592
3593         /* exclude ioeventfd which is limited by maximum fd */
3594         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3595                 return -ENOSPC;
3596
3597         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3598                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3599         if (!new_bus)
3600                 return -ENOMEM;
3601         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3602                sizeof(struct kvm_io_range)));
3603         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3604         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3605         synchronize_srcu_expedited(&kvm->srcu);
3606         kfree(bus);
3607
3608         return 0;
3609 }
3610
3611 /* Caller must hold slots_lock. */
3612 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3613                                struct kvm_io_device *dev)
3614 {
3615         int i;
3616         struct kvm_io_bus *new_bus, *bus;
3617
3618         bus = kvm_get_bus(kvm, bus_idx);
3619         if (!bus)
3620                 return;
3621
3622         for (i = 0; i < bus->dev_count; i++)
3623                 if (bus->range[i].dev == dev) {
3624                         break;
3625                 }
3626
3627         if (i == bus->dev_count)
3628                 return;
3629
3630         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3631                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3632         if (!new_bus)  {
3633                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3634                 goto broken;
3635         }
3636
3637         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3638         new_bus->dev_count--;
3639         memcpy(new_bus->range + i, bus->range + i + 1,
3640                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3641
3642 broken:
3643         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3644         synchronize_srcu_expedited(&kvm->srcu);
3645         kfree(bus);
3646         return;
3647 }
3648
3649 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3650                                          gpa_t addr)
3651 {
3652         struct kvm_io_bus *bus;
3653         int dev_idx, srcu_idx;
3654         struct kvm_io_device *iodev = NULL;
3655
3656         srcu_idx = srcu_read_lock(&kvm->srcu);
3657
3658         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3659         if (!bus)
3660                 goto out_unlock;
3661
3662         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3663         if (dev_idx < 0)
3664                 goto out_unlock;
3665
3666         iodev = bus->range[dev_idx].dev;
3667
3668 out_unlock:
3669         srcu_read_unlock(&kvm->srcu, srcu_idx);
3670
3671         return iodev;
3672 }
3673 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3674
3675 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3676                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3677                            const char *fmt)
3678 {
3679         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3680                                           inode->i_private;
3681
3682         /* The debugfs files are a reference to the kvm struct which
3683          * is still valid when kvm_destroy_vm is called.
3684          * To avoid the race between open and the removal of the debugfs
3685          * directory we test against the users count.
3686          */
3687         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3688                 return -ENOENT;
3689
3690         if (simple_attr_open(inode, file, get, set, fmt)) {
3691                 kvm_put_kvm(stat_data->kvm);
3692                 return -ENOMEM;
3693         }
3694
3695         return 0;
3696 }
3697
3698 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3699 {
3700         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3701                                           inode->i_private;
3702
3703         simple_attr_release(inode, file);
3704         kvm_put_kvm(stat_data->kvm);
3705
3706         return 0;
3707 }
3708
3709 static int vm_stat_get_per_vm(void *data, u64 *val)
3710 {
3711         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3712
3713         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3714
3715         return 0;
3716 }
3717
3718 static int vm_stat_clear_per_vm(void *data, u64 val)
3719 {
3720         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3721
3722         if (val)
3723                 return -EINVAL;
3724
3725         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3726
3727         return 0;
3728 }
3729
3730 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3731 {
3732         __simple_attr_check_format("%llu\n", 0ull);
3733         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3734                                 vm_stat_clear_per_vm, "%llu\n");
3735 }
3736
3737 static const struct file_operations vm_stat_get_per_vm_fops = {
3738         .owner   = THIS_MODULE,
3739         .open    = vm_stat_get_per_vm_open,
3740         .release = kvm_debugfs_release,
3741         .read    = simple_attr_read,
3742         .write   = simple_attr_write,
3743         .llseek  = no_llseek,
3744 };
3745
3746 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3747 {
3748         int i;
3749         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3750         struct kvm_vcpu *vcpu;
3751
3752         *val = 0;
3753
3754         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3755                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3756
3757         return 0;
3758 }
3759
3760 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3761 {
3762         int i;
3763         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3764         struct kvm_vcpu *vcpu;
3765
3766         if (val)
3767                 return -EINVAL;
3768
3769         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3770                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3771
3772         return 0;
3773 }
3774
3775 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3776 {
3777         __simple_attr_check_format("%llu\n", 0ull);
3778         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3779                                  vcpu_stat_clear_per_vm, "%llu\n");
3780 }
3781
3782 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3783         .owner   = THIS_MODULE,
3784         .open    = vcpu_stat_get_per_vm_open,
3785         .release = kvm_debugfs_release,
3786         .read    = simple_attr_read,
3787         .write   = simple_attr_write,
3788         .llseek  = no_llseek,
3789 };
3790
3791 static const struct file_operations *stat_fops_per_vm[] = {
3792         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3793         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3794 };
3795
3796 static int vm_stat_get(void *_offset, u64 *val)
3797 {
3798         unsigned offset = (long)_offset;
3799         struct kvm *kvm;
3800         struct kvm_stat_data stat_tmp = {.offset = offset};
3801         u64 tmp_val;
3802
3803         *val = 0;
3804         spin_lock(&kvm_lock);
3805         list_for_each_entry(kvm, &vm_list, vm_list) {
3806                 stat_tmp.kvm = kvm;
3807                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3808                 *val += tmp_val;
3809         }
3810         spin_unlock(&kvm_lock);
3811         return 0;
3812 }
3813
3814 static int vm_stat_clear(void *_offset, u64 val)
3815 {
3816         unsigned offset = (long)_offset;
3817         struct kvm *kvm;
3818         struct kvm_stat_data stat_tmp = {.offset = offset};
3819
3820         if (val)
3821                 return -EINVAL;
3822
3823         spin_lock(&kvm_lock);
3824         list_for_each_entry(kvm, &vm_list, vm_list) {
3825                 stat_tmp.kvm = kvm;
3826                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3827         }
3828         spin_unlock(&kvm_lock);
3829
3830         return 0;
3831 }
3832
3833 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3834
3835 static int vcpu_stat_get(void *_offset, u64 *val)
3836 {
3837         unsigned offset = (long)_offset;
3838         struct kvm *kvm;
3839         struct kvm_stat_data stat_tmp = {.offset = offset};
3840         u64 tmp_val;
3841
3842         *val = 0;
3843         spin_lock(&kvm_lock);
3844         list_for_each_entry(kvm, &vm_list, vm_list) {
3845                 stat_tmp.kvm = kvm;
3846                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3847                 *val += tmp_val;
3848         }
3849         spin_unlock(&kvm_lock);
3850         return 0;
3851 }
3852
3853 static int vcpu_stat_clear(void *_offset, u64 val)
3854 {
3855         unsigned offset = (long)_offset;
3856         struct kvm *kvm;
3857         struct kvm_stat_data stat_tmp = {.offset = offset};
3858
3859         if (val)
3860                 return -EINVAL;
3861
3862         spin_lock(&kvm_lock);
3863         list_for_each_entry(kvm, &vm_list, vm_list) {
3864                 stat_tmp.kvm = kvm;
3865                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3866         }
3867         spin_unlock(&kvm_lock);
3868
3869         return 0;
3870 }
3871
3872 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3873                         "%llu\n");
3874
3875 static const struct file_operations *stat_fops[] = {
3876         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3877         [KVM_STAT_VM]   = &vm_stat_fops,
3878 };
3879
3880 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3881 {
3882         struct kobj_uevent_env *env;
3883         unsigned long long created, active;
3884
3885         if (!kvm_dev.this_device || !kvm)
3886                 return;
3887
3888         spin_lock(&kvm_lock);
3889         if (type == KVM_EVENT_CREATE_VM) {
3890                 kvm_createvm_count++;
3891                 kvm_active_vms++;
3892         } else if (type == KVM_EVENT_DESTROY_VM) {
3893                 kvm_active_vms--;
3894         }
3895         created = kvm_createvm_count;
3896         active = kvm_active_vms;
3897         spin_unlock(&kvm_lock);
3898
3899         env = kzalloc(sizeof(*env), GFP_KERNEL);
3900         if (!env)
3901                 return;
3902
3903         add_uevent_var(env, "CREATED=%llu", created);
3904         add_uevent_var(env, "COUNT=%llu", active);
3905
3906         if (type == KVM_EVENT_CREATE_VM) {
3907                 add_uevent_var(env, "EVENT=create");
3908                 kvm->userspace_pid = task_pid_nr(current);
3909         } else if (type == KVM_EVENT_DESTROY_VM) {
3910                 add_uevent_var(env, "EVENT=destroy");
3911         }
3912         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3913
3914         if (kvm->debugfs_dentry) {
3915                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3916
3917                 if (p) {
3918                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3919                         if (!IS_ERR(tmp))
3920                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3921                         kfree(p);
3922                 }
3923         }
3924         /* no need for checks, since we are adding at most only 5 keys */
3925         env->envp[env->envp_idx++] = NULL;
3926         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3927         kfree(env);
3928 }
3929
3930 static int kvm_init_debug(void)
3931 {
3932         int r = -EEXIST;
3933         struct kvm_stats_debugfs_item *p;
3934
3935         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3936         if (kvm_debugfs_dir == NULL)
3937                 goto out;
3938
3939         kvm_debugfs_num_entries = 0;
3940         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3941                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3942                                          (void *)(long)p->offset,
3943                                          stat_fops[p->kind]))
3944                         goto out_dir;
3945         }
3946
3947         return 0;
3948
3949 out_dir:
3950         debugfs_remove_recursive(kvm_debugfs_dir);
3951 out:
3952         return r;
3953 }
3954
3955 static int kvm_suspend(void)
3956 {
3957         if (kvm_usage_count)
3958                 hardware_disable_nolock(NULL);
3959         return 0;
3960 }
3961
3962 static void kvm_resume(void)
3963 {
3964         if (kvm_usage_count) {
3965                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3966                 hardware_enable_nolock(NULL);
3967         }
3968 }
3969
3970 static struct syscore_ops kvm_syscore_ops = {
3971         .suspend = kvm_suspend,
3972         .resume = kvm_resume,
3973 };
3974
3975 static inline
3976 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3977 {
3978         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3979 }
3980
3981 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3982 {
3983         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3984
3985         if (vcpu->preempted)
3986                 vcpu->preempted = false;
3987
3988         kvm_arch_sched_in(vcpu, cpu);
3989
3990         kvm_arch_vcpu_load(vcpu, cpu);
3991 }
3992
3993 static void kvm_sched_out(struct preempt_notifier *pn,
3994                           struct task_struct *next)
3995 {
3996         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3997
3998         if (current->state == TASK_RUNNING)
3999                 vcpu->preempted = true;
4000         kvm_arch_vcpu_put(vcpu);
4001 }
4002
4003 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4004                   struct module *module)
4005 {
4006         int r;
4007         int cpu;
4008
4009         r = kvm_arch_init(opaque);
4010         if (r)
4011                 goto out_fail;
4012
4013         /*
4014          * kvm_arch_init makes sure there's at most one caller
4015          * for architectures that support multiple implementations,
4016          * like intel and amd on x86.
4017          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4018          * conflicts in case kvm is already setup for another implementation.
4019          */
4020         r = kvm_irqfd_init();
4021         if (r)
4022                 goto out_irqfd;
4023
4024         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4025                 r = -ENOMEM;
4026                 goto out_free_0;
4027         }
4028
4029         r = kvm_arch_hardware_setup();
4030         if (r < 0)
4031                 goto out_free_0a;
4032
4033         for_each_online_cpu(cpu) {
4034                 smp_call_function_single(cpu,
4035                                 kvm_arch_check_processor_compat,
4036                                 &r, 1);
4037                 if (r < 0)
4038                         goto out_free_1;
4039         }
4040
4041         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4042                                       kvm_starting_cpu, kvm_dying_cpu);
4043         if (r)
4044                 goto out_free_2;
4045         register_reboot_notifier(&kvm_reboot_notifier);
4046
4047         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4048         if (!vcpu_align)
4049                 vcpu_align = __alignof__(struct kvm_vcpu);
4050         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4051                                            0, NULL);
4052         if (!kvm_vcpu_cache) {
4053                 r = -ENOMEM;
4054                 goto out_free_3;
4055         }
4056
4057         r = kvm_async_pf_init();
4058         if (r)
4059                 goto out_free;
4060
4061         kvm_chardev_ops.owner = module;
4062         kvm_vm_fops.owner = module;
4063         kvm_vcpu_fops.owner = module;
4064
4065         r = misc_register(&kvm_dev);
4066         if (r) {
4067                 pr_err("kvm: misc device register failed\n");
4068                 goto out_unreg;
4069         }
4070
4071         register_syscore_ops(&kvm_syscore_ops);
4072
4073         kvm_preempt_ops.sched_in = kvm_sched_in;
4074         kvm_preempt_ops.sched_out = kvm_sched_out;
4075
4076         r = kvm_init_debug();
4077         if (r) {
4078                 pr_err("kvm: create debugfs files failed\n");
4079                 goto out_undebugfs;
4080         }
4081
4082         r = kvm_vfio_ops_init();
4083         WARN_ON(r);
4084
4085         return 0;
4086
4087 out_undebugfs:
4088         unregister_syscore_ops(&kvm_syscore_ops);
4089         misc_deregister(&kvm_dev);
4090 out_unreg:
4091         kvm_async_pf_deinit();
4092 out_free:
4093         kmem_cache_destroy(kvm_vcpu_cache);
4094 out_free_3:
4095         unregister_reboot_notifier(&kvm_reboot_notifier);
4096         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4097 out_free_2:
4098 out_free_1:
4099         kvm_arch_hardware_unsetup();
4100 out_free_0a:
4101         free_cpumask_var(cpus_hardware_enabled);
4102 out_free_0:
4103         kvm_irqfd_exit();
4104 out_irqfd:
4105         kvm_arch_exit();
4106 out_fail:
4107         return r;
4108 }
4109 EXPORT_SYMBOL_GPL(kvm_init);
4110
4111 void kvm_exit(void)
4112 {
4113         debugfs_remove_recursive(kvm_debugfs_dir);
4114         misc_deregister(&kvm_dev);
4115         kmem_cache_destroy(kvm_vcpu_cache);
4116         kvm_async_pf_deinit();
4117         unregister_syscore_ops(&kvm_syscore_ops);
4118         unregister_reboot_notifier(&kvm_reboot_notifier);
4119         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4120         on_each_cpu(hardware_disable_nolock, NULL, 1);
4121         kvm_arch_hardware_unsetup();
4122         kvm_arch_exit();
4123         kvm_irqfd_exit();
4124         free_cpumask_var(cpus_hardware_enabled);
4125         kvm_vfio_ops_exit();
4126 }
4127 EXPORT_SYMBOL_GPL(kvm_exit);