]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: sequencer: Zap unused params and macros
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12
13 /*
14  * FIXME: This path is temporary until the SDRAM driver gets
15  *        a proper thorough cleanup.
16  */
17 #include "../../../board/altera/socfpga/qts/sequencer_auto.h"
18 #include "../../../board/altera/socfpga/qts/sequencer_auto_ac_init.h"
19 #include "../../../board/altera/socfpga/qts/sequencer_auto_inst_init.h"
20 #include "../../../board/altera/socfpga/qts/sequencer_defines.h"
21
22 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
23         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
24
25 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
26         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
27
28 static struct socfpga_sdr_reg_file *sdr_reg_file =
29         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
30
31 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
32         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
33
34 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
35         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
36
37 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
38         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
39
40 static struct socfpga_data_mgr *data_mgr =
41         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
42
43 static struct socfpga_sdr_ctrl *sdr_ctrl =
44         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
45
46 #define DELTA_D         1
47
48 /*
49  * In order to reduce ROM size, most of the selectable calibration steps are
50  * decided at compile time based on the user's calibration mode selection,
51  * as captured by the STATIC_CALIB_STEPS selection below.
52  *
53  * However, to support simulation-time selection of fast simulation mode, where
54  * we skip everything except the bare minimum, we need a few of the steps to
55  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
56  * check, which is based on the rtl-supplied value, or we dynamically compute
57  * the value to use based on the dynamically-chosen calibration mode
58  */
59
60 #define DLEVEL 0
61 #define STATIC_IN_RTL_SIM 0
62 #define STATIC_SKIP_DELAY_LOOPS 0
63
64 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
65         STATIC_SKIP_DELAY_LOOPS)
66
67 /* calibration steps requested by the rtl */
68 uint16_t dyn_calib_steps;
69
70 /*
71  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
72  * instead of static, we use boolean logic to select between
73  * non-skip and skip values
74  *
75  * The mask is set to include all bits when not-skipping, but is
76  * zero when skipping
77  */
78
79 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
80
81 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
82         ((non_skip_value) & skip_delay_mask)
83
84 struct gbl_type *gbl;
85 struct param_type *param;
86
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88         uint32_t substage)
89 {
90         /*
91          * Only set the global stage if there was not been any other
92          * failing group
93          */
94         if (gbl->error_stage == CAL_STAGE_NIL)  {
95                 gbl->error_substage = substage;
96                 gbl->error_stage = stage;
97                 gbl->error_group = group;
98         }
99 }
100
101 static void reg_file_set_group(u16 set_group)
102 {
103         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105
106 static void reg_file_set_stage(u8 set_stage)
107 {
108         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113         set_sub_stage &= 0xff;
114         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124         u32 ratio;
125
126         debug("%s:%d\n", __func__, __LINE__);
127         /* Calibration has control over path to memory */
128         /*
129          * In Hard PHY this is a 2-bit control:
130          * 0: AFI Mux Select
131          * 1: DDIO Mux Select
132          */
133         writel(0x3, &phy_mgr_cfg->mux_sel);
134
135         /* USER memory clock is not stable we begin initialization  */
136         writel(0, &phy_mgr_cfg->reset_mem_stbl);
137
138         /* USER calibration status all set to zero */
139         writel(0, &phy_mgr_cfg->cal_status);
140
141         writel(0, &phy_mgr_cfg->cal_debug_info);
142
143         /* Init params only if we do NOT skip calibration. */
144         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145                 return;
146
147         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149         param->read_correct_mask_vg = (1 << ratio) - 1;
150         param->write_correct_mask_vg = (1 << ratio) - 1;
151         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 }
154
155 /**
156  * set_rank_and_odt_mask() - Set Rank and ODT mask
157  * @rank:       Rank mask
158  * @odt_mode:   ODT mode, OFF or READ_WRITE
159  *
160  * Set Rank and ODT mask (On-Die Termination).
161  */
162 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
163 {
164         u32 odt_mask_0 = 0;
165         u32 odt_mask_1 = 0;
166         u32 cs_and_odt_mask;
167
168         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
169                 odt_mask_0 = 0x0;
170                 odt_mask_1 = 0x0;
171         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
172                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
173                 case 1: /* 1 Rank */
174                         /* Read: ODT = 0 ; Write: ODT = 1 */
175                         odt_mask_0 = 0x0;
176                         odt_mask_1 = 0x1;
177                         break;
178                 case 2: /* 2 Ranks */
179                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
180                                 /*
181                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
182                                  *   OR
183                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
184                                  *
185                                  * Since MEM_NUMBER_OF_RANKS is 2, they
186                                  * are both single rank with 2 CS each
187                                  * (special for RDIMM).
188                                  *
189                                  * Read: Turn on ODT on the opposite rank
190                                  * Write: Turn on ODT on all ranks
191                                  */
192                                 odt_mask_0 = 0x3 & ~(1 << rank);
193                                 odt_mask_1 = 0x3;
194                         } else {
195                                 /*
196                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
197                                  *
198                                  * Read: Turn on ODT off on all ranks
199                                  * Write: Turn on ODT on active rank
200                                  */
201                                 odt_mask_0 = 0x0;
202                                 odt_mask_1 = 0x3 & (1 << rank);
203                         }
204                         break;
205                 case 4: /* 4 Ranks */
206                         /* Read:
207                          * ----------+-----------------------+
208                          *           |         ODT           |
209                          * Read From +-----------------------+
210                          *   Rank    |  3  |  2  |  1  |  0  |
211                          * ----------+-----+-----+-----+-----+
212                          *     0     |  0  |  1  |  0  |  0  |
213                          *     1     |  1  |  0  |  0  |  0  |
214                          *     2     |  0  |  0  |  0  |  1  |
215                          *     3     |  0  |  0  |  1  |  0  |
216                          * ----------+-----+-----+-----+-----+
217                          *
218                          * Write:
219                          * ----------+-----------------------+
220                          *           |         ODT           |
221                          * Write To  +-----------------------+
222                          *   Rank    |  3  |  2  |  1  |  0  |
223                          * ----------+-----+-----+-----+-----+
224                          *     0     |  0  |  1  |  0  |  1  |
225                          *     1     |  1  |  0  |  1  |  0  |
226                          *     2     |  0  |  1  |  0  |  1  |
227                          *     3     |  1  |  0  |  1  |  0  |
228                          * ----------+-----+-----+-----+-----+
229                          */
230                         switch (rank) {
231                         case 0:
232                                 odt_mask_0 = 0x4;
233                                 odt_mask_1 = 0x5;
234                                 break;
235                         case 1:
236                                 odt_mask_0 = 0x8;
237                                 odt_mask_1 = 0xA;
238                                 break;
239                         case 2:
240                                 odt_mask_0 = 0x1;
241                                 odt_mask_1 = 0x5;
242                                 break;
243                         case 3:
244                                 odt_mask_0 = 0x2;
245                                 odt_mask_1 = 0xA;
246                                 break;
247                         }
248                         break;
249                 }
250         }
251
252         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
253                           ((0xFF & odt_mask_0) << 8) |
254                           ((0xFF & odt_mask_1) << 16);
255         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
256                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
257 }
258
259 /**
260  * scc_mgr_set() - Set SCC Manager register
261  * @off:        Base offset in SCC Manager space
262  * @grp:        Read/Write group
263  * @val:        Value to be set
264  *
265  * This function sets the SCC Manager (Scan Chain Control Manager) register.
266  */
267 static void scc_mgr_set(u32 off, u32 grp, u32 val)
268 {
269         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
270 }
271
272 /**
273  * scc_mgr_initialize() - Initialize SCC Manager registers
274  *
275  * Initialize SCC Manager registers.
276  */
277 static void scc_mgr_initialize(void)
278 {
279         /*
280          * Clear register file for HPS. 16 (2^4) is the size of the
281          * full register file in the scc mgr:
282          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
283          *                             MEM_IF_READ_DQS_WIDTH - 1);
284          */
285         int i;
286
287         for (i = 0; i < 16; i++) {
288                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
289                            __func__, __LINE__, i);
290                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
291         }
292 }
293
294 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
295 {
296         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
297 }
298
299 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
300 {
301         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
302 }
303
304 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
305 {
306         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
307 }
308
309 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
310 {
311         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
312 }
313
314 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
315 {
316         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
317                     delay);
318 }
319
320 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
321 {
322         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
323 }
324
325 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
326 {
327         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
328 }
329
330 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
331 {
332         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
333                     delay);
334 }
335
336 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
337 {
338         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
339                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
340                     delay);
341 }
342
343 /* load up dqs config settings */
344 static void scc_mgr_load_dqs(uint32_t dqs)
345 {
346         writel(dqs, &sdr_scc_mgr->dqs_ena);
347 }
348
349 /* load up dqs io config settings */
350 static void scc_mgr_load_dqs_io(void)
351 {
352         writel(0, &sdr_scc_mgr->dqs_io_ena);
353 }
354
355 /* load up dq config settings */
356 static void scc_mgr_load_dq(uint32_t dq_in_group)
357 {
358         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
359 }
360
361 /* load up dm config settings */
362 static void scc_mgr_load_dm(uint32_t dm)
363 {
364         writel(dm, &sdr_scc_mgr->dm_ena);
365 }
366
367 /**
368  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
369  * @off:        Base offset in SCC Manager space
370  * @grp:        Read/Write group
371  * @val:        Value to be set
372  * @update:     If non-zero, trigger SCC Manager update for all ranks
373  *
374  * This function sets the SCC Manager (Scan Chain Control Manager) register
375  * and optionally triggers the SCC update for all ranks.
376  */
377 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
378                                   const int update)
379 {
380         u32 r;
381
382         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
383              r += NUM_RANKS_PER_SHADOW_REG) {
384                 scc_mgr_set(off, grp, val);
385
386                 if (update || (r == 0)) {
387                         writel(grp, &sdr_scc_mgr->dqs_ena);
388                         writel(0, &sdr_scc_mgr->update);
389                 }
390         }
391 }
392
393 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
394 {
395         /*
396          * USER although the h/w doesn't support different phases per
397          * shadow register, for simplicity our scc manager modeling
398          * keeps different phase settings per shadow reg, and it's
399          * important for us to keep them in sync to match h/w.
400          * for efficiency, the scan chain update should occur only
401          * once to sr0.
402          */
403         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
404                               read_group, phase, 0);
405 }
406
407 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
408                                                      uint32_t phase)
409 {
410         /*
411          * USER although the h/w doesn't support different phases per
412          * shadow register, for simplicity our scc manager modeling
413          * keeps different phase settings per shadow reg, and it's
414          * important for us to keep them in sync to match h/w.
415          * for efficiency, the scan chain update should occur only
416          * once to sr0.
417          */
418         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
419                               write_group, phase, 0);
420 }
421
422 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
423                                                uint32_t delay)
424 {
425         /*
426          * In shadow register mode, the T11 settings are stored in
427          * registers in the core, which are updated by the DQS_ENA
428          * signals. Not issuing the SCC_MGR_UPD command allows us to
429          * save lots of rank switching overhead, by calling
430          * select_shadow_regs_for_update with update_scan_chains
431          * set to 0.
432          */
433         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
434                               read_group, delay, 1);
435         writel(0, &sdr_scc_mgr->update);
436 }
437
438 /**
439  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
440  * @write_group:        Write group
441  * @delay:              Delay value
442  *
443  * This function sets the OCT output delay in SCC manager.
444  */
445 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
446 {
447         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
448                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
449         const int base = write_group * ratio;
450         int i;
451         /*
452          * Load the setting in the SCC manager
453          * Although OCT affects only write data, the OCT delay is controlled
454          * by the DQS logic block which is instantiated once per read group.
455          * For protocols where a write group consists of multiple read groups,
456          * the setting must be set multiple times.
457          */
458         for (i = 0; i < ratio; i++)
459                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
460 }
461
462 /**
463  * scc_mgr_set_hhp_extras() - Set HHP extras.
464  *
465  * Load the fixed setting in the SCC manager HHP extras.
466  */
467 static void scc_mgr_set_hhp_extras(void)
468 {
469         /*
470          * Load the fixed setting in the SCC manager
471          * bits: 0:0 = 1'b1     - DQS bypass
472          * bits: 1:1 = 1'b1     - DQ bypass
473          * bits: 4:2 = 3'b001   - rfifo_mode
474          * bits: 6:5 = 2'b01    - rfifo clock_select
475          * bits: 7:7 = 1'b0     - separate gating from ungating setting
476          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
477          */
478         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
479                           (1 << 2) | (1 << 1) | (1 << 0);
480         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
481                          SCC_MGR_HHP_GLOBALS_OFFSET |
482                          SCC_MGR_HHP_EXTRAS_OFFSET;
483
484         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
485                    __func__, __LINE__);
486         writel(value, addr);
487         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
488                    __func__, __LINE__);
489 }
490
491 /**
492  * scc_mgr_zero_all() - Zero all DQS config
493  *
494  * Zero all DQS config.
495  */
496 static void scc_mgr_zero_all(void)
497 {
498         int i, r;
499
500         /*
501          * USER Zero all DQS config settings, across all groups and all
502          * shadow registers
503          */
504         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
505              r += NUM_RANKS_PER_SHADOW_REG) {
506                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
507                         /*
508                          * The phases actually don't exist on a per-rank basis,
509                          * but there's no harm updating them several times, so
510                          * let's keep the code simple.
511                          */
512                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
513                         scc_mgr_set_dqs_en_phase(i, 0);
514                         scc_mgr_set_dqs_en_delay(i, 0);
515                 }
516
517                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
518                         scc_mgr_set_dqdqs_output_phase(i, 0);
519                         /* Arria V/Cyclone V don't have out2. */
520                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
521                 }
522         }
523
524         /* Multicast to all DQS group enables. */
525         writel(0xff, &sdr_scc_mgr->dqs_ena);
526         writel(0, &sdr_scc_mgr->update);
527 }
528
529 /**
530  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
531  * @write_group:        Write group
532  *
533  * Set bypass mode and trigger SCC update.
534  */
535 static void scc_set_bypass_mode(const u32 write_group)
536 {
537         /* Multicast to all DQ enables. */
538         writel(0xff, &sdr_scc_mgr->dq_ena);
539         writel(0xff, &sdr_scc_mgr->dm_ena);
540
541         /* Update current DQS IO enable. */
542         writel(0, &sdr_scc_mgr->dqs_io_ena);
543
544         /* Update the DQS logic. */
545         writel(write_group, &sdr_scc_mgr->dqs_ena);
546
547         /* Hit update. */
548         writel(0, &sdr_scc_mgr->update);
549 }
550
551 /**
552  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
553  * @write_group:        Write group
554  *
555  * Load DQS settings for Write Group, do not trigger SCC update.
556  */
557 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
558 {
559         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
560                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
561         const int base = write_group * ratio;
562         int i;
563         /*
564          * Load the setting in the SCC manager
565          * Although OCT affects only write data, the OCT delay is controlled
566          * by the DQS logic block which is instantiated once per read group.
567          * For protocols where a write group consists of multiple read groups,
568          * the setting must be set multiple times.
569          */
570         for (i = 0; i < ratio; i++)
571                 writel(base + i, &sdr_scc_mgr->dqs_ena);
572 }
573
574 /**
575  * scc_mgr_zero_group() - Zero all configs for a group
576  *
577  * Zero DQ, DM, DQS and OCT configs for a group.
578  */
579 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
580 {
581         int i, r;
582
583         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
584              r += NUM_RANKS_PER_SHADOW_REG) {
585                 /* Zero all DQ config settings. */
586                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
587                         scc_mgr_set_dq_out1_delay(i, 0);
588                         if (!out_only)
589                                 scc_mgr_set_dq_in_delay(i, 0);
590                 }
591
592                 /* Multicast to all DQ enables. */
593                 writel(0xff, &sdr_scc_mgr->dq_ena);
594
595                 /* Zero all DM config settings. */
596                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
597                         scc_mgr_set_dm_out1_delay(i, 0);
598
599                 /* Multicast to all DM enables. */
600                 writel(0xff, &sdr_scc_mgr->dm_ena);
601
602                 /* Zero all DQS IO settings. */
603                 if (!out_only)
604                         scc_mgr_set_dqs_io_in_delay(0);
605
606                 /* Arria V/Cyclone V don't have out2. */
607                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
608                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
609                 scc_mgr_load_dqs_for_write_group(write_group);
610
611                 /* Multicast to all DQS IO enables (only 1 in total). */
612                 writel(0, &sdr_scc_mgr->dqs_io_ena);
613
614                 /* Hit update to zero everything. */
615                 writel(0, &sdr_scc_mgr->update);
616         }
617 }
618
619 /*
620  * apply and load a particular input delay for the DQ pins in a group
621  * group_bgn is the index of the first dq pin (in the write group)
622  */
623 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
624 {
625         uint32_t i, p;
626
627         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
628                 scc_mgr_set_dq_in_delay(p, delay);
629                 scc_mgr_load_dq(p);
630         }
631 }
632
633 /**
634  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
635  * @delay:              Delay value
636  *
637  * Apply and load a particular output delay for the DQ pins in a group.
638  */
639 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
640 {
641         int i;
642
643         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
644                 scc_mgr_set_dq_out1_delay(i, delay);
645                 scc_mgr_load_dq(i);
646         }
647 }
648
649 /* apply and load a particular output delay for the DM pins in a group */
650 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
651 {
652         uint32_t i;
653
654         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
655                 scc_mgr_set_dm_out1_delay(i, delay1);
656                 scc_mgr_load_dm(i);
657         }
658 }
659
660
661 /* apply and load delay on both DQS and OCT out1 */
662 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
663                                                     uint32_t delay)
664 {
665         scc_mgr_set_dqs_out1_delay(delay);
666         scc_mgr_load_dqs_io();
667
668         scc_mgr_set_oct_out1_delay(write_group, delay);
669         scc_mgr_load_dqs_for_write_group(write_group);
670 }
671
672 /**
673  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
674  * @write_group:        Write group
675  * @delay:              Delay value
676  *
677  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
678  */
679 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
680                                                   const u32 delay)
681 {
682         u32 i, new_delay;
683
684         /* DQ shift */
685         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
686                 scc_mgr_load_dq(i);
687
688         /* DM shift */
689         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
690                 scc_mgr_load_dm(i);
691
692         /* DQS shift */
693         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
694         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
695                 debug_cond(DLEVEL == 1,
696                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
697                            __func__, __LINE__, write_group, delay, new_delay,
698                            IO_IO_OUT2_DELAY_MAX,
699                            new_delay - IO_IO_OUT2_DELAY_MAX);
700                 new_delay -= IO_IO_OUT2_DELAY_MAX;
701                 scc_mgr_set_dqs_out1_delay(new_delay);
702         }
703
704         scc_mgr_load_dqs_io();
705
706         /* OCT shift */
707         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
708         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
709                 debug_cond(DLEVEL == 1,
710                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
711                            __func__, __LINE__, write_group, delay,
712                            new_delay, IO_IO_OUT2_DELAY_MAX,
713                            new_delay - IO_IO_OUT2_DELAY_MAX);
714                 new_delay -= IO_IO_OUT2_DELAY_MAX;
715                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
716         }
717
718         scc_mgr_load_dqs_for_write_group(write_group);
719 }
720
721 /**
722  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
723  * @write_group:        Write group
724  * @delay:              Delay value
725  *
726  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
727  */
728 static void
729 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
730                                                 const u32 delay)
731 {
732         int r;
733
734         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
735              r += NUM_RANKS_PER_SHADOW_REG) {
736                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
737                 writel(0, &sdr_scc_mgr->update);
738         }
739 }
740
741 /**
742  * set_jump_as_return() - Return instruction optimization
743  *
744  * Optimization used to recover some slots in ddr3 inst_rom could be
745  * applied to other protocols if we wanted to
746  */
747 static void set_jump_as_return(void)
748 {
749         /*
750          * To save space, we replace return with jump to special shared
751          * RETURN instruction so we set the counter to large value so that
752          * we always jump.
753          */
754         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
755         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
756 }
757
758 /**
759  * delay_for_n_mem_clocks() - Delay for N memory clocks
760  * @clocks:     Length of the delay
761  *
762  * Delay for N memory clocks.
763  */
764 static void delay_for_n_mem_clocks(const u32 clocks)
765 {
766         u32 afi_clocks;
767         u16 c_loop;
768         u8 inner;
769         u8 outer;
770
771         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
772
773         /* Scale (rounding up) to get afi clocks. */
774         afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO);
775         if (afi_clocks) /* Temporary underflow protection */
776                 afi_clocks--;
777
778         /*
779          * Note, we don't bother accounting for being off a little
780          * bit because of a few extra instructions in outer loops.
781          * Note, the loops have a test at the end, and do the test
782          * before the decrement, and so always perform the loop
783          * 1 time more than the counter value
784          */
785         c_loop = afi_clocks >> 16;
786         outer = c_loop ? 0xff : (afi_clocks >> 8);
787         inner = outer ? 0xff : afi_clocks;
788
789         /*
790          * rom instructions are structured as follows:
791          *
792          *    IDLE_LOOP2: jnz cntr0, TARGET_A
793          *    IDLE_LOOP1: jnz cntr1, TARGET_B
794          *                return
795          *
796          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
797          * TARGET_B is set to IDLE_LOOP2 as well
798          *
799          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
800          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
801          *
802          * a little confusing, but it helps save precious space in the inst_rom
803          * and sequencer rom and keeps the delays more accurate and reduces
804          * overhead
805          */
806         if (afi_clocks < 0x100) {
807                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
808                         &sdr_rw_load_mgr_regs->load_cntr1);
809
810                 writel(RW_MGR_IDLE_LOOP1,
811                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
812
813                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
814                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
815         } else {
816                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
817                         &sdr_rw_load_mgr_regs->load_cntr0);
818
819                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
820                         &sdr_rw_load_mgr_regs->load_cntr1);
821
822                 writel(RW_MGR_IDLE_LOOP2,
823                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
824
825                 writel(RW_MGR_IDLE_LOOP2,
826                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
827
828                 do {
829                         writel(RW_MGR_IDLE_LOOP2,
830                                 SDR_PHYGRP_RWMGRGRP_ADDRESS |
831                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
832                 } while (c_loop-- != 0);
833         }
834         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
835 }
836
837 /**
838  * rw_mgr_mem_init_load_regs() - Load instruction registers
839  * @cntr0:      Counter 0 value
840  * @cntr1:      Counter 1 value
841  * @cntr2:      Counter 2 value
842  * @jump:       Jump instruction value
843  *
844  * Load instruction registers.
845  */
846 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
847 {
848         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
849                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
850
851         /* Load counters */
852         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
853                &sdr_rw_load_mgr_regs->load_cntr0);
854         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
855                &sdr_rw_load_mgr_regs->load_cntr1);
856         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
857                &sdr_rw_load_mgr_regs->load_cntr2);
858
859         /* Load jump address */
860         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
861         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
862         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
863
864         /* Execute count instruction */
865         writel(jump, grpaddr);
866 }
867
868 /**
869  * rw_mgr_mem_load_user() - Load user calibration values
870  * @fin1:       Final instruction 1
871  * @fin2:       Final instruction 2
872  * @precharge:  If 1, precharge the banks at the end
873  *
874  * Load user calibration values and optionally precharge the banks.
875  */
876 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
877                                  const int precharge)
878 {
879         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
880                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
881         u32 r;
882
883         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
884                 /* set rank */
885                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
886
887                 /* precharge all banks ... */
888                 if (precharge)
889                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
890
891                 /*
892                  * USER Use Mirror-ed commands for odd ranks if address
893                  * mirrorring is on
894                  */
895                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
896                         set_jump_as_return();
897                         writel(RW_MGR_MRS2_MIRR, grpaddr);
898                         delay_for_n_mem_clocks(4);
899                         set_jump_as_return();
900                         writel(RW_MGR_MRS3_MIRR, grpaddr);
901                         delay_for_n_mem_clocks(4);
902                         set_jump_as_return();
903                         writel(RW_MGR_MRS1_MIRR, grpaddr);
904                         delay_for_n_mem_clocks(4);
905                         set_jump_as_return();
906                         writel(fin1, grpaddr);
907                 } else {
908                         set_jump_as_return();
909                         writel(RW_MGR_MRS2, grpaddr);
910                         delay_for_n_mem_clocks(4);
911                         set_jump_as_return();
912                         writel(RW_MGR_MRS3, grpaddr);
913                         delay_for_n_mem_clocks(4);
914                         set_jump_as_return();
915                         writel(RW_MGR_MRS1, grpaddr);
916                         set_jump_as_return();
917                         writel(fin2, grpaddr);
918                 }
919
920                 if (precharge)
921                         continue;
922
923                 set_jump_as_return();
924                 writel(RW_MGR_ZQCL, grpaddr);
925
926                 /* tZQinit = tDLLK = 512 ck cycles */
927                 delay_for_n_mem_clocks(512);
928         }
929 }
930
931 /**
932  * rw_mgr_mem_initialize() - Initialize RW Manager
933  *
934  * Initialize RW Manager.
935  */
936 static void rw_mgr_mem_initialize(void)
937 {
938         debug("%s:%d\n", __func__, __LINE__);
939
940         /* The reset / cke part of initialization is broadcasted to all ranks */
941         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
942                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
943
944         /*
945          * Here's how you load register for a loop
946          * Counters are located @ 0x800
947          * Jump address are located @ 0xC00
948          * For both, registers 0 to 3 are selected using bits 3 and 2, like
949          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
950          * I know this ain't pretty, but Avalon bus throws away the 2 least
951          * significant bits
952          */
953
954         /* Start with memory RESET activated */
955
956         /* tINIT = 200us */
957
958         /*
959          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
960          * If a and b are the number of iteration in 2 nested loops
961          * it takes the following number of cycles to complete the operation:
962          * number_of_cycles = ((2 + n) * a + 2) * b
963          * where n is the number of instruction in the inner loop
964          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
965          * b = 6A
966          */
967         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
968                                   SEQ_TINIT_CNTR2_VAL,
969                                   RW_MGR_INIT_RESET_0_CKE_0);
970
971         /* Indicate that memory is stable. */
972         writel(1, &phy_mgr_cfg->reset_mem_stbl);
973
974         /*
975          * transition the RESET to high
976          * Wait for 500us
977          */
978
979         /*
980          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
981          * If a and b are the number of iteration in 2 nested loops
982          * it takes the following number of cycles to complete the operation
983          * number_of_cycles = ((2 + n) * a + 2) * b
984          * where n is the number of instruction in the inner loop
985          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
986          * b = FF
987          */
988         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
989                                   SEQ_TRESET_CNTR2_VAL,
990                                   RW_MGR_INIT_RESET_1_CKE_0);
991
992         /* Bring up clock enable. */
993
994         /* tXRP < 250 ck cycles */
995         delay_for_n_mem_clocks(250);
996
997         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
998                              0);
999 }
1000
1001 /**
1002  * rw_mgr_mem_handoff() - Hand off the memory to user
1003  *
1004  * At the end of calibration we have to program the user settings in
1005  * and hand off the memory to the user.
1006  */
1007 static void rw_mgr_mem_handoff(void)
1008 {
1009         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1010         /*
1011          * Need to wait tMOD (12CK or 15ns) time before issuing other
1012          * commands, but we will have plenty of NIOS cycles before actual
1013          * handoff so its okay.
1014          */
1015 }
1016
1017 /**
1018  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1019  * @group:      Write Group
1020  * @use_dm:     Use DM
1021  *
1022  * Issue write test command. Two variants are provided, one that just tests
1023  * a write pattern and another that tests datamask functionality.
1024  */
1025 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1026                                                   u32 test_dm)
1027 {
1028         const u32 quick_write_mode =
1029                 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1030                 ENABLE_SUPER_QUICK_CALIBRATION;
1031         u32 mcc_instruction;
1032         u32 rw_wl_nop_cycles;
1033
1034         /*
1035          * Set counter and jump addresses for the right
1036          * number of NOP cycles.
1037          * The number of supported NOP cycles can range from -1 to infinity
1038          * Three different cases are handled:
1039          *
1040          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1041          *    mechanism will be used to insert the right number of NOPs
1042          *
1043          * 2. For a number of NOP cycles equals to 0, the micro-instruction
1044          *    issuing the write command will jump straight to the
1045          *    micro-instruction that turns on DQS (for DDRx), or outputs write
1046          *    data (for RLD), skipping
1047          *    the NOP micro-instruction all together
1048          *
1049          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1050          *    turned on in the same micro-instruction that issues the write
1051          *    command. Then we need
1052          *    to directly jump to the micro-instruction that sends out the data
1053          *
1054          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1055          *       (2 and 3). One jump-counter (0) is used to perform multiple
1056          *       write-read operations.
1057          *       one counter left to issue this command in "multiple-group" mode
1058          */
1059
1060         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1061
1062         if (rw_wl_nop_cycles == -1) {
1063                 /*
1064                  * CNTR 2 - We want to execute the special write operation that
1065                  * turns on DQS right away and then skip directly to the
1066                  * instruction that sends out the data. We set the counter to a
1067                  * large number so that the jump is always taken.
1068                  */
1069                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1070
1071                 /* CNTR 3 - Not used */
1072                 if (test_dm) {
1073                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
1074                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1075                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1076                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1077                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1078                 } else {
1079                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1080                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
1081                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1082                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1083                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1084                 }
1085         } else if (rw_wl_nop_cycles == 0) {
1086                 /*
1087                  * CNTR 2 - We want to skip the NOP operation and go straight
1088                  * to the DQS enable instruction. We set the counter to a large
1089                  * number so that the jump is always taken.
1090                  */
1091                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1092
1093                 /* CNTR 3 - Not used */
1094                 if (test_dm) {
1095                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1096                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1097                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1098                 } else {
1099                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1100                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
1101                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1102                 }
1103         } else {
1104                 /*
1105                  * CNTR 2 - In this case we want to execute the next instruction
1106                  * and NOT take the jump. So we set the counter to 0. The jump
1107                  * address doesn't count.
1108                  */
1109                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1110                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1111
1112                 /*
1113                  * CNTR 3 - Set the nop counter to the number of cycles we
1114                  * need to loop for, minus 1.
1115                  */
1116                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1117                 if (test_dm) {
1118                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1119                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1120                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1121                 } else {
1122                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1123                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1124                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1125                 }
1126         }
1127
1128         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1129                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1130
1131         if (quick_write_mode)
1132                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1133         else
1134                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1135
1136         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1137
1138         /*
1139          * CNTR 1 - This is used to ensure enough time elapses
1140          * for read data to come back.
1141          */
1142         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1143
1144         if (test_dm) {
1145                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
1146                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1147         } else {
1148                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
1149                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1150         }
1151
1152         writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1153                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1154                                 (group << 2));
1155 }
1156
1157 /**
1158  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1159  * @rank_bgn:           Rank number
1160  * @write_group:        Write Group
1161  * @use_dm:             Use DM
1162  * @all_correct:        All bits must be correct in the mask
1163  * @bit_chk:            Resulting bit mask after the test
1164  * @all_ranks:          Test all ranks
1165  *
1166  * Test writes, can check for a single bit pass or multiple bit pass.
1167  */
1168 static int
1169 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1170                                 const u32 use_dm, const u32 all_correct,
1171                                 u32 *bit_chk, const u32 all_ranks)
1172 {
1173         const u32 rank_end = all_ranks ?
1174                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1175                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1176         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS /
1177                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS;
1178         const u32 correct_mask_vg = param->write_correct_mask_vg;
1179
1180         u32 tmp_bit_chk, base_rw_mgr;
1181         int vg, r;
1182
1183         *bit_chk = param->write_correct_mask;
1184
1185         for (r = rank_bgn; r < rank_end; r++) {
1186                 /* Set rank */
1187                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1188
1189                 tmp_bit_chk = 0;
1190                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;
1191                      vg >= 0; vg--) {
1192                         /* Reset the FIFOs to get pointers to known state. */
1193                         writel(0, &phy_mgr_cmd->fifo_reset);
1194
1195                         rw_mgr_mem_calibrate_write_test_issue(
1196                                 write_group *
1197                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg,
1198                                 use_dm);
1199
1200                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1201                         tmp_bit_chk <<= shift_ratio;
1202                         tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1203                 }
1204
1205                 *bit_chk &= tmp_bit_chk;
1206         }
1207
1208         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1209         if (all_correct) {
1210                 debug_cond(DLEVEL == 2,
1211                            "write_test(%u,%u,ALL) : %u == %u => %i\n",
1212                            write_group, use_dm, *bit_chk,
1213                            param->write_correct_mask,
1214                            *bit_chk == param->write_correct_mask);
1215                 return *bit_chk == param->write_correct_mask;
1216         } else {
1217                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1218                 debug_cond(DLEVEL == 2,
1219                            "write_test(%u,%u,ONE) : %u != %i => %i\n",
1220                            write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1221                 return *bit_chk != 0x00;
1222         }
1223 }
1224
1225 /**
1226  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1227  * @rank_bgn:   Rank number
1228  * @group:      Read/Write Group
1229  * @all_ranks:  Test all ranks
1230  *
1231  * Performs a guaranteed read on the patterns we are going to use during a
1232  * read test to ensure memory works.
1233  */
1234 static int
1235 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1236                                         const u32 all_ranks)
1237 {
1238         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1239                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1240         const u32 addr_offset =
1241                          (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1242         const u32 rank_end = all_ranks ?
1243                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1244                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1245         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1246                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1247         const u32 correct_mask_vg = param->read_correct_mask_vg;
1248
1249         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1250         int vg, r;
1251         int ret = 0;
1252
1253         bit_chk = param->read_correct_mask;
1254
1255         for (r = rank_bgn; r < rank_end; r++) {
1256                 /* Set rank */
1257                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1258
1259                 /* Load up a constant bursts of read commands */
1260                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1261                 writel(RW_MGR_GUARANTEED_READ,
1262                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1263
1264                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1265                 writel(RW_MGR_GUARANTEED_READ_CONT,
1266                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1267
1268                 tmp_bit_chk = 0;
1269                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1270                      vg >= 0; vg--) {
1271                         /* Reset the FIFOs to get pointers to known state. */
1272                         writel(0, &phy_mgr_cmd->fifo_reset);
1273                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1274                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1275                         writel(RW_MGR_GUARANTEED_READ,
1276                                addr + addr_offset + (vg << 2));
1277
1278                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1279                         tmp_bit_chk <<= shift_ratio;
1280                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1281                 }
1282
1283                 bit_chk &= tmp_bit_chk;
1284         }
1285
1286         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1287
1288         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1289
1290         if (bit_chk != param->read_correct_mask)
1291                 ret = -EIO;
1292
1293         debug_cond(DLEVEL == 1,
1294                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1295                    __func__, __LINE__, group, bit_chk,
1296                    param->read_correct_mask, ret);
1297
1298         return ret;
1299 }
1300
1301 /**
1302  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1303  * @rank_bgn:   Rank number
1304  * @all_ranks:  Test all ranks
1305  *
1306  * Load up the patterns we are going to use during a read test.
1307  */
1308 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1309                                                     const int all_ranks)
1310 {
1311         const u32 rank_end = all_ranks ?
1312                         RW_MGR_MEM_NUMBER_OF_RANKS :
1313                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1314         u32 r;
1315
1316         debug("%s:%d\n", __func__, __LINE__);
1317
1318         for (r = rank_bgn; r < rank_end; r++) {
1319                 /* set rank */
1320                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1321
1322                 /* Load up a constant bursts */
1323                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1324
1325                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1326                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1327
1328                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1329
1330                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1331                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1332
1333                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1334
1335                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1336                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1337
1338                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1339
1340                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1341                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1342
1343                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1344                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1345         }
1346
1347         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1348 }
1349
1350 /**
1351  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1352  * @rank_bgn:           Rank number
1353  * @group:              Read/Write group
1354  * @num_tries:          Number of retries of the test
1355  * @all_correct:        All bits must be correct in the mask
1356  * @bit_chk:            Resulting bit mask after the test
1357  * @all_groups:         Test all R/W groups
1358  * @all_ranks:          Test all ranks
1359  *
1360  * Try a read and see if it returns correct data back. Test has dummy reads
1361  * inserted into the mix used to align DQS enable. Test has more thorough
1362  * checks than the regular read test.
1363  */
1364 static int
1365 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1366                                const u32 num_tries, const u32 all_correct,
1367                                u32 *bit_chk,
1368                                const u32 all_groups, const u32 all_ranks)
1369 {
1370         const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1371                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1372         const u32 quick_read_mode =
1373                 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1374                  ENABLE_SUPER_QUICK_CALIBRATION);
1375         u32 correct_mask_vg = param->read_correct_mask_vg;
1376         u32 tmp_bit_chk;
1377         u32 base_rw_mgr;
1378         u32 addr;
1379
1380         int r, vg, ret;
1381
1382         *bit_chk = param->read_correct_mask;
1383
1384         for (r = rank_bgn; r < rank_end; r++) {
1385                 /* set rank */
1386                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1387
1388                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1389
1390                 writel(RW_MGR_READ_B2B_WAIT1,
1391                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1392
1393                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1394                 writel(RW_MGR_READ_B2B_WAIT2,
1395                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1396
1397                 if (quick_read_mode)
1398                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1399                         /* need at least two (1+1) reads to capture failures */
1400                 else if (all_groups)
1401                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1402                 else
1403                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1404
1405                 writel(RW_MGR_READ_B2B,
1406                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1407                 if (all_groups)
1408                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1409                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1410                                &sdr_rw_load_mgr_regs->load_cntr3);
1411                 else
1412                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1413
1414                 writel(RW_MGR_READ_B2B,
1415                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1416
1417                 tmp_bit_chk = 0;
1418                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1419                      vg--) {
1420                         /* Reset the FIFOs to get pointers to known state. */
1421                         writel(0, &phy_mgr_cmd->fifo_reset);
1422                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1423                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1424
1425                         if (all_groups) {
1426                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1427                                        RW_MGR_RUN_ALL_GROUPS_OFFSET;
1428                         } else {
1429                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1430                                        RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1431                         }
1432
1433                         writel(RW_MGR_READ_B2B, addr +
1434                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1435                                vg) << 2));
1436
1437                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1438                         tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1439                                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1440                         tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1441                 }
1442
1443                 *bit_chk &= tmp_bit_chk;
1444         }
1445
1446         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1447         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1448
1449         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1450
1451         if (all_correct) {
1452                 ret = (*bit_chk == param->read_correct_mask);
1453                 debug_cond(DLEVEL == 2,
1454                            "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1455                            __func__, __LINE__, group, all_groups, *bit_chk,
1456                            param->read_correct_mask, ret);
1457         } else  {
1458                 ret = (*bit_chk != 0x00);
1459                 debug_cond(DLEVEL == 2,
1460                            "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1461                            __func__, __LINE__, group, all_groups, *bit_chk,
1462                            0, ret);
1463         }
1464
1465         return ret;
1466 }
1467
1468 /**
1469  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1470  * @grp:                Read/Write group
1471  * @num_tries:          Number of retries of the test
1472  * @all_correct:        All bits must be correct in the mask
1473  * @all_groups:         Test all R/W groups
1474  *
1475  * Perform a READ test across all memory ranks.
1476  */
1477 static int
1478 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1479                                          const u32 all_correct,
1480                                          const u32 all_groups)
1481 {
1482         u32 bit_chk;
1483         return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1484                                               &bit_chk, all_groups, 1);
1485 }
1486
1487 /**
1488  * rw_mgr_incr_vfifo() - Increase VFIFO value
1489  * @grp:        Read/Write group
1490  *
1491  * Increase VFIFO value.
1492  */
1493 static void rw_mgr_incr_vfifo(const u32 grp)
1494 {
1495         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1496 }
1497
1498 /**
1499  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1500  * @grp:        Read/Write group
1501  *
1502  * Decrease VFIFO value.
1503  */
1504 static void rw_mgr_decr_vfifo(const u32 grp)
1505 {
1506         u32 i;
1507
1508         for (i = 0; i < VFIFO_SIZE - 1; i++)
1509                 rw_mgr_incr_vfifo(grp);
1510 }
1511
1512 /**
1513  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1514  * @grp:        Read/Write group
1515  *
1516  * Push VFIFO until a failing read happens.
1517  */
1518 static int find_vfifo_failing_read(const u32 grp)
1519 {
1520         u32 v, ret, fail_cnt = 0;
1521
1522         for (v = 0; v < VFIFO_SIZE; v++) {
1523                 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1524                            __func__, __LINE__, v);
1525                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1526                                                 PASS_ONE_BIT, 0);
1527                 if (!ret) {
1528                         fail_cnt++;
1529
1530                         if (fail_cnt == 2)
1531                                 return v;
1532                 }
1533
1534                 /* Fiddle with FIFO. */
1535                 rw_mgr_incr_vfifo(grp);
1536         }
1537
1538         /* No failing read found! Something must have gone wrong. */
1539         debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1540         return 0;
1541 }
1542
1543 /**
1544  * sdr_find_phase_delay() - Find DQS enable phase or delay
1545  * @working:    If 1, look for working phase/delay, if 0, look for non-working
1546  * @delay:      If 1, look for delay, if 0, look for phase
1547  * @grp:        Read/Write group
1548  * @work:       Working window position
1549  * @work_inc:   Working window increment
1550  * @pd:         DQS Phase/Delay Iterator
1551  *
1552  * Find working or non-working DQS enable phase setting.
1553  */
1554 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1555                                 u32 *work, const u32 work_inc, u32 *pd)
1556 {
1557         const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1558         u32 ret;
1559
1560         for (; *pd <= max; (*pd)++) {
1561                 if (delay)
1562                         scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1563                 else
1564                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1565
1566                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1567                                         PASS_ONE_BIT, 0);
1568                 if (!working)
1569                         ret = !ret;
1570
1571                 if (ret)
1572                         return 0;
1573
1574                 if (work)
1575                         *work += work_inc;
1576         }
1577
1578         return -EINVAL;
1579 }
1580 /**
1581  * sdr_find_phase() - Find DQS enable phase
1582  * @working:    If 1, look for working phase, if 0, look for non-working phase
1583  * @grp:        Read/Write group
1584  * @work:       Working window position
1585  * @i:          Iterator
1586  * @p:          DQS Phase Iterator
1587  *
1588  * Find working or non-working DQS enable phase setting.
1589  */
1590 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1591                           u32 *i, u32 *p)
1592 {
1593         const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1594         int ret;
1595
1596         for (; *i < end; (*i)++) {
1597                 if (working)
1598                         *p = 0;
1599
1600                 ret = sdr_find_phase_delay(working, 0, grp, work,
1601                                            IO_DELAY_PER_OPA_TAP, p);
1602                 if (!ret)
1603                         return 0;
1604
1605                 if (*p > IO_DQS_EN_PHASE_MAX) {
1606                         /* Fiddle with FIFO. */
1607                         rw_mgr_incr_vfifo(grp);
1608                         if (!working)
1609                                 *p = 0;
1610                 }
1611         }
1612
1613         return -EINVAL;
1614 }
1615
1616 /**
1617  * sdr_working_phase() - Find working DQS enable phase
1618  * @grp:        Read/Write group
1619  * @work_bgn:   Working window start position
1620  * @d:          dtaps output value
1621  * @p:          DQS Phase Iterator
1622  * @i:          Iterator
1623  *
1624  * Find working DQS enable phase setting.
1625  */
1626 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1627                              u32 *p, u32 *i)
1628 {
1629         const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1630                                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1631         int ret;
1632
1633         *work_bgn = 0;
1634
1635         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1636                 *i = 0;
1637                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1638                 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1639                 if (!ret)
1640                         return 0;
1641                 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1642         }
1643
1644         /* Cannot find working solution */
1645         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1646                    __func__, __LINE__);
1647         return -EINVAL;
1648 }
1649
1650 /**
1651  * sdr_backup_phase() - Find DQS enable backup phase
1652  * @grp:        Read/Write group
1653  * @work_bgn:   Working window start position
1654  * @p:          DQS Phase Iterator
1655  *
1656  * Find DQS enable backup phase setting.
1657  */
1658 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1659 {
1660         u32 tmp_delay, d;
1661         int ret;
1662
1663         /* Special case code for backing up a phase */
1664         if (*p == 0) {
1665                 *p = IO_DQS_EN_PHASE_MAX;
1666                 rw_mgr_decr_vfifo(grp);
1667         } else {
1668                 (*p)--;
1669         }
1670         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1671         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1672
1673         for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1674                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1675
1676                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1677                                         PASS_ONE_BIT, 0);
1678                 if (ret) {
1679                         *work_bgn = tmp_delay;
1680                         break;
1681                 }
1682
1683                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1684         }
1685
1686         /* Restore VFIFO to old state before we decremented it (if needed). */
1687         (*p)++;
1688         if (*p > IO_DQS_EN_PHASE_MAX) {
1689                 *p = 0;
1690                 rw_mgr_incr_vfifo(grp);
1691         }
1692
1693         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1694 }
1695
1696 /**
1697  * sdr_nonworking_phase() - Find non-working DQS enable phase
1698  * @grp:        Read/Write group
1699  * @work_end:   Working window end position
1700  * @p:          DQS Phase Iterator
1701  * @i:          Iterator
1702  *
1703  * Find non-working DQS enable phase setting.
1704  */
1705 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1706 {
1707         int ret;
1708
1709         (*p)++;
1710         *work_end += IO_DELAY_PER_OPA_TAP;
1711         if (*p > IO_DQS_EN_PHASE_MAX) {
1712                 /* Fiddle with FIFO. */
1713                 *p = 0;
1714                 rw_mgr_incr_vfifo(grp);
1715         }
1716
1717         ret = sdr_find_phase(0, grp, work_end, i, p);
1718         if (ret) {
1719                 /* Cannot see edge of failing read. */
1720                 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1721                            __func__, __LINE__);
1722         }
1723
1724         return ret;
1725 }
1726
1727 /**
1728  * sdr_find_window_center() - Find center of the working DQS window.
1729  * @grp:        Read/Write group
1730  * @work_bgn:   First working settings
1731  * @work_end:   Last working settings
1732  *
1733  * Find center of the working DQS enable window.
1734  */
1735 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1736                                   const u32 work_end)
1737 {
1738         u32 work_mid;
1739         int tmp_delay = 0;
1740         int i, p, d;
1741
1742         work_mid = (work_bgn + work_end) / 2;
1743
1744         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1745                    work_bgn, work_end, work_mid);
1746         /* Get the middle delay to be less than a VFIFO delay */
1747         tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1748
1749         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1750         work_mid %= tmp_delay;
1751         debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1752
1753         tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1754         if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1755                 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1756         p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1757
1758         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1759
1760         d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1761         if (d > IO_DQS_EN_DELAY_MAX)
1762                 d = IO_DQS_EN_DELAY_MAX;
1763         tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1764
1765         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1766
1767         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1768         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1769
1770         /*
1771          * push vfifo until we can successfully calibrate. We can do this
1772          * because the largest possible margin in 1 VFIFO cycle.
1773          */
1774         for (i = 0; i < VFIFO_SIZE; i++) {
1775                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1776                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1777                                                              PASS_ONE_BIT,
1778                                                              0)) {
1779                         debug_cond(DLEVEL == 2,
1780                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1781                                    __func__, __LINE__, p, d);
1782                         return 0;
1783                 }
1784
1785                 /* Fiddle with FIFO. */
1786                 rw_mgr_incr_vfifo(grp);
1787         }
1788
1789         debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1790                    __func__, __LINE__);
1791         return -EINVAL;
1792 }
1793
1794 /**
1795  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1796  * @grp:        Read/Write Group
1797  *
1798  * Find a good DQS enable to use.
1799  */
1800 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1801 {
1802         u32 d, p, i;
1803         u32 dtaps_per_ptap;
1804         u32 work_bgn, work_end;
1805         u32 found_passing_read, found_failing_read, initial_failing_dtap;
1806         int ret;
1807
1808         debug("%s:%d %u\n", __func__, __LINE__, grp);
1809
1810         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1811
1812         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1813         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1814
1815         /* Step 0: Determine number of delay taps for each phase tap. */
1816         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1817
1818         /* Step 1: First push vfifo until we get a failing read. */
1819         find_vfifo_failing_read(grp);
1820
1821         /* Step 2: Find first working phase, increment in ptaps. */
1822         work_bgn = 0;
1823         ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1824         if (ret)
1825                 return ret;
1826
1827         work_end = work_bgn;
1828
1829         /*
1830          * If d is 0 then the working window covers a phase tap and we can
1831          * follow the old procedure. Otherwise, we've found the beginning
1832          * and we need to increment the dtaps until we find the end.
1833          */
1834         if (d == 0) {
1835                 /*
1836                  * Step 3a: If we have room, back off by one and
1837                  *          increment in dtaps.
1838                  */
1839                 sdr_backup_phase(grp, &work_bgn, &p);
1840
1841                 /*
1842                  * Step 4a: go forward from working phase to non working
1843                  * phase, increment in ptaps.
1844                  */
1845                 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1846                 if (ret)
1847                         return ret;
1848
1849                 /* Step 5a: Back off one from last, increment in dtaps. */
1850
1851                 /* Special case code for backing up a phase */
1852                 if (p == 0) {
1853                         p = IO_DQS_EN_PHASE_MAX;
1854                         rw_mgr_decr_vfifo(grp);
1855                 } else {
1856                         p = p - 1;
1857                 }
1858
1859                 work_end -= IO_DELAY_PER_OPA_TAP;
1860                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1861
1862                 d = 0;
1863
1864                 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1865                            __func__, __LINE__, p);
1866         }
1867
1868         /* The dtap increment to find the failing edge is done here. */
1869         sdr_find_phase_delay(0, 1, grp, &work_end,
1870                              IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1871
1872         /* Go back to working dtap */
1873         if (d != 0)
1874                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1875
1876         debug_cond(DLEVEL == 2,
1877                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1878                    __func__, __LINE__, p, d - 1, work_end);
1879
1880         if (work_end < work_bgn) {
1881                 /* nil range */
1882                 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1883                            __func__, __LINE__);
1884                 return -EINVAL;
1885         }
1886
1887         debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1888                    __func__, __LINE__, work_bgn, work_end);
1889
1890         /*
1891          * We need to calculate the number of dtaps that equal a ptap.
1892          * To do that we'll back up a ptap and re-find the edge of the
1893          * window using dtaps
1894          */
1895         debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1896                    __func__, __LINE__);
1897
1898         /* Special case code for backing up a phase */
1899         if (p == 0) {
1900                 p = IO_DQS_EN_PHASE_MAX;
1901                 rw_mgr_decr_vfifo(grp);
1902                 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1903                            __func__, __LINE__, p);
1904         } else {
1905                 p = p - 1;
1906                 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1907                            __func__, __LINE__, p);
1908         }
1909
1910         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1911
1912         /*
1913          * Increase dtap until we first see a passing read (in case the
1914          * window is smaller than a ptap), and then a failing read to
1915          * mark the edge of the window again.
1916          */
1917
1918         /* Find a passing read. */
1919         debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1920                    __func__, __LINE__);
1921
1922         initial_failing_dtap = d;
1923
1924         found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1925         if (found_passing_read) {
1926                 /* Find a failing read. */
1927                 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1928                            __func__, __LINE__);
1929                 d++;
1930                 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1931                                                            &d);
1932         } else {
1933                 debug_cond(DLEVEL == 1,
1934                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1935                            __func__, __LINE__);
1936         }
1937
1938         /*
1939          * The dynamically calculated dtaps_per_ptap is only valid if we
1940          * found a passing/failing read. If we didn't, it means d hit the max
1941          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1942          * statically calculated value.
1943          */
1944         if (found_passing_read && found_failing_read)
1945                 dtaps_per_ptap = d - initial_failing_dtap;
1946
1947         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1948         debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1949                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1950
1951         /* Step 6: Find the centre of the window. */
1952         ret = sdr_find_window_center(grp, work_bgn, work_end);
1953
1954         return ret;
1955 }
1956
1957 /**
1958  * search_stop_check() - Check if the detected edge is valid
1959  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
1960  * @d:                  DQS delay
1961  * @rank_bgn:           Rank number
1962  * @write_group:        Write Group
1963  * @read_group:         Read Group
1964  * @bit_chk:            Resulting bit mask after the test
1965  * @sticky_bit_chk:     Resulting sticky bit mask after the test
1966  * @use_read_test:      Perform read test
1967  *
1968  * Test if the found edge is valid.
1969  */
1970 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1971                              const u32 write_group, const u32 read_group,
1972                              u32 *bit_chk, u32 *sticky_bit_chk,
1973                              const u32 use_read_test)
1974 {
1975         const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
1976                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
1977         const u32 correct_mask = write ? param->write_correct_mask :
1978                                          param->read_correct_mask;
1979         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
1980                                     RW_MGR_MEM_DQ_PER_READ_DQS;
1981         u32 ret;
1982         /*
1983          * Stop searching when the read test doesn't pass AND when
1984          * we've seen a passing read on every bit.
1985          */
1986         if (write) {                    /* WRITE-ONLY */
1987                 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1988                                                          0, PASS_ONE_BIT,
1989                                                          bit_chk, 0);
1990         } else if (use_read_test) {     /* READ-ONLY */
1991                 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1992                                                         NUM_READ_PB_TESTS,
1993                                                         PASS_ONE_BIT, bit_chk,
1994                                                         0, 0);
1995         } else {                        /* READ-ONLY */
1996                 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
1997                                                 PASS_ONE_BIT, bit_chk, 0);
1998                 *bit_chk = *bit_chk >> (per_dqs *
1999                         (read_group - (write_group * ratio)));
2000                 ret = (*bit_chk == 0);
2001         }
2002         *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2003         ret = ret && (*sticky_bit_chk == correct_mask);
2004         debug_cond(DLEVEL == 2,
2005                    "%s:%d center(left): dtap=%u => %u == %u && %u",
2006                    __func__, __LINE__, d,
2007                    *sticky_bit_chk, correct_mask, ret);
2008         return ret;
2009 }
2010
2011 /**
2012  * search_left_edge() - Find left edge of DQ/DQS working phase
2013  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2014  * @rank_bgn:           Rank number
2015  * @write_group:        Write Group
2016  * @read_group:         Read Group
2017  * @test_bgn:           Rank number to begin the test
2018  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2019  * @left_edge:          Left edge of the DQ/DQS phase
2020  * @right_edge:         Right edge of the DQ/DQS phase
2021  * @use_read_test:      Perform read test
2022  *
2023  * Find left edge of DQ/DQS working phase.
2024  */
2025 static void search_left_edge(const int write, const int rank_bgn,
2026         const u32 write_group, const u32 read_group, const u32 test_bgn,
2027         u32 *sticky_bit_chk,
2028         int *left_edge, int *right_edge, const u32 use_read_test)
2029 {
2030         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2031         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2032         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2033                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2034         u32 stop, bit_chk;
2035         int i, d;
2036
2037         for (d = 0; d <= dqs_max; d++) {
2038                 if (write)
2039                         scc_mgr_apply_group_dq_out1_delay(d);
2040                 else
2041                         scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2042
2043                 writel(0, &sdr_scc_mgr->update);
2044
2045                 stop = search_stop_check(write, d, rank_bgn, write_group,
2046                                          read_group, &bit_chk, sticky_bit_chk,
2047                                          use_read_test);
2048                 if (stop == 1)
2049                         break;
2050
2051                 /* stop != 1 */
2052                 for (i = 0; i < per_dqs; i++) {
2053                         if (bit_chk & 1) {
2054                                 /*
2055                                  * Remember a passing test as
2056                                  * the left_edge.
2057                                  */
2058                                 left_edge[i] = d;
2059                         } else {
2060                                 /*
2061                                  * If a left edge has not been seen
2062                                  * yet, then a future passing test
2063                                  * will mark this edge as the right
2064                                  * edge.
2065                                  */
2066                                 if (left_edge[i] == delay_max + 1)
2067                                         right_edge[i] = -(d + 1);
2068                         }
2069                         bit_chk >>= 1;
2070                 }
2071         }
2072
2073         /* Reset DQ delay chains to 0 */
2074         if (write)
2075                 scc_mgr_apply_group_dq_out1_delay(0);
2076         else
2077                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2078
2079         *sticky_bit_chk = 0;
2080         for (i = per_dqs - 1; i >= 0; i--) {
2081                 debug_cond(DLEVEL == 2,
2082                            "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2083                            __func__, __LINE__, i, left_edge[i],
2084                            i, right_edge[i]);
2085
2086                 /*
2087                  * Check for cases where we haven't found the left edge,
2088                  * which makes our assignment of the the right edge invalid.
2089                  * Reset it to the illegal value.
2090                  */
2091                 if ((left_edge[i] == delay_max + 1) &&
2092                     (right_edge[i] != delay_max + 1)) {
2093                         right_edge[i] = delay_max + 1;
2094                         debug_cond(DLEVEL == 2,
2095                                    "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2096                                    __func__, __LINE__, i, right_edge[i]);
2097                 }
2098
2099                 /*
2100                  * Reset sticky bit
2101                  * READ: except for bits where we have seen both
2102                  *       the left and right edge.
2103                  * WRITE: except for bits where we have seen the
2104                  *        left edge.
2105                  */
2106                 *sticky_bit_chk <<= 1;
2107                 if (write) {
2108                         if (left_edge[i] != delay_max + 1)
2109                                 *sticky_bit_chk |= 1;
2110                 } else {
2111                         if ((left_edge[i] != delay_max + 1) &&
2112                             (right_edge[i] != delay_max + 1))
2113                                 *sticky_bit_chk |= 1;
2114                 }
2115         }
2116
2117
2118 }
2119
2120 /**
2121  * search_right_edge() - Find right edge of DQ/DQS working phase
2122  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2123  * @rank_bgn:           Rank number
2124  * @write_group:        Write Group
2125  * @read_group:         Read Group
2126  * @start_dqs:          DQS start phase
2127  * @start_dqs_en:       DQS enable start phase
2128  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2129  * @left_edge:          Left edge of the DQ/DQS phase
2130  * @right_edge:         Right edge of the DQ/DQS phase
2131  * @use_read_test:      Perform read test
2132  *
2133  * Find right edge of DQ/DQS working phase.
2134  */
2135 static int search_right_edge(const int write, const int rank_bgn,
2136         const u32 write_group, const u32 read_group,
2137         const int start_dqs, const int start_dqs_en,
2138         u32 *sticky_bit_chk,
2139         int *left_edge, int *right_edge, const u32 use_read_test)
2140 {
2141         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2142         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2143         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2144                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2145         u32 stop, bit_chk;
2146         int i, d;
2147
2148         for (d = 0; d <= dqs_max - start_dqs; d++) {
2149                 if (write) {    /* WRITE-ONLY */
2150                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2151                                                                 d + start_dqs);
2152                 } else {        /* READ-ONLY */
2153                         scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2154                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2155                                 uint32_t delay = d + start_dqs_en;
2156                                 if (delay > IO_DQS_EN_DELAY_MAX)
2157                                         delay = IO_DQS_EN_DELAY_MAX;
2158                                 scc_mgr_set_dqs_en_delay(read_group, delay);
2159                         }
2160                         scc_mgr_load_dqs(read_group);
2161                 }
2162
2163                 writel(0, &sdr_scc_mgr->update);
2164
2165                 stop = search_stop_check(write, d, rank_bgn, write_group,
2166                                          read_group, &bit_chk, sticky_bit_chk,
2167                                          use_read_test);
2168                 if (stop == 1) {
2169                         if (write && (d == 0)) {        /* WRITE-ONLY */
2170                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2171                                         /*
2172                                          * d = 0 failed, but it passed when
2173                                          * testing the left edge, so it must be
2174                                          * marginal, set it to -1
2175                                          */
2176                                         if (right_edge[i] == delay_max + 1 &&
2177                                             left_edge[i] != delay_max + 1)
2178                                                 right_edge[i] = -1;
2179                                 }
2180                         }
2181                         break;
2182                 }
2183
2184                 /* stop != 1 */
2185                 for (i = 0; i < per_dqs; i++) {
2186                         if (bit_chk & 1) {
2187                                 /*
2188                                  * Remember a passing test as
2189                                  * the right_edge.
2190                                  */
2191                                 right_edge[i] = d;
2192                         } else {
2193                                 if (d != 0) {
2194                                         /*
2195                                          * If a right edge has not
2196                                          * been seen yet, then a future
2197                                          * passing test will mark this
2198                                          * edge as the left edge.
2199                                          */
2200                                         if (right_edge[i] == delay_max + 1)
2201                                                 left_edge[i] = -(d + 1);
2202                                 } else {
2203                                         /*
2204                                          * d = 0 failed, but it passed
2205                                          * when testing the left edge,
2206                                          * so it must be marginal, set
2207                                          * it to -1
2208                                          */
2209                                         if (right_edge[i] == delay_max + 1 &&
2210                                             left_edge[i] != delay_max + 1)
2211                                                 right_edge[i] = -1;
2212                                         /*
2213                                          * If a right edge has not been
2214                                          * seen yet, then a future
2215                                          * passing test will mark this
2216                                          * edge as the left edge.
2217                                          */
2218                                         else if (right_edge[i] == delay_max + 1)
2219                                                 left_edge[i] = -(d + 1);
2220                                 }
2221                         }
2222
2223                         debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2224                                    __func__, __LINE__, d);
2225                         debug_cond(DLEVEL == 2,
2226                                    "bit_chk_test=%i left_edge[%u]: %d ",
2227                                    bit_chk & 1, i, left_edge[i]);
2228                         debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2229                                    right_edge[i]);
2230                         bit_chk >>= 1;
2231                 }
2232         }
2233
2234         /* Check that all bits have a window */
2235         for (i = 0; i < per_dqs; i++) {
2236                 debug_cond(DLEVEL == 2,
2237                            "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2238                            __func__, __LINE__, i, left_edge[i],
2239                            i, right_edge[i]);
2240                 if ((left_edge[i] == dqs_max + 1) ||
2241                     (right_edge[i] == dqs_max + 1))
2242                         return i + 1;   /* FIXME: If we fail, retval > 0 */
2243         }
2244
2245         return 0;
2246 }
2247
2248 /**
2249  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2250  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2251  * @left_edge:          Left edge of the DQ/DQS phase
2252  * @right_edge:         Right edge of the DQ/DQS phase
2253  * @mid_min:            Best DQ/DQS phase middle setting
2254  *
2255  * Find index and value of the middle of the DQ/DQS working phase.
2256  */
2257 static int get_window_mid_index(const int write, int *left_edge,
2258                                 int *right_edge, int *mid_min)
2259 {
2260         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2261                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2262         int i, mid, min_index;
2263
2264         /* Find middle of window for each DQ bit */
2265         *mid_min = left_edge[0] - right_edge[0];
2266         min_index = 0;
2267         for (i = 1; i < per_dqs; i++) {
2268                 mid = left_edge[i] - right_edge[i];
2269                 if (mid < *mid_min) {
2270                         *mid_min = mid;
2271                         min_index = i;
2272                 }
2273         }
2274
2275         /*
2276          * -mid_min/2 represents the amount that we need to move DQS.
2277          * If mid_min is odd and positive we'll need to add one to make
2278          * sure the rounding in further calculations is correct (always
2279          * bias to the right), so just add 1 for all positive values.
2280          */
2281         if (*mid_min > 0)
2282                 (*mid_min)++;
2283         *mid_min = *mid_min / 2;
2284
2285         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2286                    __func__, __LINE__, *mid_min, min_index);
2287         return min_index;
2288 }
2289
2290 /**
2291  * center_dq_windows() - Center the DQ/DQS windows
2292  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2293  * @left_edge:          Left edge of the DQ/DQS phase
2294  * @right_edge:         Right edge of the DQ/DQS phase
2295  * @mid_min:            Adjusted DQ/DQS phase middle setting
2296  * @orig_mid_min:       Original DQ/DQS phase middle setting
2297  * @min_index:          DQ/DQS phase middle setting index
2298  * @test_bgn:           Rank number to begin the test
2299  * @dq_margin:          Amount of shift for the DQ
2300  * @dqs_margin:         Amount of shift for the DQS
2301  *
2302  * Align the DQ/DQS windows in each group.
2303  */
2304 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2305                               const int mid_min, const int orig_mid_min,
2306                               const int min_index, const int test_bgn,
2307                               int *dq_margin, int *dqs_margin)
2308 {
2309         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2310         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2311                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2312         const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2313                                       SCC_MGR_IO_IN_DELAY_OFFSET;
2314         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2315
2316         u32 temp_dq_io_delay1, temp_dq_io_delay2;
2317         int shift_dq, i, p;
2318
2319         /* Initialize data for export structures */
2320         *dqs_margin = delay_max + 1;
2321         *dq_margin  = delay_max + 1;
2322
2323         /* add delay to bring centre of all DQ windows to the same "level" */
2324         for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2325                 /* Use values before divide by 2 to reduce round off error */
2326                 shift_dq = (left_edge[i] - right_edge[i] -
2327                         (left_edge[min_index] - right_edge[min_index]))/2  +
2328                         (orig_mid_min - mid_min);
2329
2330                 debug_cond(DLEVEL == 2,
2331                            "vfifo_center: before: shift_dq[%u]=%d\n",
2332                            i, shift_dq);
2333
2334                 temp_dq_io_delay1 = readl(addr + (p << 2));
2335                 temp_dq_io_delay2 = readl(addr + (i << 2));
2336
2337                 if (shift_dq + temp_dq_io_delay1 > delay_max)
2338                         shift_dq = delay_max - temp_dq_io_delay2;
2339                 else if (shift_dq + temp_dq_io_delay1 < 0)
2340                         shift_dq = -temp_dq_io_delay1;
2341
2342                 debug_cond(DLEVEL == 2,
2343                            "vfifo_center: after: shift_dq[%u]=%d\n",
2344                            i, shift_dq);
2345
2346                 if (write)
2347                         scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2348                 else
2349                         scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2350
2351                 scc_mgr_load_dq(p);
2352
2353                 debug_cond(DLEVEL == 2,
2354                            "vfifo_center: margin[%u]=[%d,%d]\n", i,
2355                            left_edge[i] - shift_dq + (-mid_min),
2356                            right_edge[i] + shift_dq - (-mid_min));
2357
2358                 /* To determine values for export structures */
2359                 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2360                         *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2361
2362                 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2363                         *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2364         }
2365
2366 }
2367
2368 /**
2369  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2370  * @rank_bgn:           Rank number
2371  * @rw_group:           Read/Write Group
2372  * @test_bgn:           Rank at which the test begins
2373  * @use_read_test:      Perform a read test
2374  * @update_fom:         Update FOM
2375  *
2376  * Per-bit deskew DQ and centering.
2377  */
2378 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2379                         const u32 rw_group, const u32 test_bgn,
2380                         const int use_read_test, const int update_fom)
2381 {
2382         const u32 addr =
2383                 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2384                 (rw_group << 2);
2385         /*
2386          * Store these as signed since there are comparisons with
2387          * signed numbers.
2388          */
2389         uint32_t sticky_bit_chk;
2390         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2391         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2392         int32_t orig_mid_min, mid_min;
2393         int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2394         int32_t dq_margin, dqs_margin;
2395         int i, min_index;
2396         int ret;
2397
2398         debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2399
2400         start_dqs = readl(addr);
2401         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2402                 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2403
2404         /* set the left and right edge of each bit to an illegal value */
2405         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2406         sticky_bit_chk = 0;
2407         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2408                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2409                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2410         }
2411
2412         /* Search for the left edge of the window for each bit */
2413         search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2414                          &sticky_bit_chk,
2415                          left_edge, right_edge, use_read_test);
2416
2417
2418         /* Search for the right edge of the window for each bit */
2419         ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2420                                 start_dqs, start_dqs_en,
2421                                 &sticky_bit_chk,
2422                                 left_edge, right_edge, use_read_test);
2423         if (ret) {
2424                 /*
2425                  * Restore delay chain settings before letting the loop
2426                  * in rw_mgr_mem_calibrate_vfifo to retry different
2427                  * dqs/ck relationships.
2428                  */
2429                 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2430                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2431                         scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2432
2433                 scc_mgr_load_dqs(rw_group);
2434                 writel(0, &sdr_scc_mgr->update);
2435
2436                 debug_cond(DLEVEL == 1,
2437                            "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2438                            __func__, __LINE__, i, left_edge[i], right_edge[i]);
2439                 if (use_read_test) {
2440                         set_failing_group_stage(rw_group *
2441                                 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2442                                 CAL_STAGE_VFIFO,
2443                                 CAL_SUBSTAGE_VFIFO_CENTER);
2444                 } else {
2445                         set_failing_group_stage(rw_group *
2446                                 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2447                                 CAL_STAGE_VFIFO_AFTER_WRITES,
2448                                 CAL_SUBSTAGE_VFIFO_CENTER);
2449                 }
2450                 return -EIO;
2451         }
2452
2453         min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2454
2455         /* Determine the amount we can change DQS (which is -mid_min) */
2456         orig_mid_min = mid_min;
2457         new_dqs = start_dqs - mid_min;
2458         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2459                 new_dqs = IO_DQS_IN_DELAY_MAX;
2460         else if (new_dqs < 0)
2461                 new_dqs = 0;
2462
2463         mid_min = start_dqs - new_dqs;
2464         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2465                    mid_min, new_dqs);
2466
2467         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2468                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2469                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2470                 else if (start_dqs_en - mid_min < 0)
2471                         mid_min += start_dqs_en - mid_min;
2472         }
2473         new_dqs = start_dqs - mid_min;
2474
2475         debug_cond(DLEVEL == 1,
2476                    "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2477                    start_dqs,
2478                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2479                    new_dqs, mid_min);
2480
2481         /* Add delay to bring centre of all DQ windows to the same "level". */
2482         center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2483                           min_index, test_bgn, &dq_margin, &dqs_margin);
2484
2485         /* Move DQS-en */
2486         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2487                 final_dqs_en = start_dqs_en - mid_min;
2488                 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2489                 scc_mgr_load_dqs(rw_group);
2490         }
2491
2492         /* Move DQS */
2493         scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2494         scc_mgr_load_dqs(rw_group);
2495         debug_cond(DLEVEL == 2,
2496                    "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2497                    __func__, __LINE__, dq_margin, dqs_margin);
2498
2499         /*
2500          * Do not remove this line as it makes sure all of our decisions
2501          * have been applied. Apply the update bit.
2502          */
2503         writel(0, &sdr_scc_mgr->update);
2504
2505         if ((dq_margin < 0) || (dqs_margin < 0))
2506                 return -EINVAL;
2507
2508         return 0;
2509 }
2510
2511 /**
2512  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2513  * @rw_group:   Read/Write Group
2514  * @phase:      DQ/DQS phase
2515  *
2516  * Because initially no communication ca be reliably performed with the memory
2517  * device, the sequencer uses a guaranteed write mechanism to write data into
2518  * the memory device.
2519  */
2520 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2521                                                  const u32 phase)
2522 {
2523         int ret;
2524
2525         /* Set a particular DQ/DQS phase. */
2526         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2527
2528         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2529                    __func__, __LINE__, rw_group, phase);
2530
2531         /*
2532          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2533          * Load up the patterns used by read calibration using the
2534          * current DQDQS phase.
2535          */
2536         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2537
2538         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2539                 return 0;
2540
2541         /*
2542          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2543          * Back-to-Back reads of the patterns used for calibration.
2544          */
2545         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2546         if (ret)
2547                 debug_cond(DLEVEL == 1,
2548                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2549                            __func__, __LINE__, rw_group, phase);
2550         return ret;
2551 }
2552
2553 /**
2554  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2555  * @rw_group:   Read/Write Group
2556  * @test_bgn:   Rank at which the test begins
2557  *
2558  * DQS enable calibration ensures reliable capture of the DQ signal without
2559  * glitches on the DQS line.
2560  */
2561 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2562                                                        const u32 test_bgn)
2563 {
2564         /*
2565          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2566          * DQS and DQS Eanble Signal Relationships.
2567          */
2568
2569         /* We start at zero, so have one less dq to devide among */
2570         const u32 delay_step = IO_IO_IN_DELAY_MAX /
2571                                (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2572         int ret;
2573         u32 i, p, d, r;
2574
2575         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2576
2577         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2578         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2579              r += NUM_RANKS_PER_SHADOW_REG) {
2580                 for (i = 0, p = test_bgn, d = 0;
2581                      i < RW_MGR_MEM_DQ_PER_READ_DQS;
2582                      i++, p++, d += delay_step) {
2583                         debug_cond(DLEVEL == 1,
2584                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2585                                    __func__, __LINE__, rw_group, r, i, p, d);
2586
2587                         scc_mgr_set_dq_in_delay(p, d);
2588                         scc_mgr_load_dq(p);
2589                 }
2590
2591                 writel(0, &sdr_scc_mgr->update);
2592         }
2593
2594         /*
2595          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2596          * dq_in_delay values
2597          */
2598         ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2599
2600         debug_cond(DLEVEL == 1,
2601                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2602                    __func__, __LINE__, rw_group, !ret);
2603
2604         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2605              r += NUM_RANKS_PER_SHADOW_REG) {
2606                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2607                 writel(0, &sdr_scc_mgr->update);
2608         }
2609
2610         return ret;
2611 }
2612
2613 /**
2614  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2615  * @rw_group:           Read/Write Group
2616  * @test_bgn:           Rank at which the test begins
2617  * @use_read_test:      Perform a read test
2618  * @update_fom:         Update FOM
2619  *
2620  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2621  * within a group.
2622  */
2623 static int
2624 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2625                                       const int use_read_test,
2626                                       const int update_fom)
2627
2628 {
2629         int ret, grp_calibrated;
2630         u32 rank_bgn, sr;
2631
2632         /*
2633          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2634          * Read per-bit deskew can be done on a per shadow register basis.
2635          */
2636         grp_calibrated = 1;
2637         for (rank_bgn = 0, sr = 0;
2638              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2639              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2640                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2641                                                         test_bgn,
2642                                                         use_read_test,
2643                                                         update_fom);
2644                 if (!ret)
2645                         continue;
2646
2647                 grp_calibrated = 0;
2648         }
2649
2650         if (!grp_calibrated)
2651                 return -EIO;
2652
2653         return 0;
2654 }
2655
2656 /**
2657  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2658  * @rw_group:           Read/Write Group
2659  * @test_bgn:           Rank at which the test begins
2660  *
2661  * Stage 1: Calibrate the read valid prediction FIFO.
2662  *
2663  * This function implements UniPHY calibration Stage 1, as explained in
2664  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2665  *
2666  * - read valid prediction will consist of finding:
2667  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2668  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2669  *  - we also do a per-bit deskew on the DQ lines.
2670  */
2671 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2672 {
2673         uint32_t p, d;
2674         uint32_t dtaps_per_ptap;
2675         uint32_t failed_substage;
2676
2677         int ret;
2678
2679         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2680
2681         /* Update info for sims */
2682         reg_file_set_group(rw_group);
2683         reg_file_set_stage(CAL_STAGE_VFIFO);
2684         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2685
2686         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2687
2688         /* USER Determine number of delay taps for each phase tap. */
2689         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2690                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2691
2692         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2693                 /*
2694                  * In RLDRAMX we may be messing the delay of pins in
2695                  * the same write rw_group but outside of the current read
2696                  * the rw_group, but that's ok because we haven't calibrated
2697                  * output side yet.
2698                  */
2699                 if (d > 0) {
2700                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2701                                                                 rw_group, d);
2702                 }
2703
2704                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2705                         /* 1) Guaranteed Write */
2706                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2707                         if (ret)
2708                                 break;
2709
2710                         /* 2) DQS Enable Calibration */
2711                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2712                                                                           test_bgn);
2713                         if (ret) {
2714                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2715                                 continue;
2716                         }
2717
2718                         /* 3) Centering DQ/DQS */
2719                         /*
2720                          * If doing read after write calibration, do not update
2721                          * FOM now. Do it then.
2722                          */
2723                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2724                                                                 test_bgn, 1, 0);
2725                         if (ret) {
2726                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2727                                 continue;
2728                         }
2729
2730                         /* All done. */
2731                         goto cal_done_ok;
2732                 }
2733         }
2734
2735         /* Calibration Stage 1 failed. */
2736         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2737         return 0;
2738
2739         /* Calibration Stage 1 completed OK. */
2740 cal_done_ok:
2741         /*
2742          * Reset the delay chains back to zero if they have moved > 1
2743          * (check for > 1 because loop will increase d even when pass in
2744          * first case).
2745          */
2746         if (d > 2)
2747                 scc_mgr_zero_group(rw_group, 1);
2748
2749         return 1;
2750 }
2751
2752 /**
2753  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2754  * @rw_group:           Read/Write Group
2755  * @test_bgn:           Rank at which the test begins
2756  *
2757  * Stage 3: DQ/DQS Centering.
2758  *
2759  * This function implements UniPHY calibration Stage 3, as explained in
2760  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2761  */
2762 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2763                                           const u32 test_bgn)
2764 {
2765         int ret;
2766
2767         debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2768
2769         /* Update info for sims. */
2770         reg_file_set_group(rw_group);
2771         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2772         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2773
2774         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2775         if (ret)
2776                 set_failing_group_stage(rw_group,
2777                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2778                                         CAL_SUBSTAGE_VFIFO_CENTER);
2779         return ret;
2780 }
2781
2782 /**
2783  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2784  *
2785  * Stage 4: Minimize latency.
2786  *
2787  * This function implements UniPHY calibration Stage 4, as explained in
2788  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2789  * Calibrate LFIFO to find smallest read latency.
2790  */
2791 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2792 {
2793         int found_one = 0;
2794
2795         debug("%s:%d\n", __func__, __LINE__);
2796
2797         /* Update info for sims. */
2798         reg_file_set_stage(CAL_STAGE_LFIFO);
2799         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2800
2801         /* Load up the patterns used by read calibration for all ranks */
2802         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2803
2804         do {
2805                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2806                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2807                            __func__, __LINE__, gbl->curr_read_lat);
2808
2809                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2810                                                               PASS_ALL_BITS, 1))
2811                         break;
2812
2813                 found_one = 1;
2814                 /*
2815                  * Reduce read latency and see if things are
2816                  * working correctly.
2817                  */
2818                 gbl->curr_read_lat--;
2819         } while (gbl->curr_read_lat > 0);
2820
2821         /* Reset the fifos to get pointers to known state. */
2822         writel(0, &phy_mgr_cmd->fifo_reset);
2823
2824         if (found_one) {
2825                 /* Add a fudge factor to the read latency that was determined */
2826                 gbl->curr_read_lat += 2;
2827                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2828                 debug_cond(DLEVEL == 2,
2829                            "%s:%d lfifo: success: using read_lat=%u\n",
2830                            __func__, __LINE__, gbl->curr_read_lat);
2831         } else {
2832                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2833                                         CAL_SUBSTAGE_READ_LATENCY);
2834
2835                 debug_cond(DLEVEL == 2,
2836                            "%s:%d lfifo: failed at initial read_lat=%u\n",
2837                            __func__, __LINE__, gbl->curr_read_lat);
2838         }
2839
2840         return found_one;
2841 }
2842
2843 /**
2844  * search_window() - Search for the/part of the window with DM/DQS shift
2845  * @search_dm:          If 1, search for the DM shift, if 0, search for DQS shift
2846  * @rank_bgn:           Rank number
2847  * @write_group:        Write Group
2848  * @bgn_curr:           Current window begin
2849  * @end_curr:           Current window end
2850  * @bgn_best:           Current best window begin
2851  * @end_best:           Current best window end
2852  * @win_best:           Size of the best window
2853  * @new_dqs:            New DQS value (only applicable if search_dm = 0).
2854  *
2855  * Search for the/part of the window with DM/DQS shift.
2856  */
2857 static void search_window(const int search_dm,
2858                           const u32 rank_bgn, const u32 write_group,
2859                           int *bgn_curr, int *end_curr, int *bgn_best,
2860                           int *end_best, int *win_best, int new_dqs)
2861 {
2862         u32 bit_chk;
2863         const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2864         int d, di;
2865
2866         /* Search for the/part of the window with DM/DQS shift. */
2867         for (di = max; di >= 0; di -= DELTA_D) {
2868                 if (search_dm) {
2869                         d = di;
2870                         scc_mgr_apply_group_dm_out1_delay(d);
2871                 } else {
2872                         /* For DQS, we go from 0...max */
2873                         d = max - di;
2874                         /*
2875                          * Note: This only shifts DQS, so are we limiting ourselve to
2876                          * width of DQ unnecessarily.
2877                          */
2878                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2879                                                                 d + new_dqs);
2880                 }
2881
2882                 writel(0, &sdr_scc_mgr->update);
2883
2884                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2885                                                     PASS_ALL_BITS, &bit_chk,
2886                                                     0)) {
2887                         /* Set current end of the window. */
2888                         *end_curr = search_dm ? -d : d;
2889
2890                         /*
2891                          * If a starting edge of our window has not been seen
2892                          * this is our current start of the DM window.
2893                          */
2894                         if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2895                                 *bgn_curr = search_dm ? -d : d;
2896
2897                         /*
2898                          * If current window is bigger than best seen.
2899                          * Set best seen to be current window.
2900                          */
2901                         if ((*end_curr - *bgn_curr + 1) > *win_best) {
2902                                 *win_best = *end_curr - *bgn_curr + 1;
2903                                 *bgn_best = *bgn_curr;
2904                                 *end_best = *end_curr;
2905                         }
2906                 } else {
2907                         /* We just saw a failing test. Reset temp edge. */
2908                         *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2909                         *end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2910
2911                         /* Early exit is only applicable to DQS. */
2912                         if (search_dm)
2913                                 continue;
2914
2915                         /*
2916                          * Early exit optimization: if the remaining delay
2917                          * chain space is less than already seen largest
2918                          * window we can exit.
2919                          */
2920                         if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2921                                 break;
2922                 }
2923         }
2924 }
2925
2926 /*
2927  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2928  * @rank_bgn:           Rank number
2929  * @write_group:        Write group
2930  * @test_bgn:           Rank at which the test begins
2931  *
2932  * Center all windows. Do per-bit-deskew to possibly increase size of
2933  * certain windows.
2934  */
2935 static int
2936 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2937                                    const u32 test_bgn)
2938 {
2939         int i;
2940         u32 sticky_bit_chk;
2941         u32 min_index;
2942         int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2943         int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2944         int mid;
2945         int mid_min, orig_mid_min;
2946         int new_dqs, start_dqs;
2947         int dq_margin, dqs_margin, dm_margin;
2948         int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2949         int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2950         int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2951         int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2952         int win_best = 0;
2953
2954         int ret;
2955
2956         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2957
2958         dm_margin = 0;
2959
2960         start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2961                           SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2962                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2963
2964         /* Per-bit deskew. */
2965
2966         /*
2967          * Set the left and right edge of each bit to an illegal value.
2968          * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2969          */
2970         sticky_bit_chk = 0;
2971         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2972                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2973                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2974         }
2975
2976         /* Search for the left edge of the window for each bit. */
2977         search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2978                          &sticky_bit_chk,
2979                          left_edge, right_edge, 0);
2980
2981         /* Search for the right edge of the window for each bit. */
2982         ret = search_right_edge(1, rank_bgn, write_group, 0,
2983                                 start_dqs, 0,
2984                                 &sticky_bit_chk,
2985                                 left_edge, right_edge, 0);
2986         if (ret) {
2987                 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2988                                         CAL_SUBSTAGE_WRITES_CENTER);
2989                 return -EINVAL;
2990         }
2991
2992         min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
2993
2994         /* Determine the amount we can change DQS (which is -mid_min). */
2995         orig_mid_min = mid_min;
2996         new_dqs = start_dqs;
2997         mid_min = 0;
2998         debug_cond(DLEVEL == 1,
2999                    "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3000                    __func__, __LINE__, start_dqs, new_dqs, mid_min);
3001
3002         /* Add delay to bring centre of all DQ windows to the same "level". */
3003         center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3004                           min_index, 0, &dq_margin, &dqs_margin);
3005
3006         /* Move DQS */
3007         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3008         writel(0, &sdr_scc_mgr->update);
3009
3010         /* Centre DM */
3011         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3012
3013         /*
3014          * Set the left and right edge of each bit to an illegal value.
3015          * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3016          */
3017         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3018         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3019
3020         /* Search for the/part of the window with DM shift. */
3021         search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3022                       &bgn_best, &end_best, &win_best, 0);
3023
3024         /* Reset DM delay chains to 0. */
3025         scc_mgr_apply_group_dm_out1_delay(0);
3026
3027         /*
3028          * Check to see if the current window nudges up aganist 0 delay.
3029          * If so we need to continue the search by shifting DQS otherwise DQS
3030          * search begins as a new search.
3031          */
3032         if (end_curr != 0) {
3033                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3034                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3035         }
3036
3037         /* Search for the/part of the window with DQS shifts. */
3038         search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3039                       &bgn_best, &end_best, &win_best, new_dqs);
3040
3041         /* Assign left and right edge for cal and reporting. */
3042         left_edge[0] = -1 * bgn_best;
3043         right_edge[0] = end_best;
3044
3045         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3046                    __func__, __LINE__, left_edge[0], right_edge[0]);
3047
3048         /* Move DQS (back to orig). */
3049         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3050
3051         /* Move DM */
3052
3053         /* Find middle of window for the DM bit. */
3054         mid = (left_edge[0] - right_edge[0]) / 2;
3055
3056         /* Only move right, since we are not moving DQS/DQ. */
3057         if (mid < 0)
3058                 mid = 0;
3059
3060         /* dm_marign should fail if we never find a window. */
3061         if (win_best == 0)
3062                 dm_margin = -1;
3063         else
3064                 dm_margin = left_edge[0] - mid;
3065
3066         scc_mgr_apply_group_dm_out1_delay(mid);
3067         writel(0, &sdr_scc_mgr->update);
3068
3069         debug_cond(DLEVEL == 2,
3070                    "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3071                    __func__, __LINE__, left_edge[0], right_edge[0],
3072                    mid, dm_margin);
3073         /* Export values. */
3074         gbl->fom_out += dq_margin + dqs_margin;
3075
3076         debug_cond(DLEVEL == 2,
3077                    "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3078                    __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3079
3080         /*
3081          * Do not remove this line as it makes sure all of our
3082          * decisions have been applied.
3083          */
3084         writel(0, &sdr_scc_mgr->update);
3085
3086         if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3087                 return -EINVAL;
3088
3089         return 0;
3090 }
3091
3092 /**
3093  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3094  * @rank_bgn:           Rank number
3095  * @group:              Read/Write Group
3096  * @test_bgn:           Rank at which the test begins
3097  *
3098  * Stage 2: Write Calibration Part One.
3099  *
3100  * This function implements UniPHY calibration Stage 2, as explained in
3101  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3102  */
3103 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3104                                        const u32 test_bgn)
3105 {
3106         int ret;
3107
3108         /* Update info for sims */
3109         debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3110
3111         reg_file_set_group(group);
3112         reg_file_set_stage(CAL_STAGE_WRITES);
3113         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3114
3115         ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3116         if (ret)
3117                 set_failing_group_stage(group, CAL_STAGE_WRITES,
3118                                         CAL_SUBSTAGE_WRITES_CENTER);
3119
3120         return ret;
3121 }
3122
3123 /**
3124  * mem_precharge_and_activate() - Precharge all banks and activate
3125  *
3126  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3127  */
3128 static void mem_precharge_and_activate(void)
3129 {
3130         int r;
3131
3132         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3133                 /* Set rank. */
3134                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3135
3136                 /* Precharge all banks. */
3137                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3138                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3139
3140                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3141                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3142                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3143
3144                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3145                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3146                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3147
3148                 /* Activate rows. */
3149                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3150                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3151         }
3152 }
3153
3154 /**
3155  * mem_init_latency() - Configure memory RLAT and WLAT settings
3156  *
3157  * Configure memory RLAT and WLAT parameters.
3158  */
3159 static void mem_init_latency(void)
3160 {
3161         /*
3162          * For AV/CV, LFIFO is hardened and always runs at full rate
3163          * so max latency in AFI clocks, used here, is correspondingly
3164          * smaller.
3165          */
3166         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3167         u32 rlat, wlat;
3168
3169         debug("%s:%d\n", __func__, __LINE__);
3170
3171         /*
3172          * Read in write latency.
3173          * WL for Hard PHY does not include additive latency.
3174          */
3175         wlat = readl(&data_mgr->t_wl_add);
3176         wlat += readl(&data_mgr->mem_t_add);
3177
3178         gbl->rw_wl_nop_cycles = wlat - 1;
3179
3180         /* Read in readl latency. */
3181         rlat = readl(&data_mgr->t_rl_add);
3182
3183         /* Set a pretty high read latency initially. */
3184         gbl->curr_read_lat = rlat + 16;
3185         if (gbl->curr_read_lat > max_latency)
3186                 gbl->curr_read_lat = max_latency;
3187
3188         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3189
3190         /* Advertise write latency. */
3191         writel(wlat, &phy_mgr_cfg->afi_wlat);
3192 }
3193
3194 /**
3195  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3196  *
3197  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3198  */
3199 static void mem_skip_calibrate(void)
3200 {
3201         uint32_t vfifo_offset;
3202         uint32_t i, j, r;
3203
3204         debug("%s:%d\n", __func__, __LINE__);
3205         /* Need to update every shadow register set used by the interface */
3206         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3207              r += NUM_RANKS_PER_SHADOW_REG) {
3208                 /*
3209                  * Set output phase alignment settings appropriate for
3210                  * skip calibration.
3211                  */
3212                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3213                         scc_mgr_set_dqs_en_phase(i, 0);
3214 #if IO_DLL_CHAIN_LENGTH == 6
3215                         scc_mgr_set_dqdqs_output_phase(i, 6);
3216 #else
3217                         scc_mgr_set_dqdqs_output_phase(i, 7);
3218 #endif
3219                         /*
3220                          * Case:33398
3221                          *
3222                          * Write data arrives to the I/O two cycles before write
3223                          * latency is reached (720 deg).
3224                          *   -> due to bit-slip in a/c bus
3225                          *   -> to allow board skew where dqs is longer than ck
3226                          *      -> how often can this happen!?
3227                          *      -> can claim back some ptaps for high freq
3228                          *       support if we can relax this, but i digress...
3229                          *
3230                          * The write_clk leads mem_ck by 90 deg
3231                          * The minimum ptap of the OPA is 180 deg
3232                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3233                          * The write_clk is always delayed by 2 ptaps
3234                          *
3235                          * Hence, to make DQS aligned to CK, we need to delay
3236                          * DQS by:
3237                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3238                          *
3239                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3240                          * gives us the number of ptaps, which simplies to:
3241                          *
3242                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3243                          */
3244                         scc_mgr_set_dqdqs_output_phase(i,
3245                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3246                 }
3247                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3248                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3249
3250                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3251                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3252                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3253                 }
3254                 writel(0xff, &sdr_scc_mgr->dq_ena);
3255                 writel(0xff, &sdr_scc_mgr->dm_ena);
3256                 writel(0, &sdr_scc_mgr->update);
3257         }
3258
3259         /* Compensate for simulation model behaviour */
3260         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3261                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3262                 scc_mgr_load_dqs(i);
3263         }
3264         writel(0, &sdr_scc_mgr->update);
3265
3266         /*
3267          * ArriaV has hard FIFOs that can only be initialized by incrementing
3268          * in sequencer.
3269          */
3270         vfifo_offset = CALIB_VFIFO_OFFSET;
3271         for (j = 0; j < vfifo_offset; j++)
3272                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3273         writel(0, &phy_mgr_cmd->fifo_reset);
3274
3275         /*
3276          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3277          * setting from generation-time constant.
3278          */
3279         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3280         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3281 }
3282
3283 /**
3284  * mem_calibrate() - Memory calibration entry point.
3285  *
3286  * Perform memory calibration.
3287  */
3288 static uint32_t mem_calibrate(void)
3289 {
3290         uint32_t i;
3291         uint32_t rank_bgn, sr;
3292         uint32_t write_group, write_test_bgn;
3293         uint32_t read_group, read_test_bgn;
3294         uint32_t run_groups, current_run;
3295         uint32_t failing_groups = 0;
3296         uint32_t group_failed = 0;
3297
3298         const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3299                                 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3300
3301         debug("%s:%d\n", __func__, __LINE__);
3302
3303         /* Initialize the data settings */
3304         gbl->error_substage = CAL_SUBSTAGE_NIL;
3305         gbl->error_stage = CAL_STAGE_NIL;
3306         gbl->error_group = 0xff;
3307         gbl->fom_in = 0;
3308         gbl->fom_out = 0;
3309
3310         /* Initialize WLAT and RLAT. */
3311         mem_init_latency();
3312
3313         /* Initialize bit slips. */
3314         mem_precharge_and_activate();
3315
3316         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3317                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3318                           SCC_MGR_GROUP_COUNTER_OFFSET);
3319                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3320                 if (i == 0)
3321                         scc_mgr_set_hhp_extras();
3322
3323                 scc_set_bypass_mode(i);
3324         }
3325
3326         /* Calibration is skipped. */
3327         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3328                 /*
3329                  * Set VFIFO and LFIFO to instant-on settings in skip
3330                  * calibration mode.
3331                  */
3332                 mem_skip_calibrate();
3333
3334                 /*
3335                  * Do not remove this line as it makes sure all of our
3336                  * decisions have been applied.
3337                  */
3338                 writel(0, &sdr_scc_mgr->update);
3339                 return 1;
3340         }
3341
3342         /* Calibration is not skipped. */
3343         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3344                 /*
3345                  * Zero all delay chain/phase settings for all
3346                  * groups and all shadow register sets.
3347                  */
3348                 scc_mgr_zero_all();
3349
3350                 run_groups = ~0;
3351
3352                 for (write_group = 0, write_test_bgn = 0; write_group
3353                         < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3354                         write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3355
3356                         /* Initialize the group failure */
3357                         group_failed = 0;
3358
3359                         current_run = run_groups & ((1 <<
3360                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3361                         run_groups = run_groups >>
3362                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3363
3364                         if (current_run == 0)
3365                                 continue;
3366
3367                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3368                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3369                         scc_mgr_zero_group(write_group, 0);
3370
3371                         for (read_group = write_group * rwdqs_ratio,
3372                              read_test_bgn = 0;
3373                              read_group < (write_group + 1) * rwdqs_ratio;
3374                              read_group++,
3375                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3376                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3377                                         continue;
3378
3379                                 /* Calibrate the VFIFO */
3380                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3381                                                                read_test_bgn))
3382                                         continue;
3383
3384                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3385                                         return 0;
3386
3387                                 /* The group failed, we're done. */
3388                                 goto grp_failed;
3389                         }
3390
3391                         /* Calibrate the output side */
3392                         for (rank_bgn = 0, sr = 0;
3393                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3394                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3395                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3396                                         continue;
3397
3398                                 /* Not needed in quick mode! */
3399                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3400                                         continue;
3401
3402                                 /* Calibrate WRITEs */
3403                                 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3404                                                 write_group, write_test_bgn))
3405                                         continue;
3406
3407                                 group_failed = 1;
3408                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3409                                         return 0;
3410                         }
3411
3412                         /* Some group failed, we're done. */
3413                         if (group_failed)
3414                                 goto grp_failed;
3415
3416                         for (read_group = write_group * rwdqs_ratio,
3417                              read_test_bgn = 0;
3418                              read_group < (write_group + 1) * rwdqs_ratio;
3419                              read_group++,
3420                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3421                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3422                                         continue;
3423
3424                                 if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3425                                                                 read_test_bgn))
3426                                         continue;
3427
3428                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3429                                         return 0;
3430
3431                                 /* The group failed, we're done. */
3432                                 goto grp_failed;
3433                         }
3434
3435                         /* No group failed, continue as usual. */
3436                         continue;
3437
3438 grp_failed:             /* A group failed, increment the counter. */
3439                         failing_groups++;
3440                 }
3441
3442                 /*
3443                  * USER If there are any failing groups then report
3444                  * the failure.
3445                  */
3446                 if (failing_groups != 0)
3447                         return 0;
3448
3449                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3450                         continue;
3451
3452                 /* Calibrate the LFIFO */
3453                 if (!rw_mgr_mem_calibrate_lfifo())
3454                         return 0;
3455         }
3456
3457         /*
3458          * Do not remove this line as it makes sure all of our decisions
3459          * have been applied.
3460          */
3461         writel(0, &sdr_scc_mgr->update);
3462         return 1;
3463 }
3464
3465 /**
3466  * run_mem_calibrate() - Perform memory calibration
3467  *
3468  * This function triggers the entire memory calibration procedure.
3469  */
3470 static int run_mem_calibrate(void)
3471 {
3472         int pass;
3473
3474         debug("%s:%d\n", __func__, __LINE__);
3475
3476         /* Reset pass/fail status shown on afi_cal_success/fail */
3477         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3478
3479         /* Stop tracking manager. */
3480         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3481
3482         phy_mgr_initialize();
3483         rw_mgr_mem_initialize();
3484
3485         /* Perform the actual memory calibration. */
3486         pass = mem_calibrate();
3487
3488         mem_precharge_and_activate();
3489         writel(0, &phy_mgr_cmd->fifo_reset);
3490
3491         /* Handoff. */
3492         rw_mgr_mem_handoff();
3493         /*
3494          * In Hard PHY this is a 2-bit control:
3495          * 0: AFI Mux Select
3496          * 1: DDIO Mux Select
3497          */
3498         writel(0x2, &phy_mgr_cfg->mux_sel);
3499
3500         /* Start tracking manager. */
3501         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3502
3503         return pass;
3504 }
3505
3506 /**
3507  * debug_mem_calibrate() - Report result of memory calibration
3508  * @pass:       Value indicating whether calibration passed or failed
3509  *
3510  * This function reports the results of the memory calibration
3511  * and writes debug information into the register file.
3512  */
3513 static void debug_mem_calibrate(int pass)
3514 {
3515         uint32_t debug_info;
3516
3517         if (pass) {
3518                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3519
3520                 gbl->fom_in /= 2;
3521                 gbl->fom_out /= 2;
3522
3523                 if (gbl->fom_in > 0xff)
3524                         gbl->fom_in = 0xff;
3525
3526                 if (gbl->fom_out > 0xff)
3527                         gbl->fom_out = 0xff;
3528
3529                 /* Update the FOM in the register file */
3530                 debug_info = gbl->fom_in;
3531                 debug_info |= gbl->fom_out << 8;
3532                 writel(debug_info, &sdr_reg_file->fom);
3533
3534                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3535                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3536         } else {
3537                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3538
3539                 debug_info = gbl->error_stage;
3540                 debug_info |= gbl->error_substage << 8;
3541                 debug_info |= gbl->error_group << 16;
3542
3543                 writel(debug_info, &sdr_reg_file->failing_stage);
3544                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3545                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3546
3547                 /* Update the failing group/stage in the register file */
3548                 debug_info = gbl->error_stage;
3549                 debug_info |= gbl->error_substage << 8;
3550                 debug_info |= gbl->error_group << 16;
3551                 writel(debug_info, &sdr_reg_file->failing_stage);
3552         }
3553
3554         printf("%s: Calibration complete\n", __FILE__);
3555 }
3556
3557 /**
3558  * hc_initialize_rom_data() - Initialize ROM data
3559  *
3560  * Initialize ROM data.
3561  */
3562 static void hc_initialize_rom_data(void)
3563 {
3564         u32 i, addr;
3565
3566         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3567         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3568                 writel(inst_rom_init[i], addr + (i << 2));
3569
3570         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3571         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3572                 writel(ac_rom_init[i], addr + (i << 2));
3573 }
3574
3575 /**
3576  * initialize_reg_file() - Initialize SDR register file
3577  *
3578  * Initialize SDR register file.
3579  */
3580 static void initialize_reg_file(void)
3581 {
3582         /* Initialize the register file with the correct data */
3583         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3584         writel(0, &sdr_reg_file->debug_data_addr);
3585         writel(0, &sdr_reg_file->cur_stage);
3586         writel(0, &sdr_reg_file->fom);
3587         writel(0, &sdr_reg_file->failing_stage);
3588         writel(0, &sdr_reg_file->debug1);
3589         writel(0, &sdr_reg_file->debug2);
3590 }
3591
3592 /**
3593  * initialize_hps_phy() - Initialize HPS PHY
3594  *
3595  * Initialize HPS PHY.
3596  */
3597 static void initialize_hps_phy(void)
3598 {
3599         uint32_t reg;
3600         /*
3601          * Tracking also gets configured here because it's in the
3602          * same register.
3603          */
3604         uint32_t trk_sample_count = 7500;
3605         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3606         /*
3607          * Format is number of outer loops in the 16 MSB, sample
3608          * count in 16 LSB.
3609          */
3610
3611         reg = 0;
3612         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3613         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3614         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3615         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3616         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3617         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3618         /*
3619          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3620          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3621          */
3622         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3623         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3624                 trk_sample_count);
3625         writel(reg, &sdr_ctrl->phy_ctrl0);
3626
3627         reg = 0;
3628         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3629                 trk_sample_count >>
3630                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3631         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3632                 trk_long_idle_sample_count);
3633         writel(reg, &sdr_ctrl->phy_ctrl1);
3634
3635         reg = 0;
3636         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3637                 trk_long_idle_sample_count >>
3638                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3639         writel(reg, &sdr_ctrl->phy_ctrl2);
3640 }
3641
3642 /**
3643  * initialize_tracking() - Initialize tracking
3644  *
3645  * Initialize the register file with usable initial data.
3646  */
3647 static void initialize_tracking(void)
3648 {
3649         /*
3650          * Initialize the register file with the correct data.
3651          * Compute usable version of value in case we skip full
3652          * computation later.
3653          */
3654         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3655                &sdr_reg_file->dtaps_per_ptap);
3656
3657         /* trk_sample_count */
3658         writel(7500, &sdr_reg_file->trk_sample_count);
3659
3660         /* longidle outer loop [15:0] */
3661         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3662
3663         /*
3664          * longidle sample count [31:24]
3665          * trfc, worst case of 933Mhz 4Gb [23:16]
3666          * trcd, worst case [15:8]
3667          * vfifo wait [7:0]
3668          */
3669         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3670                &sdr_reg_file->delays);
3671
3672         /* mux delay */
3673         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3674                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3675                &sdr_reg_file->trk_rw_mgr_addr);
3676
3677         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3678                &sdr_reg_file->trk_read_dqs_width);
3679
3680         /* trefi [7:0] */
3681         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3682                &sdr_reg_file->trk_rfsh);
3683 }
3684
3685 int sdram_calibration_full(void)
3686 {
3687         struct param_type my_param;
3688         struct gbl_type my_gbl;
3689         uint32_t pass;
3690
3691         memset(&my_param, 0, sizeof(my_param));
3692         memset(&my_gbl, 0, sizeof(my_gbl));
3693
3694         param = &my_param;
3695         gbl = &my_gbl;
3696
3697         /* Set the calibration enabled by default */
3698         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3699         /*
3700          * Only sweep all groups (regardless of fail state) by default
3701          * Set enabled read test by default.
3702          */
3703 #if DISABLE_GUARANTEED_READ
3704         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3705 #endif
3706         /* Initialize the register file */
3707         initialize_reg_file();
3708
3709         /* Initialize any PHY CSR */
3710         initialize_hps_phy();
3711
3712         scc_mgr_initialize();
3713
3714         initialize_tracking();
3715
3716         printf("%s: Preparing to start memory calibration\n", __FILE__);
3717
3718         debug("%s:%d\n", __func__, __LINE__);
3719         debug_cond(DLEVEL == 1,
3720                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3721                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3722                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3723                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3724                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3725         debug_cond(DLEVEL == 1,
3726                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3727                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3728                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3729                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3730         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3731                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3732         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3733                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3734                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3735         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3736                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3737                    IO_IO_OUT2_DELAY_MAX);
3738         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3739                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3740
3741         hc_initialize_rom_data();
3742
3743         /* update info for sims */
3744         reg_file_set_stage(CAL_STAGE_NIL);
3745         reg_file_set_group(0);
3746
3747         /*
3748          * Load global needed for those actions that require
3749          * some dynamic calibration support.
3750          */
3751         dyn_calib_steps = STATIC_CALIB_STEPS;
3752         /*
3753          * Load global to allow dynamic selection of delay loop settings
3754          * based on calibration mode.
3755          */
3756         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3757                 skip_delay_mask = 0xff;
3758         else
3759                 skip_delay_mask = 0x0;
3760
3761         pass = run_mem_calibrate();
3762         debug_mem_calibrate(pass);
3763         return pass;
3764 }