]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: sequencer: Zap SEQ_T(INIT|RESET)_CNTR._VAL
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12
13 /*
14  * FIXME: This path is temporary until the SDRAM driver gets
15  *        a proper thorough cleanup.
16  */
17 #include "../../../board/altera/socfpga/qts/sequencer_auto.h"
18 #include "../../../board/altera/socfpga/qts/sequencer_defines.h"
19
20 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
21         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
22
23 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
24         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
25
26 static struct socfpga_sdr_reg_file *sdr_reg_file =
27         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
28
29 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
30         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
31
32 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
33         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
34
35 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
36         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
37
38 static struct socfpga_data_mgr *data_mgr =
39         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
40
41 static struct socfpga_sdr_ctrl *sdr_ctrl =
42         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
43
44 const struct socfpga_sdram_rw_mgr_config *rwcfg;
45 const struct socfpga_sdram_io_config *iocfg;
46 const struct socfpga_sdram_misc_config *misccfg;
47
48 #define DELTA_D         1
49
50 /*
51  * In order to reduce ROM size, most of the selectable calibration steps are
52  * decided at compile time based on the user's calibration mode selection,
53  * as captured by the STATIC_CALIB_STEPS selection below.
54  *
55  * However, to support simulation-time selection of fast simulation mode, where
56  * we skip everything except the bare minimum, we need a few of the steps to
57  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
58  * check, which is based on the rtl-supplied value, or we dynamically compute
59  * the value to use based on the dynamically-chosen calibration mode
60  */
61
62 #define DLEVEL 0
63 #define STATIC_IN_RTL_SIM 0
64 #define STATIC_SKIP_DELAY_LOOPS 0
65
66 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
67         STATIC_SKIP_DELAY_LOOPS)
68
69 /* calibration steps requested by the rtl */
70 uint16_t dyn_calib_steps;
71
72 /*
73  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
74  * instead of static, we use boolean logic to select between
75  * non-skip and skip values
76  *
77  * The mask is set to include all bits when not-skipping, but is
78  * zero when skipping
79  */
80
81 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
82
83 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
84         ((non_skip_value) & skip_delay_mask)
85
86 struct gbl_type *gbl;
87 struct param_type *param;
88
89 static void set_failing_group_stage(uint32_t group, uint32_t stage,
90         uint32_t substage)
91 {
92         /*
93          * Only set the global stage if there was not been any other
94          * failing group
95          */
96         if (gbl->error_stage == CAL_STAGE_NIL)  {
97                 gbl->error_substage = substage;
98                 gbl->error_stage = stage;
99                 gbl->error_group = group;
100         }
101 }
102
103 static void reg_file_set_group(u16 set_group)
104 {
105         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
106 }
107
108 static void reg_file_set_stage(u8 set_stage)
109 {
110         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
111 }
112
113 static void reg_file_set_sub_stage(u8 set_sub_stage)
114 {
115         set_sub_stage &= 0xff;
116         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
117 }
118
119 /**
120  * phy_mgr_initialize() - Initialize PHY Manager
121  *
122  * Initialize PHY Manager.
123  */
124 static void phy_mgr_initialize(void)
125 {
126         u32 ratio;
127
128         debug("%s:%d\n", __func__, __LINE__);
129         /* Calibration has control over path to memory */
130         /*
131          * In Hard PHY this is a 2-bit control:
132          * 0: AFI Mux Select
133          * 1: DDIO Mux Select
134          */
135         writel(0x3, &phy_mgr_cfg->mux_sel);
136
137         /* USER memory clock is not stable we begin initialization  */
138         writel(0, &phy_mgr_cfg->reset_mem_stbl);
139
140         /* USER calibration status all set to zero */
141         writel(0, &phy_mgr_cfg->cal_status);
142
143         writel(0, &phy_mgr_cfg->cal_debug_info);
144
145         /* Init params only if we do NOT skip calibration. */
146         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
147                 return;
148
149         ratio = rwcfg->mem_dq_per_read_dqs /
150                 rwcfg->mem_virtual_groups_per_read_dqs;
151         param->read_correct_mask_vg = (1 << ratio) - 1;
152         param->write_correct_mask_vg = (1 << ratio) - 1;
153         param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
154         param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
155 }
156
157 /**
158  * set_rank_and_odt_mask() - Set Rank and ODT mask
159  * @rank:       Rank mask
160  * @odt_mode:   ODT mode, OFF or READ_WRITE
161  *
162  * Set Rank and ODT mask (On-Die Termination).
163  */
164 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
165 {
166         u32 odt_mask_0 = 0;
167         u32 odt_mask_1 = 0;
168         u32 cs_and_odt_mask;
169
170         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
171                 odt_mask_0 = 0x0;
172                 odt_mask_1 = 0x0;
173         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
174                 switch (rwcfg->mem_number_of_ranks) {
175                 case 1: /* 1 Rank */
176                         /* Read: ODT = 0 ; Write: ODT = 1 */
177                         odt_mask_0 = 0x0;
178                         odt_mask_1 = 0x1;
179                         break;
180                 case 2: /* 2 Ranks */
181                         if (rwcfg->mem_number_of_cs_per_dimm == 1) {
182                                 /*
183                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
184                                  *   OR
185                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
186                                  *
187                                  * Since MEM_NUMBER_OF_RANKS is 2, they
188                                  * are both single rank with 2 CS each
189                                  * (special for RDIMM).
190                                  *
191                                  * Read: Turn on ODT on the opposite rank
192                                  * Write: Turn on ODT on all ranks
193                                  */
194                                 odt_mask_0 = 0x3 & ~(1 << rank);
195                                 odt_mask_1 = 0x3;
196                         } else {
197                                 /*
198                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
199                                  *
200                                  * Read: Turn on ODT off on all ranks
201                                  * Write: Turn on ODT on active rank
202                                  */
203                                 odt_mask_0 = 0x0;
204                                 odt_mask_1 = 0x3 & (1 << rank);
205                         }
206                         break;
207                 case 4: /* 4 Ranks */
208                         /* Read:
209                          * ----------+-----------------------+
210                          *           |         ODT           |
211                          * Read From +-----------------------+
212                          *   Rank    |  3  |  2  |  1  |  0  |
213                          * ----------+-----+-----+-----+-----+
214                          *     0     |  0  |  1  |  0  |  0  |
215                          *     1     |  1  |  0  |  0  |  0  |
216                          *     2     |  0  |  0  |  0  |  1  |
217                          *     3     |  0  |  0  |  1  |  0  |
218                          * ----------+-----+-----+-----+-----+
219                          *
220                          * Write:
221                          * ----------+-----------------------+
222                          *           |         ODT           |
223                          * Write To  +-----------------------+
224                          *   Rank    |  3  |  2  |  1  |  0  |
225                          * ----------+-----+-----+-----+-----+
226                          *     0     |  0  |  1  |  0  |  1  |
227                          *     1     |  1  |  0  |  1  |  0  |
228                          *     2     |  0  |  1  |  0  |  1  |
229                          *     3     |  1  |  0  |  1  |  0  |
230                          * ----------+-----+-----+-----+-----+
231                          */
232                         switch (rank) {
233                         case 0:
234                                 odt_mask_0 = 0x4;
235                                 odt_mask_1 = 0x5;
236                                 break;
237                         case 1:
238                                 odt_mask_0 = 0x8;
239                                 odt_mask_1 = 0xA;
240                                 break;
241                         case 2:
242                                 odt_mask_0 = 0x1;
243                                 odt_mask_1 = 0x5;
244                                 break;
245                         case 3:
246                                 odt_mask_0 = 0x2;
247                                 odt_mask_1 = 0xA;
248                                 break;
249                         }
250                         break;
251                 }
252         }
253
254         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
255                           ((0xFF & odt_mask_0) << 8) |
256                           ((0xFF & odt_mask_1) << 16);
257         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
258                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
259 }
260
261 /**
262  * scc_mgr_set() - Set SCC Manager register
263  * @off:        Base offset in SCC Manager space
264  * @grp:        Read/Write group
265  * @val:        Value to be set
266  *
267  * This function sets the SCC Manager (Scan Chain Control Manager) register.
268  */
269 static void scc_mgr_set(u32 off, u32 grp, u32 val)
270 {
271         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
272 }
273
274 /**
275  * scc_mgr_initialize() - Initialize SCC Manager registers
276  *
277  * Initialize SCC Manager registers.
278  */
279 static void scc_mgr_initialize(void)
280 {
281         /*
282          * Clear register file for HPS. 16 (2^4) is the size of the
283          * full register file in the scc mgr:
284          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
285          *                             MEM_IF_READ_DQS_WIDTH - 1);
286          */
287         int i;
288
289         for (i = 0; i < 16; i++) {
290                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
291                            __func__, __LINE__, i);
292                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
293         }
294 }
295
296 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
297 {
298         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
299 }
300
301 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
302 {
303         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
304 }
305
306 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
307 {
308         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
309 }
310
311 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
312 {
313         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
314 }
315
316 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
317 {
318         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
319                     delay);
320 }
321
322 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
323 {
324         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
325 }
326
327 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
328 {
329         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
330 }
331
332 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
333 {
334         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
335                     delay);
336 }
337
338 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
339 {
340         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
341                     rwcfg->mem_dq_per_write_dqs + 1 + dm,
342                     delay);
343 }
344
345 /* load up dqs config settings */
346 static void scc_mgr_load_dqs(uint32_t dqs)
347 {
348         writel(dqs, &sdr_scc_mgr->dqs_ena);
349 }
350
351 /* load up dqs io config settings */
352 static void scc_mgr_load_dqs_io(void)
353 {
354         writel(0, &sdr_scc_mgr->dqs_io_ena);
355 }
356
357 /* load up dq config settings */
358 static void scc_mgr_load_dq(uint32_t dq_in_group)
359 {
360         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
361 }
362
363 /* load up dm config settings */
364 static void scc_mgr_load_dm(uint32_t dm)
365 {
366         writel(dm, &sdr_scc_mgr->dm_ena);
367 }
368
369 /**
370  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
371  * @off:        Base offset in SCC Manager space
372  * @grp:        Read/Write group
373  * @val:        Value to be set
374  * @update:     If non-zero, trigger SCC Manager update for all ranks
375  *
376  * This function sets the SCC Manager (Scan Chain Control Manager) register
377  * and optionally triggers the SCC update for all ranks.
378  */
379 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
380                                   const int update)
381 {
382         u32 r;
383
384         for (r = 0; r < rwcfg->mem_number_of_ranks;
385              r += NUM_RANKS_PER_SHADOW_REG) {
386                 scc_mgr_set(off, grp, val);
387
388                 if (update || (r == 0)) {
389                         writel(grp, &sdr_scc_mgr->dqs_ena);
390                         writel(0, &sdr_scc_mgr->update);
391                 }
392         }
393 }
394
395 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
396 {
397         /*
398          * USER although the h/w doesn't support different phases per
399          * shadow register, for simplicity our scc manager modeling
400          * keeps different phase settings per shadow reg, and it's
401          * important for us to keep them in sync to match h/w.
402          * for efficiency, the scan chain update should occur only
403          * once to sr0.
404          */
405         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
406                               read_group, phase, 0);
407 }
408
409 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
410                                                      uint32_t phase)
411 {
412         /*
413          * USER although the h/w doesn't support different phases per
414          * shadow register, for simplicity our scc manager modeling
415          * keeps different phase settings per shadow reg, and it's
416          * important for us to keep them in sync to match h/w.
417          * for efficiency, the scan chain update should occur only
418          * once to sr0.
419          */
420         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
421                               write_group, phase, 0);
422 }
423
424 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
425                                                uint32_t delay)
426 {
427         /*
428          * In shadow register mode, the T11 settings are stored in
429          * registers in the core, which are updated by the DQS_ENA
430          * signals. Not issuing the SCC_MGR_UPD command allows us to
431          * save lots of rank switching overhead, by calling
432          * select_shadow_regs_for_update with update_scan_chains
433          * set to 0.
434          */
435         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
436                               read_group, delay, 1);
437         writel(0, &sdr_scc_mgr->update);
438 }
439
440 /**
441  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
442  * @write_group:        Write group
443  * @delay:              Delay value
444  *
445  * This function sets the OCT output delay in SCC manager.
446  */
447 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
448 {
449         const int ratio = rwcfg->mem_if_read_dqs_width /
450                           rwcfg->mem_if_write_dqs_width;
451         const int base = write_group * ratio;
452         int i;
453         /*
454          * Load the setting in the SCC manager
455          * Although OCT affects only write data, the OCT delay is controlled
456          * by the DQS logic block which is instantiated once per read group.
457          * For protocols where a write group consists of multiple read groups,
458          * the setting must be set multiple times.
459          */
460         for (i = 0; i < ratio; i++)
461                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
462 }
463
464 /**
465  * scc_mgr_set_hhp_extras() - Set HHP extras.
466  *
467  * Load the fixed setting in the SCC manager HHP extras.
468  */
469 static void scc_mgr_set_hhp_extras(void)
470 {
471         /*
472          * Load the fixed setting in the SCC manager
473          * bits: 0:0 = 1'b1     - DQS bypass
474          * bits: 1:1 = 1'b1     - DQ bypass
475          * bits: 4:2 = 3'b001   - rfifo_mode
476          * bits: 6:5 = 2'b01    - rfifo clock_select
477          * bits: 7:7 = 1'b0     - separate gating from ungating setting
478          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
479          */
480         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
481                           (1 << 2) | (1 << 1) | (1 << 0);
482         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
483                          SCC_MGR_HHP_GLOBALS_OFFSET |
484                          SCC_MGR_HHP_EXTRAS_OFFSET;
485
486         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
487                    __func__, __LINE__);
488         writel(value, addr);
489         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
490                    __func__, __LINE__);
491 }
492
493 /**
494  * scc_mgr_zero_all() - Zero all DQS config
495  *
496  * Zero all DQS config.
497  */
498 static void scc_mgr_zero_all(void)
499 {
500         int i, r;
501
502         /*
503          * USER Zero all DQS config settings, across all groups and all
504          * shadow registers
505          */
506         for (r = 0; r < rwcfg->mem_number_of_ranks;
507              r += NUM_RANKS_PER_SHADOW_REG) {
508                 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
509                         /*
510                          * The phases actually don't exist on a per-rank basis,
511                          * but there's no harm updating them several times, so
512                          * let's keep the code simple.
513                          */
514                         scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve);
515                         scc_mgr_set_dqs_en_phase(i, 0);
516                         scc_mgr_set_dqs_en_delay(i, 0);
517                 }
518
519                 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
520                         scc_mgr_set_dqdqs_output_phase(i, 0);
521                         /* Arria V/Cyclone V don't have out2. */
522                         scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve);
523                 }
524         }
525
526         /* Multicast to all DQS group enables. */
527         writel(0xff, &sdr_scc_mgr->dqs_ena);
528         writel(0, &sdr_scc_mgr->update);
529 }
530
531 /**
532  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
533  * @write_group:        Write group
534  *
535  * Set bypass mode and trigger SCC update.
536  */
537 static void scc_set_bypass_mode(const u32 write_group)
538 {
539         /* Multicast to all DQ enables. */
540         writel(0xff, &sdr_scc_mgr->dq_ena);
541         writel(0xff, &sdr_scc_mgr->dm_ena);
542
543         /* Update current DQS IO enable. */
544         writel(0, &sdr_scc_mgr->dqs_io_ena);
545
546         /* Update the DQS logic. */
547         writel(write_group, &sdr_scc_mgr->dqs_ena);
548
549         /* Hit update. */
550         writel(0, &sdr_scc_mgr->update);
551 }
552
553 /**
554  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
555  * @write_group:        Write group
556  *
557  * Load DQS settings for Write Group, do not trigger SCC update.
558  */
559 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
560 {
561         const int ratio = rwcfg->mem_if_read_dqs_width /
562                           rwcfg->mem_if_write_dqs_width;
563         const int base = write_group * ratio;
564         int i;
565         /*
566          * Load the setting in the SCC manager
567          * Although OCT affects only write data, the OCT delay is controlled
568          * by the DQS logic block which is instantiated once per read group.
569          * For protocols where a write group consists of multiple read groups,
570          * the setting must be set multiple times.
571          */
572         for (i = 0; i < ratio; i++)
573                 writel(base + i, &sdr_scc_mgr->dqs_ena);
574 }
575
576 /**
577  * scc_mgr_zero_group() - Zero all configs for a group
578  *
579  * Zero DQ, DM, DQS and OCT configs for a group.
580  */
581 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
582 {
583         int i, r;
584
585         for (r = 0; r < rwcfg->mem_number_of_ranks;
586              r += NUM_RANKS_PER_SHADOW_REG) {
587                 /* Zero all DQ config settings. */
588                 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
589                         scc_mgr_set_dq_out1_delay(i, 0);
590                         if (!out_only)
591                                 scc_mgr_set_dq_in_delay(i, 0);
592                 }
593
594                 /* Multicast to all DQ enables. */
595                 writel(0xff, &sdr_scc_mgr->dq_ena);
596
597                 /* Zero all DM config settings. */
598                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
599                         scc_mgr_set_dm_out1_delay(i, 0);
600
601                 /* Multicast to all DM enables. */
602                 writel(0xff, &sdr_scc_mgr->dm_ena);
603
604                 /* Zero all DQS IO settings. */
605                 if (!out_only)
606                         scc_mgr_set_dqs_io_in_delay(0);
607
608                 /* Arria V/Cyclone V don't have out2. */
609                 scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve);
610                 scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve);
611                 scc_mgr_load_dqs_for_write_group(write_group);
612
613                 /* Multicast to all DQS IO enables (only 1 in total). */
614                 writel(0, &sdr_scc_mgr->dqs_io_ena);
615
616                 /* Hit update to zero everything. */
617                 writel(0, &sdr_scc_mgr->update);
618         }
619 }
620
621 /*
622  * apply and load a particular input delay for the DQ pins in a group
623  * group_bgn is the index of the first dq pin (in the write group)
624  */
625 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
626 {
627         uint32_t i, p;
628
629         for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
630                 scc_mgr_set_dq_in_delay(p, delay);
631                 scc_mgr_load_dq(p);
632         }
633 }
634
635 /**
636  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
637  * @delay:              Delay value
638  *
639  * Apply and load a particular output delay for the DQ pins in a group.
640  */
641 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
642 {
643         int i;
644
645         for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
646                 scc_mgr_set_dq_out1_delay(i, delay);
647                 scc_mgr_load_dq(i);
648         }
649 }
650
651 /* apply and load a particular output delay for the DM pins in a group */
652 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
653 {
654         uint32_t i;
655
656         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
657                 scc_mgr_set_dm_out1_delay(i, delay1);
658                 scc_mgr_load_dm(i);
659         }
660 }
661
662
663 /* apply and load delay on both DQS and OCT out1 */
664 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
665                                                     uint32_t delay)
666 {
667         scc_mgr_set_dqs_out1_delay(delay);
668         scc_mgr_load_dqs_io();
669
670         scc_mgr_set_oct_out1_delay(write_group, delay);
671         scc_mgr_load_dqs_for_write_group(write_group);
672 }
673
674 /**
675  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
676  * @write_group:        Write group
677  * @delay:              Delay value
678  *
679  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
680  */
681 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
682                                                   const u32 delay)
683 {
684         u32 i, new_delay;
685
686         /* DQ shift */
687         for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
688                 scc_mgr_load_dq(i);
689
690         /* DM shift */
691         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
692                 scc_mgr_load_dm(i);
693
694         /* DQS shift */
695         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
696         if (new_delay > iocfg->io_out2_delay_max) {
697                 debug_cond(DLEVEL == 1,
698                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
699                            __func__, __LINE__, write_group, delay, new_delay,
700                            iocfg->io_out2_delay_max,
701                            new_delay - iocfg->io_out2_delay_max);
702                 new_delay -= iocfg->io_out2_delay_max;
703                 scc_mgr_set_dqs_out1_delay(new_delay);
704         }
705
706         scc_mgr_load_dqs_io();
707
708         /* OCT shift */
709         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
710         if (new_delay > iocfg->io_out2_delay_max) {
711                 debug_cond(DLEVEL == 1,
712                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
713                            __func__, __LINE__, write_group, delay,
714                            new_delay, iocfg->io_out2_delay_max,
715                            new_delay - iocfg->io_out2_delay_max);
716                 new_delay -= iocfg->io_out2_delay_max;
717                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
718         }
719
720         scc_mgr_load_dqs_for_write_group(write_group);
721 }
722
723 /**
724  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
725  * @write_group:        Write group
726  * @delay:              Delay value
727  *
728  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
729  */
730 static void
731 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
732                                                 const u32 delay)
733 {
734         int r;
735
736         for (r = 0; r < rwcfg->mem_number_of_ranks;
737              r += NUM_RANKS_PER_SHADOW_REG) {
738                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
739                 writel(0, &sdr_scc_mgr->update);
740         }
741 }
742
743 /**
744  * set_jump_as_return() - Return instruction optimization
745  *
746  * Optimization used to recover some slots in ddr3 inst_rom could be
747  * applied to other protocols if we wanted to
748  */
749 static void set_jump_as_return(void)
750 {
751         /*
752          * To save space, we replace return with jump to special shared
753          * RETURN instruction so we set the counter to large value so that
754          * we always jump.
755          */
756         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
757         writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
758 }
759
760 /**
761  * delay_for_n_mem_clocks() - Delay for N memory clocks
762  * @clocks:     Length of the delay
763  *
764  * Delay for N memory clocks.
765  */
766 static void delay_for_n_mem_clocks(const u32 clocks)
767 {
768         u32 afi_clocks;
769         u16 c_loop;
770         u8 inner;
771         u8 outer;
772
773         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
774
775         /* Scale (rounding up) to get afi clocks. */
776         afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO);
777         if (afi_clocks) /* Temporary underflow protection */
778                 afi_clocks--;
779
780         /*
781          * Note, we don't bother accounting for being off a little
782          * bit because of a few extra instructions in outer loops.
783          * Note, the loops have a test at the end, and do the test
784          * before the decrement, and so always perform the loop
785          * 1 time more than the counter value
786          */
787         c_loop = afi_clocks >> 16;
788         outer = c_loop ? 0xff : (afi_clocks >> 8);
789         inner = outer ? 0xff : afi_clocks;
790
791         /*
792          * rom instructions are structured as follows:
793          *
794          *    IDLE_LOOP2: jnz cntr0, TARGET_A
795          *    IDLE_LOOP1: jnz cntr1, TARGET_B
796          *                return
797          *
798          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
799          * TARGET_B is set to IDLE_LOOP2 as well
800          *
801          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
802          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
803          *
804          * a little confusing, but it helps save precious space in the inst_rom
805          * and sequencer rom and keeps the delays more accurate and reduces
806          * overhead
807          */
808         if (afi_clocks < 0x100) {
809                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
810                         &sdr_rw_load_mgr_regs->load_cntr1);
811
812                 writel(rwcfg->idle_loop1,
813                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
814
815                 writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
816                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
817         } else {
818                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
819                         &sdr_rw_load_mgr_regs->load_cntr0);
820
821                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
822                         &sdr_rw_load_mgr_regs->load_cntr1);
823
824                 writel(rwcfg->idle_loop2,
825                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
826
827                 writel(rwcfg->idle_loop2,
828                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
829
830                 do {
831                         writel(rwcfg->idle_loop2,
832                                 SDR_PHYGRP_RWMGRGRP_ADDRESS |
833                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
834                 } while (c_loop-- != 0);
835         }
836         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
837 }
838
839 /**
840  * rw_mgr_mem_init_load_regs() - Load instruction registers
841  * @cntr0:      Counter 0 value
842  * @cntr1:      Counter 1 value
843  * @cntr2:      Counter 2 value
844  * @jump:       Jump instruction value
845  *
846  * Load instruction registers.
847  */
848 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
849 {
850         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
851                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
852
853         /* Load counters */
854         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
855                &sdr_rw_load_mgr_regs->load_cntr0);
856         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
857                &sdr_rw_load_mgr_regs->load_cntr1);
858         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
859                &sdr_rw_load_mgr_regs->load_cntr2);
860
861         /* Load jump address */
862         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
863         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
864         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
865
866         /* Execute count instruction */
867         writel(jump, grpaddr);
868 }
869
870 /**
871  * rw_mgr_mem_load_user() - Load user calibration values
872  * @fin1:       Final instruction 1
873  * @fin2:       Final instruction 2
874  * @precharge:  If 1, precharge the banks at the end
875  *
876  * Load user calibration values and optionally precharge the banks.
877  */
878 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
879                                  const int precharge)
880 {
881         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
882                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
883         u32 r;
884
885         for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
886                 /* set rank */
887                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
888
889                 /* precharge all banks ... */
890                 if (precharge)
891                         writel(rwcfg->precharge_all, grpaddr);
892
893                 /*
894                  * USER Use Mirror-ed commands for odd ranks if address
895                  * mirrorring is on
896                  */
897                 if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
898                         set_jump_as_return();
899                         writel(rwcfg->mrs2_mirr, grpaddr);
900                         delay_for_n_mem_clocks(4);
901                         set_jump_as_return();
902                         writel(rwcfg->mrs3_mirr, grpaddr);
903                         delay_for_n_mem_clocks(4);
904                         set_jump_as_return();
905                         writel(rwcfg->mrs1_mirr, grpaddr);
906                         delay_for_n_mem_clocks(4);
907                         set_jump_as_return();
908                         writel(fin1, grpaddr);
909                 } else {
910                         set_jump_as_return();
911                         writel(rwcfg->mrs2, grpaddr);
912                         delay_for_n_mem_clocks(4);
913                         set_jump_as_return();
914                         writel(rwcfg->mrs3, grpaddr);
915                         delay_for_n_mem_clocks(4);
916                         set_jump_as_return();
917                         writel(rwcfg->mrs1, grpaddr);
918                         set_jump_as_return();
919                         writel(fin2, grpaddr);
920                 }
921
922                 if (precharge)
923                         continue;
924
925                 set_jump_as_return();
926                 writel(rwcfg->zqcl, grpaddr);
927
928                 /* tZQinit = tDLLK = 512 ck cycles */
929                 delay_for_n_mem_clocks(512);
930         }
931 }
932
933 /**
934  * rw_mgr_mem_initialize() - Initialize RW Manager
935  *
936  * Initialize RW Manager.
937  */
938 static void rw_mgr_mem_initialize(void)
939 {
940         debug("%s:%d\n", __func__, __LINE__);
941
942         /* The reset / cke part of initialization is broadcasted to all ranks */
943         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
944                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
945
946         /*
947          * Here's how you load register for a loop
948          * Counters are located @ 0x800
949          * Jump address are located @ 0xC00
950          * For both, registers 0 to 3 are selected using bits 3 and 2, like
951          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
952          * I know this ain't pretty, but Avalon bus throws away the 2 least
953          * significant bits
954          */
955
956         /* Start with memory RESET activated */
957
958         /* tINIT = 200us */
959
960         /*
961          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
962          * If a and b are the number of iteration in 2 nested loops
963          * it takes the following number of cycles to complete the operation:
964          * number_of_cycles = ((2 + n) * a + 2) * b
965          * where n is the number of instruction in the inner loop
966          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
967          * b = 6A
968          */
969         rw_mgr_mem_init_load_regs(TINIT_CNTR0_VAL, TINIT_CNTR1_VAL,
970                                   TINIT_CNTR2_VAL,
971                                   rwcfg->init_reset_0_cke_0);
972
973         /* Indicate that memory is stable. */
974         writel(1, &phy_mgr_cfg->reset_mem_stbl);
975
976         /*
977          * transition the RESET to high
978          * Wait for 500us
979          */
980
981         /*
982          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
983          * If a and b are the number of iteration in 2 nested loops
984          * it takes the following number of cycles to complete the operation
985          * number_of_cycles = ((2 + n) * a + 2) * b
986          * where n is the number of instruction in the inner loop
987          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
988          * b = FF
989          */
990         rw_mgr_mem_init_load_regs(TRESET_CNTR0_VAL, TRESET_CNTR1_VAL,
991                                   TRESET_CNTR2_VAL,
992                                   rwcfg->init_reset_1_cke_0);
993
994         /* Bring up clock enable. */
995
996         /* tXRP < 250 ck cycles */
997         delay_for_n_mem_clocks(250);
998
999         rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
1000                              0);
1001 }
1002
1003 /**
1004  * rw_mgr_mem_handoff() - Hand off the memory to user
1005  *
1006  * At the end of calibration we have to program the user settings in
1007  * and hand off the memory to the user.
1008  */
1009 static void rw_mgr_mem_handoff(void)
1010 {
1011         rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
1012         /*
1013          * Need to wait tMOD (12CK or 15ns) time before issuing other
1014          * commands, but we will have plenty of NIOS cycles before actual
1015          * handoff so its okay.
1016          */
1017 }
1018
1019 /**
1020  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1021  * @group:      Write Group
1022  * @use_dm:     Use DM
1023  *
1024  * Issue write test command. Two variants are provided, one that just tests
1025  * a write pattern and another that tests datamask functionality.
1026  */
1027 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1028                                                   u32 test_dm)
1029 {
1030         const u32 quick_write_mode =
1031                 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1032                 ENABLE_SUPER_QUICK_CALIBRATION;
1033         u32 mcc_instruction;
1034         u32 rw_wl_nop_cycles;
1035
1036         /*
1037          * Set counter and jump addresses for the right
1038          * number of NOP cycles.
1039          * The number of supported NOP cycles can range from -1 to infinity
1040          * Three different cases are handled:
1041          *
1042          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1043          *    mechanism will be used to insert the right number of NOPs
1044          *
1045          * 2. For a number of NOP cycles equals to 0, the micro-instruction
1046          *    issuing the write command will jump straight to the
1047          *    micro-instruction that turns on DQS (for DDRx), or outputs write
1048          *    data (for RLD), skipping
1049          *    the NOP micro-instruction all together
1050          *
1051          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1052          *    turned on in the same micro-instruction that issues the write
1053          *    command. Then we need
1054          *    to directly jump to the micro-instruction that sends out the data
1055          *
1056          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1057          *       (2 and 3). One jump-counter (0) is used to perform multiple
1058          *       write-read operations.
1059          *       one counter left to issue this command in "multiple-group" mode
1060          */
1061
1062         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1063
1064         if (rw_wl_nop_cycles == -1) {
1065                 /*
1066                  * CNTR 2 - We want to execute the special write operation that
1067                  * turns on DQS right away and then skip directly to the
1068                  * instruction that sends out the data. We set the counter to a
1069                  * large number so that the jump is always taken.
1070                  */
1071                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1072
1073                 /* CNTR 3 - Not used */
1074                 if (test_dm) {
1075                         mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1076                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
1077                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1078                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1079                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1080                 } else {
1081                         mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
1082                         writel(rwcfg->lfsr_wr_rd_bank_0_data,
1083                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1084                         writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1085                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1086                 }
1087         } else if (rw_wl_nop_cycles == 0) {
1088                 /*
1089                  * CNTR 2 - We want to skip the NOP operation and go straight
1090                  * to the DQS enable instruction. We set the counter to a large
1091                  * number so that the jump is always taken.
1092                  */
1093                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1094
1095                 /* CNTR 3 - Not used */
1096                 if (test_dm) {
1097                         mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1098                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1099                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1100                 } else {
1101                         mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1102                         writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
1103                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1104                 }
1105         } else {
1106                 /*
1107                  * CNTR 2 - In this case we want to execute the next instruction
1108                  * and NOT take the jump. So we set the counter to 0. The jump
1109                  * address doesn't count.
1110                  */
1111                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1112                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1113
1114                 /*
1115                  * CNTR 3 - Set the nop counter to the number of cycles we
1116                  * need to loop for, minus 1.
1117                  */
1118                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1119                 if (test_dm) {
1120                         mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1121                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1122                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1123                 } else {
1124                         mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1125                         writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1126                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1127                 }
1128         }
1129
1130         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1131                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1132
1133         if (quick_write_mode)
1134                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1135         else
1136                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1137
1138         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1139
1140         /*
1141          * CNTR 1 - This is used to ensure enough time elapses
1142          * for read data to come back.
1143          */
1144         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1145
1146         if (test_dm) {
1147                 writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1148                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1149         } else {
1150                 writel(rwcfg->lfsr_wr_rd_bank_0_wait,
1151                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1152         }
1153
1154         writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1155                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1156                                 (group << 2));
1157 }
1158
1159 /**
1160  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1161  * @rank_bgn:           Rank number
1162  * @write_group:        Write Group
1163  * @use_dm:             Use DM
1164  * @all_correct:        All bits must be correct in the mask
1165  * @bit_chk:            Resulting bit mask after the test
1166  * @all_ranks:          Test all ranks
1167  *
1168  * Test writes, can check for a single bit pass or multiple bit pass.
1169  */
1170 static int
1171 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1172                                 const u32 use_dm, const u32 all_correct,
1173                                 u32 *bit_chk, const u32 all_ranks)
1174 {
1175         const u32 rank_end = all_ranks ?
1176                                 rwcfg->mem_number_of_ranks :
1177                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1178         const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
1179                                 rwcfg->mem_virtual_groups_per_write_dqs;
1180         const u32 correct_mask_vg = param->write_correct_mask_vg;
1181
1182         u32 tmp_bit_chk, base_rw_mgr;
1183         int vg, r;
1184
1185         *bit_chk = param->write_correct_mask;
1186
1187         for (r = rank_bgn; r < rank_end; r++) {
1188                 /* Set rank */
1189                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1190
1191                 tmp_bit_chk = 0;
1192                 for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
1193                      vg >= 0; vg--) {
1194                         /* Reset the FIFOs to get pointers to known state. */
1195                         writel(0, &phy_mgr_cmd->fifo_reset);
1196
1197                         rw_mgr_mem_calibrate_write_test_issue(
1198                                 write_group *
1199                                 rwcfg->mem_virtual_groups_per_write_dqs + vg,
1200                                 use_dm);
1201
1202                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1203                         tmp_bit_chk <<= shift_ratio;
1204                         tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1205                 }
1206
1207                 *bit_chk &= tmp_bit_chk;
1208         }
1209
1210         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1211         if (all_correct) {
1212                 debug_cond(DLEVEL == 2,
1213                            "write_test(%u,%u,ALL) : %u == %u => %i\n",
1214                            write_group, use_dm, *bit_chk,
1215                            param->write_correct_mask,
1216                            *bit_chk == param->write_correct_mask);
1217                 return *bit_chk == param->write_correct_mask;
1218         } else {
1219                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1220                 debug_cond(DLEVEL == 2,
1221                            "write_test(%u,%u,ONE) : %u != %i => %i\n",
1222                            write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1223                 return *bit_chk != 0x00;
1224         }
1225 }
1226
1227 /**
1228  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1229  * @rank_bgn:   Rank number
1230  * @group:      Read/Write Group
1231  * @all_ranks:  Test all ranks
1232  *
1233  * Performs a guaranteed read on the patterns we are going to use during a
1234  * read test to ensure memory works.
1235  */
1236 static int
1237 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1238                                         const u32 all_ranks)
1239 {
1240         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1241                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1242         const u32 addr_offset =
1243                          (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
1244         const u32 rank_end = all_ranks ?
1245                                 rwcfg->mem_number_of_ranks :
1246                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1247         const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
1248                                 rwcfg->mem_virtual_groups_per_read_dqs;
1249         const u32 correct_mask_vg = param->read_correct_mask_vg;
1250
1251         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1252         int vg, r;
1253         int ret = 0;
1254
1255         bit_chk = param->read_correct_mask;
1256
1257         for (r = rank_bgn; r < rank_end; r++) {
1258                 /* Set rank */
1259                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1260
1261                 /* Load up a constant bursts of read commands */
1262                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1263                 writel(rwcfg->guaranteed_read,
1264                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1265
1266                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1267                 writel(rwcfg->guaranteed_read_cont,
1268                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1269
1270                 tmp_bit_chk = 0;
1271                 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
1272                      vg >= 0; vg--) {
1273                         /* Reset the FIFOs to get pointers to known state. */
1274                         writel(0, &phy_mgr_cmd->fifo_reset);
1275                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1276                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1277                         writel(rwcfg->guaranteed_read,
1278                                addr + addr_offset + (vg << 2));
1279
1280                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1281                         tmp_bit_chk <<= shift_ratio;
1282                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1283                 }
1284
1285                 bit_chk &= tmp_bit_chk;
1286         }
1287
1288         writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1289
1290         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1291
1292         if (bit_chk != param->read_correct_mask)
1293                 ret = -EIO;
1294
1295         debug_cond(DLEVEL == 1,
1296                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1297                    __func__, __LINE__, group, bit_chk,
1298                    param->read_correct_mask, ret);
1299
1300         return ret;
1301 }
1302
1303 /**
1304  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1305  * @rank_bgn:   Rank number
1306  * @all_ranks:  Test all ranks
1307  *
1308  * Load up the patterns we are going to use during a read test.
1309  */
1310 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1311                                                     const int all_ranks)
1312 {
1313         const u32 rank_end = all_ranks ?
1314                         rwcfg->mem_number_of_ranks :
1315                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1316         u32 r;
1317
1318         debug("%s:%d\n", __func__, __LINE__);
1319
1320         for (r = rank_bgn; r < rank_end; r++) {
1321                 /* set rank */
1322                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1323
1324                 /* Load up a constant bursts */
1325                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1326
1327                 writel(rwcfg->guaranteed_write_wait0,
1328                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1329
1330                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1331
1332                 writel(rwcfg->guaranteed_write_wait1,
1333                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1334
1335                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1336
1337                 writel(rwcfg->guaranteed_write_wait2,
1338                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1339
1340                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1341
1342                 writel(rwcfg->guaranteed_write_wait3,
1343                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1344
1345                 writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1346                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1347         }
1348
1349         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1350 }
1351
1352 /**
1353  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1354  * @rank_bgn:           Rank number
1355  * @group:              Read/Write group
1356  * @num_tries:          Number of retries of the test
1357  * @all_correct:        All bits must be correct in the mask
1358  * @bit_chk:            Resulting bit mask after the test
1359  * @all_groups:         Test all R/W groups
1360  * @all_ranks:          Test all ranks
1361  *
1362  * Try a read and see if it returns correct data back. Test has dummy reads
1363  * inserted into the mix used to align DQS enable. Test has more thorough
1364  * checks than the regular read test.
1365  */
1366 static int
1367 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1368                                const u32 num_tries, const u32 all_correct,
1369                                u32 *bit_chk,
1370                                const u32 all_groups, const u32 all_ranks)
1371 {
1372         const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
1373                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1374         const u32 quick_read_mode =
1375                 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1376                  ENABLE_SUPER_QUICK_CALIBRATION);
1377         u32 correct_mask_vg = param->read_correct_mask_vg;
1378         u32 tmp_bit_chk;
1379         u32 base_rw_mgr;
1380         u32 addr;
1381
1382         int r, vg, ret;
1383
1384         *bit_chk = param->read_correct_mask;
1385
1386         for (r = rank_bgn; r < rank_end; r++) {
1387                 /* set rank */
1388                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1389
1390                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1391
1392                 writel(rwcfg->read_b2b_wait1,
1393                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1394
1395                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1396                 writel(rwcfg->read_b2b_wait2,
1397                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1398
1399                 if (quick_read_mode)
1400                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1401                         /* need at least two (1+1) reads to capture failures */
1402                 else if (all_groups)
1403                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1404                 else
1405                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1406
1407                 writel(rwcfg->read_b2b,
1408                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1409                 if (all_groups)
1410                         writel(rwcfg->mem_if_read_dqs_width *
1411                                rwcfg->mem_virtual_groups_per_read_dqs - 1,
1412                                &sdr_rw_load_mgr_regs->load_cntr3);
1413                 else
1414                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1415
1416                 writel(rwcfg->read_b2b,
1417                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1418
1419                 tmp_bit_chk = 0;
1420                 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
1421                      vg--) {
1422                         /* Reset the FIFOs to get pointers to known state. */
1423                         writel(0, &phy_mgr_cmd->fifo_reset);
1424                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1425                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1426
1427                         if (all_groups) {
1428                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1429                                        RW_MGR_RUN_ALL_GROUPS_OFFSET;
1430                         } else {
1431                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1432                                        RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1433                         }
1434
1435                         writel(rwcfg->read_b2b, addr +
1436                                ((group * rwcfg->mem_virtual_groups_per_read_dqs +
1437                                vg) << 2));
1438
1439                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1440                         tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
1441                                         rwcfg->mem_virtual_groups_per_read_dqs;
1442                         tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1443                 }
1444
1445                 *bit_chk &= tmp_bit_chk;
1446         }
1447
1448         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1449         writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1450
1451         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1452
1453         if (all_correct) {
1454                 ret = (*bit_chk == param->read_correct_mask);
1455                 debug_cond(DLEVEL == 2,
1456                            "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1457                            __func__, __LINE__, group, all_groups, *bit_chk,
1458                            param->read_correct_mask, ret);
1459         } else  {
1460                 ret = (*bit_chk != 0x00);
1461                 debug_cond(DLEVEL == 2,
1462                            "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1463                            __func__, __LINE__, group, all_groups, *bit_chk,
1464                            0, ret);
1465         }
1466
1467         return ret;
1468 }
1469
1470 /**
1471  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1472  * @grp:                Read/Write group
1473  * @num_tries:          Number of retries of the test
1474  * @all_correct:        All bits must be correct in the mask
1475  * @all_groups:         Test all R/W groups
1476  *
1477  * Perform a READ test across all memory ranks.
1478  */
1479 static int
1480 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1481                                          const u32 all_correct,
1482                                          const u32 all_groups)
1483 {
1484         u32 bit_chk;
1485         return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1486                                               &bit_chk, all_groups, 1);
1487 }
1488
1489 /**
1490  * rw_mgr_incr_vfifo() - Increase VFIFO value
1491  * @grp:        Read/Write group
1492  *
1493  * Increase VFIFO value.
1494  */
1495 static void rw_mgr_incr_vfifo(const u32 grp)
1496 {
1497         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1498 }
1499
1500 /**
1501  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1502  * @grp:        Read/Write group
1503  *
1504  * Decrease VFIFO value.
1505  */
1506 static void rw_mgr_decr_vfifo(const u32 grp)
1507 {
1508         u32 i;
1509
1510         for (i = 0; i < READ_VALID_FIFO_SIZE - 1; i++)
1511                 rw_mgr_incr_vfifo(grp);
1512 }
1513
1514 /**
1515  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1516  * @grp:        Read/Write group
1517  *
1518  * Push VFIFO until a failing read happens.
1519  */
1520 static int find_vfifo_failing_read(const u32 grp)
1521 {
1522         u32 v, ret, fail_cnt = 0;
1523
1524         for (v = 0; v < READ_VALID_FIFO_SIZE; v++) {
1525                 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1526                            __func__, __LINE__, v);
1527                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1528                                                 PASS_ONE_BIT, 0);
1529                 if (!ret) {
1530                         fail_cnt++;
1531
1532                         if (fail_cnt == 2)
1533                                 return v;
1534                 }
1535
1536                 /* Fiddle with FIFO. */
1537                 rw_mgr_incr_vfifo(grp);
1538         }
1539
1540         /* No failing read found! Something must have gone wrong. */
1541         debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1542         return 0;
1543 }
1544
1545 /**
1546  * sdr_find_phase_delay() - Find DQS enable phase or delay
1547  * @working:    If 1, look for working phase/delay, if 0, look for non-working
1548  * @delay:      If 1, look for delay, if 0, look for phase
1549  * @grp:        Read/Write group
1550  * @work:       Working window position
1551  * @work_inc:   Working window increment
1552  * @pd:         DQS Phase/Delay Iterator
1553  *
1554  * Find working or non-working DQS enable phase setting.
1555  */
1556 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1557                                 u32 *work, const u32 work_inc, u32 *pd)
1558 {
1559         const u32 max = delay ? iocfg->dqs_en_delay_max : iocfg->dqs_en_phase_max;
1560         u32 ret;
1561
1562         for (; *pd <= max; (*pd)++) {
1563                 if (delay)
1564                         scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1565                 else
1566                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1567
1568                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1569                                         PASS_ONE_BIT, 0);
1570                 if (!working)
1571                         ret = !ret;
1572
1573                 if (ret)
1574                         return 0;
1575
1576                 if (work)
1577                         *work += work_inc;
1578         }
1579
1580         return -EINVAL;
1581 }
1582 /**
1583  * sdr_find_phase() - Find DQS enable phase
1584  * @working:    If 1, look for working phase, if 0, look for non-working phase
1585  * @grp:        Read/Write group
1586  * @work:       Working window position
1587  * @i:          Iterator
1588  * @p:          DQS Phase Iterator
1589  *
1590  * Find working or non-working DQS enable phase setting.
1591  */
1592 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1593                           u32 *i, u32 *p)
1594 {
1595         const u32 end = READ_VALID_FIFO_SIZE + (working ? 0 : 1);
1596         int ret;
1597
1598         for (; *i < end; (*i)++) {
1599                 if (working)
1600                         *p = 0;
1601
1602                 ret = sdr_find_phase_delay(working, 0, grp, work,
1603                                            iocfg->delay_per_opa_tap, p);
1604                 if (!ret)
1605                         return 0;
1606
1607                 if (*p > iocfg->dqs_en_phase_max) {
1608                         /* Fiddle with FIFO. */
1609                         rw_mgr_incr_vfifo(grp);
1610                         if (!working)
1611                                 *p = 0;
1612                 }
1613         }
1614
1615         return -EINVAL;
1616 }
1617
1618 /**
1619  * sdr_working_phase() - Find working DQS enable phase
1620  * @grp:        Read/Write group
1621  * @work_bgn:   Working window start position
1622  * @d:          dtaps output value
1623  * @p:          DQS Phase Iterator
1624  * @i:          Iterator
1625  *
1626  * Find working DQS enable phase setting.
1627  */
1628 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1629                              u32 *p, u32 *i)
1630 {
1631         const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap /
1632                                    iocfg->delay_per_dqs_en_dchain_tap;
1633         int ret;
1634
1635         *work_bgn = 0;
1636
1637         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1638                 *i = 0;
1639                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1640                 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1641                 if (!ret)
1642                         return 0;
1643                 *work_bgn += iocfg->delay_per_dqs_en_dchain_tap;
1644         }
1645
1646         /* Cannot find working solution */
1647         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1648                    __func__, __LINE__);
1649         return -EINVAL;
1650 }
1651
1652 /**
1653  * sdr_backup_phase() - Find DQS enable backup phase
1654  * @grp:        Read/Write group
1655  * @work_bgn:   Working window start position
1656  * @p:          DQS Phase Iterator
1657  *
1658  * Find DQS enable backup phase setting.
1659  */
1660 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1661 {
1662         u32 tmp_delay, d;
1663         int ret;
1664
1665         /* Special case code for backing up a phase */
1666         if (*p == 0) {
1667                 *p = iocfg->dqs_en_phase_max;
1668                 rw_mgr_decr_vfifo(grp);
1669         } else {
1670                 (*p)--;
1671         }
1672         tmp_delay = *work_bgn - iocfg->delay_per_opa_tap;
1673         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1674
1675         for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn; d++) {
1676                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1677
1678                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1679                                         PASS_ONE_BIT, 0);
1680                 if (ret) {
1681                         *work_bgn = tmp_delay;
1682                         break;
1683                 }
1684
1685                 tmp_delay += iocfg->delay_per_dqs_en_dchain_tap;
1686         }
1687
1688         /* Restore VFIFO to old state before we decremented it (if needed). */
1689         (*p)++;
1690         if (*p > iocfg->dqs_en_phase_max) {
1691                 *p = 0;
1692                 rw_mgr_incr_vfifo(grp);
1693         }
1694
1695         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1696 }
1697
1698 /**
1699  * sdr_nonworking_phase() - Find non-working DQS enable phase
1700  * @grp:        Read/Write group
1701  * @work_end:   Working window end position
1702  * @p:          DQS Phase Iterator
1703  * @i:          Iterator
1704  *
1705  * Find non-working DQS enable phase setting.
1706  */
1707 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1708 {
1709         int ret;
1710
1711         (*p)++;
1712         *work_end += iocfg->delay_per_opa_tap;
1713         if (*p > iocfg->dqs_en_phase_max) {
1714                 /* Fiddle with FIFO. */
1715                 *p = 0;
1716                 rw_mgr_incr_vfifo(grp);
1717         }
1718
1719         ret = sdr_find_phase(0, grp, work_end, i, p);
1720         if (ret) {
1721                 /* Cannot see edge of failing read. */
1722                 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1723                            __func__, __LINE__);
1724         }
1725
1726         return ret;
1727 }
1728
1729 /**
1730  * sdr_find_window_center() - Find center of the working DQS window.
1731  * @grp:        Read/Write group
1732  * @work_bgn:   First working settings
1733  * @work_end:   Last working settings
1734  *
1735  * Find center of the working DQS enable window.
1736  */
1737 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1738                                   const u32 work_end)
1739 {
1740         u32 work_mid;
1741         int tmp_delay = 0;
1742         int i, p, d;
1743
1744         work_mid = (work_bgn + work_end) / 2;
1745
1746         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1747                    work_bgn, work_end, work_mid);
1748         /* Get the middle delay to be less than a VFIFO delay */
1749         tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap;
1750
1751         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1752         work_mid %= tmp_delay;
1753         debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1754
1755         tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap);
1756         if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap)
1757                 tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap;
1758         p = tmp_delay / iocfg->delay_per_opa_tap;
1759
1760         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1761
1762         d = DIV_ROUND_UP(work_mid - tmp_delay, iocfg->delay_per_dqs_en_dchain_tap);
1763         if (d > iocfg->dqs_en_delay_max)
1764                 d = iocfg->dqs_en_delay_max;
1765         tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap;
1766
1767         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1768
1769         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1770         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1771
1772         /*
1773          * push vfifo until we can successfully calibrate. We can do this
1774          * because the largest possible margin in 1 VFIFO cycle.
1775          */
1776         for (i = 0; i < READ_VALID_FIFO_SIZE; i++) {
1777                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1778                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1779                                                              PASS_ONE_BIT,
1780                                                              0)) {
1781                         debug_cond(DLEVEL == 2,
1782                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1783                                    __func__, __LINE__, p, d);
1784                         return 0;
1785                 }
1786
1787                 /* Fiddle with FIFO. */
1788                 rw_mgr_incr_vfifo(grp);
1789         }
1790
1791         debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1792                    __func__, __LINE__);
1793         return -EINVAL;
1794 }
1795
1796 /**
1797  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1798  * @grp:        Read/Write Group
1799  *
1800  * Find a good DQS enable to use.
1801  */
1802 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1803 {
1804         u32 d, p, i;
1805         u32 dtaps_per_ptap;
1806         u32 work_bgn, work_end;
1807         u32 found_passing_read, found_failing_read, initial_failing_dtap;
1808         int ret;
1809
1810         debug("%s:%d %u\n", __func__, __LINE__, grp);
1811
1812         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1813
1814         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1815         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1816
1817         /* Step 0: Determine number of delay taps for each phase tap. */
1818         dtaps_per_ptap = iocfg->delay_per_opa_tap / iocfg->delay_per_dqs_en_dchain_tap;
1819
1820         /* Step 1: First push vfifo until we get a failing read. */
1821         find_vfifo_failing_read(grp);
1822
1823         /* Step 2: Find first working phase, increment in ptaps. */
1824         work_bgn = 0;
1825         ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1826         if (ret)
1827                 return ret;
1828
1829         work_end = work_bgn;
1830
1831         /*
1832          * If d is 0 then the working window covers a phase tap and we can
1833          * follow the old procedure. Otherwise, we've found the beginning
1834          * and we need to increment the dtaps until we find the end.
1835          */
1836         if (d == 0) {
1837                 /*
1838                  * Step 3a: If we have room, back off by one and
1839                  *          increment in dtaps.
1840                  */
1841                 sdr_backup_phase(grp, &work_bgn, &p);
1842
1843                 /*
1844                  * Step 4a: go forward from working phase to non working
1845                  * phase, increment in ptaps.
1846                  */
1847                 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1848                 if (ret)
1849                         return ret;
1850
1851                 /* Step 5a: Back off one from last, increment in dtaps. */
1852
1853                 /* Special case code for backing up a phase */
1854                 if (p == 0) {
1855                         p = iocfg->dqs_en_phase_max;
1856                         rw_mgr_decr_vfifo(grp);
1857                 } else {
1858                         p = p - 1;
1859                 }
1860
1861                 work_end -= iocfg->delay_per_opa_tap;
1862                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1863
1864                 d = 0;
1865
1866                 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1867                            __func__, __LINE__, p);
1868         }
1869
1870         /* The dtap increment to find the failing edge is done here. */
1871         sdr_find_phase_delay(0, 1, grp, &work_end,
1872                              iocfg->delay_per_dqs_en_dchain_tap, &d);
1873
1874         /* Go back to working dtap */
1875         if (d != 0)
1876                 work_end -= iocfg->delay_per_dqs_en_dchain_tap;
1877
1878         debug_cond(DLEVEL == 2,
1879                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1880                    __func__, __LINE__, p, d - 1, work_end);
1881
1882         if (work_end < work_bgn) {
1883                 /* nil range */
1884                 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1885                            __func__, __LINE__);
1886                 return -EINVAL;
1887         }
1888
1889         debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1890                    __func__, __LINE__, work_bgn, work_end);
1891
1892         /*
1893          * We need to calculate the number of dtaps that equal a ptap.
1894          * To do that we'll back up a ptap and re-find the edge of the
1895          * window using dtaps
1896          */
1897         debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1898                    __func__, __LINE__);
1899
1900         /* Special case code for backing up a phase */
1901         if (p == 0) {
1902                 p = iocfg->dqs_en_phase_max;
1903                 rw_mgr_decr_vfifo(grp);
1904                 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1905                            __func__, __LINE__, p);
1906         } else {
1907                 p = p - 1;
1908                 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1909                            __func__, __LINE__, p);
1910         }
1911
1912         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1913
1914         /*
1915          * Increase dtap until we first see a passing read (in case the
1916          * window is smaller than a ptap), and then a failing read to
1917          * mark the edge of the window again.
1918          */
1919
1920         /* Find a passing read. */
1921         debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1922                    __func__, __LINE__);
1923
1924         initial_failing_dtap = d;
1925
1926         found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1927         if (found_passing_read) {
1928                 /* Find a failing read. */
1929                 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1930                            __func__, __LINE__);
1931                 d++;
1932                 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1933                                                            &d);
1934         } else {
1935                 debug_cond(DLEVEL == 1,
1936                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1937                            __func__, __LINE__);
1938         }
1939
1940         /*
1941          * The dynamically calculated dtaps_per_ptap is only valid if we
1942          * found a passing/failing read. If we didn't, it means d hit the max
1943          * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
1944          * statically calculated value.
1945          */
1946         if (found_passing_read && found_failing_read)
1947                 dtaps_per_ptap = d - initial_failing_dtap;
1948
1949         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1950         debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1951                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1952
1953         /* Step 6: Find the centre of the window. */
1954         ret = sdr_find_window_center(grp, work_bgn, work_end);
1955
1956         return ret;
1957 }
1958
1959 /**
1960  * search_stop_check() - Check if the detected edge is valid
1961  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
1962  * @d:                  DQS delay
1963  * @rank_bgn:           Rank number
1964  * @write_group:        Write Group
1965  * @read_group:         Read Group
1966  * @bit_chk:            Resulting bit mask after the test
1967  * @sticky_bit_chk:     Resulting sticky bit mask after the test
1968  * @use_read_test:      Perform read test
1969  *
1970  * Test if the found edge is valid.
1971  */
1972 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1973                              const u32 write_group, const u32 read_group,
1974                              u32 *bit_chk, u32 *sticky_bit_chk,
1975                              const u32 use_read_test)
1976 {
1977         const u32 ratio = rwcfg->mem_if_read_dqs_width /
1978                           rwcfg->mem_if_write_dqs_width;
1979         const u32 correct_mask = write ? param->write_correct_mask :
1980                                          param->read_correct_mask;
1981         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
1982                                     rwcfg->mem_dq_per_read_dqs;
1983         u32 ret;
1984         /*
1985          * Stop searching when the read test doesn't pass AND when
1986          * we've seen a passing read on every bit.
1987          */
1988         if (write) {                    /* WRITE-ONLY */
1989                 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1990                                                          0, PASS_ONE_BIT,
1991                                                          bit_chk, 0);
1992         } else if (use_read_test) {     /* READ-ONLY */
1993                 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1994                                                         NUM_READ_PB_TESTS,
1995                                                         PASS_ONE_BIT, bit_chk,
1996                                                         0, 0);
1997         } else {                        /* READ-ONLY */
1998                 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
1999                                                 PASS_ONE_BIT, bit_chk, 0);
2000                 *bit_chk = *bit_chk >> (per_dqs *
2001                         (read_group - (write_group * ratio)));
2002                 ret = (*bit_chk == 0);
2003         }
2004         *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2005         ret = ret && (*sticky_bit_chk == correct_mask);
2006         debug_cond(DLEVEL == 2,
2007                    "%s:%d center(left): dtap=%u => %u == %u && %u",
2008                    __func__, __LINE__, d,
2009                    *sticky_bit_chk, correct_mask, ret);
2010         return ret;
2011 }
2012
2013 /**
2014  * search_left_edge() - Find left edge of DQ/DQS working phase
2015  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2016  * @rank_bgn:           Rank number
2017  * @write_group:        Write Group
2018  * @read_group:         Read Group
2019  * @test_bgn:           Rank number to begin the test
2020  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2021  * @left_edge:          Left edge of the DQ/DQS phase
2022  * @right_edge:         Right edge of the DQ/DQS phase
2023  * @use_read_test:      Perform read test
2024  *
2025  * Find left edge of DQ/DQS working phase.
2026  */
2027 static void search_left_edge(const int write, const int rank_bgn,
2028         const u32 write_group, const u32 read_group, const u32 test_bgn,
2029         u32 *sticky_bit_chk,
2030         int *left_edge, int *right_edge, const u32 use_read_test)
2031 {
2032         const u32 delay_max = write ? iocfg->io_out1_delay_max : iocfg->io_in_delay_max;
2033         const u32 dqs_max = write ? iocfg->io_out1_delay_max : iocfg->dqs_in_delay_max;
2034         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2035                                     rwcfg->mem_dq_per_read_dqs;
2036         u32 stop, bit_chk;
2037         int i, d;
2038
2039         for (d = 0; d <= dqs_max; d++) {
2040                 if (write)
2041                         scc_mgr_apply_group_dq_out1_delay(d);
2042                 else
2043                         scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2044
2045                 writel(0, &sdr_scc_mgr->update);
2046
2047                 stop = search_stop_check(write, d, rank_bgn, write_group,
2048                                          read_group, &bit_chk, sticky_bit_chk,
2049                                          use_read_test);
2050                 if (stop == 1)
2051                         break;
2052
2053                 /* stop != 1 */
2054                 for (i = 0; i < per_dqs; i++) {
2055                         if (bit_chk & 1) {
2056                                 /*
2057                                  * Remember a passing test as
2058                                  * the left_edge.
2059                                  */
2060                                 left_edge[i] = d;
2061                         } else {
2062                                 /*
2063                                  * If a left edge has not been seen
2064                                  * yet, then a future passing test
2065                                  * will mark this edge as the right
2066                                  * edge.
2067                                  */
2068                                 if (left_edge[i] == delay_max + 1)
2069                                         right_edge[i] = -(d + 1);
2070                         }
2071                         bit_chk >>= 1;
2072                 }
2073         }
2074
2075         /* Reset DQ delay chains to 0 */
2076         if (write)
2077                 scc_mgr_apply_group_dq_out1_delay(0);
2078         else
2079                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2080
2081         *sticky_bit_chk = 0;
2082         for (i = per_dqs - 1; i >= 0; i--) {
2083                 debug_cond(DLEVEL == 2,
2084                            "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2085                            __func__, __LINE__, i, left_edge[i],
2086                            i, right_edge[i]);
2087
2088                 /*
2089                  * Check for cases where we haven't found the left edge,
2090                  * which makes our assignment of the the right edge invalid.
2091                  * Reset it to the illegal value.
2092                  */
2093                 if ((left_edge[i] == delay_max + 1) &&
2094                     (right_edge[i] != delay_max + 1)) {
2095                         right_edge[i] = delay_max + 1;
2096                         debug_cond(DLEVEL == 2,
2097                                    "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2098                                    __func__, __LINE__, i, right_edge[i]);
2099                 }
2100
2101                 /*
2102                  * Reset sticky bit
2103                  * READ: except for bits where we have seen both
2104                  *       the left and right edge.
2105                  * WRITE: except for bits where we have seen the
2106                  *        left edge.
2107                  */
2108                 *sticky_bit_chk <<= 1;
2109                 if (write) {
2110                         if (left_edge[i] != delay_max + 1)
2111                                 *sticky_bit_chk |= 1;
2112                 } else {
2113                         if ((left_edge[i] != delay_max + 1) &&
2114                             (right_edge[i] != delay_max + 1))
2115                                 *sticky_bit_chk |= 1;
2116                 }
2117         }
2118
2119
2120 }
2121
2122 /**
2123  * search_right_edge() - Find right edge of DQ/DQS working phase
2124  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2125  * @rank_bgn:           Rank number
2126  * @write_group:        Write Group
2127  * @read_group:         Read Group
2128  * @start_dqs:          DQS start phase
2129  * @start_dqs_en:       DQS enable start phase
2130  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2131  * @left_edge:          Left edge of the DQ/DQS phase
2132  * @right_edge:         Right edge of the DQ/DQS phase
2133  * @use_read_test:      Perform read test
2134  *
2135  * Find right edge of DQ/DQS working phase.
2136  */
2137 static int search_right_edge(const int write, const int rank_bgn,
2138         const u32 write_group, const u32 read_group,
2139         const int start_dqs, const int start_dqs_en,
2140         u32 *sticky_bit_chk,
2141         int *left_edge, int *right_edge, const u32 use_read_test)
2142 {
2143         const u32 delay_max = write ? iocfg->io_out1_delay_max : iocfg->io_in_delay_max;
2144         const u32 dqs_max = write ? iocfg->io_out1_delay_max : iocfg->dqs_in_delay_max;
2145         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2146                                     rwcfg->mem_dq_per_read_dqs;
2147         u32 stop, bit_chk;
2148         int i, d;
2149
2150         for (d = 0; d <= dqs_max - start_dqs; d++) {
2151                 if (write) {    /* WRITE-ONLY */
2152                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2153                                                                 d + start_dqs);
2154                 } else {        /* READ-ONLY */
2155                         scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2156                         if (iocfg->shift_dqs_en_when_shift_dqs) {
2157                                 uint32_t delay = d + start_dqs_en;
2158                                 if (delay > iocfg->dqs_en_delay_max)
2159                                         delay = iocfg->dqs_en_delay_max;
2160                                 scc_mgr_set_dqs_en_delay(read_group, delay);
2161                         }
2162                         scc_mgr_load_dqs(read_group);
2163                 }
2164
2165                 writel(0, &sdr_scc_mgr->update);
2166
2167                 stop = search_stop_check(write, d, rank_bgn, write_group,
2168                                          read_group, &bit_chk, sticky_bit_chk,
2169                                          use_read_test);
2170                 if (stop == 1) {
2171                         if (write && (d == 0)) {        /* WRITE-ONLY */
2172                                 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2173                                         /*
2174                                          * d = 0 failed, but it passed when
2175                                          * testing the left edge, so it must be
2176                                          * marginal, set it to -1
2177                                          */
2178                                         if (right_edge[i] == delay_max + 1 &&
2179                                             left_edge[i] != delay_max + 1)
2180                                                 right_edge[i] = -1;
2181                                 }
2182                         }
2183                         break;
2184                 }
2185
2186                 /* stop != 1 */
2187                 for (i = 0; i < per_dqs; i++) {
2188                         if (bit_chk & 1) {
2189                                 /*
2190                                  * Remember a passing test as
2191                                  * the right_edge.
2192                                  */
2193                                 right_edge[i] = d;
2194                         } else {
2195                                 if (d != 0) {
2196                                         /*
2197                                          * If a right edge has not
2198                                          * been seen yet, then a future
2199                                          * passing test will mark this
2200                                          * edge as the left edge.
2201                                          */
2202                                         if (right_edge[i] == delay_max + 1)
2203                                                 left_edge[i] = -(d + 1);
2204                                 } else {
2205                                         /*
2206                                          * d = 0 failed, but it passed
2207                                          * when testing the left edge,
2208                                          * so it must be marginal, set
2209                                          * it to -1
2210                                          */
2211                                         if (right_edge[i] == delay_max + 1 &&
2212                                             left_edge[i] != delay_max + 1)
2213                                                 right_edge[i] = -1;
2214                                         /*
2215                                          * If a right edge has not been
2216                                          * seen yet, then a future
2217                                          * passing test will mark this
2218                                          * edge as the left edge.
2219                                          */
2220                                         else if (right_edge[i] == delay_max + 1)
2221                                                 left_edge[i] = -(d + 1);
2222                                 }
2223                         }
2224
2225                         debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2226                                    __func__, __LINE__, d);
2227                         debug_cond(DLEVEL == 2,
2228                                    "bit_chk_test=%i left_edge[%u]: %d ",
2229                                    bit_chk & 1, i, left_edge[i]);
2230                         debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2231                                    right_edge[i]);
2232                         bit_chk >>= 1;
2233                 }
2234         }
2235
2236         /* Check that all bits have a window */
2237         for (i = 0; i < per_dqs; i++) {
2238                 debug_cond(DLEVEL == 2,
2239                            "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2240                            __func__, __LINE__, i, left_edge[i],
2241                            i, right_edge[i]);
2242                 if ((left_edge[i] == dqs_max + 1) ||
2243                     (right_edge[i] == dqs_max + 1))
2244                         return i + 1;   /* FIXME: If we fail, retval > 0 */
2245         }
2246
2247         return 0;
2248 }
2249
2250 /**
2251  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2252  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2253  * @left_edge:          Left edge of the DQ/DQS phase
2254  * @right_edge:         Right edge of the DQ/DQS phase
2255  * @mid_min:            Best DQ/DQS phase middle setting
2256  *
2257  * Find index and value of the middle of the DQ/DQS working phase.
2258  */
2259 static int get_window_mid_index(const int write, int *left_edge,
2260                                 int *right_edge, int *mid_min)
2261 {
2262         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2263                                     rwcfg->mem_dq_per_read_dqs;
2264         int i, mid, min_index;
2265
2266         /* Find middle of window for each DQ bit */
2267         *mid_min = left_edge[0] - right_edge[0];
2268         min_index = 0;
2269         for (i = 1; i < per_dqs; i++) {
2270                 mid = left_edge[i] - right_edge[i];
2271                 if (mid < *mid_min) {
2272                         *mid_min = mid;
2273                         min_index = i;
2274                 }
2275         }
2276
2277         /*
2278          * -mid_min/2 represents the amount that we need to move DQS.
2279          * If mid_min is odd and positive we'll need to add one to make
2280          * sure the rounding in further calculations is correct (always
2281          * bias to the right), so just add 1 for all positive values.
2282          */
2283         if (*mid_min > 0)
2284                 (*mid_min)++;
2285         *mid_min = *mid_min / 2;
2286
2287         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2288                    __func__, __LINE__, *mid_min, min_index);
2289         return min_index;
2290 }
2291
2292 /**
2293  * center_dq_windows() - Center the DQ/DQS windows
2294  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2295  * @left_edge:          Left edge of the DQ/DQS phase
2296  * @right_edge:         Right edge of the DQ/DQS phase
2297  * @mid_min:            Adjusted DQ/DQS phase middle setting
2298  * @orig_mid_min:       Original DQ/DQS phase middle setting
2299  * @min_index:          DQ/DQS phase middle setting index
2300  * @test_bgn:           Rank number to begin the test
2301  * @dq_margin:          Amount of shift for the DQ
2302  * @dqs_margin:         Amount of shift for the DQS
2303  *
2304  * Align the DQ/DQS windows in each group.
2305  */
2306 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2307                               const int mid_min, const int orig_mid_min,
2308                               const int min_index, const int test_bgn,
2309                               int *dq_margin, int *dqs_margin)
2310 {
2311         const u32 delay_max = write ? iocfg->io_out1_delay_max : iocfg->io_in_delay_max;
2312         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2313                                     rwcfg->mem_dq_per_read_dqs;
2314         const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2315                                       SCC_MGR_IO_IN_DELAY_OFFSET;
2316         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2317
2318         u32 temp_dq_io_delay1, temp_dq_io_delay2;
2319         int shift_dq, i, p;
2320
2321         /* Initialize data for export structures */
2322         *dqs_margin = delay_max + 1;
2323         *dq_margin  = delay_max + 1;
2324
2325         /* add delay to bring centre of all DQ windows to the same "level" */
2326         for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2327                 /* Use values before divide by 2 to reduce round off error */
2328                 shift_dq = (left_edge[i] - right_edge[i] -
2329                         (left_edge[min_index] - right_edge[min_index]))/2  +
2330                         (orig_mid_min - mid_min);
2331
2332                 debug_cond(DLEVEL == 2,
2333                            "vfifo_center: before: shift_dq[%u]=%d\n",
2334                            i, shift_dq);
2335
2336                 temp_dq_io_delay1 = readl(addr + (p << 2));
2337                 temp_dq_io_delay2 = readl(addr + (i << 2));
2338
2339                 if (shift_dq + temp_dq_io_delay1 > delay_max)
2340                         shift_dq = delay_max - temp_dq_io_delay2;
2341                 else if (shift_dq + temp_dq_io_delay1 < 0)
2342                         shift_dq = -temp_dq_io_delay1;
2343
2344                 debug_cond(DLEVEL == 2,
2345                            "vfifo_center: after: shift_dq[%u]=%d\n",
2346                            i, shift_dq);
2347
2348                 if (write)
2349                         scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2350                 else
2351                         scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2352
2353                 scc_mgr_load_dq(p);
2354
2355                 debug_cond(DLEVEL == 2,
2356                            "vfifo_center: margin[%u]=[%d,%d]\n", i,
2357                            left_edge[i] - shift_dq + (-mid_min),
2358                            right_edge[i] + shift_dq - (-mid_min));
2359
2360                 /* To determine values for export structures */
2361                 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2362                         *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2363
2364                 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2365                         *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2366         }
2367
2368 }
2369
2370 /**
2371  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2372  * @rank_bgn:           Rank number
2373  * @rw_group:           Read/Write Group
2374  * @test_bgn:           Rank at which the test begins
2375  * @use_read_test:      Perform a read test
2376  * @update_fom:         Update FOM
2377  *
2378  * Per-bit deskew DQ and centering.
2379  */
2380 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2381                         const u32 rw_group, const u32 test_bgn,
2382                         const int use_read_test, const int update_fom)
2383 {
2384         const u32 addr =
2385                 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2386                 (rw_group << 2);
2387         /*
2388          * Store these as signed since there are comparisons with
2389          * signed numbers.
2390          */
2391         uint32_t sticky_bit_chk;
2392         int32_t left_edge[rwcfg->mem_dq_per_read_dqs];
2393         int32_t right_edge[rwcfg->mem_dq_per_read_dqs];
2394         int32_t orig_mid_min, mid_min;
2395         int32_t new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
2396         int32_t dq_margin, dqs_margin;
2397         int i, min_index;
2398         int ret;
2399
2400         debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2401
2402         start_dqs = readl(addr);
2403         if (iocfg->shift_dqs_en_when_shift_dqs)
2404                 start_dqs_en = readl(addr - iocfg->dqs_en_delay_offset);
2405
2406         /* set the left and right edge of each bit to an illegal value */
2407         /* use (iocfg->io_in_delay_max + 1) as an illegal value */
2408         sticky_bit_chk = 0;
2409         for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) {
2410                 left_edge[i]  = iocfg->io_in_delay_max + 1;
2411                 right_edge[i] = iocfg->io_in_delay_max + 1;
2412         }
2413
2414         /* Search for the left edge of the window for each bit */
2415         search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2416                          &sticky_bit_chk,
2417                          left_edge, right_edge, use_read_test);
2418
2419
2420         /* Search for the right edge of the window for each bit */
2421         ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2422                                 start_dqs, start_dqs_en,
2423                                 &sticky_bit_chk,
2424                                 left_edge, right_edge, use_read_test);
2425         if (ret) {
2426                 /*
2427                  * Restore delay chain settings before letting the loop
2428                  * in rw_mgr_mem_calibrate_vfifo to retry different
2429                  * dqs/ck relationships.
2430                  */
2431                 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2432                 if (iocfg->shift_dqs_en_when_shift_dqs)
2433                         scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2434
2435                 scc_mgr_load_dqs(rw_group);
2436                 writel(0, &sdr_scc_mgr->update);
2437
2438                 debug_cond(DLEVEL == 1,
2439                            "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2440                            __func__, __LINE__, i, left_edge[i], right_edge[i]);
2441                 if (use_read_test) {
2442                         set_failing_group_stage(rw_group *
2443                                 rwcfg->mem_dq_per_read_dqs + i,
2444                                 CAL_STAGE_VFIFO,
2445                                 CAL_SUBSTAGE_VFIFO_CENTER);
2446                 } else {
2447                         set_failing_group_stage(rw_group *
2448                                 rwcfg->mem_dq_per_read_dqs + i,
2449                                 CAL_STAGE_VFIFO_AFTER_WRITES,
2450                                 CAL_SUBSTAGE_VFIFO_CENTER);
2451                 }
2452                 return -EIO;
2453         }
2454
2455         min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2456
2457         /* Determine the amount we can change DQS (which is -mid_min) */
2458         orig_mid_min = mid_min;
2459         new_dqs = start_dqs - mid_min;
2460         if (new_dqs > iocfg->dqs_in_delay_max)
2461                 new_dqs = iocfg->dqs_in_delay_max;
2462         else if (new_dqs < 0)
2463                 new_dqs = 0;
2464
2465         mid_min = start_dqs - new_dqs;
2466         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2467                    mid_min, new_dqs);
2468
2469         if (iocfg->shift_dqs_en_when_shift_dqs) {
2470                 if (start_dqs_en - mid_min > iocfg->dqs_en_delay_max)
2471                         mid_min += start_dqs_en - mid_min - iocfg->dqs_en_delay_max;
2472                 else if (start_dqs_en - mid_min < 0)
2473                         mid_min += start_dqs_en - mid_min;
2474         }
2475         new_dqs = start_dqs - mid_min;
2476
2477         debug_cond(DLEVEL == 1,
2478                    "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2479                    start_dqs,
2480                    iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
2481                    new_dqs, mid_min);
2482
2483         /* Add delay to bring centre of all DQ windows to the same "level". */
2484         center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2485                           min_index, test_bgn, &dq_margin, &dqs_margin);
2486
2487         /* Move DQS-en */
2488         if (iocfg->shift_dqs_en_when_shift_dqs) {
2489                 final_dqs_en = start_dqs_en - mid_min;
2490                 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2491                 scc_mgr_load_dqs(rw_group);
2492         }
2493
2494         /* Move DQS */
2495         scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2496         scc_mgr_load_dqs(rw_group);
2497         debug_cond(DLEVEL == 2,
2498                    "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2499                    __func__, __LINE__, dq_margin, dqs_margin);
2500
2501         /*
2502          * Do not remove this line as it makes sure all of our decisions
2503          * have been applied. Apply the update bit.
2504          */
2505         writel(0, &sdr_scc_mgr->update);
2506
2507         if ((dq_margin < 0) || (dqs_margin < 0))
2508                 return -EINVAL;
2509
2510         return 0;
2511 }
2512
2513 /**
2514  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2515  * @rw_group:   Read/Write Group
2516  * @phase:      DQ/DQS phase
2517  *
2518  * Because initially no communication ca be reliably performed with the memory
2519  * device, the sequencer uses a guaranteed write mechanism to write data into
2520  * the memory device.
2521  */
2522 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2523                                                  const u32 phase)
2524 {
2525         int ret;
2526
2527         /* Set a particular DQ/DQS phase. */
2528         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2529
2530         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2531                    __func__, __LINE__, rw_group, phase);
2532
2533         /*
2534          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2535          * Load up the patterns used by read calibration using the
2536          * current DQDQS phase.
2537          */
2538         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2539
2540         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2541                 return 0;
2542
2543         /*
2544          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2545          * Back-to-Back reads of the patterns used for calibration.
2546          */
2547         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2548         if (ret)
2549                 debug_cond(DLEVEL == 1,
2550                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2551                            __func__, __LINE__, rw_group, phase);
2552         return ret;
2553 }
2554
2555 /**
2556  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2557  * @rw_group:   Read/Write Group
2558  * @test_bgn:   Rank at which the test begins
2559  *
2560  * DQS enable calibration ensures reliable capture of the DQ signal without
2561  * glitches on the DQS line.
2562  */
2563 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2564                                                        const u32 test_bgn)
2565 {
2566         /*
2567          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2568          * DQS and DQS Eanble Signal Relationships.
2569          */
2570
2571         /* We start at zero, so have one less dq to devide among */
2572         const u32 delay_step = iocfg->io_in_delay_max /
2573                                (rwcfg->mem_dq_per_read_dqs - 1);
2574         int ret;
2575         u32 i, p, d, r;
2576
2577         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2578
2579         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2580         for (r = 0; r < rwcfg->mem_number_of_ranks;
2581              r += NUM_RANKS_PER_SHADOW_REG) {
2582                 for (i = 0, p = test_bgn, d = 0;
2583                      i < rwcfg->mem_dq_per_read_dqs;
2584                      i++, p++, d += delay_step) {
2585                         debug_cond(DLEVEL == 1,
2586                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2587                                    __func__, __LINE__, rw_group, r, i, p, d);
2588
2589                         scc_mgr_set_dq_in_delay(p, d);
2590                         scc_mgr_load_dq(p);
2591                 }
2592
2593                 writel(0, &sdr_scc_mgr->update);
2594         }
2595
2596         /*
2597          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2598          * dq_in_delay values
2599          */
2600         ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2601
2602         debug_cond(DLEVEL == 1,
2603                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2604                    __func__, __LINE__, rw_group, !ret);
2605
2606         for (r = 0; r < rwcfg->mem_number_of_ranks;
2607              r += NUM_RANKS_PER_SHADOW_REG) {
2608                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2609                 writel(0, &sdr_scc_mgr->update);
2610         }
2611
2612         return ret;
2613 }
2614
2615 /**
2616  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2617  * @rw_group:           Read/Write Group
2618  * @test_bgn:           Rank at which the test begins
2619  * @use_read_test:      Perform a read test
2620  * @update_fom:         Update FOM
2621  *
2622  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2623  * within a group.
2624  */
2625 static int
2626 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2627                                       const int use_read_test,
2628                                       const int update_fom)
2629
2630 {
2631         int ret, grp_calibrated;
2632         u32 rank_bgn, sr;
2633
2634         /*
2635          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2636          * Read per-bit deskew can be done on a per shadow register basis.
2637          */
2638         grp_calibrated = 1;
2639         for (rank_bgn = 0, sr = 0;
2640              rank_bgn < rwcfg->mem_number_of_ranks;
2641              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2642                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2643                                                         test_bgn,
2644                                                         use_read_test,
2645                                                         update_fom);
2646                 if (!ret)
2647                         continue;
2648
2649                 grp_calibrated = 0;
2650         }
2651
2652         if (!grp_calibrated)
2653                 return -EIO;
2654
2655         return 0;
2656 }
2657
2658 /**
2659  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2660  * @rw_group:           Read/Write Group
2661  * @test_bgn:           Rank at which the test begins
2662  *
2663  * Stage 1: Calibrate the read valid prediction FIFO.
2664  *
2665  * This function implements UniPHY calibration Stage 1, as explained in
2666  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2667  *
2668  * - read valid prediction will consist of finding:
2669  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2670  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2671  *  - we also do a per-bit deskew on the DQ lines.
2672  */
2673 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2674 {
2675         uint32_t p, d;
2676         uint32_t dtaps_per_ptap;
2677         uint32_t failed_substage;
2678
2679         int ret;
2680
2681         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2682
2683         /* Update info for sims */
2684         reg_file_set_group(rw_group);
2685         reg_file_set_stage(CAL_STAGE_VFIFO);
2686         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2687
2688         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2689
2690         /* USER Determine number of delay taps for each phase tap. */
2691         dtaps_per_ptap = DIV_ROUND_UP(iocfg->delay_per_opa_tap,
2692                                       iocfg->delay_per_dqs_en_dchain_tap) - 1;
2693
2694         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2695                 /*
2696                  * In RLDRAMX we may be messing the delay of pins in
2697                  * the same write rw_group but outside of the current read
2698                  * the rw_group, but that's ok because we haven't calibrated
2699                  * output side yet.
2700                  */
2701                 if (d > 0) {
2702                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2703                                                                 rw_group, d);
2704                 }
2705
2706                 for (p = 0; p <= iocfg->dqdqs_out_phase_max; p++) {
2707                         /* 1) Guaranteed Write */
2708                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2709                         if (ret)
2710                                 break;
2711
2712                         /* 2) DQS Enable Calibration */
2713                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2714                                                                           test_bgn);
2715                         if (ret) {
2716                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2717                                 continue;
2718                         }
2719
2720                         /* 3) Centering DQ/DQS */
2721                         /*
2722                          * If doing read after write calibration, do not update
2723                          * FOM now. Do it then.
2724                          */
2725                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2726                                                                 test_bgn, 1, 0);
2727                         if (ret) {
2728                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2729                                 continue;
2730                         }
2731
2732                         /* All done. */
2733                         goto cal_done_ok;
2734                 }
2735         }
2736
2737         /* Calibration Stage 1 failed. */
2738         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2739         return 0;
2740
2741         /* Calibration Stage 1 completed OK. */
2742 cal_done_ok:
2743         /*
2744          * Reset the delay chains back to zero if they have moved > 1
2745          * (check for > 1 because loop will increase d even when pass in
2746          * first case).
2747          */
2748         if (d > 2)
2749                 scc_mgr_zero_group(rw_group, 1);
2750
2751         return 1;
2752 }
2753
2754 /**
2755  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2756  * @rw_group:           Read/Write Group
2757  * @test_bgn:           Rank at which the test begins
2758  *
2759  * Stage 3: DQ/DQS Centering.
2760  *
2761  * This function implements UniPHY calibration Stage 3, as explained in
2762  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2763  */
2764 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2765                                           const u32 test_bgn)
2766 {
2767         int ret;
2768
2769         debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2770
2771         /* Update info for sims. */
2772         reg_file_set_group(rw_group);
2773         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2774         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2775
2776         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2777         if (ret)
2778                 set_failing_group_stage(rw_group,
2779                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2780                                         CAL_SUBSTAGE_VFIFO_CENTER);
2781         return ret;
2782 }
2783
2784 /**
2785  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2786  *
2787  * Stage 4: Minimize latency.
2788  *
2789  * This function implements UniPHY calibration Stage 4, as explained in
2790  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2791  * Calibrate LFIFO to find smallest read latency.
2792  */
2793 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2794 {
2795         int found_one = 0;
2796
2797         debug("%s:%d\n", __func__, __LINE__);
2798
2799         /* Update info for sims. */
2800         reg_file_set_stage(CAL_STAGE_LFIFO);
2801         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2802
2803         /* Load up the patterns used by read calibration for all ranks */
2804         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2805
2806         do {
2807                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2808                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2809                            __func__, __LINE__, gbl->curr_read_lat);
2810
2811                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2812                                                               PASS_ALL_BITS, 1))
2813                         break;
2814
2815                 found_one = 1;
2816                 /*
2817                  * Reduce read latency and see if things are
2818                  * working correctly.
2819                  */
2820                 gbl->curr_read_lat--;
2821         } while (gbl->curr_read_lat > 0);
2822
2823         /* Reset the fifos to get pointers to known state. */
2824         writel(0, &phy_mgr_cmd->fifo_reset);
2825
2826         if (found_one) {
2827                 /* Add a fudge factor to the read latency that was determined */
2828                 gbl->curr_read_lat += 2;
2829                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2830                 debug_cond(DLEVEL == 2,
2831                            "%s:%d lfifo: success: using read_lat=%u\n",
2832                            __func__, __LINE__, gbl->curr_read_lat);
2833         } else {
2834                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2835                                         CAL_SUBSTAGE_READ_LATENCY);
2836
2837                 debug_cond(DLEVEL == 2,
2838                            "%s:%d lfifo: failed at initial read_lat=%u\n",
2839                            __func__, __LINE__, gbl->curr_read_lat);
2840         }
2841
2842         return found_one;
2843 }
2844
2845 /**
2846  * search_window() - Search for the/part of the window with DM/DQS shift
2847  * @search_dm:          If 1, search for the DM shift, if 0, search for DQS shift
2848  * @rank_bgn:           Rank number
2849  * @write_group:        Write Group
2850  * @bgn_curr:           Current window begin
2851  * @end_curr:           Current window end
2852  * @bgn_best:           Current best window begin
2853  * @end_best:           Current best window end
2854  * @win_best:           Size of the best window
2855  * @new_dqs:            New DQS value (only applicable if search_dm = 0).
2856  *
2857  * Search for the/part of the window with DM/DQS shift.
2858  */
2859 static void search_window(const int search_dm,
2860                           const u32 rank_bgn, const u32 write_group,
2861                           int *bgn_curr, int *end_curr, int *bgn_best,
2862                           int *end_best, int *win_best, int new_dqs)
2863 {
2864         u32 bit_chk;
2865         const int max = iocfg->io_out1_delay_max - new_dqs;
2866         int d, di;
2867
2868         /* Search for the/part of the window with DM/DQS shift. */
2869         for (di = max; di >= 0; di -= DELTA_D) {
2870                 if (search_dm) {
2871                         d = di;
2872                         scc_mgr_apply_group_dm_out1_delay(d);
2873                 } else {
2874                         /* For DQS, we go from 0...max */
2875                         d = max - di;
2876                         /*
2877                          * Note: This only shifts DQS, so are we limiting ourselve to
2878                          * width of DQ unnecessarily.
2879                          */
2880                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2881                                                                 d + new_dqs);
2882                 }
2883
2884                 writel(0, &sdr_scc_mgr->update);
2885
2886                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2887                                                     PASS_ALL_BITS, &bit_chk,
2888                                                     0)) {
2889                         /* Set current end of the window. */
2890                         *end_curr = search_dm ? -d : d;
2891
2892                         /*
2893                          * If a starting edge of our window has not been seen
2894                          * this is our current start of the DM window.
2895                          */
2896                         if (*bgn_curr == iocfg->io_out1_delay_max + 1)
2897                                 *bgn_curr = search_dm ? -d : d;
2898
2899                         /*
2900                          * If current window is bigger than best seen.
2901                          * Set best seen to be current window.
2902                          */
2903                         if ((*end_curr - *bgn_curr + 1) > *win_best) {
2904                                 *win_best = *end_curr - *bgn_curr + 1;
2905                                 *bgn_best = *bgn_curr;
2906                                 *end_best = *end_curr;
2907                         }
2908                 } else {
2909                         /* We just saw a failing test. Reset temp edge. */
2910                         *bgn_curr = iocfg->io_out1_delay_max + 1;
2911                         *end_curr = iocfg->io_out1_delay_max + 1;
2912
2913                         /* Early exit is only applicable to DQS. */
2914                         if (search_dm)
2915                                 continue;
2916
2917                         /*
2918                          * Early exit optimization: if the remaining delay
2919                          * chain space is less than already seen largest
2920                          * window we can exit.
2921                          */
2922                         if (*win_best - 1 > iocfg->io_out1_delay_max - new_dqs - d)
2923                                 break;
2924                 }
2925         }
2926 }
2927
2928 /*
2929  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2930  * @rank_bgn:           Rank number
2931  * @write_group:        Write group
2932  * @test_bgn:           Rank at which the test begins
2933  *
2934  * Center all windows. Do per-bit-deskew to possibly increase size of
2935  * certain windows.
2936  */
2937 static int
2938 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2939                                    const u32 test_bgn)
2940 {
2941         int i;
2942         u32 sticky_bit_chk;
2943         u32 min_index;
2944         int left_edge[rwcfg->mem_dq_per_write_dqs];
2945         int right_edge[rwcfg->mem_dq_per_write_dqs];
2946         int mid;
2947         int mid_min, orig_mid_min;
2948         int new_dqs, start_dqs;
2949         int dq_margin, dqs_margin, dm_margin;
2950         int bgn_curr = iocfg->io_out1_delay_max + 1;
2951         int end_curr = iocfg->io_out1_delay_max + 1;
2952         int bgn_best = iocfg->io_out1_delay_max + 1;
2953         int end_best = iocfg->io_out1_delay_max + 1;
2954         int win_best = 0;
2955
2956         int ret;
2957
2958         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2959
2960         dm_margin = 0;
2961
2962         start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2963                           SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2964                           (rwcfg->mem_dq_per_write_dqs << 2));
2965
2966         /* Per-bit deskew. */
2967
2968         /*
2969          * Set the left and right edge of each bit to an illegal value.
2970          * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
2971          */
2972         sticky_bit_chk = 0;
2973         for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2974                 left_edge[i]  = iocfg->io_out1_delay_max + 1;
2975                 right_edge[i] = iocfg->io_out1_delay_max + 1;
2976         }
2977
2978         /* Search for the left edge of the window for each bit. */
2979         search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2980                          &sticky_bit_chk,
2981                          left_edge, right_edge, 0);
2982
2983         /* Search for the right edge of the window for each bit. */
2984         ret = search_right_edge(1, rank_bgn, write_group, 0,
2985                                 start_dqs, 0,
2986                                 &sticky_bit_chk,
2987                                 left_edge, right_edge, 0);
2988         if (ret) {
2989                 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2990                                         CAL_SUBSTAGE_WRITES_CENTER);
2991                 return -EINVAL;
2992         }
2993
2994         min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
2995
2996         /* Determine the amount we can change DQS (which is -mid_min). */
2997         orig_mid_min = mid_min;
2998         new_dqs = start_dqs;
2999         mid_min = 0;
3000         debug_cond(DLEVEL == 1,
3001                    "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3002                    __func__, __LINE__, start_dqs, new_dqs, mid_min);
3003
3004         /* Add delay to bring centre of all DQ windows to the same "level". */
3005         center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3006                           min_index, 0, &dq_margin, &dqs_margin);
3007
3008         /* Move DQS */
3009         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3010         writel(0, &sdr_scc_mgr->update);
3011
3012         /* Centre DM */
3013         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3014
3015         /*
3016          * Set the left and right edge of each bit to an illegal value.
3017          * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
3018          */
3019         left_edge[0]  = iocfg->io_out1_delay_max + 1;
3020         right_edge[0] = iocfg->io_out1_delay_max + 1;
3021
3022         /* Search for the/part of the window with DM shift. */
3023         search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3024                       &bgn_best, &end_best, &win_best, 0);
3025
3026         /* Reset DM delay chains to 0. */
3027         scc_mgr_apply_group_dm_out1_delay(0);
3028
3029         /*
3030          * Check to see if the current window nudges up aganist 0 delay.
3031          * If so we need to continue the search by shifting DQS otherwise DQS
3032          * search begins as a new search.
3033          */
3034         if (end_curr != 0) {
3035                 bgn_curr = iocfg->io_out1_delay_max + 1;
3036                 end_curr = iocfg->io_out1_delay_max + 1;
3037         }
3038
3039         /* Search for the/part of the window with DQS shifts. */
3040         search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3041                       &bgn_best, &end_best, &win_best, new_dqs);
3042
3043         /* Assign left and right edge for cal and reporting. */
3044         left_edge[0] = -1 * bgn_best;
3045         right_edge[0] = end_best;
3046
3047         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3048                    __func__, __LINE__, left_edge[0], right_edge[0]);
3049
3050         /* Move DQS (back to orig). */
3051         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3052
3053         /* Move DM */
3054
3055         /* Find middle of window for the DM bit. */
3056         mid = (left_edge[0] - right_edge[0]) / 2;
3057
3058         /* Only move right, since we are not moving DQS/DQ. */
3059         if (mid < 0)
3060                 mid = 0;
3061
3062         /* dm_marign should fail if we never find a window. */
3063         if (win_best == 0)
3064                 dm_margin = -1;
3065         else
3066                 dm_margin = left_edge[0] - mid;
3067
3068         scc_mgr_apply_group_dm_out1_delay(mid);
3069         writel(0, &sdr_scc_mgr->update);
3070
3071         debug_cond(DLEVEL == 2,
3072                    "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3073                    __func__, __LINE__, left_edge[0], right_edge[0],
3074                    mid, dm_margin);
3075         /* Export values. */
3076         gbl->fom_out += dq_margin + dqs_margin;
3077
3078         debug_cond(DLEVEL == 2,
3079                    "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3080                    __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3081
3082         /*
3083          * Do not remove this line as it makes sure all of our
3084          * decisions have been applied.
3085          */
3086         writel(0, &sdr_scc_mgr->update);
3087
3088         if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3089                 return -EINVAL;
3090
3091         return 0;
3092 }
3093
3094 /**
3095  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3096  * @rank_bgn:           Rank number
3097  * @group:              Read/Write Group
3098  * @test_bgn:           Rank at which the test begins
3099  *
3100  * Stage 2: Write Calibration Part One.
3101  *
3102  * This function implements UniPHY calibration Stage 2, as explained in
3103  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3104  */
3105 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3106                                        const u32 test_bgn)
3107 {
3108         int ret;
3109
3110         /* Update info for sims */
3111         debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3112
3113         reg_file_set_group(group);
3114         reg_file_set_stage(CAL_STAGE_WRITES);
3115         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3116
3117         ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3118         if (ret)
3119                 set_failing_group_stage(group, CAL_STAGE_WRITES,
3120                                         CAL_SUBSTAGE_WRITES_CENTER);
3121
3122         return ret;
3123 }
3124
3125 /**
3126  * mem_precharge_and_activate() - Precharge all banks and activate
3127  *
3128  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3129  */
3130 static void mem_precharge_and_activate(void)
3131 {
3132         int r;
3133
3134         for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
3135                 /* Set rank. */
3136                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3137
3138                 /* Precharge all banks. */
3139                 writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3140                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3141
3142                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3143                 writel(rwcfg->activate_0_and_1_wait1,
3144                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3145
3146                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3147                 writel(rwcfg->activate_0_and_1_wait2,
3148                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3149
3150                 /* Activate rows. */
3151                 writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3152                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3153         }
3154 }
3155
3156 /**
3157  * mem_init_latency() - Configure memory RLAT and WLAT settings
3158  *
3159  * Configure memory RLAT and WLAT parameters.
3160  */
3161 static void mem_init_latency(void)
3162 {
3163         /*
3164          * For AV/CV, LFIFO is hardened and always runs at full rate
3165          * so max latency in AFI clocks, used here, is correspondingly
3166          * smaller.
3167          */
3168         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3169         u32 rlat, wlat;
3170
3171         debug("%s:%d\n", __func__, __LINE__);
3172
3173         /*
3174          * Read in write latency.
3175          * WL for Hard PHY does not include additive latency.
3176          */
3177         wlat = readl(&data_mgr->t_wl_add);
3178         wlat += readl(&data_mgr->mem_t_add);
3179
3180         gbl->rw_wl_nop_cycles = wlat - 1;
3181
3182         /* Read in readl latency. */
3183         rlat = readl(&data_mgr->t_rl_add);
3184
3185         /* Set a pretty high read latency initially. */
3186         gbl->curr_read_lat = rlat + 16;
3187         if (gbl->curr_read_lat > max_latency)
3188                 gbl->curr_read_lat = max_latency;
3189
3190         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3191
3192         /* Advertise write latency. */
3193         writel(wlat, &phy_mgr_cfg->afi_wlat);
3194 }
3195
3196 /**
3197  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3198  *
3199  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3200  */
3201 static void mem_skip_calibrate(void)
3202 {
3203         uint32_t vfifo_offset;
3204         uint32_t i, j, r;
3205
3206         debug("%s:%d\n", __func__, __LINE__);
3207         /* Need to update every shadow register set used by the interface */
3208         for (r = 0; r < rwcfg->mem_number_of_ranks;
3209              r += NUM_RANKS_PER_SHADOW_REG) {
3210                 /*
3211                  * Set output phase alignment settings appropriate for
3212                  * skip calibration.
3213                  */
3214                 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3215                         scc_mgr_set_dqs_en_phase(i, 0);
3216                         if (iocfg->dll_chain_length == 6)
3217                                 scc_mgr_set_dqdqs_output_phase(i, 6);
3218                         else
3219                                 scc_mgr_set_dqdqs_output_phase(i, 7);
3220                         /*
3221                          * Case:33398
3222                          *
3223                          * Write data arrives to the I/O two cycles before write
3224                          * latency is reached (720 deg).
3225                          *   -> due to bit-slip in a/c bus
3226                          *   -> to allow board skew where dqs is longer than ck
3227                          *      -> how often can this happen!?
3228                          *      -> can claim back some ptaps for high freq
3229                          *       support if we can relax this, but i digress...
3230                          *
3231                          * The write_clk leads mem_ck by 90 deg
3232                          * The minimum ptap of the OPA is 180 deg
3233                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3234                          * The write_clk is always delayed by 2 ptaps
3235                          *
3236                          * Hence, to make DQS aligned to CK, we need to delay
3237                          * DQS by:
3238                          *    (720 - 90 - 180 - 2 * (360 / iocfg->dll_chain_length))
3239                          *
3240                          * Dividing the above by (360 / iocfg->dll_chain_length)
3241                          * gives us the number of ptaps, which simplies to:
3242                          *
3243                          *    (1.25 * iocfg->dll_chain_length - 2)
3244                          */
3245                         scc_mgr_set_dqdqs_output_phase(i,
3246                                         1.25 * iocfg->dll_chain_length - 2);
3247                 }
3248                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3249                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3250
3251                 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
3252                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3253                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3254                 }
3255                 writel(0xff, &sdr_scc_mgr->dq_ena);
3256                 writel(0xff, &sdr_scc_mgr->dm_ena);
3257                 writel(0, &sdr_scc_mgr->update);
3258         }
3259
3260         /* Compensate for simulation model behaviour */
3261         for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3262                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3263                 scc_mgr_load_dqs(i);
3264         }
3265         writel(0, &sdr_scc_mgr->update);
3266
3267         /*
3268          * ArriaV has hard FIFOs that can only be initialized by incrementing
3269          * in sequencer.
3270          */
3271         vfifo_offset = CALIB_VFIFO_OFFSET;
3272         for (j = 0; j < vfifo_offset; j++)
3273                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3274         writel(0, &phy_mgr_cmd->fifo_reset);
3275
3276         /*
3277          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3278          * setting from generation-time constant.
3279          */
3280         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3281         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3282 }
3283
3284 /**
3285  * mem_calibrate() - Memory calibration entry point.
3286  *
3287  * Perform memory calibration.
3288  */
3289 static uint32_t mem_calibrate(void)
3290 {
3291         uint32_t i;
3292         uint32_t rank_bgn, sr;
3293         uint32_t write_group, write_test_bgn;
3294         uint32_t read_group, read_test_bgn;
3295         uint32_t run_groups, current_run;
3296         uint32_t failing_groups = 0;
3297         uint32_t group_failed = 0;
3298
3299         const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width /
3300                                 rwcfg->mem_if_write_dqs_width;
3301
3302         debug("%s:%d\n", __func__, __LINE__);
3303
3304         /* Initialize the data settings */
3305         gbl->error_substage = CAL_SUBSTAGE_NIL;
3306         gbl->error_stage = CAL_STAGE_NIL;
3307         gbl->error_group = 0xff;
3308         gbl->fom_in = 0;
3309         gbl->fom_out = 0;
3310
3311         /* Initialize WLAT and RLAT. */
3312         mem_init_latency();
3313
3314         /* Initialize bit slips. */
3315         mem_precharge_and_activate();
3316
3317         for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3318                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3319                           SCC_MGR_GROUP_COUNTER_OFFSET);
3320                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3321                 if (i == 0)
3322                         scc_mgr_set_hhp_extras();
3323
3324                 scc_set_bypass_mode(i);
3325         }
3326
3327         /* Calibration is skipped. */
3328         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3329                 /*
3330                  * Set VFIFO and LFIFO to instant-on settings in skip
3331                  * calibration mode.
3332                  */
3333                 mem_skip_calibrate();
3334
3335                 /*
3336                  * Do not remove this line as it makes sure all of our
3337                  * decisions have been applied.
3338                  */
3339                 writel(0, &sdr_scc_mgr->update);
3340                 return 1;
3341         }
3342
3343         /* Calibration is not skipped. */
3344         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3345                 /*
3346                  * Zero all delay chain/phase settings for all
3347                  * groups and all shadow register sets.
3348                  */
3349                 scc_mgr_zero_all();
3350
3351                 run_groups = ~0;
3352
3353                 for (write_group = 0, write_test_bgn = 0; write_group
3354                         < rwcfg->mem_if_write_dqs_width; write_group++,
3355                         write_test_bgn += rwcfg->mem_dq_per_write_dqs) {
3356
3357                         /* Initialize the group failure */
3358                         group_failed = 0;
3359
3360                         current_run = run_groups & ((1 <<
3361                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3362                         run_groups = run_groups >>
3363                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3364
3365                         if (current_run == 0)
3366                                 continue;
3367
3368                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3369                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3370                         scc_mgr_zero_group(write_group, 0);
3371
3372                         for (read_group = write_group * rwdqs_ratio,
3373                              read_test_bgn = 0;
3374                              read_group < (write_group + 1) * rwdqs_ratio;
3375                              read_group++,
3376                              read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3377                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3378                                         continue;
3379
3380                                 /* Calibrate the VFIFO */
3381                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3382                                                                read_test_bgn))
3383                                         continue;
3384
3385                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3386                                         return 0;
3387
3388                                 /* The group failed, we're done. */
3389                                 goto grp_failed;
3390                         }
3391
3392                         /* Calibrate the output side */
3393                         for (rank_bgn = 0, sr = 0;
3394                              rank_bgn < rwcfg->mem_number_of_ranks;
3395                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3396                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3397                                         continue;
3398
3399                                 /* Not needed in quick mode! */
3400                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3401                                         continue;
3402
3403                                 /* Calibrate WRITEs */
3404                                 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3405                                                 write_group, write_test_bgn))
3406                                         continue;
3407
3408                                 group_failed = 1;
3409                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3410                                         return 0;
3411                         }
3412
3413                         /* Some group failed, we're done. */
3414                         if (group_failed)
3415                                 goto grp_failed;
3416
3417                         for (read_group = write_group * rwdqs_ratio,
3418                              read_test_bgn = 0;
3419                              read_group < (write_group + 1) * rwdqs_ratio;
3420                              read_group++,
3421                              read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3422                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3423                                         continue;
3424
3425                                 if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3426                                                                 read_test_bgn))
3427                                         continue;
3428
3429                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3430                                         return 0;
3431
3432                                 /* The group failed, we're done. */
3433                                 goto grp_failed;
3434                         }
3435
3436                         /* No group failed, continue as usual. */
3437                         continue;
3438
3439 grp_failed:             /* A group failed, increment the counter. */
3440                         failing_groups++;
3441                 }
3442
3443                 /*
3444                  * USER If there are any failing groups then report
3445                  * the failure.
3446                  */
3447                 if (failing_groups != 0)
3448                         return 0;
3449
3450                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3451                         continue;
3452
3453                 /* Calibrate the LFIFO */
3454                 if (!rw_mgr_mem_calibrate_lfifo())
3455                         return 0;
3456         }
3457
3458         /*
3459          * Do not remove this line as it makes sure all of our decisions
3460          * have been applied.
3461          */
3462         writel(0, &sdr_scc_mgr->update);
3463         return 1;
3464 }
3465
3466 /**
3467  * run_mem_calibrate() - Perform memory calibration
3468  *
3469  * This function triggers the entire memory calibration procedure.
3470  */
3471 static int run_mem_calibrate(void)
3472 {
3473         int pass;
3474
3475         debug("%s:%d\n", __func__, __LINE__);
3476
3477         /* Reset pass/fail status shown on afi_cal_success/fail */
3478         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3479
3480         /* Stop tracking manager. */
3481         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3482
3483         phy_mgr_initialize();
3484         rw_mgr_mem_initialize();
3485
3486         /* Perform the actual memory calibration. */
3487         pass = mem_calibrate();
3488
3489         mem_precharge_and_activate();
3490         writel(0, &phy_mgr_cmd->fifo_reset);
3491
3492         /* Handoff. */
3493         rw_mgr_mem_handoff();
3494         /*
3495          * In Hard PHY this is a 2-bit control:
3496          * 0: AFI Mux Select
3497          * 1: DDIO Mux Select
3498          */
3499         writel(0x2, &phy_mgr_cfg->mux_sel);
3500
3501         /* Start tracking manager. */
3502         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3503
3504         return pass;
3505 }
3506
3507 /**
3508  * debug_mem_calibrate() - Report result of memory calibration
3509  * @pass:       Value indicating whether calibration passed or failed
3510  *
3511  * This function reports the results of the memory calibration
3512  * and writes debug information into the register file.
3513  */
3514 static void debug_mem_calibrate(int pass)
3515 {
3516         uint32_t debug_info;
3517
3518         if (pass) {
3519                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3520
3521                 gbl->fom_in /= 2;
3522                 gbl->fom_out /= 2;
3523
3524                 if (gbl->fom_in > 0xff)
3525                         gbl->fom_in = 0xff;
3526
3527                 if (gbl->fom_out > 0xff)
3528                         gbl->fom_out = 0xff;
3529
3530                 /* Update the FOM in the register file */
3531                 debug_info = gbl->fom_in;
3532                 debug_info |= gbl->fom_out << 8;
3533                 writel(debug_info, &sdr_reg_file->fom);
3534
3535                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3536                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3537         } else {
3538                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3539
3540                 debug_info = gbl->error_stage;
3541                 debug_info |= gbl->error_substage << 8;
3542                 debug_info |= gbl->error_group << 16;
3543
3544                 writel(debug_info, &sdr_reg_file->failing_stage);
3545                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3546                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3547
3548                 /* Update the failing group/stage in the register file */
3549                 debug_info = gbl->error_stage;
3550                 debug_info |= gbl->error_substage << 8;
3551                 debug_info |= gbl->error_group << 16;
3552                 writel(debug_info, &sdr_reg_file->failing_stage);
3553         }
3554
3555         printf("%s: Calibration complete\n", __FILE__);
3556 }
3557
3558 /**
3559  * hc_initialize_rom_data() - Initialize ROM data
3560  *
3561  * Initialize ROM data.
3562  */
3563 static void hc_initialize_rom_data(void)
3564 {
3565         unsigned int nelem = 0;
3566         const u32 *rom_init;
3567         u32 i, addr;
3568
3569         socfpga_get_seq_inst_init(&rom_init, &nelem);
3570         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3571         for (i = 0; i < nelem; i++)
3572                 writel(rom_init[i], addr + (i << 2));
3573
3574         socfpga_get_seq_ac_init(&rom_init, &nelem);
3575         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3576         for (i = 0; i < nelem; i++)
3577                 writel(rom_init[i], addr + (i << 2));
3578 }
3579
3580 /**
3581  * initialize_reg_file() - Initialize SDR register file
3582  *
3583  * Initialize SDR register file.
3584  */
3585 static void initialize_reg_file(void)
3586 {
3587         /* Initialize the register file with the correct data */
3588         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3589         writel(0, &sdr_reg_file->debug_data_addr);
3590         writel(0, &sdr_reg_file->cur_stage);
3591         writel(0, &sdr_reg_file->fom);
3592         writel(0, &sdr_reg_file->failing_stage);
3593         writel(0, &sdr_reg_file->debug1);
3594         writel(0, &sdr_reg_file->debug2);
3595 }
3596
3597 /**
3598  * initialize_hps_phy() - Initialize HPS PHY
3599  *
3600  * Initialize HPS PHY.
3601  */
3602 static void initialize_hps_phy(void)
3603 {
3604         uint32_t reg;
3605         /*
3606          * Tracking also gets configured here because it's in the
3607          * same register.
3608          */
3609         uint32_t trk_sample_count = 7500;
3610         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3611         /*
3612          * Format is number of outer loops in the 16 MSB, sample
3613          * count in 16 LSB.
3614          */
3615
3616         reg = 0;
3617         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3618         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3619         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3620         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3621         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3622         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3623         /*
3624          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3625          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3626          */
3627         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3628         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3629                 trk_sample_count);
3630         writel(reg, &sdr_ctrl->phy_ctrl0);
3631
3632         reg = 0;
3633         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3634                 trk_sample_count >>
3635                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3636         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3637                 trk_long_idle_sample_count);
3638         writel(reg, &sdr_ctrl->phy_ctrl1);
3639
3640         reg = 0;
3641         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3642                 trk_long_idle_sample_count >>
3643                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3644         writel(reg, &sdr_ctrl->phy_ctrl2);
3645 }
3646
3647 /**
3648  * initialize_tracking() - Initialize tracking
3649  *
3650  * Initialize the register file with usable initial data.
3651  */
3652 static void initialize_tracking(void)
3653 {
3654         /*
3655          * Initialize the register file with the correct data.
3656          * Compute usable version of value in case we skip full
3657          * computation later.
3658          */
3659         writel(DIV_ROUND_UP(iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap) - 1,
3660                &sdr_reg_file->dtaps_per_ptap);
3661
3662         /* trk_sample_count */
3663         writel(7500, &sdr_reg_file->trk_sample_count);
3664
3665         /* longidle outer loop [15:0] */
3666         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3667
3668         /*
3669          * longidle sample count [31:24]
3670          * trfc, worst case of 933Mhz 4Gb [23:16]
3671          * trcd, worst case [15:8]
3672          * vfifo wait [7:0]
3673          */
3674         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3675                &sdr_reg_file->delays);
3676
3677         /* mux delay */
3678         writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) |
3679                (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0),
3680                &sdr_reg_file->trk_rw_mgr_addr);
3681
3682         writel(rwcfg->mem_if_read_dqs_width,
3683                &sdr_reg_file->trk_read_dqs_width);
3684
3685         /* trefi [7:0] */
3686         writel((rwcfg->refresh_all << 24) | (1000 << 0),
3687                &sdr_reg_file->trk_rfsh);
3688 }
3689
3690 int sdram_calibration_full(void)
3691 {
3692         struct param_type my_param;
3693         struct gbl_type my_gbl;
3694         uint32_t pass;
3695
3696         memset(&my_param, 0, sizeof(my_param));
3697         memset(&my_gbl, 0, sizeof(my_gbl));
3698
3699         param = &my_param;
3700         gbl = &my_gbl;
3701
3702         rwcfg = socfpga_get_sdram_rwmgr_config();
3703         iocfg = socfpga_get_sdram_io_config();
3704         misccfg = socfpga_get_sdram_misc_config();
3705
3706         /* Set the calibration enabled by default */
3707         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3708         /*
3709          * Only sweep all groups (regardless of fail state) by default
3710          * Set enabled read test by default.
3711          */
3712 #if DISABLE_GUARANTEED_READ
3713         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3714 #endif
3715         /* Initialize the register file */
3716         initialize_reg_file();
3717
3718         /* Initialize any PHY CSR */
3719         initialize_hps_phy();
3720
3721         scc_mgr_initialize();
3722
3723         initialize_tracking();
3724
3725         printf("%s: Preparing to start memory calibration\n", __FILE__);
3726
3727         debug("%s:%d\n", __func__, __LINE__);
3728         debug_cond(DLEVEL == 1,
3729                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3730                    rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm,
3731                    rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs,
3732                    rwcfg->mem_virtual_groups_per_read_dqs,
3733                    rwcfg->mem_virtual_groups_per_write_dqs);
3734         debug_cond(DLEVEL == 1,
3735                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3736                    rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width,
3737                    rwcfg->mem_data_width, rwcfg->mem_data_mask_width,
3738                    iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap);
3739         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3740                    iocfg->delay_per_dqs_en_dchain_tap, iocfg->dll_chain_length);
3741         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3742                    iocfg->dqs_en_phase_max, iocfg->dqdqs_out_phase_max,
3743                    iocfg->dqs_en_delay_max, iocfg->dqs_in_delay_max);
3744         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3745                    iocfg->io_in_delay_max, iocfg->io_out1_delay_max,
3746                    iocfg->io_out2_delay_max);
3747         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3748                    iocfg->dqs_in_reserve, iocfg->dqs_out_reserve);
3749
3750         hc_initialize_rom_data();
3751
3752         /* update info for sims */
3753         reg_file_set_stage(CAL_STAGE_NIL);
3754         reg_file_set_group(0);
3755
3756         /*
3757          * Load global needed for those actions that require
3758          * some dynamic calibration support.
3759          */
3760         dyn_calib_steps = STATIC_CALIB_STEPS;
3761         /*
3762          * Load global to allow dynamic selection of delay loop settings
3763          * based on calibration mode.
3764          */
3765         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3766                 skip_delay_mask = 0xff;
3767         else
3768                 skip_delay_mask = 0x0;
3769
3770         pass = run_mem_calibrate();
3771         debug_mem_calibrate(pass);
3772         return pass;
3773 }