]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - arch/arm/mach-keystone/clock.c
ARM: keystone2: Cleanup init_pll definition
[karo-tx-uboot.git] / arch / arm / mach-keystone / clock.c
1 /*
2  * Keystone2: pll initialization
3  *
4  * (C) Copyright 2012-2014
5  *     Texas Instruments Incorporated, <www.ti.com>
6  *
7  * SPDX-License-Identifier:     GPL-2.0+
8  */
9
10 #include <common.h>
11 #include <asm/arch/clock.h>
12 #include <asm/arch/clock_defs.h>
13
14 /* DEV and ARM speed definitions as specified in DEVSPEED register */
15 int __weak speeds[DEVSPEED_NUMSPDS] = {
16         SPD1000,
17         SPD1200,
18         SPD1350,
19         SPD1400,
20         SPD1500,
21         SPD1400,
22         SPD1350,
23         SPD1200,
24         SPD1000,
25         SPD800,
26 };
27
28 const struct keystone_pll_regs keystone_pll_regs[] = {
29         [CORE_PLL]      = {KS2_MAINPLLCTL0, KS2_MAINPLLCTL1},
30         [PASS_PLL]      = {KS2_PASSPLLCTL0, KS2_PASSPLLCTL1},
31         [TETRIS_PLL]    = {KS2_ARMPLLCTL0, KS2_ARMPLLCTL1},
32         [DDR3A_PLL]     = {KS2_DDR3APLLCTL0, KS2_DDR3APLLCTL1},
33         [DDR3B_PLL]     = {KS2_DDR3BPLLCTL0, KS2_DDR3BPLLCTL1},
34 };
35
36 static void wait_for_completion(const struct pll_init_data *data)
37 {
38         int i;
39         for (i = 0; i < 100; i++) {
40                 sdelay(450);
41                 if (!(pllctl_reg_read(data->pll, stat) & PLLSTAT_GOSTAT_MASK))
42                         break;
43         }
44 }
45
46 static inline void bypass_main_pll(const struct pll_init_data *data)
47 {
48         pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLENSRC_MASK |
49                            PLLCTL_PLLEN_MASK);
50
51         /* 4 cycles of reference clock CLKIN*/
52         sdelay(340);
53 }
54
55 static void configure_mult_div(const struct pll_init_data *data)
56 {
57         u32 pllm, plld, bwadj;
58
59         pllm = data->pll_m - 1;
60         plld = (data->pll_d - 1) & CFG_PLLCTL0_PLLD_MASK;
61
62         /* Program Multiplier */
63         if (data->pll == MAIN_PLL)
64                 pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK);
65
66         clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
67                         CFG_PLLCTL0_PLLM_MASK,
68                         pllm << CFG_PLLCTL0_PLLM_SHIFT);
69
70         /* Program BWADJ */
71         bwadj = (data->pll_m - 1) >> 1; /* Divide pllm by 2 */
72         clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
73                         CFG_PLLCTL0_BWADJ_MASK,
74                         (bwadj << CFG_PLLCTL0_BWADJ_SHIFT) &
75                         CFG_PLLCTL0_BWADJ_MASK);
76         bwadj = bwadj >> CFG_PLLCTL0_BWADJ_BITS;
77         clrsetbits_le32(keystone_pll_regs[data->pll].reg1,
78                         CFG_PLLCTL1_BWADJ_MASK, bwadj);
79
80         /* Program Divider */
81         clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
82                         CFG_PLLCTL0_PLLD_MASK, plld);
83 }
84
85 void configure_main_pll(const struct pll_init_data *data)
86 {
87         u32 tmp, pllod, i, alnctl_val = 0;
88         u32 *offset;
89
90         pllod = data->pll_od - 1;
91
92         /* 100 micro sec for stabilization */
93         sdelay(210000);
94
95         tmp = pllctl_reg_read(data->pll, secctl);
96
97         /* Check for Bypass */
98         if (tmp & SECCTL_BYPASS_MASK) {
99                 setbits_le32(keystone_pll_regs[data->pll].reg1,
100                              CFG_PLLCTL1_ENSAT_MASK);
101
102                 bypass_main_pll(data);
103
104                 /* Powerdown and powerup Main Pll */
105                 pllctl_reg_setbits(data->pll, secctl, SECCTL_BYPASS_MASK);
106                 pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
107                 /* 5 micro sec */
108                 sdelay(21000);
109
110                 pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
111         } else {
112                 bypass_main_pll(data);
113         }
114
115         configure_mult_div(data);
116
117         /* Program Output Divider */
118         pllctl_reg_rmw(data->pll, secctl, SECCTL_OP_DIV_MASK,
119                        ((pllod << SECCTL_OP_DIV_SHIFT) & SECCTL_OP_DIV_MASK));
120
121         /* Program PLLDIVn */
122         wait_for_completion(data);
123         for (i = 0; i < PLLDIV_MAX; i++) {
124                 if (i < 3)
125                         offset = pllctl_reg(data->pll, div1) + i;
126                 else
127                         offset = pllctl_reg(data->pll, div4) + (i - 3);
128
129                 if (divn_val[i] != -1) {
130                         __raw_writel(divn_val[i] | PLLDIV_ENABLE_MASK, offset);
131                         alnctl_val |= BIT(i);
132                 }
133         }
134
135         if (alnctl_val) {
136                 pllctl_reg_setbits(data->pll, alnctl, alnctl_val);
137                 /*
138                  * Set GOSET bit in PLLCMD to initiate the GO operation
139                  * to change the divide
140                  */
141                 pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GOSTAT_MASK);
142                 wait_for_completion(data);
143         }
144
145         /* Reset PLL */
146         pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
147         sdelay(21000);  /* Wait for a minimum of 7 us*/
148         pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
149         sdelay(105000); /* Wait for PLL Lock time (min 50 us) */
150
151         /* Enable PLL */
152         pllctl_reg_clrbits(data->pll, secctl, SECCTL_BYPASS_MASK);
153         pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN_MASK);
154 }
155
156 void configure_secondary_pll(const struct pll_init_data *data)
157 {
158         int pllod = data->pll_od - 1;
159
160         /* Enable Bypass mode */
161         setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_ENSAT_MASK);
162         setbits_le32(keystone_pll_regs[data->pll].reg0,
163                      CFG_PLLCTL0_BYPASS_MASK);
164
165         /* Enable Glitch free bypass for ARM PLL */
166         if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
167                 clrbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
168
169         configure_mult_div(data);
170
171         /* Program Output Divider */
172         clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
173                         CFG_PLLCTL0_CLKOD_MASK,
174                         (pllod << CFG_PLLCTL0_CLKOD_SHIFT) &
175                         CFG_PLLCTL0_CLKOD_MASK);
176
177         /* Reset PLL */
178         setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
179         /* Wait for 5 micro seconds */
180         sdelay(21000);
181
182         /* Select the Output of PASS PLL as input to PASS */
183         if (data->pll == PASS_PLL)
184                 setbits_le32(keystone_pll_regs[data->pll].reg1,
185                              CFG_PLLCTL1_PAPLL_MASK);
186
187         /* Select the Output of ARM PLL as input to ARM */
188         if (data->pll == TETRIS_PLL)
189                 setbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
190
191         clrbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
192         /* Wait for 500 * REFCLK cucles * (PLLD + 1) */
193         sdelay(105000);
194
195         /* Switch to PLL mode */
196         clrbits_le32(keystone_pll_regs[data->pll].reg0,
197                      CFG_PLLCTL0_BYPASS_MASK);
198 }
199
200 void init_pll(const struct pll_init_data *data)
201 {
202         if (data->pll == MAIN_PLL)
203                 configure_main_pll(data);
204         else
205                 configure_secondary_pll(data);
206
207         /*
208          * This is required to provide a delay between multiple
209          * consequent PPL configurations
210          */
211         sdelay(210000);
212 }
213
214 void init_plls(void)
215 {
216         struct pll_init_data *data;
217         int pll;
218
219         for (pll = MAIN_PLL; pll < MAX_PLL_COUNT; pll++) {
220                 data = get_pll_init_data(pll);
221                 if (data)
222                         init_pll(data);
223         }
224 }
225
226 static int get_max_speed(u32 val, u32 speed_supported)
227 {
228         int speed;
229
230         /* Left most setbit gives the speed */
231         for (speed = DEVSPEED_NUMSPDS; speed >= 0; speed--) {
232                 if ((val & BIT(speed)) & speed_supported)
233                         return speeds[speed];
234         }
235
236         /* If no bit is set, use SPD800 */
237         return SPD800;
238 }
239
240 static inline u32 read_efuse_bootrom(void)
241 {
242         if (cpu_is_k2hk() && (cpu_revision() <= 1))
243                 return __raw_readl(KS2_REV1_DEVSPEED);
244         else
245                 return __raw_readl(KS2_EFUSE_BOOTROM);
246 }
247
248 int get_max_arm_speed(void)
249 {
250         u32 armspeed = read_efuse_bootrom();
251
252         armspeed = (armspeed & DEVSPEED_ARMSPEED_MASK) >>
253                     DEVSPEED_ARMSPEED_SHIFT;
254
255         return get_max_speed(armspeed, ARM_SUPPORTED_SPEEDS);
256 }
257
258 int get_max_dev_speed(void)
259 {
260         u32 devspeed = read_efuse_bootrom();
261
262         devspeed = (devspeed & DEVSPEED_DEVSPEED_MASK) >>
263                     DEVSPEED_DEVSPEED_SHIFT;
264
265         return get_max_speed(devspeed, DEV_SUPPORTED_SPEEDS);
266 }