]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
754eaa8647e7214712dc46b25f9bd77590f62bcb
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12
13 /*
14  * FIXME: This path is temporary until the SDRAM driver gets
15  *        a proper thorough cleanup.
16  */
17 #include "../../../board/altera/socfpga/qts/sequencer_auto.h"
18 #include "../../../board/altera/socfpga/qts/sequencer_defines.h"
19
20 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
21         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
22
23 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
24         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
25
26 static struct socfpga_sdr_reg_file *sdr_reg_file =
27         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
28
29 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
30         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
31
32 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
33         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
34
35 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
36         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
37
38 static struct socfpga_data_mgr *data_mgr =
39         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
40
41 static struct socfpga_sdr_ctrl *sdr_ctrl =
42         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
43
44 const struct socfpga_sdram_rw_mgr_config *rwcfg;
45 const struct socfpga_sdram_io_config *iocfg;
46
47 #define DELTA_D         1
48
49 /*
50  * In order to reduce ROM size, most of the selectable calibration steps are
51  * decided at compile time based on the user's calibration mode selection,
52  * as captured by the STATIC_CALIB_STEPS selection below.
53  *
54  * However, to support simulation-time selection of fast simulation mode, where
55  * we skip everything except the bare minimum, we need a few of the steps to
56  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
57  * check, which is based on the rtl-supplied value, or we dynamically compute
58  * the value to use based on the dynamically-chosen calibration mode
59  */
60
61 #define DLEVEL 0
62 #define STATIC_IN_RTL_SIM 0
63 #define STATIC_SKIP_DELAY_LOOPS 0
64
65 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
66         STATIC_SKIP_DELAY_LOOPS)
67
68 /* calibration steps requested by the rtl */
69 uint16_t dyn_calib_steps;
70
71 /*
72  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
73  * instead of static, we use boolean logic to select between
74  * non-skip and skip values
75  *
76  * The mask is set to include all bits when not-skipping, but is
77  * zero when skipping
78  */
79
80 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
81
82 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
83         ((non_skip_value) & skip_delay_mask)
84
85 struct gbl_type *gbl;
86 struct param_type *param;
87
88 static void set_failing_group_stage(uint32_t group, uint32_t stage,
89         uint32_t substage)
90 {
91         /*
92          * Only set the global stage if there was not been any other
93          * failing group
94          */
95         if (gbl->error_stage == CAL_STAGE_NIL)  {
96                 gbl->error_substage = substage;
97                 gbl->error_stage = stage;
98                 gbl->error_group = group;
99         }
100 }
101
102 static void reg_file_set_group(u16 set_group)
103 {
104         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
105 }
106
107 static void reg_file_set_stage(u8 set_stage)
108 {
109         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
110 }
111
112 static void reg_file_set_sub_stage(u8 set_sub_stage)
113 {
114         set_sub_stage &= 0xff;
115         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
116 }
117
118 /**
119  * phy_mgr_initialize() - Initialize PHY Manager
120  *
121  * Initialize PHY Manager.
122  */
123 static void phy_mgr_initialize(void)
124 {
125         u32 ratio;
126
127         debug("%s:%d\n", __func__, __LINE__);
128         /* Calibration has control over path to memory */
129         /*
130          * In Hard PHY this is a 2-bit control:
131          * 0: AFI Mux Select
132          * 1: DDIO Mux Select
133          */
134         writel(0x3, &phy_mgr_cfg->mux_sel);
135
136         /* USER memory clock is not stable we begin initialization  */
137         writel(0, &phy_mgr_cfg->reset_mem_stbl);
138
139         /* USER calibration status all set to zero */
140         writel(0, &phy_mgr_cfg->cal_status);
141
142         writel(0, &phy_mgr_cfg->cal_debug_info);
143
144         /* Init params only if we do NOT skip calibration. */
145         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
146                 return;
147
148         ratio = rwcfg->mem_dq_per_read_dqs /
149                 rwcfg->mem_virtual_groups_per_read_dqs;
150         param->read_correct_mask_vg = (1 << ratio) - 1;
151         param->write_correct_mask_vg = (1 << ratio) - 1;
152         param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
153         param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
154 }
155
156 /**
157  * set_rank_and_odt_mask() - Set Rank and ODT mask
158  * @rank:       Rank mask
159  * @odt_mode:   ODT mode, OFF or READ_WRITE
160  *
161  * Set Rank and ODT mask (On-Die Termination).
162  */
163 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
164 {
165         u32 odt_mask_0 = 0;
166         u32 odt_mask_1 = 0;
167         u32 cs_and_odt_mask;
168
169         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
170                 odt_mask_0 = 0x0;
171                 odt_mask_1 = 0x0;
172         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
173                 switch (rwcfg->mem_number_of_ranks) {
174                 case 1: /* 1 Rank */
175                         /* Read: ODT = 0 ; Write: ODT = 1 */
176                         odt_mask_0 = 0x0;
177                         odt_mask_1 = 0x1;
178                         break;
179                 case 2: /* 2 Ranks */
180                         if (rwcfg->mem_number_of_cs_per_dimm == 1) {
181                                 /*
182                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
183                                  *   OR
184                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
185                                  *
186                                  * Since MEM_NUMBER_OF_RANKS is 2, they
187                                  * are both single rank with 2 CS each
188                                  * (special for RDIMM).
189                                  *
190                                  * Read: Turn on ODT on the opposite rank
191                                  * Write: Turn on ODT on all ranks
192                                  */
193                                 odt_mask_0 = 0x3 & ~(1 << rank);
194                                 odt_mask_1 = 0x3;
195                         } else {
196                                 /*
197                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
198                                  *
199                                  * Read: Turn on ODT off on all ranks
200                                  * Write: Turn on ODT on active rank
201                                  */
202                                 odt_mask_0 = 0x0;
203                                 odt_mask_1 = 0x3 & (1 << rank);
204                         }
205                         break;
206                 case 4: /* 4 Ranks */
207                         /* Read:
208                          * ----------+-----------------------+
209                          *           |         ODT           |
210                          * Read From +-----------------------+
211                          *   Rank    |  3  |  2  |  1  |  0  |
212                          * ----------+-----+-----+-----+-----+
213                          *     0     |  0  |  1  |  0  |  0  |
214                          *     1     |  1  |  0  |  0  |  0  |
215                          *     2     |  0  |  0  |  0  |  1  |
216                          *     3     |  0  |  0  |  1  |  0  |
217                          * ----------+-----+-----+-----+-----+
218                          *
219                          * Write:
220                          * ----------+-----------------------+
221                          *           |         ODT           |
222                          * Write To  +-----------------------+
223                          *   Rank    |  3  |  2  |  1  |  0  |
224                          * ----------+-----+-----+-----+-----+
225                          *     0     |  0  |  1  |  0  |  1  |
226                          *     1     |  1  |  0  |  1  |  0  |
227                          *     2     |  0  |  1  |  0  |  1  |
228                          *     3     |  1  |  0  |  1  |  0  |
229                          * ----------+-----+-----+-----+-----+
230                          */
231                         switch (rank) {
232                         case 0:
233                                 odt_mask_0 = 0x4;
234                                 odt_mask_1 = 0x5;
235                                 break;
236                         case 1:
237                                 odt_mask_0 = 0x8;
238                                 odt_mask_1 = 0xA;
239                                 break;
240                         case 2:
241                                 odt_mask_0 = 0x1;
242                                 odt_mask_1 = 0x5;
243                                 break;
244                         case 3:
245                                 odt_mask_0 = 0x2;
246                                 odt_mask_1 = 0xA;
247                                 break;
248                         }
249                         break;
250                 }
251         }
252
253         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
254                           ((0xFF & odt_mask_0) << 8) |
255                           ((0xFF & odt_mask_1) << 16);
256         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
257                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
258 }
259
260 /**
261  * scc_mgr_set() - Set SCC Manager register
262  * @off:        Base offset in SCC Manager space
263  * @grp:        Read/Write group
264  * @val:        Value to be set
265  *
266  * This function sets the SCC Manager (Scan Chain Control Manager) register.
267  */
268 static void scc_mgr_set(u32 off, u32 grp, u32 val)
269 {
270         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
271 }
272
273 /**
274  * scc_mgr_initialize() - Initialize SCC Manager registers
275  *
276  * Initialize SCC Manager registers.
277  */
278 static void scc_mgr_initialize(void)
279 {
280         /*
281          * Clear register file for HPS. 16 (2^4) is the size of the
282          * full register file in the scc mgr:
283          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
284          *                             MEM_IF_READ_DQS_WIDTH - 1);
285          */
286         int i;
287
288         for (i = 0; i < 16; i++) {
289                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
290                            __func__, __LINE__, i);
291                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
292         }
293 }
294
295 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
296 {
297         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
298 }
299
300 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
301 {
302         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
303 }
304
305 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
306 {
307         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
308 }
309
310 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
311 {
312         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
313 }
314
315 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
316 {
317         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
318                     delay);
319 }
320
321 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
322 {
323         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
324 }
325
326 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
327 {
328         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
329 }
330
331 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
332 {
333         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
334                     delay);
335 }
336
337 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
338 {
339         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
340                     rwcfg->mem_dq_per_write_dqs + 1 + dm,
341                     delay);
342 }
343
344 /* load up dqs config settings */
345 static void scc_mgr_load_dqs(uint32_t dqs)
346 {
347         writel(dqs, &sdr_scc_mgr->dqs_ena);
348 }
349
350 /* load up dqs io config settings */
351 static void scc_mgr_load_dqs_io(void)
352 {
353         writel(0, &sdr_scc_mgr->dqs_io_ena);
354 }
355
356 /* load up dq config settings */
357 static void scc_mgr_load_dq(uint32_t dq_in_group)
358 {
359         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
360 }
361
362 /* load up dm config settings */
363 static void scc_mgr_load_dm(uint32_t dm)
364 {
365         writel(dm, &sdr_scc_mgr->dm_ena);
366 }
367
368 /**
369  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
370  * @off:        Base offset in SCC Manager space
371  * @grp:        Read/Write group
372  * @val:        Value to be set
373  * @update:     If non-zero, trigger SCC Manager update for all ranks
374  *
375  * This function sets the SCC Manager (Scan Chain Control Manager) register
376  * and optionally triggers the SCC update for all ranks.
377  */
378 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
379                                   const int update)
380 {
381         u32 r;
382
383         for (r = 0; r < rwcfg->mem_number_of_ranks;
384              r += NUM_RANKS_PER_SHADOW_REG) {
385                 scc_mgr_set(off, grp, val);
386
387                 if (update || (r == 0)) {
388                         writel(grp, &sdr_scc_mgr->dqs_ena);
389                         writel(0, &sdr_scc_mgr->update);
390                 }
391         }
392 }
393
394 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
395 {
396         /*
397          * USER although the h/w doesn't support different phases per
398          * shadow register, for simplicity our scc manager modeling
399          * keeps different phase settings per shadow reg, and it's
400          * important for us to keep them in sync to match h/w.
401          * for efficiency, the scan chain update should occur only
402          * once to sr0.
403          */
404         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
405                               read_group, phase, 0);
406 }
407
408 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
409                                                      uint32_t phase)
410 {
411         /*
412          * USER although the h/w doesn't support different phases per
413          * shadow register, for simplicity our scc manager modeling
414          * keeps different phase settings per shadow reg, and it's
415          * important for us to keep them in sync to match h/w.
416          * for efficiency, the scan chain update should occur only
417          * once to sr0.
418          */
419         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
420                               write_group, phase, 0);
421 }
422
423 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
424                                                uint32_t delay)
425 {
426         /*
427          * In shadow register mode, the T11 settings are stored in
428          * registers in the core, which are updated by the DQS_ENA
429          * signals. Not issuing the SCC_MGR_UPD command allows us to
430          * save lots of rank switching overhead, by calling
431          * select_shadow_regs_for_update with update_scan_chains
432          * set to 0.
433          */
434         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
435                               read_group, delay, 1);
436         writel(0, &sdr_scc_mgr->update);
437 }
438
439 /**
440  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
441  * @write_group:        Write group
442  * @delay:              Delay value
443  *
444  * This function sets the OCT output delay in SCC manager.
445  */
446 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
447 {
448         const int ratio = rwcfg->mem_if_read_dqs_width /
449                           rwcfg->mem_if_write_dqs_width;
450         const int base = write_group * ratio;
451         int i;
452         /*
453          * Load the setting in the SCC manager
454          * Although OCT affects only write data, the OCT delay is controlled
455          * by the DQS logic block which is instantiated once per read group.
456          * For protocols where a write group consists of multiple read groups,
457          * the setting must be set multiple times.
458          */
459         for (i = 0; i < ratio; i++)
460                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
461 }
462
463 /**
464  * scc_mgr_set_hhp_extras() - Set HHP extras.
465  *
466  * Load the fixed setting in the SCC manager HHP extras.
467  */
468 static void scc_mgr_set_hhp_extras(void)
469 {
470         /*
471          * Load the fixed setting in the SCC manager
472          * bits: 0:0 = 1'b1     - DQS bypass
473          * bits: 1:1 = 1'b1     - DQ bypass
474          * bits: 4:2 = 3'b001   - rfifo_mode
475          * bits: 6:5 = 2'b01    - rfifo clock_select
476          * bits: 7:7 = 1'b0     - separate gating from ungating setting
477          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
478          */
479         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
480                           (1 << 2) | (1 << 1) | (1 << 0);
481         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
482                          SCC_MGR_HHP_GLOBALS_OFFSET |
483                          SCC_MGR_HHP_EXTRAS_OFFSET;
484
485         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
486                    __func__, __LINE__);
487         writel(value, addr);
488         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
489                    __func__, __LINE__);
490 }
491
492 /**
493  * scc_mgr_zero_all() - Zero all DQS config
494  *
495  * Zero all DQS config.
496  */
497 static void scc_mgr_zero_all(void)
498 {
499         int i, r;
500
501         /*
502          * USER Zero all DQS config settings, across all groups and all
503          * shadow registers
504          */
505         for (r = 0; r < rwcfg->mem_number_of_ranks;
506              r += NUM_RANKS_PER_SHADOW_REG) {
507                 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
508                         /*
509                          * The phases actually don't exist on a per-rank basis,
510                          * but there's no harm updating them several times, so
511                          * let's keep the code simple.
512                          */
513                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
514                         scc_mgr_set_dqs_en_phase(i, 0);
515                         scc_mgr_set_dqs_en_delay(i, 0);
516                 }
517
518                 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
519                         scc_mgr_set_dqdqs_output_phase(i, 0);
520                         /* Arria V/Cyclone V don't have out2. */
521                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
522                 }
523         }
524
525         /* Multicast to all DQS group enables. */
526         writel(0xff, &sdr_scc_mgr->dqs_ena);
527         writel(0, &sdr_scc_mgr->update);
528 }
529
530 /**
531  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
532  * @write_group:        Write group
533  *
534  * Set bypass mode and trigger SCC update.
535  */
536 static void scc_set_bypass_mode(const u32 write_group)
537 {
538         /* Multicast to all DQ enables. */
539         writel(0xff, &sdr_scc_mgr->dq_ena);
540         writel(0xff, &sdr_scc_mgr->dm_ena);
541
542         /* Update current DQS IO enable. */
543         writel(0, &sdr_scc_mgr->dqs_io_ena);
544
545         /* Update the DQS logic. */
546         writel(write_group, &sdr_scc_mgr->dqs_ena);
547
548         /* Hit update. */
549         writel(0, &sdr_scc_mgr->update);
550 }
551
552 /**
553  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
554  * @write_group:        Write group
555  *
556  * Load DQS settings for Write Group, do not trigger SCC update.
557  */
558 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
559 {
560         const int ratio = rwcfg->mem_if_read_dqs_width /
561                           rwcfg->mem_if_write_dqs_width;
562         const int base = write_group * ratio;
563         int i;
564         /*
565          * Load the setting in the SCC manager
566          * Although OCT affects only write data, the OCT delay is controlled
567          * by the DQS logic block which is instantiated once per read group.
568          * For protocols where a write group consists of multiple read groups,
569          * the setting must be set multiple times.
570          */
571         for (i = 0; i < ratio; i++)
572                 writel(base + i, &sdr_scc_mgr->dqs_ena);
573 }
574
575 /**
576  * scc_mgr_zero_group() - Zero all configs for a group
577  *
578  * Zero DQ, DM, DQS and OCT configs for a group.
579  */
580 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
581 {
582         int i, r;
583
584         for (r = 0; r < rwcfg->mem_number_of_ranks;
585              r += NUM_RANKS_PER_SHADOW_REG) {
586                 /* Zero all DQ config settings. */
587                 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
588                         scc_mgr_set_dq_out1_delay(i, 0);
589                         if (!out_only)
590                                 scc_mgr_set_dq_in_delay(i, 0);
591                 }
592
593                 /* Multicast to all DQ enables. */
594                 writel(0xff, &sdr_scc_mgr->dq_ena);
595
596                 /* Zero all DM config settings. */
597                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
598                         scc_mgr_set_dm_out1_delay(i, 0);
599
600                 /* Multicast to all DM enables. */
601                 writel(0xff, &sdr_scc_mgr->dm_ena);
602
603                 /* Zero all DQS IO settings. */
604                 if (!out_only)
605                         scc_mgr_set_dqs_io_in_delay(0);
606
607                 /* Arria V/Cyclone V don't have out2. */
608                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
609                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
610                 scc_mgr_load_dqs_for_write_group(write_group);
611
612                 /* Multicast to all DQS IO enables (only 1 in total). */
613                 writel(0, &sdr_scc_mgr->dqs_io_ena);
614
615                 /* Hit update to zero everything. */
616                 writel(0, &sdr_scc_mgr->update);
617         }
618 }
619
620 /*
621  * apply and load a particular input delay for the DQ pins in a group
622  * group_bgn is the index of the first dq pin (in the write group)
623  */
624 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
625 {
626         uint32_t i, p;
627
628         for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
629                 scc_mgr_set_dq_in_delay(p, delay);
630                 scc_mgr_load_dq(p);
631         }
632 }
633
634 /**
635  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
636  * @delay:              Delay value
637  *
638  * Apply and load a particular output delay for the DQ pins in a group.
639  */
640 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
641 {
642         int i;
643
644         for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
645                 scc_mgr_set_dq_out1_delay(i, delay);
646                 scc_mgr_load_dq(i);
647         }
648 }
649
650 /* apply and load a particular output delay for the DM pins in a group */
651 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
652 {
653         uint32_t i;
654
655         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
656                 scc_mgr_set_dm_out1_delay(i, delay1);
657                 scc_mgr_load_dm(i);
658         }
659 }
660
661
662 /* apply and load delay on both DQS and OCT out1 */
663 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
664                                                     uint32_t delay)
665 {
666         scc_mgr_set_dqs_out1_delay(delay);
667         scc_mgr_load_dqs_io();
668
669         scc_mgr_set_oct_out1_delay(write_group, delay);
670         scc_mgr_load_dqs_for_write_group(write_group);
671 }
672
673 /**
674  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
675  * @write_group:        Write group
676  * @delay:              Delay value
677  *
678  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
679  */
680 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
681                                                   const u32 delay)
682 {
683         u32 i, new_delay;
684
685         /* DQ shift */
686         for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
687                 scc_mgr_load_dq(i);
688
689         /* DM shift */
690         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
691                 scc_mgr_load_dm(i);
692
693         /* DQS shift */
694         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
695         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
696                 debug_cond(DLEVEL == 1,
697                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
698                            __func__, __LINE__, write_group, delay, new_delay,
699                            IO_IO_OUT2_DELAY_MAX,
700                            new_delay - IO_IO_OUT2_DELAY_MAX);
701                 new_delay -= IO_IO_OUT2_DELAY_MAX;
702                 scc_mgr_set_dqs_out1_delay(new_delay);
703         }
704
705         scc_mgr_load_dqs_io();
706
707         /* OCT shift */
708         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
709         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
710                 debug_cond(DLEVEL == 1,
711                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
712                            __func__, __LINE__, write_group, delay,
713                            new_delay, IO_IO_OUT2_DELAY_MAX,
714                            new_delay - IO_IO_OUT2_DELAY_MAX);
715                 new_delay -= IO_IO_OUT2_DELAY_MAX;
716                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
717         }
718
719         scc_mgr_load_dqs_for_write_group(write_group);
720 }
721
722 /**
723  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
724  * @write_group:        Write group
725  * @delay:              Delay value
726  *
727  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
728  */
729 static void
730 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
731                                                 const u32 delay)
732 {
733         int r;
734
735         for (r = 0; r < rwcfg->mem_number_of_ranks;
736              r += NUM_RANKS_PER_SHADOW_REG) {
737                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
738                 writel(0, &sdr_scc_mgr->update);
739         }
740 }
741
742 /**
743  * set_jump_as_return() - Return instruction optimization
744  *
745  * Optimization used to recover some slots in ddr3 inst_rom could be
746  * applied to other protocols if we wanted to
747  */
748 static void set_jump_as_return(void)
749 {
750         /*
751          * To save space, we replace return with jump to special shared
752          * RETURN instruction so we set the counter to large value so that
753          * we always jump.
754          */
755         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
756         writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
757 }
758
759 /**
760  * delay_for_n_mem_clocks() - Delay for N memory clocks
761  * @clocks:     Length of the delay
762  *
763  * Delay for N memory clocks.
764  */
765 static void delay_for_n_mem_clocks(const u32 clocks)
766 {
767         u32 afi_clocks;
768         u16 c_loop;
769         u8 inner;
770         u8 outer;
771
772         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774         /* Scale (rounding up) to get afi clocks. */
775         afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO);
776         if (afi_clocks) /* Temporary underflow protection */
777                 afi_clocks--;
778
779         /*
780          * Note, we don't bother accounting for being off a little
781          * bit because of a few extra instructions in outer loops.
782          * Note, the loops have a test at the end, and do the test
783          * before the decrement, and so always perform the loop
784          * 1 time more than the counter value
785          */
786         c_loop = afi_clocks >> 16;
787         outer = c_loop ? 0xff : (afi_clocks >> 8);
788         inner = outer ? 0xff : afi_clocks;
789
790         /*
791          * rom instructions are structured as follows:
792          *
793          *    IDLE_LOOP2: jnz cntr0, TARGET_A
794          *    IDLE_LOOP1: jnz cntr1, TARGET_B
795          *                return
796          *
797          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
798          * TARGET_B is set to IDLE_LOOP2 as well
799          *
800          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
801          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
802          *
803          * a little confusing, but it helps save precious space in the inst_rom
804          * and sequencer rom and keeps the delays more accurate and reduces
805          * overhead
806          */
807         if (afi_clocks < 0x100) {
808                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
809                         &sdr_rw_load_mgr_regs->load_cntr1);
810
811                 writel(rwcfg->idle_loop1,
812                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
813
814                 writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
815                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
816         } else {
817                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
818                         &sdr_rw_load_mgr_regs->load_cntr0);
819
820                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
821                         &sdr_rw_load_mgr_regs->load_cntr1);
822
823                 writel(rwcfg->idle_loop2,
824                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
825
826                 writel(rwcfg->idle_loop2,
827                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
828
829                 do {
830                         writel(rwcfg->idle_loop2,
831                                 SDR_PHYGRP_RWMGRGRP_ADDRESS |
832                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
833                 } while (c_loop-- != 0);
834         }
835         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
836 }
837
838 /**
839  * rw_mgr_mem_init_load_regs() - Load instruction registers
840  * @cntr0:      Counter 0 value
841  * @cntr1:      Counter 1 value
842  * @cntr2:      Counter 2 value
843  * @jump:       Jump instruction value
844  *
845  * Load instruction registers.
846  */
847 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
848 {
849         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
850                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
851
852         /* Load counters */
853         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
854                &sdr_rw_load_mgr_regs->load_cntr0);
855         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
856                &sdr_rw_load_mgr_regs->load_cntr1);
857         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
858                &sdr_rw_load_mgr_regs->load_cntr2);
859
860         /* Load jump address */
861         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
862         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
863         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
864
865         /* Execute count instruction */
866         writel(jump, grpaddr);
867 }
868
869 /**
870  * rw_mgr_mem_load_user() - Load user calibration values
871  * @fin1:       Final instruction 1
872  * @fin2:       Final instruction 2
873  * @precharge:  If 1, precharge the banks at the end
874  *
875  * Load user calibration values and optionally precharge the banks.
876  */
877 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
878                                  const int precharge)
879 {
880         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
881                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
882         u32 r;
883
884         for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
885                 /* set rank */
886                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
887
888                 /* precharge all banks ... */
889                 if (precharge)
890                         writel(rwcfg->precharge_all, grpaddr);
891
892                 /*
893                  * USER Use Mirror-ed commands for odd ranks if address
894                  * mirrorring is on
895                  */
896                 if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
897                         set_jump_as_return();
898                         writel(rwcfg->mrs2_mirr, grpaddr);
899                         delay_for_n_mem_clocks(4);
900                         set_jump_as_return();
901                         writel(rwcfg->mrs3_mirr, grpaddr);
902                         delay_for_n_mem_clocks(4);
903                         set_jump_as_return();
904                         writel(rwcfg->mrs1_mirr, grpaddr);
905                         delay_for_n_mem_clocks(4);
906                         set_jump_as_return();
907                         writel(fin1, grpaddr);
908                 } else {
909                         set_jump_as_return();
910                         writel(rwcfg->mrs2, grpaddr);
911                         delay_for_n_mem_clocks(4);
912                         set_jump_as_return();
913                         writel(rwcfg->mrs3, grpaddr);
914                         delay_for_n_mem_clocks(4);
915                         set_jump_as_return();
916                         writel(rwcfg->mrs1, grpaddr);
917                         set_jump_as_return();
918                         writel(fin2, grpaddr);
919                 }
920
921                 if (precharge)
922                         continue;
923
924                 set_jump_as_return();
925                 writel(rwcfg->zqcl, grpaddr);
926
927                 /* tZQinit = tDLLK = 512 ck cycles */
928                 delay_for_n_mem_clocks(512);
929         }
930 }
931
932 /**
933  * rw_mgr_mem_initialize() - Initialize RW Manager
934  *
935  * Initialize RW Manager.
936  */
937 static void rw_mgr_mem_initialize(void)
938 {
939         debug("%s:%d\n", __func__, __LINE__);
940
941         /* The reset / cke part of initialization is broadcasted to all ranks */
942         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
943                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
944
945         /*
946          * Here's how you load register for a loop
947          * Counters are located @ 0x800
948          * Jump address are located @ 0xC00
949          * For both, registers 0 to 3 are selected using bits 3 and 2, like
950          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
951          * I know this ain't pretty, but Avalon bus throws away the 2 least
952          * significant bits
953          */
954
955         /* Start with memory RESET activated */
956
957         /* tINIT = 200us */
958
959         /*
960          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
961          * If a and b are the number of iteration in 2 nested loops
962          * it takes the following number of cycles to complete the operation:
963          * number_of_cycles = ((2 + n) * a + 2) * b
964          * where n is the number of instruction in the inner loop
965          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
966          * b = 6A
967          */
968         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
969                                   SEQ_TINIT_CNTR2_VAL,
970                                   rwcfg->init_reset_0_cke_0);
971
972         /* Indicate that memory is stable. */
973         writel(1, &phy_mgr_cfg->reset_mem_stbl);
974
975         /*
976          * transition the RESET to high
977          * Wait for 500us
978          */
979
980         /*
981          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
982          * If a and b are the number of iteration in 2 nested loops
983          * it takes the following number of cycles to complete the operation
984          * number_of_cycles = ((2 + n) * a + 2) * b
985          * where n is the number of instruction in the inner loop
986          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
987          * b = FF
988          */
989         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
990                                   SEQ_TRESET_CNTR2_VAL,
991                                   rwcfg->init_reset_1_cke_0);
992
993         /* Bring up clock enable. */
994
995         /* tXRP < 250 ck cycles */
996         delay_for_n_mem_clocks(250);
997
998         rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
999                              0);
1000 }
1001
1002 /**
1003  * rw_mgr_mem_handoff() - Hand off the memory to user
1004  *
1005  * At the end of calibration we have to program the user settings in
1006  * and hand off the memory to the user.
1007  */
1008 static void rw_mgr_mem_handoff(void)
1009 {
1010         rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
1011         /*
1012          * Need to wait tMOD (12CK or 15ns) time before issuing other
1013          * commands, but we will have plenty of NIOS cycles before actual
1014          * handoff so its okay.
1015          */
1016 }
1017
1018 /**
1019  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1020  * @group:      Write Group
1021  * @use_dm:     Use DM
1022  *
1023  * Issue write test command. Two variants are provided, one that just tests
1024  * a write pattern and another that tests datamask functionality.
1025  */
1026 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1027                                                   u32 test_dm)
1028 {
1029         const u32 quick_write_mode =
1030                 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1031                 ENABLE_SUPER_QUICK_CALIBRATION;
1032         u32 mcc_instruction;
1033         u32 rw_wl_nop_cycles;
1034
1035         /*
1036          * Set counter and jump addresses for the right
1037          * number of NOP cycles.
1038          * The number of supported NOP cycles can range from -1 to infinity
1039          * Three different cases are handled:
1040          *
1041          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1042          *    mechanism will be used to insert the right number of NOPs
1043          *
1044          * 2. For a number of NOP cycles equals to 0, the micro-instruction
1045          *    issuing the write command will jump straight to the
1046          *    micro-instruction that turns on DQS (for DDRx), or outputs write
1047          *    data (for RLD), skipping
1048          *    the NOP micro-instruction all together
1049          *
1050          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1051          *    turned on in the same micro-instruction that issues the write
1052          *    command. Then we need
1053          *    to directly jump to the micro-instruction that sends out the data
1054          *
1055          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1056          *       (2 and 3). One jump-counter (0) is used to perform multiple
1057          *       write-read operations.
1058          *       one counter left to issue this command in "multiple-group" mode
1059          */
1060
1061         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1062
1063         if (rw_wl_nop_cycles == -1) {
1064                 /*
1065                  * CNTR 2 - We want to execute the special write operation that
1066                  * turns on DQS right away and then skip directly to the
1067                  * instruction that sends out the data. We set the counter to a
1068                  * large number so that the jump is always taken.
1069                  */
1070                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1071
1072                 /* CNTR 3 - Not used */
1073                 if (test_dm) {
1074                         mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1075                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
1076                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1077                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1078                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1079                 } else {
1080                         mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
1081                         writel(rwcfg->lfsr_wr_rd_bank_0_data,
1082                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1083                         writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1084                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1085                 }
1086         } else if (rw_wl_nop_cycles == 0) {
1087                 /*
1088                  * CNTR 2 - We want to skip the NOP operation and go straight
1089                  * to the DQS enable instruction. We set the counter to a large
1090                  * number so that the jump is always taken.
1091                  */
1092                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1093
1094                 /* CNTR 3 - Not used */
1095                 if (test_dm) {
1096                         mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1097                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1098                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1099                 } else {
1100                         mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1101                         writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
1102                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1103                 }
1104         } else {
1105                 /*
1106                  * CNTR 2 - In this case we want to execute the next instruction
1107                  * and NOT take the jump. So we set the counter to 0. The jump
1108                  * address doesn't count.
1109                  */
1110                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1111                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1112
1113                 /*
1114                  * CNTR 3 - Set the nop counter to the number of cycles we
1115                  * need to loop for, minus 1.
1116                  */
1117                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1118                 if (test_dm) {
1119                         mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1120                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1121                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1122                 } else {
1123                         mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1124                         writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1125                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1126                 }
1127         }
1128
1129         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1130                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1131
1132         if (quick_write_mode)
1133                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1134         else
1135                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1136
1137         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1138
1139         /*
1140          * CNTR 1 - This is used to ensure enough time elapses
1141          * for read data to come back.
1142          */
1143         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1144
1145         if (test_dm) {
1146                 writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1147                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1148         } else {
1149                 writel(rwcfg->lfsr_wr_rd_bank_0_wait,
1150                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1151         }
1152
1153         writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1154                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1155                                 (group << 2));
1156 }
1157
1158 /**
1159  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1160  * @rank_bgn:           Rank number
1161  * @write_group:        Write Group
1162  * @use_dm:             Use DM
1163  * @all_correct:        All bits must be correct in the mask
1164  * @bit_chk:            Resulting bit mask after the test
1165  * @all_ranks:          Test all ranks
1166  *
1167  * Test writes, can check for a single bit pass or multiple bit pass.
1168  */
1169 static int
1170 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1171                                 const u32 use_dm, const u32 all_correct,
1172                                 u32 *bit_chk, const u32 all_ranks)
1173 {
1174         const u32 rank_end = all_ranks ?
1175                                 rwcfg->mem_number_of_ranks :
1176                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1177         const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
1178                                 rwcfg->mem_virtual_groups_per_write_dqs;
1179         const u32 correct_mask_vg = param->write_correct_mask_vg;
1180
1181         u32 tmp_bit_chk, base_rw_mgr;
1182         int vg, r;
1183
1184         *bit_chk = param->write_correct_mask;
1185
1186         for (r = rank_bgn; r < rank_end; r++) {
1187                 /* Set rank */
1188                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1189
1190                 tmp_bit_chk = 0;
1191                 for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
1192                      vg >= 0; vg--) {
1193                         /* Reset the FIFOs to get pointers to known state. */
1194                         writel(0, &phy_mgr_cmd->fifo_reset);
1195
1196                         rw_mgr_mem_calibrate_write_test_issue(
1197                                 write_group *
1198                                 rwcfg->mem_virtual_groups_per_write_dqs + vg,
1199                                 use_dm);
1200
1201                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1202                         tmp_bit_chk <<= shift_ratio;
1203                         tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1204                 }
1205
1206                 *bit_chk &= tmp_bit_chk;
1207         }
1208
1209         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1210         if (all_correct) {
1211                 debug_cond(DLEVEL == 2,
1212                            "write_test(%u,%u,ALL) : %u == %u => %i\n",
1213                            write_group, use_dm, *bit_chk,
1214                            param->write_correct_mask,
1215                            *bit_chk == param->write_correct_mask);
1216                 return *bit_chk == param->write_correct_mask;
1217         } else {
1218                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1219                 debug_cond(DLEVEL == 2,
1220                            "write_test(%u,%u,ONE) : %u != %i => %i\n",
1221                            write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1222                 return *bit_chk != 0x00;
1223         }
1224 }
1225
1226 /**
1227  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1228  * @rank_bgn:   Rank number
1229  * @group:      Read/Write Group
1230  * @all_ranks:  Test all ranks
1231  *
1232  * Performs a guaranteed read on the patterns we are going to use during a
1233  * read test to ensure memory works.
1234  */
1235 static int
1236 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1237                                         const u32 all_ranks)
1238 {
1239         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1240                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1241         const u32 addr_offset =
1242                          (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
1243         const u32 rank_end = all_ranks ?
1244                                 rwcfg->mem_number_of_ranks :
1245                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1246         const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
1247                                 rwcfg->mem_virtual_groups_per_read_dqs;
1248         const u32 correct_mask_vg = param->read_correct_mask_vg;
1249
1250         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1251         int vg, r;
1252         int ret = 0;
1253
1254         bit_chk = param->read_correct_mask;
1255
1256         for (r = rank_bgn; r < rank_end; r++) {
1257                 /* Set rank */
1258                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1259
1260                 /* Load up a constant bursts of read commands */
1261                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1262                 writel(rwcfg->guaranteed_read,
1263                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1264
1265                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1266                 writel(rwcfg->guaranteed_read_cont,
1267                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1268
1269                 tmp_bit_chk = 0;
1270                 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
1271                      vg >= 0; vg--) {
1272                         /* Reset the FIFOs to get pointers to known state. */
1273                         writel(0, &phy_mgr_cmd->fifo_reset);
1274                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1275                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1276                         writel(rwcfg->guaranteed_read,
1277                                addr + addr_offset + (vg << 2));
1278
1279                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1280                         tmp_bit_chk <<= shift_ratio;
1281                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1282                 }
1283
1284                 bit_chk &= tmp_bit_chk;
1285         }
1286
1287         writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1288
1289         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1290
1291         if (bit_chk != param->read_correct_mask)
1292                 ret = -EIO;
1293
1294         debug_cond(DLEVEL == 1,
1295                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1296                    __func__, __LINE__, group, bit_chk,
1297                    param->read_correct_mask, ret);
1298
1299         return ret;
1300 }
1301
1302 /**
1303  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1304  * @rank_bgn:   Rank number
1305  * @all_ranks:  Test all ranks
1306  *
1307  * Load up the patterns we are going to use during a read test.
1308  */
1309 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1310                                                     const int all_ranks)
1311 {
1312         const u32 rank_end = all_ranks ?
1313                         rwcfg->mem_number_of_ranks :
1314                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1315         u32 r;
1316
1317         debug("%s:%d\n", __func__, __LINE__);
1318
1319         for (r = rank_bgn; r < rank_end; r++) {
1320                 /* set rank */
1321                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1322
1323                 /* Load up a constant bursts */
1324                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1325
1326                 writel(rwcfg->guaranteed_write_wait0,
1327                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1328
1329                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1330
1331                 writel(rwcfg->guaranteed_write_wait1,
1332                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1333
1334                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1335
1336                 writel(rwcfg->guaranteed_write_wait2,
1337                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1338
1339                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1340
1341                 writel(rwcfg->guaranteed_write_wait3,
1342                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1343
1344                 writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1345                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1346         }
1347
1348         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1349 }
1350
1351 /**
1352  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1353  * @rank_bgn:           Rank number
1354  * @group:              Read/Write group
1355  * @num_tries:          Number of retries of the test
1356  * @all_correct:        All bits must be correct in the mask
1357  * @bit_chk:            Resulting bit mask after the test
1358  * @all_groups:         Test all R/W groups
1359  * @all_ranks:          Test all ranks
1360  *
1361  * Try a read and see if it returns correct data back. Test has dummy reads
1362  * inserted into the mix used to align DQS enable. Test has more thorough
1363  * checks than the regular read test.
1364  */
1365 static int
1366 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1367                                const u32 num_tries, const u32 all_correct,
1368                                u32 *bit_chk,
1369                                const u32 all_groups, const u32 all_ranks)
1370 {
1371         const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
1372                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1373         const u32 quick_read_mode =
1374                 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1375                  ENABLE_SUPER_QUICK_CALIBRATION);
1376         u32 correct_mask_vg = param->read_correct_mask_vg;
1377         u32 tmp_bit_chk;
1378         u32 base_rw_mgr;
1379         u32 addr;
1380
1381         int r, vg, ret;
1382
1383         *bit_chk = param->read_correct_mask;
1384
1385         for (r = rank_bgn; r < rank_end; r++) {
1386                 /* set rank */
1387                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1388
1389                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1390
1391                 writel(rwcfg->read_b2b_wait1,
1392                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1393
1394                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1395                 writel(rwcfg->read_b2b_wait2,
1396                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1397
1398                 if (quick_read_mode)
1399                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1400                         /* need at least two (1+1) reads to capture failures */
1401                 else if (all_groups)
1402                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1403                 else
1404                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1405
1406                 writel(rwcfg->read_b2b,
1407                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1408                 if (all_groups)
1409                         writel(rwcfg->mem_if_read_dqs_width *
1410                                rwcfg->mem_virtual_groups_per_read_dqs - 1,
1411                                &sdr_rw_load_mgr_regs->load_cntr3);
1412                 else
1413                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1414
1415                 writel(rwcfg->read_b2b,
1416                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1417
1418                 tmp_bit_chk = 0;
1419                 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
1420                      vg--) {
1421                         /* Reset the FIFOs to get pointers to known state. */
1422                         writel(0, &phy_mgr_cmd->fifo_reset);
1423                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1424                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1425
1426                         if (all_groups) {
1427                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1428                                        RW_MGR_RUN_ALL_GROUPS_OFFSET;
1429                         } else {
1430                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1431                                        RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1432                         }
1433
1434                         writel(rwcfg->read_b2b, addr +
1435                                ((group * rwcfg->mem_virtual_groups_per_read_dqs +
1436                                vg) << 2));
1437
1438                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1439                         tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
1440                                         rwcfg->mem_virtual_groups_per_read_dqs;
1441                         tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1442                 }
1443
1444                 *bit_chk &= tmp_bit_chk;
1445         }
1446
1447         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1448         writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1449
1450         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1451
1452         if (all_correct) {
1453                 ret = (*bit_chk == param->read_correct_mask);
1454                 debug_cond(DLEVEL == 2,
1455                            "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1456                            __func__, __LINE__, group, all_groups, *bit_chk,
1457                            param->read_correct_mask, ret);
1458         } else  {
1459                 ret = (*bit_chk != 0x00);
1460                 debug_cond(DLEVEL == 2,
1461                            "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1462                            __func__, __LINE__, group, all_groups, *bit_chk,
1463                            0, ret);
1464         }
1465
1466         return ret;
1467 }
1468
1469 /**
1470  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1471  * @grp:                Read/Write group
1472  * @num_tries:          Number of retries of the test
1473  * @all_correct:        All bits must be correct in the mask
1474  * @all_groups:         Test all R/W groups
1475  *
1476  * Perform a READ test across all memory ranks.
1477  */
1478 static int
1479 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1480                                          const u32 all_correct,
1481                                          const u32 all_groups)
1482 {
1483         u32 bit_chk;
1484         return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1485                                               &bit_chk, all_groups, 1);
1486 }
1487
1488 /**
1489  * rw_mgr_incr_vfifo() - Increase VFIFO value
1490  * @grp:        Read/Write group
1491  *
1492  * Increase VFIFO value.
1493  */
1494 static void rw_mgr_incr_vfifo(const u32 grp)
1495 {
1496         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1497 }
1498
1499 /**
1500  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1501  * @grp:        Read/Write group
1502  *
1503  * Decrease VFIFO value.
1504  */
1505 static void rw_mgr_decr_vfifo(const u32 grp)
1506 {
1507         u32 i;
1508
1509         for (i = 0; i < VFIFO_SIZE - 1; i++)
1510                 rw_mgr_incr_vfifo(grp);
1511 }
1512
1513 /**
1514  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1515  * @grp:        Read/Write group
1516  *
1517  * Push VFIFO until a failing read happens.
1518  */
1519 static int find_vfifo_failing_read(const u32 grp)
1520 {
1521         u32 v, ret, fail_cnt = 0;
1522
1523         for (v = 0; v < VFIFO_SIZE; v++) {
1524                 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1525                            __func__, __LINE__, v);
1526                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1527                                                 PASS_ONE_BIT, 0);
1528                 if (!ret) {
1529                         fail_cnt++;
1530
1531                         if (fail_cnt == 2)
1532                                 return v;
1533                 }
1534
1535                 /* Fiddle with FIFO. */
1536                 rw_mgr_incr_vfifo(grp);
1537         }
1538
1539         /* No failing read found! Something must have gone wrong. */
1540         debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1541         return 0;
1542 }
1543
1544 /**
1545  * sdr_find_phase_delay() - Find DQS enable phase or delay
1546  * @working:    If 1, look for working phase/delay, if 0, look for non-working
1547  * @delay:      If 1, look for delay, if 0, look for phase
1548  * @grp:        Read/Write group
1549  * @work:       Working window position
1550  * @work_inc:   Working window increment
1551  * @pd:         DQS Phase/Delay Iterator
1552  *
1553  * Find working or non-working DQS enable phase setting.
1554  */
1555 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1556                                 u32 *work, const u32 work_inc, u32 *pd)
1557 {
1558         const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1559         u32 ret;
1560
1561         for (; *pd <= max; (*pd)++) {
1562                 if (delay)
1563                         scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1564                 else
1565                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1566
1567                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1568                                         PASS_ONE_BIT, 0);
1569                 if (!working)
1570                         ret = !ret;
1571
1572                 if (ret)
1573                         return 0;
1574
1575                 if (work)
1576                         *work += work_inc;
1577         }
1578
1579         return -EINVAL;
1580 }
1581 /**
1582  * sdr_find_phase() - Find DQS enable phase
1583  * @working:    If 1, look for working phase, if 0, look for non-working phase
1584  * @grp:        Read/Write group
1585  * @work:       Working window position
1586  * @i:          Iterator
1587  * @p:          DQS Phase Iterator
1588  *
1589  * Find working or non-working DQS enable phase setting.
1590  */
1591 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1592                           u32 *i, u32 *p)
1593 {
1594         const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1595         int ret;
1596
1597         for (; *i < end; (*i)++) {
1598                 if (working)
1599                         *p = 0;
1600
1601                 ret = sdr_find_phase_delay(working, 0, grp, work,
1602                                            IO_DELAY_PER_OPA_TAP, p);
1603                 if (!ret)
1604                         return 0;
1605
1606                 if (*p > IO_DQS_EN_PHASE_MAX) {
1607                         /* Fiddle with FIFO. */
1608                         rw_mgr_incr_vfifo(grp);
1609                         if (!working)
1610                                 *p = 0;
1611                 }
1612         }
1613
1614         return -EINVAL;
1615 }
1616
1617 /**
1618  * sdr_working_phase() - Find working DQS enable phase
1619  * @grp:        Read/Write group
1620  * @work_bgn:   Working window start position
1621  * @d:          dtaps output value
1622  * @p:          DQS Phase Iterator
1623  * @i:          Iterator
1624  *
1625  * Find working DQS enable phase setting.
1626  */
1627 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1628                              u32 *p, u32 *i)
1629 {
1630         const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1631                                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1632         int ret;
1633
1634         *work_bgn = 0;
1635
1636         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1637                 *i = 0;
1638                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1639                 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1640                 if (!ret)
1641                         return 0;
1642                 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1643         }
1644
1645         /* Cannot find working solution */
1646         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1647                    __func__, __LINE__);
1648         return -EINVAL;
1649 }
1650
1651 /**
1652  * sdr_backup_phase() - Find DQS enable backup phase
1653  * @grp:        Read/Write group
1654  * @work_bgn:   Working window start position
1655  * @p:          DQS Phase Iterator
1656  *
1657  * Find DQS enable backup phase setting.
1658  */
1659 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1660 {
1661         u32 tmp_delay, d;
1662         int ret;
1663
1664         /* Special case code for backing up a phase */
1665         if (*p == 0) {
1666                 *p = IO_DQS_EN_PHASE_MAX;
1667                 rw_mgr_decr_vfifo(grp);
1668         } else {
1669                 (*p)--;
1670         }
1671         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1672         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1673
1674         for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1675                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1676
1677                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1678                                         PASS_ONE_BIT, 0);
1679                 if (ret) {
1680                         *work_bgn = tmp_delay;
1681                         break;
1682                 }
1683
1684                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1685         }
1686
1687         /* Restore VFIFO to old state before we decremented it (if needed). */
1688         (*p)++;
1689         if (*p > IO_DQS_EN_PHASE_MAX) {
1690                 *p = 0;
1691                 rw_mgr_incr_vfifo(grp);
1692         }
1693
1694         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1695 }
1696
1697 /**
1698  * sdr_nonworking_phase() - Find non-working DQS enable phase
1699  * @grp:        Read/Write group
1700  * @work_end:   Working window end position
1701  * @p:          DQS Phase Iterator
1702  * @i:          Iterator
1703  *
1704  * Find non-working DQS enable phase setting.
1705  */
1706 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1707 {
1708         int ret;
1709
1710         (*p)++;
1711         *work_end += IO_DELAY_PER_OPA_TAP;
1712         if (*p > IO_DQS_EN_PHASE_MAX) {
1713                 /* Fiddle with FIFO. */
1714                 *p = 0;
1715                 rw_mgr_incr_vfifo(grp);
1716         }
1717
1718         ret = sdr_find_phase(0, grp, work_end, i, p);
1719         if (ret) {
1720                 /* Cannot see edge of failing read. */
1721                 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1722                            __func__, __LINE__);
1723         }
1724
1725         return ret;
1726 }
1727
1728 /**
1729  * sdr_find_window_center() - Find center of the working DQS window.
1730  * @grp:        Read/Write group
1731  * @work_bgn:   First working settings
1732  * @work_end:   Last working settings
1733  *
1734  * Find center of the working DQS enable window.
1735  */
1736 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1737                                   const u32 work_end)
1738 {
1739         u32 work_mid;
1740         int tmp_delay = 0;
1741         int i, p, d;
1742
1743         work_mid = (work_bgn + work_end) / 2;
1744
1745         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1746                    work_bgn, work_end, work_mid);
1747         /* Get the middle delay to be less than a VFIFO delay */
1748         tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1749
1750         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1751         work_mid %= tmp_delay;
1752         debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1753
1754         tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1755         if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1756                 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1757         p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1758
1759         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1760
1761         d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1762         if (d > IO_DQS_EN_DELAY_MAX)
1763                 d = IO_DQS_EN_DELAY_MAX;
1764         tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1765
1766         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1767
1768         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1769         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1770
1771         /*
1772          * push vfifo until we can successfully calibrate. We can do this
1773          * because the largest possible margin in 1 VFIFO cycle.
1774          */
1775         for (i = 0; i < VFIFO_SIZE; i++) {
1776                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1777                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1778                                                              PASS_ONE_BIT,
1779                                                              0)) {
1780                         debug_cond(DLEVEL == 2,
1781                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1782                                    __func__, __LINE__, p, d);
1783                         return 0;
1784                 }
1785
1786                 /* Fiddle with FIFO. */
1787                 rw_mgr_incr_vfifo(grp);
1788         }
1789
1790         debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1791                    __func__, __LINE__);
1792         return -EINVAL;
1793 }
1794
1795 /**
1796  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1797  * @grp:        Read/Write Group
1798  *
1799  * Find a good DQS enable to use.
1800  */
1801 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1802 {
1803         u32 d, p, i;
1804         u32 dtaps_per_ptap;
1805         u32 work_bgn, work_end;
1806         u32 found_passing_read, found_failing_read, initial_failing_dtap;
1807         int ret;
1808
1809         debug("%s:%d %u\n", __func__, __LINE__, grp);
1810
1811         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1812
1813         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1814         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1815
1816         /* Step 0: Determine number of delay taps for each phase tap. */
1817         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1818
1819         /* Step 1: First push vfifo until we get a failing read. */
1820         find_vfifo_failing_read(grp);
1821
1822         /* Step 2: Find first working phase, increment in ptaps. */
1823         work_bgn = 0;
1824         ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1825         if (ret)
1826                 return ret;
1827
1828         work_end = work_bgn;
1829
1830         /*
1831          * If d is 0 then the working window covers a phase tap and we can
1832          * follow the old procedure. Otherwise, we've found the beginning
1833          * and we need to increment the dtaps until we find the end.
1834          */
1835         if (d == 0) {
1836                 /*
1837                  * Step 3a: If we have room, back off by one and
1838                  *          increment in dtaps.
1839                  */
1840                 sdr_backup_phase(grp, &work_bgn, &p);
1841
1842                 /*
1843                  * Step 4a: go forward from working phase to non working
1844                  * phase, increment in ptaps.
1845                  */
1846                 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1847                 if (ret)
1848                         return ret;
1849
1850                 /* Step 5a: Back off one from last, increment in dtaps. */
1851
1852                 /* Special case code for backing up a phase */
1853                 if (p == 0) {
1854                         p = IO_DQS_EN_PHASE_MAX;
1855                         rw_mgr_decr_vfifo(grp);
1856                 } else {
1857                         p = p - 1;
1858                 }
1859
1860                 work_end -= IO_DELAY_PER_OPA_TAP;
1861                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1862
1863                 d = 0;
1864
1865                 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1866                            __func__, __LINE__, p);
1867         }
1868
1869         /* The dtap increment to find the failing edge is done here. */
1870         sdr_find_phase_delay(0, 1, grp, &work_end,
1871                              IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1872
1873         /* Go back to working dtap */
1874         if (d != 0)
1875                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1876
1877         debug_cond(DLEVEL == 2,
1878                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1879                    __func__, __LINE__, p, d - 1, work_end);
1880
1881         if (work_end < work_bgn) {
1882                 /* nil range */
1883                 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1884                            __func__, __LINE__);
1885                 return -EINVAL;
1886         }
1887
1888         debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1889                    __func__, __LINE__, work_bgn, work_end);
1890
1891         /*
1892          * We need to calculate the number of dtaps that equal a ptap.
1893          * To do that we'll back up a ptap and re-find the edge of the
1894          * window using dtaps
1895          */
1896         debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1897                    __func__, __LINE__);
1898
1899         /* Special case code for backing up a phase */
1900         if (p == 0) {
1901                 p = IO_DQS_EN_PHASE_MAX;
1902                 rw_mgr_decr_vfifo(grp);
1903                 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1904                            __func__, __LINE__, p);
1905         } else {
1906                 p = p - 1;
1907                 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1908                            __func__, __LINE__, p);
1909         }
1910
1911         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1912
1913         /*
1914          * Increase dtap until we first see a passing read (in case the
1915          * window is smaller than a ptap), and then a failing read to
1916          * mark the edge of the window again.
1917          */
1918
1919         /* Find a passing read. */
1920         debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1921                    __func__, __LINE__);
1922
1923         initial_failing_dtap = d;
1924
1925         found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1926         if (found_passing_read) {
1927                 /* Find a failing read. */
1928                 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1929                            __func__, __LINE__);
1930                 d++;
1931                 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1932                                                            &d);
1933         } else {
1934                 debug_cond(DLEVEL == 1,
1935                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1936                            __func__, __LINE__);
1937         }
1938
1939         /*
1940          * The dynamically calculated dtaps_per_ptap is only valid if we
1941          * found a passing/failing read. If we didn't, it means d hit the max
1942          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1943          * statically calculated value.
1944          */
1945         if (found_passing_read && found_failing_read)
1946                 dtaps_per_ptap = d - initial_failing_dtap;
1947
1948         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1949         debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1950                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1951
1952         /* Step 6: Find the centre of the window. */
1953         ret = sdr_find_window_center(grp, work_bgn, work_end);
1954
1955         return ret;
1956 }
1957
1958 /**
1959  * search_stop_check() - Check if the detected edge is valid
1960  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
1961  * @d:                  DQS delay
1962  * @rank_bgn:           Rank number
1963  * @write_group:        Write Group
1964  * @read_group:         Read Group
1965  * @bit_chk:            Resulting bit mask after the test
1966  * @sticky_bit_chk:     Resulting sticky bit mask after the test
1967  * @use_read_test:      Perform read test
1968  *
1969  * Test if the found edge is valid.
1970  */
1971 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1972                              const u32 write_group, const u32 read_group,
1973                              u32 *bit_chk, u32 *sticky_bit_chk,
1974                              const u32 use_read_test)
1975 {
1976         const u32 ratio = rwcfg->mem_if_read_dqs_width /
1977                           rwcfg->mem_if_write_dqs_width;
1978         const u32 correct_mask = write ? param->write_correct_mask :
1979                                          param->read_correct_mask;
1980         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
1981                                     rwcfg->mem_dq_per_read_dqs;
1982         u32 ret;
1983         /*
1984          * Stop searching when the read test doesn't pass AND when
1985          * we've seen a passing read on every bit.
1986          */
1987         if (write) {                    /* WRITE-ONLY */
1988                 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1989                                                          0, PASS_ONE_BIT,
1990                                                          bit_chk, 0);
1991         } else if (use_read_test) {     /* READ-ONLY */
1992                 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1993                                                         NUM_READ_PB_TESTS,
1994                                                         PASS_ONE_BIT, bit_chk,
1995                                                         0, 0);
1996         } else {                        /* READ-ONLY */
1997                 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
1998                                                 PASS_ONE_BIT, bit_chk, 0);
1999                 *bit_chk = *bit_chk >> (per_dqs *
2000                         (read_group - (write_group * ratio)));
2001                 ret = (*bit_chk == 0);
2002         }
2003         *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2004         ret = ret && (*sticky_bit_chk == correct_mask);
2005         debug_cond(DLEVEL == 2,
2006                    "%s:%d center(left): dtap=%u => %u == %u && %u",
2007                    __func__, __LINE__, d,
2008                    *sticky_bit_chk, correct_mask, ret);
2009         return ret;
2010 }
2011
2012 /**
2013  * search_left_edge() - Find left edge of DQ/DQS working phase
2014  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2015  * @rank_bgn:           Rank number
2016  * @write_group:        Write Group
2017  * @read_group:         Read Group
2018  * @test_bgn:           Rank number to begin the test
2019  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2020  * @left_edge:          Left edge of the DQ/DQS phase
2021  * @right_edge:         Right edge of the DQ/DQS phase
2022  * @use_read_test:      Perform read test
2023  *
2024  * Find left edge of DQ/DQS working phase.
2025  */
2026 static void search_left_edge(const int write, const int rank_bgn,
2027         const u32 write_group, const u32 read_group, const u32 test_bgn,
2028         u32 *sticky_bit_chk,
2029         int *left_edge, int *right_edge, const u32 use_read_test)
2030 {
2031         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2032         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2033         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2034                                     rwcfg->mem_dq_per_read_dqs;
2035         u32 stop, bit_chk;
2036         int i, d;
2037
2038         for (d = 0; d <= dqs_max; d++) {
2039                 if (write)
2040                         scc_mgr_apply_group_dq_out1_delay(d);
2041                 else
2042                         scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2043
2044                 writel(0, &sdr_scc_mgr->update);
2045
2046                 stop = search_stop_check(write, d, rank_bgn, write_group,
2047                                          read_group, &bit_chk, sticky_bit_chk,
2048                                          use_read_test);
2049                 if (stop == 1)
2050                         break;
2051
2052                 /* stop != 1 */
2053                 for (i = 0; i < per_dqs; i++) {
2054                         if (bit_chk & 1) {
2055                                 /*
2056                                  * Remember a passing test as
2057                                  * the left_edge.
2058                                  */
2059                                 left_edge[i] = d;
2060                         } else {
2061                                 /*
2062                                  * If a left edge has not been seen
2063                                  * yet, then a future passing test
2064                                  * will mark this edge as the right
2065                                  * edge.
2066                                  */
2067                                 if (left_edge[i] == delay_max + 1)
2068                                         right_edge[i] = -(d + 1);
2069                         }
2070                         bit_chk >>= 1;
2071                 }
2072         }
2073
2074         /* Reset DQ delay chains to 0 */
2075         if (write)
2076                 scc_mgr_apply_group_dq_out1_delay(0);
2077         else
2078                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2079
2080         *sticky_bit_chk = 0;
2081         for (i = per_dqs - 1; i >= 0; i--) {
2082                 debug_cond(DLEVEL == 2,
2083                            "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2084                            __func__, __LINE__, i, left_edge[i],
2085                            i, right_edge[i]);
2086
2087                 /*
2088                  * Check for cases where we haven't found the left edge,
2089                  * which makes our assignment of the the right edge invalid.
2090                  * Reset it to the illegal value.
2091                  */
2092                 if ((left_edge[i] == delay_max + 1) &&
2093                     (right_edge[i] != delay_max + 1)) {
2094                         right_edge[i] = delay_max + 1;
2095                         debug_cond(DLEVEL == 2,
2096                                    "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2097                                    __func__, __LINE__, i, right_edge[i]);
2098                 }
2099
2100                 /*
2101                  * Reset sticky bit
2102                  * READ: except for bits where we have seen both
2103                  *       the left and right edge.
2104                  * WRITE: except for bits where we have seen the
2105                  *        left edge.
2106                  */
2107                 *sticky_bit_chk <<= 1;
2108                 if (write) {
2109                         if (left_edge[i] != delay_max + 1)
2110                                 *sticky_bit_chk |= 1;
2111                 } else {
2112                         if ((left_edge[i] != delay_max + 1) &&
2113                             (right_edge[i] != delay_max + 1))
2114                                 *sticky_bit_chk |= 1;
2115                 }
2116         }
2117
2118
2119 }
2120
2121 /**
2122  * search_right_edge() - Find right edge of DQ/DQS working phase
2123  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2124  * @rank_bgn:           Rank number
2125  * @write_group:        Write Group
2126  * @read_group:         Read Group
2127  * @start_dqs:          DQS start phase
2128  * @start_dqs_en:       DQS enable start phase
2129  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2130  * @left_edge:          Left edge of the DQ/DQS phase
2131  * @right_edge:         Right edge of the DQ/DQS phase
2132  * @use_read_test:      Perform read test
2133  *
2134  * Find right edge of DQ/DQS working phase.
2135  */
2136 static int search_right_edge(const int write, const int rank_bgn,
2137         const u32 write_group, const u32 read_group,
2138         const int start_dqs, const int start_dqs_en,
2139         u32 *sticky_bit_chk,
2140         int *left_edge, int *right_edge, const u32 use_read_test)
2141 {
2142         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2143         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2144         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2145                                     rwcfg->mem_dq_per_read_dqs;
2146         u32 stop, bit_chk;
2147         int i, d;
2148
2149         for (d = 0; d <= dqs_max - start_dqs; d++) {
2150                 if (write) {    /* WRITE-ONLY */
2151                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2152                                                                 d + start_dqs);
2153                 } else {        /* READ-ONLY */
2154                         scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2155                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2156                                 uint32_t delay = d + start_dqs_en;
2157                                 if (delay > IO_DQS_EN_DELAY_MAX)
2158                                         delay = IO_DQS_EN_DELAY_MAX;
2159                                 scc_mgr_set_dqs_en_delay(read_group, delay);
2160                         }
2161                         scc_mgr_load_dqs(read_group);
2162                 }
2163
2164                 writel(0, &sdr_scc_mgr->update);
2165
2166                 stop = search_stop_check(write, d, rank_bgn, write_group,
2167                                          read_group, &bit_chk, sticky_bit_chk,
2168                                          use_read_test);
2169                 if (stop == 1) {
2170                         if (write && (d == 0)) {        /* WRITE-ONLY */
2171                                 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2172                                         /*
2173                                          * d = 0 failed, but it passed when
2174                                          * testing the left edge, so it must be
2175                                          * marginal, set it to -1
2176                                          */
2177                                         if (right_edge[i] == delay_max + 1 &&
2178                                             left_edge[i] != delay_max + 1)
2179                                                 right_edge[i] = -1;
2180                                 }
2181                         }
2182                         break;
2183                 }
2184
2185                 /* stop != 1 */
2186                 for (i = 0; i < per_dqs; i++) {
2187                         if (bit_chk & 1) {
2188                                 /*
2189                                  * Remember a passing test as
2190                                  * the right_edge.
2191                                  */
2192                                 right_edge[i] = d;
2193                         } else {
2194                                 if (d != 0) {
2195                                         /*
2196                                          * If a right edge has not
2197                                          * been seen yet, then a future
2198                                          * passing test will mark this
2199                                          * edge as the left edge.
2200                                          */
2201                                         if (right_edge[i] == delay_max + 1)
2202                                                 left_edge[i] = -(d + 1);
2203                                 } else {
2204                                         /*
2205                                          * d = 0 failed, but it passed
2206                                          * when testing the left edge,
2207                                          * so it must be marginal, set
2208                                          * it to -1
2209                                          */
2210                                         if (right_edge[i] == delay_max + 1 &&
2211                                             left_edge[i] != delay_max + 1)
2212                                                 right_edge[i] = -1;
2213                                         /*
2214                                          * If a right edge has not been
2215                                          * seen yet, then a future
2216                                          * passing test will mark this
2217                                          * edge as the left edge.
2218                                          */
2219                                         else if (right_edge[i] == delay_max + 1)
2220                                                 left_edge[i] = -(d + 1);
2221                                 }
2222                         }
2223
2224                         debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2225                                    __func__, __LINE__, d);
2226                         debug_cond(DLEVEL == 2,
2227                                    "bit_chk_test=%i left_edge[%u]: %d ",
2228                                    bit_chk & 1, i, left_edge[i]);
2229                         debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2230                                    right_edge[i]);
2231                         bit_chk >>= 1;
2232                 }
2233         }
2234
2235         /* Check that all bits have a window */
2236         for (i = 0; i < per_dqs; i++) {
2237                 debug_cond(DLEVEL == 2,
2238                            "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2239                            __func__, __LINE__, i, left_edge[i],
2240                            i, right_edge[i]);
2241                 if ((left_edge[i] == dqs_max + 1) ||
2242                     (right_edge[i] == dqs_max + 1))
2243                         return i + 1;   /* FIXME: If we fail, retval > 0 */
2244         }
2245
2246         return 0;
2247 }
2248
2249 /**
2250  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2251  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2252  * @left_edge:          Left edge of the DQ/DQS phase
2253  * @right_edge:         Right edge of the DQ/DQS phase
2254  * @mid_min:            Best DQ/DQS phase middle setting
2255  *
2256  * Find index and value of the middle of the DQ/DQS working phase.
2257  */
2258 static int get_window_mid_index(const int write, int *left_edge,
2259                                 int *right_edge, int *mid_min)
2260 {
2261         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2262                                     rwcfg->mem_dq_per_read_dqs;
2263         int i, mid, min_index;
2264
2265         /* Find middle of window for each DQ bit */
2266         *mid_min = left_edge[0] - right_edge[0];
2267         min_index = 0;
2268         for (i = 1; i < per_dqs; i++) {
2269                 mid = left_edge[i] - right_edge[i];
2270                 if (mid < *mid_min) {
2271                         *mid_min = mid;
2272                         min_index = i;
2273                 }
2274         }
2275
2276         /*
2277          * -mid_min/2 represents the amount that we need to move DQS.
2278          * If mid_min is odd and positive we'll need to add one to make
2279          * sure the rounding in further calculations is correct (always
2280          * bias to the right), so just add 1 for all positive values.
2281          */
2282         if (*mid_min > 0)
2283                 (*mid_min)++;
2284         *mid_min = *mid_min / 2;
2285
2286         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2287                    __func__, __LINE__, *mid_min, min_index);
2288         return min_index;
2289 }
2290
2291 /**
2292  * center_dq_windows() - Center the DQ/DQS windows
2293  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2294  * @left_edge:          Left edge of the DQ/DQS phase
2295  * @right_edge:         Right edge of the DQ/DQS phase
2296  * @mid_min:            Adjusted DQ/DQS phase middle setting
2297  * @orig_mid_min:       Original DQ/DQS phase middle setting
2298  * @min_index:          DQ/DQS phase middle setting index
2299  * @test_bgn:           Rank number to begin the test
2300  * @dq_margin:          Amount of shift for the DQ
2301  * @dqs_margin:         Amount of shift for the DQS
2302  *
2303  * Align the DQ/DQS windows in each group.
2304  */
2305 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2306                               const int mid_min, const int orig_mid_min,
2307                               const int min_index, const int test_bgn,
2308                               int *dq_margin, int *dqs_margin)
2309 {
2310         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2311         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2312                                     rwcfg->mem_dq_per_read_dqs;
2313         const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2314                                       SCC_MGR_IO_IN_DELAY_OFFSET;
2315         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2316
2317         u32 temp_dq_io_delay1, temp_dq_io_delay2;
2318         int shift_dq, i, p;
2319
2320         /* Initialize data for export structures */
2321         *dqs_margin = delay_max + 1;
2322         *dq_margin  = delay_max + 1;
2323
2324         /* add delay to bring centre of all DQ windows to the same "level" */
2325         for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2326                 /* Use values before divide by 2 to reduce round off error */
2327                 shift_dq = (left_edge[i] - right_edge[i] -
2328                         (left_edge[min_index] - right_edge[min_index]))/2  +
2329                         (orig_mid_min - mid_min);
2330
2331                 debug_cond(DLEVEL == 2,
2332                            "vfifo_center: before: shift_dq[%u]=%d\n",
2333                            i, shift_dq);
2334
2335                 temp_dq_io_delay1 = readl(addr + (p << 2));
2336                 temp_dq_io_delay2 = readl(addr + (i << 2));
2337
2338                 if (shift_dq + temp_dq_io_delay1 > delay_max)
2339                         shift_dq = delay_max - temp_dq_io_delay2;
2340                 else if (shift_dq + temp_dq_io_delay1 < 0)
2341                         shift_dq = -temp_dq_io_delay1;
2342
2343                 debug_cond(DLEVEL == 2,
2344                            "vfifo_center: after: shift_dq[%u]=%d\n",
2345                            i, shift_dq);
2346
2347                 if (write)
2348                         scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2349                 else
2350                         scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2351
2352                 scc_mgr_load_dq(p);
2353
2354                 debug_cond(DLEVEL == 2,
2355                            "vfifo_center: margin[%u]=[%d,%d]\n", i,
2356                            left_edge[i] - shift_dq + (-mid_min),
2357                            right_edge[i] + shift_dq - (-mid_min));
2358
2359                 /* To determine values for export structures */
2360                 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2361                         *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2362
2363                 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2364                         *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2365         }
2366
2367 }
2368
2369 /**
2370  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2371  * @rank_bgn:           Rank number
2372  * @rw_group:           Read/Write Group
2373  * @test_bgn:           Rank at which the test begins
2374  * @use_read_test:      Perform a read test
2375  * @update_fom:         Update FOM
2376  *
2377  * Per-bit deskew DQ and centering.
2378  */
2379 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2380                         const u32 rw_group, const u32 test_bgn,
2381                         const int use_read_test, const int update_fom)
2382 {
2383         const u32 addr =
2384                 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2385                 (rw_group << 2);
2386         /*
2387          * Store these as signed since there are comparisons with
2388          * signed numbers.
2389          */
2390         uint32_t sticky_bit_chk;
2391         int32_t left_edge[rwcfg->mem_dq_per_read_dqs];
2392         int32_t right_edge[rwcfg->mem_dq_per_read_dqs];
2393         int32_t orig_mid_min, mid_min;
2394         int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2395         int32_t dq_margin, dqs_margin;
2396         int i, min_index;
2397         int ret;
2398
2399         debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2400
2401         start_dqs = readl(addr);
2402         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2403                 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2404
2405         /* set the left and right edge of each bit to an illegal value */
2406         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2407         sticky_bit_chk = 0;
2408         for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) {
2409                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2410                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2411         }
2412
2413         /* Search for the left edge of the window for each bit */
2414         search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2415                          &sticky_bit_chk,
2416                          left_edge, right_edge, use_read_test);
2417
2418
2419         /* Search for the right edge of the window for each bit */
2420         ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2421                                 start_dqs, start_dqs_en,
2422                                 &sticky_bit_chk,
2423                                 left_edge, right_edge, use_read_test);
2424         if (ret) {
2425                 /*
2426                  * Restore delay chain settings before letting the loop
2427                  * in rw_mgr_mem_calibrate_vfifo to retry different
2428                  * dqs/ck relationships.
2429                  */
2430                 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2431                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2432                         scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2433
2434                 scc_mgr_load_dqs(rw_group);
2435                 writel(0, &sdr_scc_mgr->update);
2436
2437                 debug_cond(DLEVEL == 1,
2438                            "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2439                            __func__, __LINE__, i, left_edge[i], right_edge[i]);
2440                 if (use_read_test) {
2441                         set_failing_group_stage(rw_group *
2442                                 rwcfg->mem_dq_per_read_dqs + i,
2443                                 CAL_STAGE_VFIFO,
2444                                 CAL_SUBSTAGE_VFIFO_CENTER);
2445                 } else {
2446                         set_failing_group_stage(rw_group *
2447                                 rwcfg->mem_dq_per_read_dqs + i,
2448                                 CAL_STAGE_VFIFO_AFTER_WRITES,
2449                                 CAL_SUBSTAGE_VFIFO_CENTER);
2450                 }
2451                 return -EIO;
2452         }
2453
2454         min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2455
2456         /* Determine the amount we can change DQS (which is -mid_min) */
2457         orig_mid_min = mid_min;
2458         new_dqs = start_dqs - mid_min;
2459         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2460                 new_dqs = IO_DQS_IN_DELAY_MAX;
2461         else if (new_dqs < 0)
2462                 new_dqs = 0;
2463
2464         mid_min = start_dqs - new_dqs;
2465         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2466                    mid_min, new_dqs);
2467
2468         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2469                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2470                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2471                 else if (start_dqs_en - mid_min < 0)
2472                         mid_min += start_dqs_en - mid_min;
2473         }
2474         new_dqs = start_dqs - mid_min;
2475
2476         debug_cond(DLEVEL == 1,
2477                    "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2478                    start_dqs,
2479                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2480                    new_dqs, mid_min);
2481
2482         /* Add delay to bring centre of all DQ windows to the same "level". */
2483         center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2484                           min_index, test_bgn, &dq_margin, &dqs_margin);
2485
2486         /* Move DQS-en */
2487         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2488                 final_dqs_en = start_dqs_en - mid_min;
2489                 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2490                 scc_mgr_load_dqs(rw_group);
2491         }
2492
2493         /* Move DQS */
2494         scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2495         scc_mgr_load_dqs(rw_group);
2496         debug_cond(DLEVEL == 2,
2497                    "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2498                    __func__, __LINE__, dq_margin, dqs_margin);
2499
2500         /*
2501          * Do not remove this line as it makes sure all of our decisions
2502          * have been applied. Apply the update bit.
2503          */
2504         writel(0, &sdr_scc_mgr->update);
2505
2506         if ((dq_margin < 0) || (dqs_margin < 0))
2507                 return -EINVAL;
2508
2509         return 0;
2510 }
2511
2512 /**
2513  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2514  * @rw_group:   Read/Write Group
2515  * @phase:      DQ/DQS phase
2516  *
2517  * Because initially no communication ca be reliably performed with the memory
2518  * device, the sequencer uses a guaranteed write mechanism to write data into
2519  * the memory device.
2520  */
2521 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2522                                                  const u32 phase)
2523 {
2524         int ret;
2525
2526         /* Set a particular DQ/DQS phase. */
2527         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2528
2529         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2530                    __func__, __LINE__, rw_group, phase);
2531
2532         /*
2533          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2534          * Load up the patterns used by read calibration using the
2535          * current DQDQS phase.
2536          */
2537         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2538
2539         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2540                 return 0;
2541
2542         /*
2543          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2544          * Back-to-Back reads of the patterns used for calibration.
2545          */
2546         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2547         if (ret)
2548                 debug_cond(DLEVEL == 1,
2549                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2550                            __func__, __LINE__, rw_group, phase);
2551         return ret;
2552 }
2553
2554 /**
2555  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2556  * @rw_group:   Read/Write Group
2557  * @test_bgn:   Rank at which the test begins
2558  *
2559  * DQS enable calibration ensures reliable capture of the DQ signal without
2560  * glitches on the DQS line.
2561  */
2562 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2563                                                        const u32 test_bgn)
2564 {
2565         /*
2566          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2567          * DQS and DQS Eanble Signal Relationships.
2568          */
2569
2570         /* We start at zero, so have one less dq to devide among */
2571         const u32 delay_step = IO_IO_IN_DELAY_MAX /
2572                                (rwcfg->mem_dq_per_read_dqs - 1);
2573         int ret;
2574         u32 i, p, d, r;
2575
2576         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2577
2578         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2579         for (r = 0; r < rwcfg->mem_number_of_ranks;
2580              r += NUM_RANKS_PER_SHADOW_REG) {
2581                 for (i = 0, p = test_bgn, d = 0;
2582                      i < rwcfg->mem_dq_per_read_dqs;
2583                      i++, p++, d += delay_step) {
2584                         debug_cond(DLEVEL == 1,
2585                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2586                                    __func__, __LINE__, rw_group, r, i, p, d);
2587
2588                         scc_mgr_set_dq_in_delay(p, d);
2589                         scc_mgr_load_dq(p);
2590                 }
2591
2592                 writel(0, &sdr_scc_mgr->update);
2593         }
2594
2595         /*
2596          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2597          * dq_in_delay values
2598          */
2599         ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2600
2601         debug_cond(DLEVEL == 1,
2602                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2603                    __func__, __LINE__, rw_group, !ret);
2604
2605         for (r = 0; r < rwcfg->mem_number_of_ranks;
2606              r += NUM_RANKS_PER_SHADOW_REG) {
2607                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2608                 writel(0, &sdr_scc_mgr->update);
2609         }
2610
2611         return ret;
2612 }
2613
2614 /**
2615  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2616  * @rw_group:           Read/Write Group
2617  * @test_bgn:           Rank at which the test begins
2618  * @use_read_test:      Perform a read test
2619  * @update_fom:         Update FOM
2620  *
2621  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2622  * within a group.
2623  */
2624 static int
2625 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2626                                       const int use_read_test,
2627                                       const int update_fom)
2628
2629 {
2630         int ret, grp_calibrated;
2631         u32 rank_bgn, sr;
2632
2633         /*
2634          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2635          * Read per-bit deskew can be done on a per shadow register basis.
2636          */
2637         grp_calibrated = 1;
2638         for (rank_bgn = 0, sr = 0;
2639              rank_bgn < rwcfg->mem_number_of_ranks;
2640              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2641                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2642                                                         test_bgn,
2643                                                         use_read_test,
2644                                                         update_fom);
2645                 if (!ret)
2646                         continue;
2647
2648                 grp_calibrated = 0;
2649         }
2650
2651         if (!grp_calibrated)
2652                 return -EIO;
2653
2654         return 0;
2655 }
2656
2657 /**
2658  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2659  * @rw_group:           Read/Write Group
2660  * @test_bgn:           Rank at which the test begins
2661  *
2662  * Stage 1: Calibrate the read valid prediction FIFO.
2663  *
2664  * This function implements UniPHY calibration Stage 1, as explained in
2665  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2666  *
2667  * - read valid prediction will consist of finding:
2668  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2669  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2670  *  - we also do a per-bit deskew on the DQ lines.
2671  */
2672 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2673 {
2674         uint32_t p, d;
2675         uint32_t dtaps_per_ptap;
2676         uint32_t failed_substage;
2677
2678         int ret;
2679
2680         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2681
2682         /* Update info for sims */
2683         reg_file_set_group(rw_group);
2684         reg_file_set_stage(CAL_STAGE_VFIFO);
2685         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2686
2687         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2688
2689         /* USER Determine number of delay taps for each phase tap. */
2690         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2691                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2692
2693         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2694                 /*
2695                  * In RLDRAMX we may be messing the delay of pins in
2696                  * the same write rw_group but outside of the current read
2697                  * the rw_group, but that's ok because we haven't calibrated
2698                  * output side yet.
2699                  */
2700                 if (d > 0) {
2701                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2702                                                                 rw_group, d);
2703                 }
2704
2705                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2706                         /* 1) Guaranteed Write */
2707                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2708                         if (ret)
2709                                 break;
2710
2711                         /* 2) DQS Enable Calibration */
2712                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2713                                                                           test_bgn);
2714                         if (ret) {
2715                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2716                                 continue;
2717                         }
2718
2719                         /* 3) Centering DQ/DQS */
2720                         /*
2721                          * If doing read after write calibration, do not update
2722                          * FOM now. Do it then.
2723                          */
2724                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2725                                                                 test_bgn, 1, 0);
2726                         if (ret) {
2727                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2728                                 continue;
2729                         }
2730
2731                         /* All done. */
2732                         goto cal_done_ok;
2733                 }
2734         }
2735
2736         /* Calibration Stage 1 failed. */
2737         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2738         return 0;
2739
2740         /* Calibration Stage 1 completed OK. */
2741 cal_done_ok:
2742         /*
2743          * Reset the delay chains back to zero if they have moved > 1
2744          * (check for > 1 because loop will increase d even when pass in
2745          * first case).
2746          */
2747         if (d > 2)
2748                 scc_mgr_zero_group(rw_group, 1);
2749
2750         return 1;
2751 }
2752
2753 /**
2754  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2755  * @rw_group:           Read/Write Group
2756  * @test_bgn:           Rank at which the test begins
2757  *
2758  * Stage 3: DQ/DQS Centering.
2759  *
2760  * This function implements UniPHY calibration Stage 3, as explained in
2761  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2762  */
2763 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2764                                           const u32 test_bgn)
2765 {
2766         int ret;
2767
2768         debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2769
2770         /* Update info for sims. */
2771         reg_file_set_group(rw_group);
2772         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2773         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2774
2775         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2776         if (ret)
2777                 set_failing_group_stage(rw_group,
2778                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2779                                         CAL_SUBSTAGE_VFIFO_CENTER);
2780         return ret;
2781 }
2782
2783 /**
2784  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2785  *
2786  * Stage 4: Minimize latency.
2787  *
2788  * This function implements UniPHY calibration Stage 4, as explained in
2789  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2790  * Calibrate LFIFO to find smallest read latency.
2791  */
2792 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2793 {
2794         int found_one = 0;
2795
2796         debug("%s:%d\n", __func__, __LINE__);
2797
2798         /* Update info for sims. */
2799         reg_file_set_stage(CAL_STAGE_LFIFO);
2800         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2801
2802         /* Load up the patterns used by read calibration for all ranks */
2803         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2804
2805         do {
2806                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2807                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2808                            __func__, __LINE__, gbl->curr_read_lat);
2809
2810                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2811                                                               PASS_ALL_BITS, 1))
2812                         break;
2813
2814                 found_one = 1;
2815                 /*
2816                  * Reduce read latency and see if things are
2817                  * working correctly.
2818                  */
2819                 gbl->curr_read_lat--;
2820         } while (gbl->curr_read_lat > 0);
2821
2822         /* Reset the fifos to get pointers to known state. */
2823         writel(0, &phy_mgr_cmd->fifo_reset);
2824
2825         if (found_one) {
2826                 /* Add a fudge factor to the read latency that was determined */
2827                 gbl->curr_read_lat += 2;
2828                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2829                 debug_cond(DLEVEL == 2,
2830                            "%s:%d lfifo: success: using read_lat=%u\n",
2831                            __func__, __LINE__, gbl->curr_read_lat);
2832         } else {
2833                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2834                                         CAL_SUBSTAGE_READ_LATENCY);
2835
2836                 debug_cond(DLEVEL == 2,
2837                            "%s:%d lfifo: failed at initial read_lat=%u\n",
2838                            __func__, __LINE__, gbl->curr_read_lat);
2839         }
2840
2841         return found_one;
2842 }
2843
2844 /**
2845  * search_window() - Search for the/part of the window with DM/DQS shift
2846  * @search_dm:          If 1, search for the DM shift, if 0, search for DQS shift
2847  * @rank_bgn:           Rank number
2848  * @write_group:        Write Group
2849  * @bgn_curr:           Current window begin
2850  * @end_curr:           Current window end
2851  * @bgn_best:           Current best window begin
2852  * @end_best:           Current best window end
2853  * @win_best:           Size of the best window
2854  * @new_dqs:            New DQS value (only applicable if search_dm = 0).
2855  *
2856  * Search for the/part of the window with DM/DQS shift.
2857  */
2858 static void search_window(const int search_dm,
2859                           const u32 rank_bgn, const u32 write_group,
2860                           int *bgn_curr, int *end_curr, int *bgn_best,
2861                           int *end_best, int *win_best, int new_dqs)
2862 {
2863         u32 bit_chk;
2864         const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2865         int d, di;
2866
2867         /* Search for the/part of the window with DM/DQS shift. */
2868         for (di = max; di >= 0; di -= DELTA_D) {
2869                 if (search_dm) {
2870                         d = di;
2871                         scc_mgr_apply_group_dm_out1_delay(d);
2872                 } else {
2873                         /* For DQS, we go from 0...max */
2874                         d = max - di;
2875                         /*
2876                          * Note: This only shifts DQS, so are we limiting ourselve to
2877                          * width of DQ unnecessarily.
2878                          */
2879                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2880                                                                 d + new_dqs);
2881                 }
2882
2883                 writel(0, &sdr_scc_mgr->update);
2884
2885                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2886                                                     PASS_ALL_BITS, &bit_chk,
2887                                                     0)) {
2888                         /* Set current end of the window. */
2889                         *end_curr = search_dm ? -d : d;
2890
2891                         /*
2892                          * If a starting edge of our window has not been seen
2893                          * this is our current start of the DM window.
2894                          */
2895                         if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2896                                 *bgn_curr = search_dm ? -d : d;
2897
2898                         /*
2899                          * If current window is bigger than best seen.
2900                          * Set best seen to be current window.
2901                          */
2902                         if ((*end_curr - *bgn_curr + 1) > *win_best) {
2903                                 *win_best = *end_curr - *bgn_curr + 1;
2904                                 *bgn_best = *bgn_curr;
2905                                 *end_best = *end_curr;
2906                         }
2907                 } else {
2908                         /* We just saw a failing test. Reset temp edge. */
2909                         *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2910                         *end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2911
2912                         /* Early exit is only applicable to DQS. */
2913                         if (search_dm)
2914                                 continue;
2915
2916                         /*
2917                          * Early exit optimization: if the remaining delay
2918                          * chain space is less than already seen largest
2919                          * window we can exit.
2920                          */
2921                         if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2922                                 break;
2923                 }
2924         }
2925 }
2926
2927 /*
2928  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2929  * @rank_bgn:           Rank number
2930  * @write_group:        Write group
2931  * @test_bgn:           Rank at which the test begins
2932  *
2933  * Center all windows. Do per-bit-deskew to possibly increase size of
2934  * certain windows.
2935  */
2936 static int
2937 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2938                                    const u32 test_bgn)
2939 {
2940         int i;
2941         u32 sticky_bit_chk;
2942         u32 min_index;
2943         int left_edge[rwcfg->mem_dq_per_write_dqs];
2944         int right_edge[rwcfg->mem_dq_per_write_dqs];
2945         int mid;
2946         int mid_min, orig_mid_min;
2947         int new_dqs, start_dqs;
2948         int dq_margin, dqs_margin, dm_margin;
2949         int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2950         int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2951         int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2952         int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2953         int win_best = 0;
2954
2955         int ret;
2956
2957         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2958
2959         dm_margin = 0;
2960
2961         start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2962                           SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2963                           (rwcfg->mem_dq_per_write_dqs << 2));
2964
2965         /* Per-bit deskew. */
2966
2967         /*
2968          * Set the left and right edge of each bit to an illegal value.
2969          * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2970          */
2971         sticky_bit_chk = 0;
2972         for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2973                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2974                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2975         }
2976
2977         /* Search for the left edge of the window for each bit. */
2978         search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2979                          &sticky_bit_chk,
2980                          left_edge, right_edge, 0);
2981
2982         /* Search for the right edge of the window for each bit. */
2983         ret = search_right_edge(1, rank_bgn, write_group, 0,
2984                                 start_dqs, 0,
2985                                 &sticky_bit_chk,
2986                                 left_edge, right_edge, 0);
2987         if (ret) {
2988                 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2989                                         CAL_SUBSTAGE_WRITES_CENTER);
2990                 return -EINVAL;
2991         }
2992
2993         min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
2994
2995         /* Determine the amount we can change DQS (which is -mid_min). */
2996         orig_mid_min = mid_min;
2997         new_dqs = start_dqs;
2998         mid_min = 0;
2999         debug_cond(DLEVEL == 1,
3000                    "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3001                    __func__, __LINE__, start_dqs, new_dqs, mid_min);
3002
3003         /* Add delay to bring centre of all DQ windows to the same "level". */
3004         center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3005                           min_index, 0, &dq_margin, &dqs_margin);
3006
3007         /* Move DQS */
3008         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3009         writel(0, &sdr_scc_mgr->update);
3010
3011         /* Centre DM */
3012         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3013
3014         /*
3015          * Set the left and right edge of each bit to an illegal value.
3016          * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3017          */
3018         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3019         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3020
3021         /* Search for the/part of the window with DM shift. */
3022         search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3023                       &bgn_best, &end_best, &win_best, 0);
3024
3025         /* Reset DM delay chains to 0. */
3026         scc_mgr_apply_group_dm_out1_delay(0);
3027
3028         /*
3029          * Check to see if the current window nudges up aganist 0 delay.
3030          * If so we need to continue the search by shifting DQS otherwise DQS
3031          * search begins as a new search.
3032          */
3033         if (end_curr != 0) {
3034                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3035                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3036         }
3037
3038         /* Search for the/part of the window with DQS shifts. */
3039         search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3040                       &bgn_best, &end_best, &win_best, new_dqs);
3041
3042         /* Assign left and right edge for cal and reporting. */
3043         left_edge[0] = -1 * bgn_best;
3044         right_edge[0] = end_best;
3045
3046         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3047                    __func__, __LINE__, left_edge[0], right_edge[0]);
3048
3049         /* Move DQS (back to orig). */
3050         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3051
3052         /* Move DM */
3053
3054         /* Find middle of window for the DM bit. */
3055         mid = (left_edge[0] - right_edge[0]) / 2;
3056
3057         /* Only move right, since we are not moving DQS/DQ. */
3058         if (mid < 0)
3059                 mid = 0;
3060
3061         /* dm_marign should fail if we never find a window. */
3062         if (win_best == 0)
3063                 dm_margin = -1;
3064         else
3065                 dm_margin = left_edge[0] - mid;
3066
3067         scc_mgr_apply_group_dm_out1_delay(mid);
3068         writel(0, &sdr_scc_mgr->update);
3069
3070         debug_cond(DLEVEL == 2,
3071                    "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3072                    __func__, __LINE__, left_edge[0], right_edge[0],
3073                    mid, dm_margin);
3074         /* Export values. */
3075         gbl->fom_out += dq_margin + dqs_margin;
3076
3077         debug_cond(DLEVEL == 2,
3078                    "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3079                    __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3080
3081         /*
3082          * Do not remove this line as it makes sure all of our
3083          * decisions have been applied.
3084          */
3085         writel(0, &sdr_scc_mgr->update);
3086
3087         if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3088                 return -EINVAL;
3089
3090         return 0;
3091 }
3092
3093 /**
3094  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3095  * @rank_bgn:           Rank number
3096  * @group:              Read/Write Group
3097  * @test_bgn:           Rank at which the test begins
3098  *
3099  * Stage 2: Write Calibration Part One.
3100  *
3101  * This function implements UniPHY calibration Stage 2, as explained in
3102  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3103  */
3104 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3105                                        const u32 test_bgn)
3106 {
3107         int ret;
3108
3109         /* Update info for sims */
3110         debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3111
3112         reg_file_set_group(group);
3113         reg_file_set_stage(CAL_STAGE_WRITES);
3114         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3115
3116         ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3117         if (ret)
3118                 set_failing_group_stage(group, CAL_STAGE_WRITES,
3119                                         CAL_SUBSTAGE_WRITES_CENTER);
3120
3121         return ret;
3122 }
3123
3124 /**
3125  * mem_precharge_and_activate() - Precharge all banks and activate
3126  *
3127  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3128  */
3129 static void mem_precharge_and_activate(void)
3130 {
3131         int r;
3132
3133         for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
3134                 /* Set rank. */
3135                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3136
3137                 /* Precharge all banks. */
3138                 writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3139                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3140
3141                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3142                 writel(rwcfg->activate_0_and_1_wait1,
3143                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3144
3145                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3146                 writel(rwcfg->activate_0_and_1_wait2,
3147                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3148
3149                 /* Activate rows. */
3150                 writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3151                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3152         }
3153 }
3154
3155 /**
3156  * mem_init_latency() - Configure memory RLAT and WLAT settings
3157  *
3158  * Configure memory RLAT and WLAT parameters.
3159  */
3160 static void mem_init_latency(void)
3161 {
3162         /*
3163          * For AV/CV, LFIFO is hardened and always runs at full rate
3164          * so max latency in AFI clocks, used here, is correspondingly
3165          * smaller.
3166          */
3167         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3168         u32 rlat, wlat;
3169
3170         debug("%s:%d\n", __func__, __LINE__);
3171
3172         /*
3173          * Read in write latency.
3174          * WL for Hard PHY does not include additive latency.
3175          */
3176         wlat = readl(&data_mgr->t_wl_add);
3177         wlat += readl(&data_mgr->mem_t_add);
3178
3179         gbl->rw_wl_nop_cycles = wlat - 1;
3180
3181         /* Read in readl latency. */
3182         rlat = readl(&data_mgr->t_rl_add);
3183
3184         /* Set a pretty high read latency initially. */
3185         gbl->curr_read_lat = rlat + 16;
3186         if (gbl->curr_read_lat > max_latency)
3187                 gbl->curr_read_lat = max_latency;
3188
3189         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3190
3191         /* Advertise write latency. */
3192         writel(wlat, &phy_mgr_cfg->afi_wlat);
3193 }
3194
3195 /**
3196  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3197  *
3198  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3199  */
3200 static void mem_skip_calibrate(void)
3201 {
3202         uint32_t vfifo_offset;
3203         uint32_t i, j, r;
3204
3205         debug("%s:%d\n", __func__, __LINE__);
3206         /* Need to update every shadow register set used by the interface */
3207         for (r = 0; r < rwcfg->mem_number_of_ranks;
3208              r += NUM_RANKS_PER_SHADOW_REG) {
3209                 /*
3210                  * Set output phase alignment settings appropriate for
3211                  * skip calibration.
3212                  */
3213                 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3214                         scc_mgr_set_dqs_en_phase(i, 0);
3215 #if IO_DLL_CHAIN_LENGTH == 6
3216                         scc_mgr_set_dqdqs_output_phase(i, 6);
3217 #else
3218                         scc_mgr_set_dqdqs_output_phase(i, 7);
3219 #endif
3220                         /*
3221                          * Case:33398
3222                          *
3223                          * Write data arrives to the I/O two cycles before write
3224                          * latency is reached (720 deg).
3225                          *   -> due to bit-slip in a/c bus
3226                          *   -> to allow board skew where dqs is longer than ck
3227                          *      -> how often can this happen!?
3228                          *      -> can claim back some ptaps for high freq
3229                          *       support if we can relax this, but i digress...
3230                          *
3231                          * The write_clk leads mem_ck by 90 deg
3232                          * The minimum ptap of the OPA is 180 deg
3233                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3234                          * The write_clk is always delayed by 2 ptaps
3235                          *
3236                          * Hence, to make DQS aligned to CK, we need to delay
3237                          * DQS by:
3238                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3239                          *
3240                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3241                          * gives us the number of ptaps, which simplies to:
3242                          *
3243                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3244                          */
3245                         scc_mgr_set_dqdqs_output_phase(i,
3246                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3247                 }
3248                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3249                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3250
3251                 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
3252                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3253                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3254                 }
3255                 writel(0xff, &sdr_scc_mgr->dq_ena);
3256                 writel(0xff, &sdr_scc_mgr->dm_ena);
3257                 writel(0, &sdr_scc_mgr->update);
3258         }
3259
3260         /* Compensate for simulation model behaviour */
3261         for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3262                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3263                 scc_mgr_load_dqs(i);
3264         }
3265         writel(0, &sdr_scc_mgr->update);
3266
3267         /*
3268          * ArriaV has hard FIFOs that can only be initialized by incrementing
3269          * in sequencer.
3270          */
3271         vfifo_offset = CALIB_VFIFO_OFFSET;
3272         for (j = 0; j < vfifo_offset; j++)
3273                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3274         writel(0, &phy_mgr_cmd->fifo_reset);
3275
3276         /*
3277          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3278          * setting from generation-time constant.
3279          */
3280         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3281         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3282 }
3283
3284 /**
3285  * mem_calibrate() - Memory calibration entry point.
3286  *
3287  * Perform memory calibration.
3288  */
3289 static uint32_t mem_calibrate(void)
3290 {
3291         uint32_t i;
3292         uint32_t rank_bgn, sr;
3293         uint32_t write_group, write_test_bgn;
3294         uint32_t read_group, read_test_bgn;
3295         uint32_t run_groups, current_run;
3296         uint32_t failing_groups = 0;
3297         uint32_t group_failed = 0;
3298
3299         const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width /
3300                                 rwcfg->mem_if_write_dqs_width;
3301
3302         debug("%s:%d\n", __func__, __LINE__);
3303
3304         /* Initialize the data settings */
3305         gbl->error_substage = CAL_SUBSTAGE_NIL;
3306         gbl->error_stage = CAL_STAGE_NIL;
3307         gbl->error_group = 0xff;
3308         gbl->fom_in = 0;
3309         gbl->fom_out = 0;
3310
3311         /* Initialize WLAT and RLAT. */
3312         mem_init_latency();
3313
3314         /* Initialize bit slips. */
3315         mem_precharge_and_activate();
3316
3317         for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3318                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3319                           SCC_MGR_GROUP_COUNTER_OFFSET);
3320                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3321                 if (i == 0)
3322                         scc_mgr_set_hhp_extras();
3323
3324                 scc_set_bypass_mode(i);
3325         }
3326
3327         /* Calibration is skipped. */
3328         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3329                 /*
3330                  * Set VFIFO and LFIFO to instant-on settings in skip
3331                  * calibration mode.
3332                  */
3333                 mem_skip_calibrate();
3334
3335                 /*
3336                  * Do not remove this line as it makes sure all of our
3337                  * decisions have been applied.
3338                  */
3339                 writel(0, &sdr_scc_mgr->update);
3340                 return 1;
3341         }
3342
3343         /* Calibration is not skipped. */
3344         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3345                 /*
3346                  * Zero all delay chain/phase settings for all
3347                  * groups and all shadow register sets.
3348                  */
3349                 scc_mgr_zero_all();
3350
3351                 run_groups = ~0;
3352
3353                 for (write_group = 0, write_test_bgn = 0; write_group
3354                         < rwcfg->mem_if_write_dqs_width; write_group++,
3355                         write_test_bgn += rwcfg->mem_dq_per_write_dqs) {
3356
3357                         /* Initialize the group failure */
3358                         group_failed = 0;
3359
3360                         current_run = run_groups & ((1 <<
3361                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3362                         run_groups = run_groups >>
3363                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3364
3365                         if (current_run == 0)
3366                                 continue;
3367
3368                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3369                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3370                         scc_mgr_zero_group(write_group, 0);
3371
3372                         for (read_group = write_group * rwdqs_ratio,
3373                              read_test_bgn = 0;
3374                              read_group < (write_group + 1) * rwdqs_ratio;
3375                              read_group++,
3376                              read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3377                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3378                                         continue;
3379
3380                                 /* Calibrate the VFIFO */
3381                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3382                                                                read_test_bgn))
3383                                         continue;
3384
3385                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3386                                         return 0;
3387
3388                                 /* The group failed, we're done. */
3389                                 goto grp_failed;
3390                         }
3391
3392                         /* Calibrate the output side */
3393                         for (rank_bgn = 0, sr = 0;
3394                              rank_bgn < rwcfg->mem_number_of_ranks;
3395                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3396                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3397                                         continue;
3398
3399                                 /* Not needed in quick mode! */
3400                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3401                                         continue;
3402
3403                                 /* Calibrate WRITEs */
3404                                 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3405                                                 write_group, write_test_bgn))
3406                                         continue;
3407
3408                                 group_failed = 1;
3409                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3410                                         return 0;
3411                         }
3412
3413                         /* Some group failed, we're done. */
3414                         if (group_failed)
3415                                 goto grp_failed;
3416
3417                         for (read_group = write_group * rwdqs_ratio,
3418                              read_test_bgn = 0;
3419                              read_group < (write_group + 1) * rwdqs_ratio;
3420                              read_group++,
3421                              read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3422                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3423                                         continue;
3424
3425                                 if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3426                                                                 read_test_bgn))
3427                                         continue;
3428
3429                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3430                                         return 0;
3431
3432                                 /* The group failed, we're done. */
3433                                 goto grp_failed;
3434                         }
3435
3436                         /* No group failed, continue as usual. */
3437                         continue;
3438
3439 grp_failed:             /* A group failed, increment the counter. */
3440                         failing_groups++;
3441                 }
3442
3443                 /*
3444                  * USER If there are any failing groups then report
3445                  * the failure.
3446                  */
3447                 if (failing_groups != 0)
3448                         return 0;
3449
3450                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3451                         continue;
3452
3453                 /* Calibrate the LFIFO */
3454                 if (!rw_mgr_mem_calibrate_lfifo())
3455                         return 0;
3456         }
3457
3458         /*
3459          * Do not remove this line as it makes sure all of our decisions
3460          * have been applied.
3461          */
3462         writel(0, &sdr_scc_mgr->update);
3463         return 1;
3464 }
3465
3466 /**
3467  * run_mem_calibrate() - Perform memory calibration
3468  *
3469  * This function triggers the entire memory calibration procedure.
3470  */
3471 static int run_mem_calibrate(void)
3472 {
3473         int pass;
3474
3475         debug("%s:%d\n", __func__, __LINE__);
3476
3477         /* Reset pass/fail status shown on afi_cal_success/fail */
3478         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3479
3480         /* Stop tracking manager. */
3481         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3482
3483         phy_mgr_initialize();
3484         rw_mgr_mem_initialize();
3485
3486         /* Perform the actual memory calibration. */
3487         pass = mem_calibrate();
3488
3489         mem_precharge_and_activate();
3490         writel(0, &phy_mgr_cmd->fifo_reset);
3491
3492         /* Handoff. */
3493         rw_mgr_mem_handoff();
3494         /*
3495          * In Hard PHY this is a 2-bit control:
3496          * 0: AFI Mux Select
3497          * 1: DDIO Mux Select
3498          */
3499         writel(0x2, &phy_mgr_cfg->mux_sel);
3500
3501         /* Start tracking manager. */
3502         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3503
3504         return pass;
3505 }
3506
3507 /**
3508  * debug_mem_calibrate() - Report result of memory calibration
3509  * @pass:       Value indicating whether calibration passed or failed
3510  *
3511  * This function reports the results of the memory calibration
3512  * and writes debug information into the register file.
3513  */
3514 static void debug_mem_calibrate(int pass)
3515 {
3516         uint32_t debug_info;
3517
3518         if (pass) {
3519                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3520
3521                 gbl->fom_in /= 2;
3522                 gbl->fom_out /= 2;
3523
3524                 if (gbl->fom_in > 0xff)
3525                         gbl->fom_in = 0xff;
3526
3527                 if (gbl->fom_out > 0xff)
3528                         gbl->fom_out = 0xff;
3529
3530                 /* Update the FOM in the register file */
3531                 debug_info = gbl->fom_in;
3532                 debug_info |= gbl->fom_out << 8;
3533                 writel(debug_info, &sdr_reg_file->fom);
3534
3535                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3536                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3537         } else {
3538                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3539
3540                 debug_info = gbl->error_stage;
3541                 debug_info |= gbl->error_substage << 8;
3542                 debug_info |= gbl->error_group << 16;
3543
3544                 writel(debug_info, &sdr_reg_file->failing_stage);
3545                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3546                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3547
3548                 /* Update the failing group/stage in the register file */
3549                 debug_info = gbl->error_stage;
3550                 debug_info |= gbl->error_substage << 8;
3551                 debug_info |= gbl->error_group << 16;
3552                 writel(debug_info, &sdr_reg_file->failing_stage);
3553         }
3554
3555         printf("%s: Calibration complete\n", __FILE__);
3556 }
3557
3558 /**
3559  * hc_initialize_rom_data() - Initialize ROM data
3560  *
3561  * Initialize ROM data.
3562  */
3563 static void hc_initialize_rom_data(void)
3564 {
3565         unsigned int nelem = 0;
3566         const u32 *rom_init;
3567         u32 i, addr;
3568
3569         socfpga_get_seq_inst_init(&rom_init, &nelem);
3570         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3571         for (i = 0; i < nelem; i++)
3572                 writel(rom_init[i], addr + (i << 2));
3573
3574         socfpga_get_seq_ac_init(&rom_init, &nelem);
3575         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3576         for (i = 0; i < nelem; i++)
3577                 writel(rom_init[i], addr + (i << 2));
3578 }
3579
3580 /**
3581  * initialize_reg_file() - Initialize SDR register file
3582  *
3583  * Initialize SDR register file.
3584  */
3585 static void initialize_reg_file(void)
3586 {
3587         /* Initialize the register file with the correct data */
3588         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3589         writel(0, &sdr_reg_file->debug_data_addr);
3590         writel(0, &sdr_reg_file->cur_stage);
3591         writel(0, &sdr_reg_file->fom);
3592         writel(0, &sdr_reg_file->failing_stage);
3593         writel(0, &sdr_reg_file->debug1);
3594         writel(0, &sdr_reg_file->debug2);
3595 }
3596
3597 /**
3598  * initialize_hps_phy() - Initialize HPS PHY
3599  *
3600  * Initialize HPS PHY.
3601  */
3602 static void initialize_hps_phy(void)
3603 {
3604         uint32_t reg;
3605         /*
3606          * Tracking also gets configured here because it's in the
3607          * same register.
3608          */
3609         uint32_t trk_sample_count = 7500;
3610         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3611         /*
3612          * Format is number of outer loops in the 16 MSB, sample
3613          * count in 16 LSB.
3614          */
3615
3616         reg = 0;
3617         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3618         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3619         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3620         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3621         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3622         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3623         /*
3624          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3625          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3626          */
3627         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3628         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3629                 trk_sample_count);
3630         writel(reg, &sdr_ctrl->phy_ctrl0);
3631
3632         reg = 0;
3633         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3634                 trk_sample_count >>
3635                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3636         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3637                 trk_long_idle_sample_count);
3638         writel(reg, &sdr_ctrl->phy_ctrl1);
3639
3640         reg = 0;
3641         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3642                 trk_long_idle_sample_count >>
3643                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3644         writel(reg, &sdr_ctrl->phy_ctrl2);
3645 }
3646
3647 /**
3648  * initialize_tracking() - Initialize tracking
3649  *
3650  * Initialize the register file with usable initial data.
3651  */
3652 static void initialize_tracking(void)
3653 {
3654         /*
3655          * Initialize the register file with the correct data.
3656          * Compute usable version of value in case we skip full
3657          * computation later.
3658          */
3659         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3660                &sdr_reg_file->dtaps_per_ptap);
3661
3662         /* trk_sample_count */
3663         writel(7500, &sdr_reg_file->trk_sample_count);
3664
3665         /* longidle outer loop [15:0] */
3666         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3667
3668         /*
3669          * longidle sample count [31:24]
3670          * trfc, worst case of 933Mhz 4Gb [23:16]
3671          * trcd, worst case [15:8]
3672          * vfifo wait [7:0]
3673          */
3674         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3675                &sdr_reg_file->delays);
3676
3677         /* mux delay */
3678         writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) |
3679                (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0),
3680                &sdr_reg_file->trk_rw_mgr_addr);
3681
3682         writel(rwcfg->mem_if_read_dqs_width,
3683                &sdr_reg_file->trk_read_dqs_width);
3684
3685         /* trefi [7:0] */
3686         writel((rwcfg->refresh_all << 24) | (1000 << 0),
3687                &sdr_reg_file->trk_rfsh);
3688 }
3689
3690 int sdram_calibration_full(void)
3691 {
3692         struct param_type my_param;
3693         struct gbl_type my_gbl;
3694         uint32_t pass;
3695
3696         memset(&my_param, 0, sizeof(my_param));
3697         memset(&my_gbl, 0, sizeof(my_gbl));
3698
3699         param = &my_param;
3700         gbl = &my_gbl;
3701
3702         rwcfg = socfpga_get_sdram_rwmgr_config();
3703         iocfg = socfpga_get_sdram_io_config();
3704
3705         /* Set the calibration enabled by default */
3706         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3707         /*
3708          * Only sweep all groups (regardless of fail state) by default
3709          * Set enabled read test by default.
3710          */
3711 #if DISABLE_GUARANTEED_READ
3712         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3713 #endif
3714         /* Initialize the register file */
3715         initialize_reg_file();
3716
3717         /* Initialize any PHY CSR */
3718         initialize_hps_phy();
3719
3720         scc_mgr_initialize();
3721
3722         initialize_tracking();
3723
3724         printf("%s: Preparing to start memory calibration\n", __FILE__);
3725
3726         debug("%s:%d\n", __func__, __LINE__);
3727         debug_cond(DLEVEL == 1,
3728                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3729                    rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm,
3730                    rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs,
3731                    rwcfg->mem_virtual_groups_per_read_dqs,
3732                    rwcfg->mem_virtual_groups_per_write_dqs);
3733         debug_cond(DLEVEL == 1,
3734                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3735                    rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width,
3736                    rwcfg->mem_data_width, rwcfg->mem_data_mask_width,
3737                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3738         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3739                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3740         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3741                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3742                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3743         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3744                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3745                    IO_IO_OUT2_DELAY_MAX);
3746         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3747                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3748
3749         hc_initialize_rom_data();
3750
3751         /* update info for sims */
3752         reg_file_set_stage(CAL_STAGE_NIL);
3753         reg_file_set_group(0);
3754
3755         /*
3756          * Load global needed for those actions that require
3757          * some dynamic calibration support.
3758          */
3759         dyn_calib_steps = STATIC_CALIB_STEPS;
3760         /*
3761          * Load global to allow dynamic selection of delay loop settings
3762          * based on calibration mode.
3763          */
3764         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3765                 skip_delay_mask = 0xff;
3766         else
3767                 skip_delay_mask = 0x0;
3768
3769         pass = run_mem_calibrate();
3770         debug_mem_calibrate(pass);
3771         return pass;
3772 }