]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - arch/arm/cpu/armv7/omap-common/emif-common.c
Merge branch 'u-boot-imx/master' into 'u-boot-arm/master'
[karo-tx-uboot.git] / arch / arm / cpu / armv7 / omap-common / emif-common.c
1 /*
2  * EMIF programming
3  *
4  * (C) Copyright 2010
5  * Texas Instruments, <www.ti.com>
6  *
7  * Aneesh V <aneesh@ti.com>
8  *
9  * See file CREDITS for list of people who contributed to this
10  * project.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of
15  * the License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
25  * MA 02111-1307 USA
26  */
27
28 #include <common.h>
29 #include <asm/emif.h>
30 #include <asm/arch/clock.h>
31 #include <asm/arch/sys_proto.h>
32 #include <asm/omap_common.h>
33 #include <asm/utils.h>
34 #include <linux/compiler.h>
35
36 static int emif1_enabled = -1, emif2_enabled = -1;
37
38 void set_lpmode_selfrefresh(u32 base)
39 {
40         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
41         u32 reg;
42
43         reg = readl(&emif->emif_pwr_mgmt_ctrl);
44         reg &= ~EMIF_REG_LP_MODE_MASK;
45         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
46         reg &= ~EMIF_REG_SR_TIM_MASK;
47         writel(reg, &emif->emif_pwr_mgmt_ctrl);
48
49         /* dummy read for the new SR_TIM to be loaded */
50         readl(&emif->emif_pwr_mgmt_ctrl);
51 }
52
53 void force_emif_self_refresh()
54 {
55         set_lpmode_selfrefresh(EMIF1_BASE);
56         set_lpmode_selfrefresh(EMIF2_BASE);
57 }
58
59 inline u32 emif_num(u32 base)
60 {
61         if (base == EMIF1_BASE)
62                 return 1;
63         else if (base == EMIF2_BASE)
64                 return 2;
65         else
66                 return 0;
67 }
68
69 /*
70  * Get SDRAM type connected to EMIF.
71  * Assuming similar SDRAM parts are connected to both EMIF's
72  * which is typically the case. So it is sufficient to get
73  * SDRAM type from EMIF1.
74  */
75 u32 emif_sdram_type()
76 {
77         struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
78
79         return (readl(&emif->emif_sdram_config) &
80                 EMIF_REG_SDRAM_TYPE_MASK) >> EMIF_REG_SDRAM_TYPE_SHIFT;
81 }
82
83 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
84 {
85         u32 mr;
86         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
87
88         mr_addr |= cs << EMIF_REG_CS_SHIFT;
89         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
90         if (omap_revision() == OMAP4430_ES2_0)
91                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
92         else
93                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
94         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
95               cs, mr_addr, mr);
96         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
97             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
98             ((mr & 0xff000000) >> 24) == (mr & 0xff))
99                 return mr & 0xff;
100         else
101                 return mr;
102 }
103
104 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
105 {
106         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
107
108         mr_addr |= cs << EMIF_REG_CS_SHIFT;
109         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
110         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
111 }
112
113 void emif_reset_phy(u32 base)
114 {
115         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
116         u32 iodft;
117
118         iodft = readl(&emif->emif_iodft_tlgc);
119         iodft |= EMIF_REG_RESET_PHY_MASK;
120         writel(iodft, &emif->emif_iodft_tlgc);
121 }
122
123 static void do_lpddr2_init(u32 base, u32 cs)
124 {
125         u32 mr_addr;
126         const struct lpddr2_mr_regs *mr_regs;
127
128         get_lpddr2_mr_regs(&mr_regs);
129         /* Wait till device auto initialization is complete */
130         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
131                 ;
132         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
133         /*
134          * tZQINIT = 1 us
135          * Enough loops assuming a maximum of 2GHz
136          */
137
138         sdelay(2000);
139
140         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
141         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
142
143         /*
144          * Enable refresh along with writing MR2
145          * Encoding of RL in MR2 is (RL - 2)
146          */
147         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
148         set_mr(base, cs, mr_addr, mr_regs->mr2);
149
150         if (mr_regs->mr3 > 0)
151                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
152 }
153
154 static void lpddr2_init(u32 base, const struct emif_regs *regs)
155 {
156         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
157
158         /* Not NVM */
159         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
160
161         /*
162          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
163          * when EMIF_SDRAM_CONFIG register is written
164          */
165         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
166
167         /*
168          * Set the SDRAM_CONFIG and PHY_CTRL for the
169          * un-locked frequency & default RL
170          */
171         writel(regs->sdram_config_init, &emif->emif_sdram_config);
172         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
173
174         do_ext_phy_settings(base, regs);
175
176         do_lpddr2_init(base, CS0);
177         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
178                 do_lpddr2_init(base, CS1);
179
180         writel(regs->sdram_config, &emif->emif_sdram_config);
181         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
182
183         /* Enable refresh now */
184         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
185
186         }
187
188 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
189 {
190 }
191
192 void emif_update_timings(u32 base, const struct emif_regs *regs)
193 {
194         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
195
196         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
197         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
198         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
199         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
200         if (omap_revision() == OMAP4430_ES1_0) {
201                 /* ES1 bug EMIF should be in force idle during freq_update */
202                 writel(0, &emif->emif_pwr_mgmt_ctrl);
203         } else {
204                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
205                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
206         }
207         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
208         writel(regs->zq_config, &emif->emif_zq_config);
209         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
210         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
211
212         if ((omap_revision() >= OMAP5430_ES1_0) ||
213                                 (omap_revision() == DRA752_ES1_0)) {
214                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
215                         &emif->emif_l3_config);
216         } else if (omap_revision() >= OMAP4460_ES1_0) {
217                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
218                         &emif->emif_l3_config);
219         } else {
220                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
221                         &emif->emif_l3_config);
222         }
223 }
224
225 static void ddr3_leveling(u32 base, const struct emif_regs *regs)
226 {
227         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
228
229         /* keep sdram in self-refresh */
230         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
231                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
232         __udelay(130);
233
234         /*
235          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
236          * Invert clock adds an additional half cycle delay on the command
237          * interface.  The additional half cycle, is usually meant to enable
238          * leveling in the situation that DQS is later than CK on the board.It
239          * also helps provide some additional margin for leveling.
240          */
241         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
242         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
243         __udelay(130);
244
245         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
246                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
247
248         /* Launch Full leveling */
249         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
250
251         /* Wait till full leveling is complete */
252         readl(&emif->emif_rd_wr_lvl_ctl);
253         __udelay(130);
254
255         /* Read data eye leveling no of samples */
256         config_data_eye_leveling_samples(base);
257
258         /* Launch 8 incremental WR_LVL- to compensate for PHY limitation */
259         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT, &emif->emif_rd_wr_lvl_ctl);
260         __udelay(130);
261
262         /* Launch Incremental leveling */
263         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
264         __udelay(130);
265 }
266
267 static void ddr3_sw_leveling(u32 base, const struct emif_regs *regs)
268 {
269         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
270
271         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
272         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
273         config_data_eye_leveling_samples(base);
274
275         writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
276         writel(regs->sdram_config, &emif->emif_sdram_config);
277 }
278
279 static void ddr3_init(u32 base, const struct emif_regs *regs)
280 {
281         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
282
283         /*
284          * Set SDRAM_CONFIG and PHY control registers to locked frequency
285          * and RL =7. As the default values of the Mode Registers are not
286          * defined, contents of mode Registers must be fully initialized.
287          * H/W takes care of this initialization
288          */
289         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
290         writel(regs->sdram_config_init, &emif->emif_sdram_config);
291
292         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
293
294         /* Update timing registers */
295         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
296         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
297         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
298
299         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
300         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
301
302         do_ext_phy_settings(base, regs);
303
304         /* enable leveling */
305         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
306
307         if (omap_revision() == DRA752_ES1_0)
308                 ddr3_sw_leveling(base, regs);
309         else
310                 ddr3_leveling(base, regs);
311 }
312
313 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
314 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
315
316 /*
317  * Organization and refresh requirements for LPDDR2 devices of different
318  * types and densities. Derived from JESD209-2 section 2.4
319  */
320 const struct lpddr2_addressing addressing_table[] = {
321         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
322         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
323         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
324         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
325         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
326         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
327         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
328         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
329         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
330         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
331         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
332 };
333
334 static const u32 lpddr2_density_2_size_in_mbytes[] = {
335         8,                      /* 64Mb */
336         16,                     /* 128Mb */
337         32,                     /* 256Mb */
338         64,                     /* 512Mb */
339         128,                    /* 1Gb   */
340         256,                    /* 2Gb   */
341         512,                    /* 4Gb   */
342         1024,                   /* 8Gb   */
343         2048,                   /* 16Gb  */
344         4096                    /* 32Gb  */
345 };
346
347 /*
348  * Calculate the period of DDR clock from frequency value and set the
349  * denominator and numerator in global variables for easy access later
350  */
351 static void set_ddr_clk_period(u32 freq)
352 {
353         /*
354          * period = 1/freq
355          * period_in_ns = 10^9/freq
356          */
357         *T_num = 1000000000;
358         *T_den = freq;
359         cancel_out(T_num, T_den, 200);
360
361 }
362
363 /*
364  * Convert time in nano seconds to number of cycles of DDR clock
365  */
366 static inline u32 ns_2_cycles(u32 ns)
367 {
368         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
369 }
370
371 /*
372  * ns_2_cycles with the difference that the time passed is 2 times the actual
373  * value(to avoid fractions). The cycles returned is for the original value of
374  * the timing parameter
375  */
376 static inline u32 ns_x2_2_cycles(u32 ns)
377 {
378         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
379 }
380
381 /*
382  * Find addressing table index based on the device's type(S2 or S4) and
383  * density
384  */
385 s8 addressing_table_index(u8 type, u8 density, u8 width)
386 {
387         u8 index;
388         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
389                 return -1;
390
391         /*
392          * Look at the way ADDR_TABLE_INDEX* values have been defined
393          * in emif.h compared to LPDDR2_DENSITY_* values
394          * The table is layed out in the increasing order of density
395          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
396          * at the end
397          */
398         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
399                 index = ADDR_TABLE_INDEX1GS2;
400         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
401                 index = ADDR_TABLE_INDEX2GS2;
402         else
403                 index = density;
404
405         debug("emif: addressing table index %d\n", index);
406
407         return index;
408 }
409
410 /*
411  * Find the the right timing table from the array of timing
412  * tables of the device using DDR clock frequency
413  */
414 static const struct lpddr2_ac_timings *get_timings_table(const struct
415                         lpddr2_ac_timings const *const *device_timings,
416                         u32 freq)
417 {
418         u32 i, temp, freq_nearest;
419         const struct lpddr2_ac_timings *timings = 0;
420
421         emif_assert(freq <= MAX_LPDDR2_FREQ);
422         emif_assert(device_timings);
423
424         /*
425          * Start with the maximum allowed frequency - that is always safe
426          */
427         freq_nearest = MAX_LPDDR2_FREQ;
428         /*
429          * Find the timings table that has the max frequency value:
430          *   i.  Above or equal to the DDR frequency - safe
431          *   ii. The lowest that satisfies condition (i) - optimal
432          */
433         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
434                 temp = device_timings[i]->max_freq;
435                 if ((temp >= freq) && (temp <= freq_nearest)) {
436                         freq_nearest = temp;
437                         timings = device_timings[i];
438                 }
439         }
440         debug("emif: timings table: %d\n", freq_nearest);
441         return timings;
442 }
443
444 /*
445  * Finds the value of emif_sdram_config_reg
446  * All parameters are programmed based on the device on CS0.
447  * If there is a device on CS1, it will be same as that on CS0 or
448  * it will be NVM. We don't support NVM yet.
449  * If cs1_device pointer is NULL it is assumed that there is no device
450  * on CS1
451  */
452 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
453                                 const struct lpddr2_device_details *cs1_device,
454                                 const struct lpddr2_addressing *addressing,
455                                 u8 RL)
456 {
457         u32 config_reg = 0;
458
459         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
460         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
461                         EMIF_REG_IBANK_POS_SHIFT;
462
463         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
464
465         config_reg |= RL << EMIF_REG_CL_SHIFT;
466
467         config_reg |= addressing->row_sz[cs0_device->io_width] <<
468                         EMIF_REG_ROWSIZE_SHIFT;
469
470         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
471
472         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
473                         EMIF_REG_EBANK_SHIFT;
474
475         config_reg |= addressing->col_sz[cs0_device->io_width] <<
476                         EMIF_REG_PAGESIZE_SHIFT;
477
478         return config_reg;
479 }
480
481 static u32 get_sdram_ref_ctrl(u32 freq,
482                               const struct lpddr2_addressing *addressing)
483 {
484         u32 ref_ctrl = 0, val = 0, freq_khz;
485         freq_khz = freq / 1000;
486         /*
487          * refresh rate to be set is 'tREFI * freq in MHz
488          * division by 10000 to account for khz and x10 in t_REFI_us_x10
489          */
490         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
491         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
492
493         return ref_ctrl;
494 }
495
496 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
497                                const struct lpddr2_min_tck *min_tck,
498                                const struct lpddr2_addressing *addressing)
499 {
500         u32 tim1 = 0, val = 0;
501         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
502         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
503
504         if (addressing->num_banks == BANKS8)
505                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
506                                                         (4 * (*T_num)) - 1;
507         else
508                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
509
510         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
511
512         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
513         tim1 |= val << EMIF_REG_T_RC_SHIFT;
514
515         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
516         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
517
518         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
519         tim1 |= val << EMIF_REG_T_WR_SHIFT;
520
521         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
522         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
523
524         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
525         tim1 |= val << EMIF_REG_T_RP_SHIFT;
526
527         return tim1;
528 }
529
530 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
531                                const struct lpddr2_min_tck *min_tck)
532 {
533         u32 tim2 = 0, val = 0;
534         val = max(min_tck->tCKE, timings->tCKE) - 1;
535         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
536
537         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
538         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
539
540         /*
541          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
542          * same value
543          */
544         val = ns_2_cycles(timings->tXSR) - 1;
545         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
546         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
547
548         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
549         tim2 |= val << EMIF_REG_T_XP_SHIFT;
550
551         return tim2;
552 }
553
554 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
555                                const struct lpddr2_min_tck *min_tck,
556                                const struct lpddr2_addressing *addressing)
557 {
558         u32 tim3 = 0, val = 0;
559         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
560         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
561
562         val = ns_2_cycles(timings->tRFCab) - 1;
563         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
564
565         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
566         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
567
568         val = ns_2_cycles(timings->tZQCS) - 1;
569         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
570
571         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
572         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
573
574         return tim3;
575 }
576
577 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
578                              const struct lpddr2_addressing *addressing,
579                              u8 volt_ramp)
580 {
581         u32 zq = 0, val = 0;
582         if (volt_ramp)
583                 val =
584                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
585                     addressing->t_REFI_us_x10;
586         else
587                 val =
588                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
589                     addressing->t_REFI_us_x10;
590         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
591
592         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
593
594         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
595
596         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
597
598         /*
599          * Assuming that two chipselects have a single calibration resistor
600          * If there are indeed two calibration resistors, then this flag should
601          * be enabled to take advantage of dual calibration feature.
602          * This data should ideally come from board files. But considering
603          * that none of the boards today have calibration resistors per CS,
604          * it would be an unnecessary overhead.
605          */
606         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
607
608         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
609
610         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
611
612         return zq;
613 }
614
615 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
616                                  const struct lpddr2_addressing *addressing,
617                                  u8 is_derated)
618 {
619         u32 alert = 0, interval;
620         interval =
621             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
622         if (is_derated)
623                 interval *= 4;
624         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
625
626         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
627
628         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
629
630         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
631
632         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
633
634         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
635
636         return alert;
637 }
638
639 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
640 {
641         u32 idle = 0, val = 0;
642         if (volt_ramp)
643                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
644         else
645                 /*Maximum value in normal conditions - suggested by hw team */
646                 val = 0x1FF;
647         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
648
649         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
650
651         return idle;
652 }
653
654 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
655 {
656         u32 phy = 0, val = 0;
657
658         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
659
660         if (freq <= 100000000)
661                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
662         else if (freq <= 200000000)
663                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
664         else
665                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
666         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
667
668         /* Other fields are constant magic values. Hardcode them together */
669         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
670                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
671
672         return phy;
673 }
674
675 static u32 get_emif_mem_size(u32 base)
676 {
677         u32 size_mbytes = 0, temp;
678         struct emif_device_details dev_details;
679         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
680         u32 emif_nr = emif_num(base);
681
682         emif_reset_phy(base);
683         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
684                                                 &cs0_dev_details);
685         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
686                                                 &cs1_dev_details);
687         emif_reset_phy(base);
688
689         if (dev_details.cs0_device_details) {
690                 temp = dev_details.cs0_device_details->density;
691                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
692         }
693
694         if (dev_details.cs1_device_details) {
695                 temp = dev_details.cs1_device_details->density;
696                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
697         }
698         /* convert to bytes */
699         return size_mbytes << 20;
700 }
701
702 /* Gets the encoding corresponding to a given DMM section size */
703 u32 get_dmm_section_size_map(u32 section_size)
704 {
705         /*
706          * Section size mapping:
707          * 0x0: 16-MiB section
708          * 0x1: 32-MiB section
709          * 0x2: 64-MiB section
710          * 0x3: 128-MiB section
711          * 0x4: 256-MiB section
712          * 0x5: 512-MiB section
713          * 0x6: 1-GiB section
714          * 0x7: 2-GiB section
715          */
716         section_size >>= 24; /* divide by 16 MB */
717         return log_2_n_round_down(section_size);
718 }
719
720 static void emif_calculate_regs(
721                 const struct emif_device_details *emif_dev_details,
722                 u32 freq, struct emif_regs *regs)
723 {
724         u32 temp, sys_freq;
725         const struct lpddr2_addressing *addressing;
726         const struct lpddr2_ac_timings *timings;
727         const struct lpddr2_min_tck *min_tck;
728         const struct lpddr2_device_details *cs0_dev_details =
729                                         emif_dev_details->cs0_device_details;
730         const struct lpddr2_device_details *cs1_dev_details =
731                                         emif_dev_details->cs1_device_details;
732         const struct lpddr2_device_timings *cs0_dev_timings =
733                                         emif_dev_details->cs0_device_timings;
734
735         emif_assert(emif_dev_details);
736         emif_assert(regs);
737         /*
738          * You can not have a device on CS1 without one on CS0
739          * So configuring EMIF without a device on CS0 doesn't
740          * make sense
741          */
742         emif_assert(cs0_dev_details);
743         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
744         /*
745          * If there is a device on CS1 it should be same type as CS0
746          * (or NVM. But NVM is not supported in this driver yet)
747          */
748         emif_assert((cs1_dev_details == NULL) ||
749                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
750                     (cs0_dev_details->type == cs1_dev_details->type));
751         emif_assert(freq <= MAX_LPDDR2_FREQ);
752
753         set_ddr_clk_period(freq);
754
755         /*
756          * The device on CS0 is used for all timing calculations
757          * There is only one set of registers for timings per EMIF. So, if the
758          * second CS(CS1) has a device, it should have the same timings as the
759          * device on CS0
760          */
761         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
762         emif_assert(timings);
763         min_tck = cs0_dev_timings->min_tck;
764
765         temp = addressing_table_index(cs0_dev_details->type,
766                                       cs0_dev_details->density,
767                                       cs0_dev_details->io_width);
768
769         emif_assert((temp >= 0));
770         addressing = &(addressing_table[temp]);
771         emif_assert(addressing);
772
773         sys_freq = get_sys_clk_freq();
774
775         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
776                                                         cs1_dev_details,
777                                                         addressing, RL_BOOT);
778
779         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
780                                                 cs1_dev_details,
781                                                 addressing, RL_FINAL);
782
783         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
784
785         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
786
787         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
788
789         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
790
791         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
792
793         regs->temp_alert_config =
794             get_temp_alert_config(cs1_dev_details, addressing, 0);
795
796         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
797                                             LPDDR2_VOLTAGE_STABLE);
798
799         regs->emif_ddr_phy_ctlr_1_init =
800                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
801
802         regs->emif_ddr_phy_ctlr_1 =
803                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
804
805         regs->freq = freq;
806
807         print_timing_reg(regs->sdram_config_init);
808         print_timing_reg(regs->sdram_config);
809         print_timing_reg(regs->ref_ctrl);
810         print_timing_reg(regs->sdram_tim1);
811         print_timing_reg(regs->sdram_tim2);
812         print_timing_reg(regs->sdram_tim3);
813         print_timing_reg(regs->read_idle_ctrl);
814         print_timing_reg(regs->temp_alert_config);
815         print_timing_reg(regs->zq_config);
816         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
817         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
818 }
819 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
820
821 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
822 const char *get_lpddr2_type(u8 type_id)
823 {
824         switch (type_id) {
825         case LPDDR2_TYPE_S4:
826                 return "LPDDR2-S4";
827         case LPDDR2_TYPE_S2:
828                 return "LPDDR2-S2";
829         default:
830                 return NULL;
831         }
832 }
833
834 const char *get_lpddr2_io_width(u8 width_id)
835 {
836         switch (width_id) {
837         case LPDDR2_IO_WIDTH_8:
838                 return "x8";
839         case LPDDR2_IO_WIDTH_16:
840                 return "x16";
841         case LPDDR2_IO_WIDTH_32:
842                 return "x32";
843         default:
844                 return NULL;
845         }
846 }
847
848 const char *get_lpddr2_manufacturer(u32 manufacturer)
849 {
850         switch (manufacturer) {
851         case LPDDR2_MANUFACTURER_SAMSUNG:
852                 return "Samsung";
853         case LPDDR2_MANUFACTURER_QIMONDA:
854                 return "Qimonda";
855         case LPDDR2_MANUFACTURER_ELPIDA:
856                 return "Elpida";
857         case LPDDR2_MANUFACTURER_ETRON:
858                 return "Etron";
859         case LPDDR2_MANUFACTURER_NANYA:
860                 return "Nanya";
861         case LPDDR2_MANUFACTURER_HYNIX:
862                 return "Hynix";
863         case LPDDR2_MANUFACTURER_MOSEL:
864                 return "Mosel";
865         case LPDDR2_MANUFACTURER_WINBOND:
866                 return "Winbond";
867         case LPDDR2_MANUFACTURER_ESMT:
868                 return "ESMT";
869         case LPDDR2_MANUFACTURER_SPANSION:
870                 return "Spansion";
871         case LPDDR2_MANUFACTURER_SST:
872                 return "SST";
873         case LPDDR2_MANUFACTURER_ZMOS:
874                 return "ZMOS";
875         case LPDDR2_MANUFACTURER_INTEL:
876                 return "Intel";
877         case LPDDR2_MANUFACTURER_NUMONYX:
878                 return "Numonyx";
879         case LPDDR2_MANUFACTURER_MICRON:
880                 return "Micron";
881         default:
882                 return NULL;
883         }
884 }
885
886 static void display_sdram_details(u32 emif_nr, u32 cs,
887                                   struct lpddr2_device_details *device)
888 {
889         const char *mfg_str;
890         const char *type_str;
891         char density_str[10];
892         u32 density;
893
894         debug("EMIF%d CS%d\t", emif_nr, cs);
895
896         if (!device) {
897                 debug("None\n");
898                 return;
899         }
900
901         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
902         type_str = get_lpddr2_type(device->type);
903
904         density = lpddr2_density_2_size_in_mbytes[device->density];
905         if ((density / 1024 * 1024) == density) {
906                 density /= 1024;
907                 sprintf(density_str, "%d GB", density);
908         } else
909                 sprintf(density_str, "%d MB", density);
910         if (mfg_str && type_str)
911                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
912 }
913
914 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
915                                   struct lpddr2_device_details *lpddr2_device)
916 {
917         u32 mr = 0, temp;
918
919         mr = get_mr(base, cs, LPDDR2_MR0);
920         if (mr > 0xFF) {
921                 /* Mode register value bigger than 8 bit */
922                 return 0;
923         }
924
925         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
926         if (temp) {
927                 /* Not SDRAM */
928                 return 0;
929         }
930         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
931
932         if (temp) {
933                 /* DNV supported - But DNV is only supported for NVM */
934                 return 0;
935         }
936
937         mr = get_mr(base, cs, LPDDR2_MR4);
938         if (mr > 0xFF) {
939                 /* Mode register value bigger than 8 bit */
940                 return 0;
941         }
942
943         mr = get_mr(base, cs, LPDDR2_MR5);
944         if (mr > 0xFF) {
945                 /* Mode register value bigger than 8 bit */
946                 return 0;
947         }
948
949         if (!get_lpddr2_manufacturer(mr)) {
950                 /* Manufacturer not identified */
951                 return 0;
952         }
953         lpddr2_device->manufacturer = mr;
954
955         mr = get_mr(base, cs, LPDDR2_MR6);
956         if (mr >= 0xFF) {
957                 /* Mode register value bigger than 8 bit */
958                 return 0;
959         }
960
961         mr = get_mr(base, cs, LPDDR2_MR7);
962         if (mr >= 0xFF) {
963                 /* Mode register value bigger than 8 bit */
964                 return 0;
965         }
966
967         mr = get_mr(base, cs, LPDDR2_MR8);
968         if (mr >= 0xFF) {
969                 /* Mode register value bigger than 8 bit */
970                 return 0;
971         }
972
973         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
974         if (!get_lpddr2_type(temp)) {
975                 /* Not SDRAM */
976                 return 0;
977         }
978         lpddr2_device->type = temp;
979
980         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
981         if (temp > LPDDR2_DENSITY_32Gb) {
982                 /* Density not supported */
983                 return 0;
984         }
985         lpddr2_device->density = temp;
986
987         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
988         if (!get_lpddr2_io_width(temp)) {
989                 /* IO width unsupported value */
990                 return 0;
991         }
992         lpddr2_device->io_width = temp;
993
994         /*
995          * If all the above tests pass we should
996          * have a device on this chip-select
997          */
998         return 1;
999 }
1000
1001 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1002                         struct lpddr2_device_details *lpddr2_dev_details)
1003 {
1004         u32 phy;
1005         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1006
1007         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1008
1009         if (!lpddr2_dev_details)
1010                 return NULL;
1011
1012         /* Do the minimum init for mode register accesses */
1013         if (!(running_from_sdram() || warm_reset())) {
1014                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1015                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1016         }
1017
1018         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1019                 return NULL;
1020
1021         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1022
1023         return lpddr2_dev_details;
1024 }
1025 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1026
1027 static void do_sdram_init(u32 base)
1028 {
1029         const struct emif_regs *regs;
1030         u32 in_sdram, emif_nr;
1031
1032         debug(">>do_sdram_init() %x\n", base);
1033
1034         in_sdram = running_from_sdram();
1035         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1036
1037 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1038         emif_get_reg_dump(emif_nr, &regs);
1039         if (!regs) {
1040                 debug("EMIF: reg dump not provided\n");
1041                 return;
1042         }
1043 #else
1044         /*
1045          * The user has not provided the register values. We need to
1046          * calculate it based on the timings and the DDR frequency
1047          */
1048         struct emif_device_details dev_details;
1049         struct emif_regs calculated_regs;
1050
1051         /*
1052          * Get device details:
1053          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1054          * - Obtained from user otherwise
1055          */
1056         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1057         emif_reset_phy(base);
1058         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1059                                                 &cs0_dev_details);
1060         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1061                                                 &cs1_dev_details);
1062         emif_reset_phy(base);
1063
1064         /* Return if no devices on this EMIF */
1065         if (!dev_details.cs0_device_details &&
1066             !dev_details.cs1_device_details) {
1067                 return;
1068         }
1069
1070         /*
1071          * Get device timings:
1072          * - Default timings specified by JESD209-2 if
1073          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1074          * - Obtained from user otherwise
1075          */
1076         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1077                                 &dev_details.cs1_device_timings);
1078
1079         /* Calculate the register values */
1080         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1081         regs = &calculated_regs;
1082 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1083
1084         /*
1085          * Initializing the LPDDR2 device can not happen from SDRAM.
1086          * Changing the timing registers in EMIF can happen(going from one
1087          * OPP to another)
1088          */
1089         if (!(in_sdram || warm_reset())) {
1090                 if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2)
1091                         lpddr2_init(base, regs);
1092                 else
1093                         ddr3_init(base, regs);
1094         }
1095         if (warm_reset() && (emif_sdram_type() == EMIF_SDRAM_TYPE_DDR3)) {
1096                 set_lpmode_selfrefresh(base);
1097                 emif_reset_phy(base);
1098                 if (omap_revision() == DRA752_ES1_0)
1099                         ddr3_sw_leveling(base, regs);
1100                 else
1101                         ddr3_leveling(base, regs);
1102         }
1103
1104         /* Write to the shadow registers */
1105         emif_update_timings(base, regs);
1106
1107         debug("<<do_sdram_init() %x\n", base);
1108 }
1109
1110 void emif_post_init_config(u32 base)
1111 {
1112         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1113         u32 omap_rev = omap_revision();
1114
1115         /* reset phy on ES2.0 */
1116         if (omap_rev == OMAP4430_ES2_0)
1117                 emif_reset_phy(base);
1118
1119         /* Put EMIF back in smart idle on ES1.0 */
1120         if (omap_rev == OMAP4430_ES1_0)
1121                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1122 }
1123
1124 void dmm_init(u32 base)
1125 {
1126         const struct dmm_lisa_map_regs *lisa_map_regs;
1127         u32 i, section, valid;
1128
1129 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1130         emif_get_dmm_regs(&lisa_map_regs);
1131 #else
1132         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1133         u32 section_cnt, sys_addr;
1134         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1135
1136         mapped_size = 0;
1137         section_cnt = 3;
1138         sys_addr = CONFIG_SYS_SDRAM_BASE;
1139         emif1_size = get_emif_mem_size(EMIF1_BASE);
1140         emif2_size = get_emif_mem_size(EMIF2_BASE);
1141         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1142
1143         if (!emif1_size && !emif2_size)
1144                 return;
1145
1146         /* symmetric interleaved section */
1147         if (emif1_size && emif2_size) {
1148                 mapped_size = min(emif1_size, emif2_size);
1149                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1150                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1151                 /* only MSB */
1152                 section_map |= (sys_addr >> 24) <<
1153                                 EMIF_SYS_ADDR_SHIFT;
1154                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1155                                 << EMIF_SYS_SIZE_SHIFT;
1156                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1157                 emif1_size -= mapped_size;
1158                 emif2_size -= mapped_size;
1159                 sys_addr += (mapped_size * 2);
1160                 section_cnt--;
1161         }
1162
1163         /*
1164          * Single EMIF section(we can have a maximum of 1 single EMIF
1165          * section- either EMIF1 or EMIF2 or none, but not both)
1166          */
1167         if (emif1_size) {
1168                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1169                 section_map |= get_dmm_section_size_map(emif1_size)
1170                                 << EMIF_SYS_SIZE_SHIFT;
1171                 /* only MSB */
1172                 section_map |= (mapped_size >> 24) <<
1173                                 EMIF_SDRC_ADDR_SHIFT;
1174                 /* only MSB */
1175                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1176                 section_cnt--;
1177         }
1178         if (emif2_size) {
1179                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1180                 section_map |= get_dmm_section_size_map(emif2_size) <<
1181                                 EMIF_SYS_SIZE_SHIFT;
1182                 /* only MSB */
1183                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1184                 /* only MSB */
1185                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1186                 section_cnt--;
1187         }
1188
1189         if (section_cnt == 2) {
1190                 /* Only 1 section - either symmetric or single EMIF */
1191                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1192                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1193                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1194         } else {
1195                 /* 2 sections - 1 symmetric, 1 single EMIF */
1196                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1197                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1198         }
1199
1200         /* TRAP for invalid TILER mappings in section 0 */
1201         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1202
1203         lisa_map_regs = &lis_map_regs_calculated;
1204 #endif
1205         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1206             (struct dmm_lisa_map_regs *)base;
1207
1208         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1209         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1210         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1211         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1212
1213         writel(lisa_map_regs->dmm_lisa_map_3,
1214                 &hw_lisa_map_regs->dmm_lisa_map_3);
1215         writel(lisa_map_regs->dmm_lisa_map_2,
1216                 &hw_lisa_map_regs->dmm_lisa_map_2);
1217         writel(lisa_map_regs->dmm_lisa_map_1,
1218                 &hw_lisa_map_regs->dmm_lisa_map_1);
1219         writel(lisa_map_regs->dmm_lisa_map_0,
1220                 &hw_lisa_map_regs->dmm_lisa_map_0);
1221
1222         if (lisa_map_regs->is_ma_present) {
1223                 hw_lisa_map_regs =
1224                     (struct dmm_lisa_map_regs *)MA_BASE;
1225
1226                 writel(lisa_map_regs->dmm_lisa_map_3,
1227                         &hw_lisa_map_regs->dmm_lisa_map_3);
1228                 writel(lisa_map_regs->dmm_lisa_map_2,
1229                         &hw_lisa_map_regs->dmm_lisa_map_2);
1230                 writel(lisa_map_regs->dmm_lisa_map_1,
1231                         &hw_lisa_map_regs->dmm_lisa_map_1);
1232                 writel(lisa_map_regs->dmm_lisa_map_0,
1233                         &hw_lisa_map_regs->dmm_lisa_map_0);
1234         }
1235
1236         /*
1237          * EMIF should be configured only when
1238          * memory is mapped on it. Using emif1_enabled
1239          * and emif2_enabled variables for this.
1240          */
1241         emif1_enabled = 0;
1242         emif2_enabled = 0;
1243         for (i = 0; i < 4; i++) {
1244                 section = __raw_readl(DMM_BASE + i*4);
1245                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1246                         (EMIF_SDRC_MAP_SHIFT);
1247                 if (valid == 3) {
1248                         emif1_enabled = 1;
1249                         emif2_enabled = 1;
1250                         break;
1251                 } else if (valid == 1) {
1252                         emif1_enabled = 1;
1253                 } else if (valid == 2) {
1254                         emif2_enabled = 1;
1255                 }
1256         }
1257
1258 }
1259
1260 /*
1261  * SDRAM initialization:
1262  * SDRAM initialization has two parts:
1263  * 1. Configuring the SDRAM device
1264  * 2. Update the AC timings related parameters in the EMIF module
1265  * (1) should be done only once and should not be done while we are
1266  * running from SDRAM.
1267  * (2) can and should be done more than once if OPP changes.
1268  * Particularly, this may be needed when we boot without SPL and
1269  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1270  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1271  * the frequency. So,
1272  * Doing (1) and (2) makes sense - first time initialization
1273  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1274  * Doing (1) and not (2) doen't make sense
1275  * See do_sdram_init() for the details
1276  */
1277 void sdram_init(void)
1278 {
1279         u32 in_sdram, size_prog, size_detect;
1280         u32 sdram_type = emif_sdram_type();
1281
1282         debug(">>sdram_init()\n");
1283
1284         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1285                 return;
1286
1287         in_sdram = running_from_sdram();
1288         debug("in_sdram = %d\n", in_sdram);
1289
1290         if (!in_sdram) {
1291                 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1292                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1293                 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1294                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1295         }
1296
1297         if (!in_sdram)
1298                 dmm_init(DMM_BASE);
1299
1300         if (emif1_enabled)
1301                 do_sdram_init(EMIF1_BASE);
1302
1303         if (emif2_enabled)
1304                 do_sdram_init(EMIF2_BASE);
1305
1306         if (!(in_sdram || warm_reset())) {
1307                 if (emif1_enabled)
1308                         emif_post_init_config(EMIF1_BASE);
1309                 if (emif2_enabled)
1310                         emif_post_init_config(EMIF2_BASE);
1311         }
1312
1313         /* for the shadow registers to take effect */
1314         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1315                 freq_update_core();
1316
1317         /* Do some testing after the init */
1318         if (!in_sdram) {
1319                 size_prog = omap_sdram_size();
1320                 size_prog = log_2_n_round_down(size_prog);
1321                 size_prog = (1 << size_prog);
1322
1323                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1324                                                 size_prog);
1325                 /* Compare with the size programmed */
1326                 if (size_detect != size_prog) {
1327                         printf("SDRAM: identified size not same as expected"
1328                                 " size identified: %x expected: %x\n",
1329                                 size_detect,
1330                                 size_prog);
1331                 } else
1332                         debug("get_ram_size() successful");
1333         }
1334
1335         debug("<<sdram_init()\n");
1336 }