]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - arch/ppc/cpu/mpc8xxx/ddr/lc_common_dimm_params.c
e888e3ea562d2feb78afcdcb402941f3fb9331e9
[karo-tx-uboot.git] / arch / ppc / cpu / mpc8xxx / ddr / lc_common_dimm_params.c
1 /*
2  * Copyright 2008 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * Version 2 as published by the Free Software Foundation.
7  */
8
9 #include <common.h>
10 #include <asm/fsl_ddr_sdram.h>
11
12 #include "ddr.h"
13
14 unsigned int
15 compute_cas_latency_ddr3(const dimm_params_t *dimm_params,
16                          common_timing_params_t *outpdimm,
17                          unsigned int number_of_dimms)
18 {
19         unsigned int i;
20         unsigned int tAAmin_ps = 0;
21         unsigned int tCKmin_X_ps = 0;
22         unsigned int common_caslat;
23         unsigned int caslat_actual;
24         unsigned int retry = 16;
25         unsigned int tmp;
26         const unsigned int mclk_ps = get_memory_clk_period_ps();
27
28         /* compute the common CAS latency supported between slots */
29         tmp = dimm_params[0].caslat_X;
30         for (i = 1; i < number_of_dimms; i++)
31                  tmp &= dimm_params[i].caslat_X;
32         common_caslat = tmp;
33
34         /* compute the max tAAmin tCKmin between slots */
35         for (i = 0; i < number_of_dimms; i++) {
36                 tAAmin_ps = max(tAAmin_ps, dimm_params[i].tAA_ps);
37                 tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
38         }
39         /* validate if the memory clk is in the range of dimms */
40         if (mclk_ps < tCKmin_X_ps) {
41                 printf("The DIMM max tCKmin is %d ps,"
42                         "doesn't support the MCLK cycle %d ps\n",
43                         tCKmin_X_ps, mclk_ps);
44                 return 1;
45         }
46         /* determine the acutal cas latency */
47         caslat_actual = (tAAmin_ps + mclk_ps - 1) / mclk_ps;
48         /* check if the dimms support the CAS latency */
49         while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
50                 caslat_actual++;
51                 retry--;
52         }
53         /* once the caculation of caslat_actual is completed
54          * we must verify that this CAS latency value does not
55          * exceed tAAmax, which is 20 ns for all DDR3 speed grades
56          */
57         if (caslat_actual * mclk_ps > 20000) {
58                 printf("The choosen cas latency %d is too large\n",
59                         caslat_actual);
60                 return 1;
61         }
62         outpdimm->lowest_common_SPD_caslat = caslat_actual;
63
64         return 0;
65 }
66
67 /*
68  * compute_lowest_common_dimm_parameters()
69  *
70  * Determine the worst-case DIMM timing parameters from the set of DIMMs
71  * whose parameters have been computed into the array pointed to
72  * by dimm_params.
73  */
74 unsigned int
75 compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
76                                       common_timing_params_t *outpdimm,
77                                       unsigned int number_of_dimms)
78 {
79         unsigned int i;
80
81         unsigned int tCKmin_X_ps = 0;
82         unsigned int tCKmax_ps = 0xFFFFFFFF;
83         unsigned int tCKmax_max_ps = 0;
84         unsigned int tRCD_ps = 0;
85         unsigned int tRP_ps = 0;
86         unsigned int tRAS_ps = 0;
87         unsigned int tWR_ps = 0;
88         unsigned int tWTR_ps = 0;
89         unsigned int tRFC_ps = 0;
90         unsigned int tRRD_ps = 0;
91         unsigned int tRC_ps = 0;
92         unsigned int refresh_rate_ps = 0;
93         unsigned int tIS_ps = 0;
94         unsigned int tIH_ps = 0;
95         unsigned int tDS_ps = 0;
96         unsigned int tDH_ps = 0;
97         unsigned int tRTP_ps = 0;
98         unsigned int tDQSQ_max_ps = 0;
99         unsigned int tQHS_ps = 0;
100
101         unsigned int temp1, temp2;
102         unsigned int additive_latency = 0;
103 #if !defined(CONFIG_FSL_DDR3)
104         const unsigned int mclk_ps = get_memory_clk_period_ps();
105         unsigned int lowest_good_caslat;
106         unsigned int not_ok;
107
108         debug("using mclk_ps = %u\n", mclk_ps);
109 #endif
110
111         temp1 = 0;
112         for (i = 0; i < number_of_dimms; i++) {
113                 /*
114                  * If there are no ranks on this DIMM,
115                  * it probably doesn't exist, so skip it.
116                  */
117                 if (dimm_params[i].n_ranks == 0) {
118                         temp1++;
119                         continue;
120                 }
121
122                 /*
123                  * Find minimum tCKmax_ps to find fastest slow speed,
124                  * i.e., this is the slowest the whole system can go.
125                  */
126                 tCKmax_ps = min(tCKmax_ps, dimm_params[i].tCKmax_ps);
127
128                 /* Either find maximum value to determine slowest
129                  * speed, delay, time, period, etc */
130                 tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
131                 tCKmax_max_ps = max(tCKmax_max_ps, dimm_params[i].tCKmax_ps);
132                 tRCD_ps = max(tRCD_ps, dimm_params[i].tRCD_ps);
133                 tRP_ps = max(tRP_ps, dimm_params[i].tRP_ps);
134                 tRAS_ps = max(tRAS_ps, dimm_params[i].tRAS_ps);
135                 tWR_ps = max(tWR_ps, dimm_params[i].tWR_ps);
136                 tWTR_ps = max(tWTR_ps, dimm_params[i].tWTR_ps);
137                 tRFC_ps = max(tRFC_ps, dimm_params[i].tRFC_ps);
138                 tRRD_ps = max(tRRD_ps, dimm_params[i].tRRD_ps);
139                 tRC_ps = max(tRC_ps, dimm_params[i].tRC_ps);
140                 tIS_ps = max(tIS_ps, dimm_params[i].tIS_ps);
141                 tIH_ps = max(tIH_ps, dimm_params[i].tIH_ps);
142                 tDS_ps = max(tDS_ps, dimm_params[i].tDS_ps);
143                 tDH_ps = max(tDH_ps, dimm_params[i].tDH_ps);
144                 tRTP_ps = max(tRTP_ps, dimm_params[i].tRTP_ps);
145                 tQHS_ps = max(tQHS_ps, dimm_params[i].tQHS_ps);
146                 refresh_rate_ps = max(refresh_rate_ps,
147                                       dimm_params[i].refresh_rate_ps);
148
149                 /*
150                  * Find maximum tDQSQ_max_ps to find slowest.
151                  *
152                  * FIXME: is finding the slowest value the correct
153                  * strategy for this parameter?
154                  */
155                 tDQSQ_max_ps = max(tDQSQ_max_ps, dimm_params[i].tDQSQ_max_ps);
156         }
157
158         outpdimm->ndimms_present = number_of_dimms - temp1;
159
160         if (temp1 == number_of_dimms) {
161                 debug("no dimms this memory controller\n");
162                 return 0;
163         }
164
165         outpdimm->tCKmin_X_ps = tCKmin_X_ps;
166         outpdimm->tCKmax_ps = tCKmax_ps;
167         outpdimm->tCKmax_max_ps = tCKmax_max_ps;
168         outpdimm->tRCD_ps = tRCD_ps;
169         outpdimm->tRP_ps = tRP_ps;
170         outpdimm->tRAS_ps = tRAS_ps;
171         outpdimm->tWR_ps = tWR_ps;
172         outpdimm->tWTR_ps = tWTR_ps;
173         outpdimm->tRFC_ps = tRFC_ps;
174         outpdimm->tRRD_ps = tRRD_ps;
175         outpdimm->tRC_ps = tRC_ps;
176         outpdimm->refresh_rate_ps = refresh_rate_ps;
177         outpdimm->tIS_ps = tIS_ps;
178         outpdimm->tIH_ps = tIH_ps;
179         outpdimm->tDS_ps = tDS_ps;
180         outpdimm->tDH_ps = tDH_ps;
181         outpdimm->tRTP_ps = tRTP_ps;
182         outpdimm->tDQSQ_max_ps = tDQSQ_max_ps;
183         outpdimm->tQHS_ps = tQHS_ps;
184
185         /* Determine common burst length for all DIMMs. */
186         temp1 = 0xff;
187         for (i = 0; i < number_of_dimms; i++) {
188                 if (dimm_params[i].n_ranks) {
189                         temp1 &= dimm_params[i].burst_lengths_bitmask;
190                 }
191         }
192         outpdimm->all_DIMMs_burst_lengths_bitmask = temp1;
193
194         /* Determine if all DIMMs registered buffered. */
195         temp1 = temp2 = 0;
196         for (i = 0; i < number_of_dimms; i++) {
197                 if (dimm_params[i].n_ranks) {
198                         if (dimm_params[i].registered_dimm)
199                                 temp1 = 1;
200                         if (!dimm_params[i].registered_dimm)
201                                 temp2 = 1;
202                 }
203         }
204
205         outpdimm->all_DIMMs_registered = 0;
206         if (temp1 && !temp2) {
207                 outpdimm->all_DIMMs_registered = 1;
208         }
209
210         outpdimm->all_DIMMs_unbuffered = 0;
211         if (!temp1 && temp2) {
212                 outpdimm->all_DIMMs_unbuffered = 1;
213         }
214
215         /* CHECKME: */
216         if (!outpdimm->all_DIMMs_registered
217             && !outpdimm->all_DIMMs_unbuffered) {
218                 printf("ERROR:  Mix of registered buffered and unbuffered "
219                                 "DIMMs detected!\n");
220         }
221
222 #if defined(CONFIG_FSL_DDR3)
223         if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms))
224                 return 1;
225 #else
226         /*
227          * Compute a CAS latency suitable for all DIMMs
228          *
229          * Strategy for SPD-defined latencies: compute only
230          * CAS latency defined by all DIMMs.
231          */
232
233         /*
234          * Step 1: find CAS latency common to all DIMMs using bitwise
235          * operation.
236          */
237         temp1 = 0xFF;
238         for (i = 0; i < number_of_dimms; i++) {
239                 if (dimm_params[i].n_ranks) {
240                         temp2 = 0;
241                         temp2 |= 1 << dimm_params[i].caslat_X;
242                         temp2 |= 1 << dimm_params[i].caslat_X_minus_1;
243                         temp2 |= 1 << dimm_params[i].caslat_X_minus_2;
244                         /*
245                          * FIXME: If there was no entry for X-2 (X-1) in
246                          * the SPD, then caslat_X_minus_2
247                          * (caslat_X_minus_1) contains either 255 or
248                          * 0xFFFFFFFF because that's what the glorious
249                          * __ilog2 function returns for an input of 0.
250                          * On 32-bit PowerPC, left shift counts with bit
251                          * 26 set (that the value of 255 or 0xFFFFFFFF
252                          * will have), cause the destination register to
253                          * be 0.  That is why this works.
254                          */
255                         temp1 &= temp2;
256                 }
257         }
258
259         /*
260          * Step 2: check each common CAS latency against tCK of each
261          * DIMM's SPD.
262          */
263         lowest_good_caslat = 0;
264         temp2 = 0;
265         while (temp1) {
266                 not_ok = 0;
267                 temp2 =  __ilog2(temp1);
268                 debug("checking common caslat = %u\n", temp2);
269
270                 /* Check if this CAS latency will work on all DIMMs at tCK. */
271                 for (i = 0; i < number_of_dimms; i++) {
272                         if (!dimm_params[i].n_ranks) {
273                                 continue;
274                         }
275                         if (dimm_params[i].caslat_X == temp2) {
276                                 if (mclk_ps >= dimm_params[i].tCKmin_X_ps) {
277                                         debug("CL = %u ok on DIMM %u at tCK=%u"
278                                             " ps with its tCKmin_X_ps of %u\n",
279                                                temp2, i, mclk_ps,
280                                                dimm_params[i].tCKmin_X_ps);
281                                         continue;
282                                 } else {
283                                         not_ok++;
284                                 }
285                         }
286
287                         if (dimm_params[i].caslat_X_minus_1 == temp2) {
288                                 unsigned int tCKmin_X_minus_1_ps
289                                         = dimm_params[i].tCKmin_X_minus_1_ps;
290                                 if (mclk_ps >= tCKmin_X_minus_1_ps) {
291                                         debug("CL = %u ok on DIMM %u at "
292                                                 "tCK=%u ps with its "
293                                                 "tCKmin_X_minus_1_ps of %u\n",
294                                                temp2, i, mclk_ps,
295                                                tCKmin_X_minus_1_ps);
296                                         continue;
297                                 } else {
298                                         not_ok++;
299                                 }
300                         }
301
302                         if (dimm_params[i].caslat_X_minus_2 == temp2) {
303                                 unsigned int tCKmin_X_minus_2_ps
304                                         = dimm_params[i].tCKmin_X_minus_2_ps;
305                                 if (mclk_ps >= tCKmin_X_minus_2_ps) {
306                                         debug("CL = %u ok on DIMM %u at "
307                                                 "tCK=%u ps with its "
308                                                 "tCKmin_X_minus_2_ps of %u\n",
309                                                temp2, i, mclk_ps,
310                                                tCKmin_X_minus_2_ps);
311                                         continue;
312                                 } else {
313                                         not_ok++;
314                                 }
315                         }
316                 }
317
318                 if (!not_ok) {
319                         lowest_good_caslat = temp2;
320                 }
321
322                 temp1 &= ~(1 << temp2);
323         }
324
325         debug("lowest common SPD-defined CAS latency = %u\n",
326                lowest_good_caslat);
327         outpdimm->lowest_common_SPD_caslat = lowest_good_caslat;
328
329
330         /*
331          * Compute a common 'de-rated' CAS latency.
332          *
333          * The strategy here is to find the *highest* dereated cas latency
334          * with the assumption that all of the DIMMs will support a dereated
335          * CAS latency higher than or equal to their lowest dereated value.
336          */
337         temp1 = 0;
338         for (i = 0; i < number_of_dimms; i++) {
339                 temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
340         }
341         outpdimm->highest_common_derated_caslat = temp1;
342         debug("highest common dereated CAS latency = %u\n", temp1);
343 #endif /* #if defined(CONFIG_FSL_DDR3) */
344
345         /* Determine if all DIMMs ECC capable. */
346         temp1 = 1;
347         for (i = 0; i < number_of_dimms; i++) {
348                 if (dimm_params[i].n_ranks && dimm_params[i].edc_config != 2) {
349                         temp1 = 0;
350                         break;
351                 }
352         }
353         if (temp1) {
354                 debug("all DIMMs ECC capable\n");
355         } else {
356                 debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
357         }
358         outpdimm->all_DIMMs_ECC_capable = temp1;
359
360 #ifndef CONFIG_FSL_DDR3
361         /* FIXME: move to somewhere else to validate. */
362         if (mclk_ps > tCKmax_max_ps) {
363                 printf("Warning: some of the installed DIMMs "
364                                 "can not operate this slowly.\n");
365                 return 1;
366         }
367 #endif
368         /*
369          * Compute additive latency.
370          *
371          * For DDR1, additive latency should be 0.
372          *
373          * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
374          *      which comes from Trcd, and also note that:
375          *          add_lat + caslat must be >= 4
376          *
377          * For DDR3, we use the AL=0
378          *
379          * When to use additive latency for DDR2:
380          *
381          * I. Because you are using CL=3 and need to do ODT on writes and
382          *    want functionality.
383          *    1. Are you going to use ODT? (Does your board not have
384          *      additional termination circuitry for DQ, DQS, DQS_,
385          *      DM, RDQS, RDQS_ for x4/x8 configs?)
386          *    2. If so, is your lowest supported CL going to be 3?
387          *    3. If so, then you must set AL=1 because
388          *
389          *       WL >= 3 for ODT on writes
390          *       RL = AL + CL
391          *       WL = RL - 1
392          *       ->
393          *       WL = AL + CL - 1
394          *       AL + CL - 1 >= 3
395          *       AL + CL >= 4
396          *  QED
397          *
398          *  RL >= 3 for ODT on reads
399          *  RL = AL + CL
400          *
401          *  Since CL aren't usually less than 2, AL=0 is a minimum,
402          *  so the WL-derived AL should be the  -- FIXME?
403          *
404          * II. Because you are using auto-precharge globally and want to
405          *     use additive latency (posted CAS) to get more bandwidth.
406          *     1. Are you going to use auto-precharge mode globally?
407          *
408          *        Use addtivie latency and compute AL to be 1 cycle less than
409          *        tRCD, i.e. the READ or WRITE command is in the cycle
410          *        immediately following the ACTIVATE command..
411          *
412          * III. Because you feel like it or want to do some sort of
413          *      degraded-performance experiment.
414          *     1.  Do you just want to use additive latency because you feel
415          *         like it?
416          *
417          * Validation:  AL is less than tRCD, and within the other
418          * read-to-precharge constraints.
419          */
420
421         additive_latency = 0;
422
423 #if defined(CONFIG_FSL_DDR2)
424         if (lowest_good_caslat < 4) {
425                 additive_latency = picos_to_mclk(tRCD_ps) - lowest_good_caslat;
426                 if (mclk_to_picos(additive_latency) > tRCD_ps) {
427                         additive_latency = picos_to_mclk(tRCD_ps);
428                         debug("setting additive_latency to %u because it was "
429                                 " greater than tRCD_ps\n", additive_latency);
430                 }
431         }
432
433 #elif defined(CONFIG_FSL_DDR3)
434         /*
435          * The system will not use the global auto-precharge mode.
436          * However, it uses the page mode, so we set AL=0
437          */
438         additive_latency = 0;
439 #endif
440
441         /*
442          * Validate additive latency
443          * FIXME: move to somewhere else to validate
444          *
445          * AL <= tRCD(min)
446          */
447         if (mclk_to_picos(additive_latency) > tRCD_ps) {
448                 printf("Error: invalid additive latency exceeds tRCD(min).\n");
449                 return 1;
450         }
451
452         /*
453          * RL = CL + AL;  RL >= 3 for ODT_RD_CFG to be enabled
454          * WL = RL - 1;  WL >= 3 for ODT_WL_CFG to be enabled
455          * ADD_LAT (the register) must be set to a value less
456          * than ACTTORW if WL = 1, then AL must be set to 1
457          * RD_TO_PRE (the register) must be set to a minimum
458          * tRTP + AL if AL is nonzero
459          */
460
461         /*
462          * Additive latency will be applied only if the memctl option to
463          * use it.
464          */
465         outpdimm->additive_latency = additive_latency;
466
467         return 0;
468 }