]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay...
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34
35 static struct socfpga_data_mgr *data_mgr =
36         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41 #define DELTA_D         1
42
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60         STATIC_SKIP_DELAY_LOOPS)
61
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73
74 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
75
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77         ((non_skip_value) & skip_delay_mask)
78
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84         uint32_t write_group, uint32_t use_dm,
85         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88         uint32_t substage)
89 {
90         /*
91          * Only set the global stage if there was not been any other
92          * failing group
93          */
94         if (gbl->error_stage == CAL_STAGE_NIL)  {
95                 gbl->error_substage = substage;
96                 gbl->error_stage = stage;
97                 gbl->error_group = group;
98         }
99 }
100
101 static void reg_file_set_group(u16 set_group)
102 {
103         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105
106 static void reg_file_set_stage(u8 set_stage)
107 {
108         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113         set_sub_stage &= 0xff;
114         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124         u32 ratio;
125
126         debug("%s:%d\n", __func__, __LINE__);
127         /* Calibration has control over path to memory */
128         /*
129          * In Hard PHY this is a 2-bit control:
130          * 0: AFI Mux Select
131          * 1: DDIO Mux Select
132          */
133         writel(0x3, &phy_mgr_cfg->mux_sel);
134
135         /* USER memory clock is not stable we begin initialization  */
136         writel(0, &phy_mgr_cfg->reset_mem_stbl);
137
138         /* USER calibration status all set to zero */
139         writel(0, &phy_mgr_cfg->cal_status);
140
141         writel(0, &phy_mgr_cfg->cal_debug_info);
142
143         /* Init params only if we do NOT skip calibration. */
144         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145                 return;
146
147         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149         param->read_correct_mask_vg = (1 << ratio) - 1;
150         param->write_correct_mask_vg = (1 << ratio) - 1;
151         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153         ratio = RW_MGR_MEM_DATA_WIDTH /
154                 RW_MGR_MEM_DATA_MASK_WIDTH;
155         param->dm_correct_mask = (1 << ratio) - 1;
156 }
157
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:       Rank mask
161  * @odt_mode:   ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167         u32 odt_mask_0 = 0;
168         u32 odt_mask_1 = 0;
169         u32 cs_and_odt_mask;
170
171         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172                 odt_mask_0 = 0x0;
173                 odt_mask_1 = 0x0;
174         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
175                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176                 case 1: /* 1 Rank */
177                         /* Read: ODT = 0 ; Write: ODT = 1 */
178                         odt_mask_0 = 0x0;
179                         odt_mask_1 = 0x1;
180                         break;
181                 case 2: /* 2 Ranks */
182                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183                                 /*
184                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
185                                  *   OR
186                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187                                  *
188                                  * Since MEM_NUMBER_OF_RANKS is 2, they
189                                  * are both single rank with 2 CS each
190                                  * (special for RDIMM).
191                                  *
192                                  * Read: Turn on ODT on the opposite rank
193                                  * Write: Turn on ODT on all ranks
194                                  */
195                                 odt_mask_0 = 0x3 & ~(1 << rank);
196                                 odt_mask_1 = 0x3;
197                         } else {
198                                 /*
199                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
200                                  *
201                                  * Read: Turn on ODT off on all ranks
202                                  * Write: Turn on ODT on active rank
203                                  */
204                                 odt_mask_0 = 0x0;
205                                 odt_mask_1 = 0x3 & (1 << rank);
206                         }
207                         break;
208                 case 4: /* 4 Ranks */
209                         /* Read:
210                          * ----------+-----------------------+
211                          *           |         ODT           |
212                          * Read From +-----------------------+
213                          *   Rank    |  3  |  2  |  1  |  0  |
214                          * ----------+-----+-----+-----+-----+
215                          *     0     |  0  |  1  |  0  |  0  |
216                          *     1     |  1  |  0  |  0  |  0  |
217                          *     2     |  0  |  0  |  0  |  1  |
218                          *     3     |  0  |  0  |  1  |  0  |
219                          * ----------+-----+-----+-----+-----+
220                          *
221                          * Write:
222                          * ----------+-----------------------+
223                          *           |         ODT           |
224                          * Write To  +-----------------------+
225                          *   Rank    |  3  |  2  |  1  |  0  |
226                          * ----------+-----+-----+-----+-----+
227                          *     0     |  0  |  1  |  0  |  1  |
228                          *     1     |  1  |  0  |  1  |  0  |
229                          *     2     |  0  |  1  |  0  |  1  |
230                          *     3     |  1  |  0  |  1  |  0  |
231                          * ----------+-----+-----+-----+-----+
232                          */
233                         switch (rank) {
234                         case 0:
235                                 odt_mask_0 = 0x4;
236                                 odt_mask_1 = 0x5;
237                                 break;
238                         case 1:
239                                 odt_mask_0 = 0x8;
240                                 odt_mask_1 = 0xA;
241                                 break;
242                         case 2:
243                                 odt_mask_0 = 0x1;
244                                 odt_mask_1 = 0x5;
245                                 break;
246                         case 3:
247                                 odt_mask_0 = 0x2;
248                                 odt_mask_1 = 0xA;
249                                 break;
250                         }
251                         break;
252                 }
253         }
254
255         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256                           ((0xFF & odt_mask_0) << 8) |
257                           ((0xFF & odt_mask_1) << 16);
258         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:        Base offset in SCC Manager space
265  * @grp:        Read/Write group
266  * @val:        Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282         /*
283          * Clear register file for HPS. 16 (2^4) is the size of the
284          * full register file in the scc mgr:
285          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286          *                             MEM_IF_READ_DQS_WIDTH - 1);
287          */
288         int i;
289
290         for (i = 0; i < 16; i++) {
291                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292                            __func__, __LINE__, i);
293                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294         }
295 }
296
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320                     delay);
321 }
322
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336                     delay);
337 }
338
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343                     delay);
344 }
345
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349         writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355         writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367         writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:        Base offset in SCC Manager space
373  * @grp:        Read/Write group
374  * @val:        Value to be set
375  * @update:     If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381                                   const int update)
382 {
383         u32 r;
384
385         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386              r += NUM_RANKS_PER_SHADOW_REG) {
387                 scc_mgr_set(off, grp, val);
388
389                 if (update || (r == 0)) {
390                         writel(grp, &sdr_scc_mgr->dqs_ena);
391                         writel(0, &sdr_scc_mgr->update);
392                 }
393         }
394 }
395
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398         /*
399          * USER although the h/w doesn't support different phases per
400          * shadow register, for simplicity our scc manager modeling
401          * keeps different phase settings per shadow reg, and it's
402          * important for us to keep them in sync to match h/w.
403          * for efficiency, the scan chain update should occur only
404          * once to sr0.
405          */
406         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407                               read_group, phase, 0);
408 }
409
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411                                                      uint32_t phase)
412 {
413         /*
414          * USER although the h/w doesn't support different phases per
415          * shadow register, for simplicity our scc manager modeling
416          * keeps different phase settings per shadow reg, and it's
417          * important for us to keep them in sync to match h/w.
418          * for efficiency, the scan chain update should occur only
419          * once to sr0.
420          */
421         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422                               write_group, phase, 0);
423 }
424
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426                                                uint32_t delay)
427 {
428         /*
429          * In shadow register mode, the T11 settings are stored in
430          * registers in the core, which are updated by the DQS_ENA
431          * signals. Not issuing the SCC_MGR_UPD command allows us to
432          * save lots of rank switching overhead, by calling
433          * select_shadow_regs_for_update with update_scan_chains
434          * set to 0.
435          */
436         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437                               read_group, delay, 1);
438         writel(0, &sdr_scc_mgr->update);
439 }
440
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:        Write group
444  * @delay:              Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452         const int base = write_group * ratio;
453         int i;
454         /*
455          * Load the setting in the SCC manager
456          * Although OCT affects only write data, the OCT delay is controlled
457          * by the DQS logic block which is instantiated once per read group.
458          * For protocols where a write group consists of multiple read groups,
459          * the setting must be set multiple times.
460          */
461         for (i = 0; i < ratio; i++)
462                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472         /*
473          * Load the fixed setting in the SCC manager
474          * bits: 0:0 = 1'b1     - DQS bypass
475          * bits: 1:1 = 1'b1     - DQ bypass
476          * bits: 4:2 = 3'b001   - rfifo_mode
477          * bits: 6:5 = 2'b01    - rfifo clock_select
478          * bits: 7:7 = 1'b0     - separate gating from ungating setting
479          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
480          */
481         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482                           (1 << 2) | (1 << 1) | (1 << 0);
483         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484                          SCC_MGR_HHP_GLOBALS_OFFSET |
485                          SCC_MGR_HHP_EXTRAS_OFFSET;
486
487         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488                    __func__, __LINE__);
489         writel(value, addr);
490         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491                    __func__, __LINE__);
492 }
493
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501         int i, r;
502
503         /*
504          * USER Zero all DQS config settings, across all groups and all
505          * shadow registers
506          */
507         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508              r += NUM_RANKS_PER_SHADOW_REG) {
509                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510                         /*
511                          * The phases actually don't exist on a per-rank basis,
512                          * but there's no harm updating them several times, so
513                          * let's keep the code simple.
514                          */
515                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516                         scc_mgr_set_dqs_en_phase(i, 0);
517                         scc_mgr_set_dqs_en_delay(i, 0);
518                 }
519
520                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521                         scc_mgr_set_dqdqs_output_phase(i, 0);
522                         /* Arria V/Cyclone V don't have out2. */
523                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524                 }
525         }
526
527         /* Multicast to all DQS group enables. */
528         writel(0xff, &sdr_scc_mgr->dqs_ena);
529         writel(0, &sdr_scc_mgr->update);
530 }
531
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:        Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540         /* Multicast to all DQ enables. */
541         writel(0xff, &sdr_scc_mgr->dq_ena);
542         writel(0xff, &sdr_scc_mgr->dm_ena);
543
544         /* Update current DQS IO enable. */
545         writel(0, &sdr_scc_mgr->dqs_io_ena);
546
547         /* Update the DQS logic. */
548         writel(write_group, &sdr_scc_mgr->dqs_ena);
549
550         /* Hit update. */
551         writel(0, &sdr_scc_mgr->update);
552 }
553
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:        Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564         const int base = write_group * ratio;
565         int i;
566         /*
567          * Load the setting in the SCC manager
568          * Although OCT affects only write data, the OCT delay is controlled
569          * by the DQS logic block which is instantiated once per read group.
570          * For protocols where a write group consists of multiple read groups,
571          * the setting must be set multiple times.
572          */
573         for (i = 0; i < ratio; i++)
574                 writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584         int i, r;
585
586         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587              r += NUM_RANKS_PER_SHADOW_REG) {
588                 /* Zero all DQ config settings. */
589                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590                         scc_mgr_set_dq_out1_delay(i, 0);
591                         if (!out_only)
592                                 scc_mgr_set_dq_in_delay(i, 0);
593                 }
594
595                 /* Multicast to all DQ enables. */
596                 writel(0xff, &sdr_scc_mgr->dq_ena);
597
598                 /* Zero all DM config settings. */
599                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600                         scc_mgr_set_dm_out1_delay(i, 0);
601
602                 /* Multicast to all DM enables. */
603                 writel(0xff, &sdr_scc_mgr->dm_ena);
604
605                 /* Zero all DQS IO settings. */
606                 if (!out_only)
607                         scc_mgr_set_dqs_io_in_delay(0);
608
609                 /* Arria V/Cyclone V don't have out2. */
610                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612                 scc_mgr_load_dqs_for_write_group(write_group);
613
614                 /* Multicast to all DQS IO enables (only 1 in total). */
615                 writel(0, &sdr_scc_mgr->dqs_io_ena);
616
617                 /* Hit update to zero everything. */
618                 writel(0, &sdr_scc_mgr->update);
619         }
620 }
621
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628         uint32_t i, p;
629
630         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631                 scc_mgr_set_dq_in_delay(p, delay);
632                 scc_mgr_load_dq(p);
633         }
634 }
635
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:              Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644         int i;
645
646         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647                 scc_mgr_set_dq_out1_delay(i, delay);
648                 scc_mgr_load_dq(i);
649         }
650 }
651
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655         uint32_t i;
656
657         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658                 scc_mgr_set_dm_out1_delay(i, delay1);
659                 scc_mgr_load_dm(i);
660         }
661 }
662
663
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666                                                     uint32_t delay)
667 {
668         scc_mgr_set_dqs_out1_delay(delay);
669         scc_mgr_load_dqs_io();
670
671         scc_mgr_set_oct_out1_delay(write_group, delay);
672         scc_mgr_load_dqs_for_write_group(write_group);
673 }
674
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:        Write group
678  * @delay:              Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683                                                   const u32 delay)
684 {
685         u32 i, new_delay;
686
687         /* DQ shift */
688         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689                 scc_mgr_load_dq(i);
690
691         /* DM shift */
692         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693                 scc_mgr_load_dm(i);
694
695         /* DQS shift */
696         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698                 debug_cond(DLEVEL == 1,
699                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700                            __func__, __LINE__, write_group, delay, new_delay,
701                            IO_IO_OUT2_DELAY_MAX,
702                            new_delay - IO_IO_OUT2_DELAY_MAX);
703                 new_delay -= IO_IO_OUT2_DELAY_MAX;
704                 scc_mgr_set_dqs_out1_delay(new_delay);
705         }
706
707         scc_mgr_load_dqs_io();
708
709         /* OCT shift */
710         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712                 debug_cond(DLEVEL == 1,
713                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714                            __func__, __LINE__, write_group, delay,
715                            new_delay, IO_IO_OUT2_DELAY_MAX,
716                            new_delay - IO_IO_OUT2_DELAY_MAX);
717                 new_delay -= IO_IO_OUT2_DELAY_MAX;
718                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
719         }
720
721         scc_mgr_load_dqs_for_write_group(write_group);
722 }
723
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:        Write group
727  * @delay:              Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733                                                 const u32 delay)
734 {
735         int r;
736
737         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738              r += NUM_RANKS_PER_SHADOW_REG) {
739                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740                 writel(0, &sdr_scc_mgr->update);
741         }
742 }
743
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752         /*
753          * To save space, we replace return with jump to special shared
754          * RETURN instruction so we set the counter to large value so that
755          * we always jump.
756          */
757         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767         uint32_t afi_clocks;
768         uint8_t inner = 0;
769         uint8_t outer = 0;
770         uint16_t c_loop = 0;
771
772         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774
775         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776         /* scale (rounding up) to get afi clocks */
777
778         /*
779          * Note, we don't bother accounting for being off a little bit
780          * because of a few extra instructions in outer loops
781          * Note, the loops have a test at the end, and do the test before
782          * the decrement, and so always perform the loop
783          * 1 time more than the counter value
784          */
785         if (afi_clocks == 0) {
786                 ;
787         } else if (afi_clocks <= 0x100) {
788                 inner = afi_clocks-1;
789                 outer = 0;
790                 c_loop = 0;
791         } else if (afi_clocks <= 0x10000) {
792                 inner = 0xff;
793                 outer = (afi_clocks-1) >> 8;
794                 c_loop = 0;
795         } else {
796                 inner = 0xff;
797                 outer = 0xff;
798                 c_loop = (afi_clocks-1) >> 16;
799         }
800
801         /*
802          * rom instructions are structured as follows:
803          *
804          *    IDLE_LOOP2: jnz cntr0, TARGET_A
805          *    IDLE_LOOP1: jnz cntr1, TARGET_B
806          *                return
807          *
808          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809          * TARGET_B is set to IDLE_LOOP2 as well
810          *
811          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813          *
814          * a little confusing, but it helps save precious space in the inst_rom
815          * and sequencer rom and keeps the delays more accurate and reduces
816          * overhead
817          */
818         if (afi_clocks <= 0x100) {
819                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820                         &sdr_rw_load_mgr_regs->load_cntr1);
821
822                 writel(RW_MGR_IDLE_LOOP1,
823                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
824
825                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827         } else {
828                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829                         &sdr_rw_load_mgr_regs->load_cntr0);
830
831                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832                         &sdr_rw_load_mgr_regs->load_cntr1);
833
834                 writel(RW_MGR_IDLE_LOOP2,
835                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
836
837                 writel(RW_MGR_IDLE_LOOP2,
838                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
839
840                 /* hack to get around compiler not being smart enough */
841                 if (afi_clocks <= 0x10000) {
842                         /* only need to run once */
843                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845                 } else {
846                         do {
847                                 writel(RW_MGR_IDLE_LOOP2,
848                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
849                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850                         } while (c_loop-- != 0);
851                 }
852         }
853         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:      Counter 0 value
859  * @cntr1:      Counter 1 value
860  * @cntr2:      Counter 2 value
861  * @jump:       Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869
870         /* Load counters */
871         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872                &sdr_rw_load_mgr_regs->load_cntr0);
873         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874                &sdr_rw_load_mgr_regs->load_cntr1);
875         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876                &sdr_rw_load_mgr_regs->load_cntr2);
877
878         /* Load jump address */
879         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882
883         /* Execute count instruction */
884         writel(jump, grpaddr);
885 }
886
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:       Final instruction 1
890  * @fin2:       Final instruction 2
891  * @precharge:  If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896                                  const int precharge)
897 {
898         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900         u32 r;
901
902         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903                 if (param->skip_ranks[r]) {
904                         /* request to skip the rank */
905                         continue;
906                 }
907
908                 /* set rank */
909                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910
911                 /* precharge all banks ... */
912                 if (precharge)
913                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914
915                 /*
916                  * USER Use Mirror-ed commands for odd ranks if address
917                  * mirrorring is on
918                  */
919                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920                         set_jump_as_return();
921                         writel(RW_MGR_MRS2_MIRR, grpaddr);
922                         delay_for_n_mem_clocks(4);
923                         set_jump_as_return();
924                         writel(RW_MGR_MRS3_MIRR, grpaddr);
925                         delay_for_n_mem_clocks(4);
926                         set_jump_as_return();
927                         writel(RW_MGR_MRS1_MIRR, grpaddr);
928                         delay_for_n_mem_clocks(4);
929                         set_jump_as_return();
930                         writel(fin1, grpaddr);
931                 } else {
932                         set_jump_as_return();
933                         writel(RW_MGR_MRS2, grpaddr);
934                         delay_for_n_mem_clocks(4);
935                         set_jump_as_return();
936                         writel(RW_MGR_MRS3, grpaddr);
937                         delay_for_n_mem_clocks(4);
938                         set_jump_as_return();
939                         writel(RW_MGR_MRS1, grpaddr);
940                         set_jump_as_return();
941                         writel(fin2, grpaddr);
942                 }
943
944                 if (precharge)
945                         continue;
946
947                 set_jump_as_return();
948                 writel(RW_MGR_ZQCL, grpaddr);
949
950                 /* tZQinit = tDLLK = 512 ck cycles */
951                 delay_for_n_mem_clocks(512);
952         }
953 }
954
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962         debug("%s:%d\n", __func__, __LINE__);
963
964         /* The reset / cke part of initialization is broadcasted to all ranks */
965         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967
968         /*
969          * Here's how you load register for a loop
970          * Counters are located @ 0x800
971          * Jump address are located @ 0xC00
972          * For both, registers 0 to 3 are selected using bits 3 and 2, like
973          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974          * I know this ain't pretty, but Avalon bus throws away the 2 least
975          * significant bits
976          */
977
978         /* Start with memory RESET activated */
979
980         /* tINIT = 200us */
981
982         /*
983          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984          * If a and b are the number of iteration in 2 nested loops
985          * it takes the following number of cycles to complete the operation:
986          * number_of_cycles = ((2 + n) * a + 2) * b
987          * where n is the number of instruction in the inner loop
988          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989          * b = 6A
990          */
991         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992                                   SEQ_TINIT_CNTR2_VAL,
993                                   RW_MGR_INIT_RESET_0_CKE_0);
994
995         /* Indicate that memory is stable. */
996         writel(1, &phy_mgr_cfg->reset_mem_stbl);
997
998         /*
999          * transition the RESET to high
1000          * Wait for 500us
1001          */
1002
1003         /*
1004          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005          * If a and b are the number of iteration in 2 nested loops
1006          * it takes the following number of cycles to complete the operation
1007          * number_of_cycles = ((2 + n) * a + 2) * b
1008          * where n is the number of instruction in the inner loop
1009          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010          * b = FF
1011          */
1012         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013                                   SEQ_TRESET_CNTR2_VAL,
1014                                   RW_MGR_INIT_RESET_1_CKE_0);
1015
1016         /* Bring up clock enable. */
1017
1018         /* tXRP < 250 ck cycles */
1019         delay_for_n_mem_clocks(250);
1020
1021         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022                              0);
1023 }
1024
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032         /*
1033          * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034          * other commands, but we will have plenty of NIOS cycles before
1035          * actual handoff so its okay.
1036          */
1037 }
1038
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:   Rank number
1042  * @group:      Read/Write Group
1043  * @all_ranks:  Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050                                         const u32 all_ranks)
1051 {
1052         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054         const u32 addr_offset =
1055                          (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056         const u32 rank_end = all_ranks ?
1057                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1058                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061         const u32 correct_mask_vg = param->read_correct_mask_vg;
1062
1063         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064         int vg, r;
1065         int ret = 0;
1066
1067         bit_chk = param->read_correct_mask;
1068
1069         for (r = rank_bgn; r < rank_end; r++) {
1070                 /* Request to skip the rank */
1071                 if (param->skip_ranks[r])
1072                         continue;
1073
1074                 /* Set rank */
1075                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076
1077                 /* Load up a constant bursts of read commands */
1078                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079                 writel(RW_MGR_GUARANTEED_READ,
1080                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081
1082                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083                 writel(RW_MGR_GUARANTEED_READ_CONT,
1084                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085
1086                 tmp_bit_chk = 0;
1087                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088                      vg >= 0; vg--) {
1089                         /* Reset the FIFOs to get pointers to known state. */
1090                         writel(0, &phy_mgr_cmd->fifo_reset);
1091                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093                         writel(RW_MGR_GUARANTEED_READ,
1094                                addr + addr_offset + (vg << 2));
1095
1096                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097                         tmp_bit_chk <<= shift_ratio;
1098                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099                 }
1100
1101                 bit_chk &= tmp_bit_chk;
1102         }
1103
1104         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105
1106         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107
1108         if (bit_chk != param->read_correct_mask)
1109                 ret = -EIO;
1110
1111         debug_cond(DLEVEL == 1,
1112                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113                    __func__, __LINE__, group, bit_chk,
1114                    param->read_correct_mask, ret);
1115
1116         return ret;
1117 }
1118
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:   Rank number
1122  * @all_ranks:  Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127                                                     const int all_ranks)
1128 {
1129         const u32 rank_end = all_ranks ?
1130                         RW_MGR_MEM_NUMBER_OF_RANKS :
1131                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132         u32 r;
1133
1134         debug("%s:%d\n", __func__, __LINE__);
1135
1136         for (r = rank_bgn; r < rank_end; r++) {
1137                 if (param->skip_ranks[r])
1138                         /* request to skip the rank */
1139                         continue;
1140
1141                 /* set rank */
1142                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143
1144                 /* Load up a constant bursts */
1145                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146
1147                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149
1150                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151
1152                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154
1155                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156
1157                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159
1160                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161
1162                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164
1165                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167         }
1168
1169         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179         uint32_t all_groups, uint32_t all_ranks)
1180 {
1181         uint32_t r, vg;
1182         uint32_t correct_mask_vg;
1183         uint32_t tmp_bit_chk;
1184         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186         uint32_t addr;
1187         uint32_t base_rw_mgr;
1188
1189         *bit_chk = param->read_correct_mask;
1190         correct_mask_vg = param->read_correct_mask_vg;
1191
1192         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194
1195         for (r = rank_bgn; r < rank_end; r++) {
1196                 if (param->skip_ranks[r])
1197                         /* request to skip the rank */
1198                         continue;
1199
1200                 /* set rank */
1201                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202
1203                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204
1205                 writel(RW_MGR_READ_B2B_WAIT1,
1206                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207
1208                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209                 writel(RW_MGR_READ_B2B_WAIT2,
1210                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211
1212                 if (quick_read_mode)
1213                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214                         /* need at least two (1+1) reads to capture failures */
1215                 else if (all_groups)
1216                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217                 else
1218                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219
1220                 writel(RW_MGR_READ_B2B,
1221                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222                 if (all_groups)
1223                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225                                &sdr_rw_load_mgr_regs->load_cntr3);
1226                 else
1227                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228
1229                 writel(RW_MGR_READ_B2B,
1230                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231
1232                 tmp_bit_chk = 0;
1233                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234                         /* reset the fifos to get pointers to known state */
1235                         writel(0, &phy_mgr_cmd->fifo_reset);
1236                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238
1239                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241
1242                         if (all_groups)
1243                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244                         else
1245                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246
1247                         writel(RW_MGR_READ_B2B, addr +
1248                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249                                vg) << 2));
1250
1251                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253
1254                         if (vg == 0)
1255                                 break;
1256                 }
1257                 *bit_chk &= tmp_bit_chk;
1258         }
1259
1260         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262
1263         if (all_correct) {
1264                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266                            (%u == %u) => %lu", __func__, __LINE__, group,
1267                            all_groups, *bit_chk, param->read_correct_mask,
1268                            (long unsigned int)(*bit_chk ==
1269                            param->read_correct_mask));
1270                 return *bit_chk == param->read_correct_mask;
1271         } else  {
1272                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274                            (%u != %lu) => %lu\n", __func__, __LINE__,
1275                            group, all_groups, *bit_chk, (long unsigned int)0,
1276                            (long unsigned int)(*bit_chk != 0x00));
1277                 return *bit_chk != 0x00;
1278         }
1279 }
1280
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283         uint32_t all_groups)
1284 {
1285         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286                                               bit_chk, all_groups, 1);
1287 }
1288
1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1290 {
1291         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1292         (*v)++;
1293 }
1294
1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1296 {
1297         uint32_t i;
1298
1299         for (i = 0; i < VFIFO_SIZE-1; i++)
1300                 rw_mgr_incr_vfifo(grp, v);
1301 }
1302
1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1304 {
1305         uint32_t  v;
1306         uint32_t fail_cnt = 0;
1307         uint32_t test_status;
1308
1309         for (v = 0; v < VFIFO_SIZE; ) {
1310                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1311                            __func__, __LINE__, v);
1312                 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1313                         (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1314                 if (!test_status) {
1315                         fail_cnt++;
1316
1317                         if (fail_cnt == 2)
1318                                 break;
1319                 }
1320
1321                 /* fiddle with FIFO */
1322                 rw_mgr_incr_vfifo(grp, &v);
1323         }
1324
1325         if (v >= VFIFO_SIZE) {
1326                 /* no failing read found!! Something must have gone wrong */
1327                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1328                            __func__, __LINE__);
1329                 return 0;
1330         } else {
1331                 return v;
1332         }
1333 }
1334
1335 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1336                               uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1337                               uint32_t *v, uint32_t *d, uint32_t *p,
1338                               uint32_t *i, uint32_t *max_working_cnt)
1339 {
1340         uint32_t found_begin = 0;
1341         uint32_t tmp_delay = 0;
1342         uint32_t test_status;
1343
1344         for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1345                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1346                 *work_bgn = tmp_delay;
1347                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1348
1349                 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1350                         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1351                                 IO_DELAY_PER_OPA_TAP) {
1352                                 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1353
1354                                 test_status =
1355                                 rw_mgr_mem_calibrate_read_test_all_ranks
1356                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1357
1358                                 if (test_status) {
1359                                         *max_working_cnt = 1;
1360                                         found_begin = 1;
1361                                         break;
1362                                 }
1363                         }
1364
1365                         if (found_begin)
1366                                 break;
1367
1368                         if (*p > IO_DQS_EN_PHASE_MAX)
1369                                 /* fiddle with FIFO */
1370                                 rw_mgr_incr_vfifo(*grp, v);
1371                 }
1372
1373                 if (found_begin)
1374                         break;
1375         }
1376
1377         if (*i >= VFIFO_SIZE) {
1378                 /* cannot find working solution */
1379                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1380                            ptap/dtap\n", __func__, __LINE__);
1381                 return 0;
1382         } else {
1383                 return 1;
1384         }
1385 }
1386
1387 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1388                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1389                              uint32_t *p, uint32_t *max_working_cnt)
1390 {
1391         uint32_t found_begin = 0;
1392         uint32_t tmp_delay;
1393
1394         /* Special case code for backing up a phase */
1395         if (*p == 0) {
1396                 *p = IO_DQS_EN_PHASE_MAX;
1397                 rw_mgr_decr_vfifo(*grp, v);
1398         } else {
1399                 (*p)--;
1400         }
1401         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1402         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1403
1404         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1405                 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1406                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1407
1408                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1409                                                              PASS_ONE_BIT,
1410                                                              bit_chk, 0)) {
1411                         found_begin = 1;
1412                         *work_bgn = tmp_delay;
1413                         break;
1414                 }
1415         }
1416
1417         /* We have found a working dtap before the ptap found above */
1418         if (found_begin == 1)
1419                 (*max_working_cnt)++;
1420
1421         /*
1422          * Restore VFIFO to old state before we decremented it
1423          * (if needed).
1424          */
1425         (*p)++;
1426         if (*p > IO_DQS_EN_PHASE_MAX) {
1427                 *p = 0;
1428                 rw_mgr_incr_vfifo(*grp, v);
1429         }
1430
1431         scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1432 }
1433
1434 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1435                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1436                              uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1437                              uint32_t *work_end)
1438 {
1439         uint32_t found_end = 0;
1440
1441         (*p)++;
1442         *work_end += IO_DELAY_PER_OPA_TAP;
1443         if (*p > IO_DQS_EN_PHASE_MAX) {
1444                 /* fiddle with FIFO */
1445                 *p = 0;
1446                 rw_mgr_incr_vfifo(*grp, v);
1447         }
1448
1449         for (; *i < VFIFO_SIZE + 1; (*i)++) {
1450                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1451                         += IO_DELAY_PER_OPA_TAP) {
1452                         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1453
1454                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1455                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1456                                 found_end = 1;
1457                                 break;
1458                         } else {
1459                                 (*max_working_cnt)++;
1460                         }
1461                 }
1462
1463                 if (found_end)
1464                         break;
1465
1466                 if (*p > IO_DQS_EN_PHASE_MAX) {
1467                         /* fiddle with FIFO */
1468                         rw_mgr_incr_vfifo(*grp, v);
1469                         *p = 0;
1470                 }
1471         }
1472
1473         if (*i >= VFIFO_SIZE + 1) {
1474                 /* cannot see edge of failing read */
1475                 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1476                            failed\n", __func__, __LINE__);
1477                 return 0;
1478         } else {
1479                 return 1;
1480         }
1481 }
1482
1483 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1484                                   uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1485                                   uint32_t *p, uint32_t *work_mid,
1486                                   uint32_t *work_end)
1487 {
1488         int i;
1489         int tmp_delay = 0;
1490
1491         *work_mid = (*work_bgn + *work_end) / 2;
1492
1493         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1494                    *work_bgn, *work_end, *work_mid);
1495         /* Get the middle delay to be less than a VFIFO delay */
1496         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1497                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1498                 ;
1499         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1500         while (*work_mid > tmp_delay)
1501                 *work_mid -= tmp_delay;
1502         debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1503
1504         tmp_delay = 0;
1505         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1506                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1507                 ;
1508         tmp_delay -= IO_DELAY_PER_OPA_TAP;
1509         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1510         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1511                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1512                 ;
1513         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1514
1515         scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1516         scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1517
1518         /*
1519          * push vfifo until we can successfully calibrate. We can do this
1520          * because the largest possible margin in 1 VFIFO cycle.
1521          */
1522         for (i = 0; i < VFIFO_SIZE; i++) {
1523                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1524                            *v);
1525                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1526                                                              PASS_ONE_BIT,
1527                                                              bit_chk, 0)) {
1528                         break;
1529                 }
1530
1531                 /* fiddle with FIFO */
1532                 rw_mgr_incr_vfifo(*grp, v);
1533         }
1534
1535         if (i >= VFIFO_SIZE) {
1536                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1537                            failed\n", __func__, __LINE__);
1538                 return 0;
1539         } else {
1540                 return 1;
1541         }
1542 }
1543
1544 /* find a good dqs enable to use */
1545 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1546 {
1547         uint32_t v, d, p, i;
1548         uint32_t max_working_cnt;
1549         uint32_t bit_chk;
1550         uint32_t dtaps_per_ptap;
1551         uint32_t work_bgn, work_mid, work_end;
1552         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1553
1554         debug("%s:%d %u\n", __func__, __LINE__, grp);
1555
1556         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1557
1558         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1559         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1560
1561         /* ************************************************************** */
1562         /* * Step 0 : Determine number of delay taps for each phase tap * */
1563         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1564
1565         /* ********************************************************* */
1566         /* * Step 1 : First push vfifo until we get a failing read * */
1567         v = find_vfifo_read(grp, &bit_chk);
1568
1569         max_working_cnt = 0;
1570
1571         /* ******************************************************** */
1572         /* * step 2: find first working phase, increment in ptaps * */
1573         work_bgn = 0;
1574         if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1575                                 &p, &i, &max_working_cnt) == 0)
1576                 return 0;
1577
1578         work_end = work_bgn;
1579
1580         /*
1581          * If d is 0 then the working window covers a phase tap and
1582          * we can follow the old procedure otherwise, we've found the beginning,
1583          * and we need to increment the dtaps until we find the end.
1584          */
1585         if (d == 0) {
1586                 /* ********************************************************* */
1587                 /* * step 3a: if we have room, back off by one and
1588                 increment in dtaps * */
1589
1590                 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1591                                  &max_working_cnt);
1592
1593                 /* ********************************************************* */
1594                 /* * step 4a: go forward from working phase to non working
1595                 phase, increment in ptaps * */
1596                 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1597                                          &i, &max_working_cnt, &work_end) == 0)
1598                         return 0;
1599
1600                 /* ********************************************************* */
1601                 /* * step 5a:  back off one from last, increment in dtaps  * */
1602
1603                 /* Special case code for backing up a phase */
1604                 if (p == 0) {
1605                         p = IO_DQS_EN_PHASE_MAX;
1606                         rw_mgr_decr_vfifo(grp, &v);
1607                 } else {
1608                         p = p - 1;
1609                 }
1610
1611                 work_end -= IO_DELAY_PER_OPA_TAP;
1612                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1613
1614                 /* * The actual increment of dtaps is done outside of
1615                 the if/else loop to share code */
1616                 d = 0;
1617
1618                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1619                            vfifo=%u ptap=%u\n", __func__, __LINE__,
1620                            v, p);
1621         } else {
1622                 /* ******************************************************* */
1623                 /* * step 3-5b:  Find the right edge of the window using
1624                 delay taps   * */
1625                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1626                            ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1627                            v, p, d, work_bgn);
1628
1629                 work_end = work_bgn;
1630
1631                 /* * The actual increment of dtaps is done outside of the
1632                 if/else loop to share code */
1633
1634                 /* Only here to counterbalance a subtract later on which is
1635                 not needed if this branch of the algorithm is taken */
1636                 max_working_cnt++;
1637         }
1638
1639         /* The dtap increment to find the failing edge is done here */
1640         for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1641                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1642                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1643                                    end-2: dtap=%u\n", __func__, __LINE__, d);
1644                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1645
1646                         if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1647                                                                       PASS_ONE_BIT,
1648                                                                       &bit_chk, 0)) {
1649                                 break;
1650                         }
1651         }
1652
1653         /* Go back to working dtap */
1654         if (d != 0)
1655                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1656
1657         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1658                    ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1659                    v, p, d-1, work_end);
1660
1661         if (work_end < work_bgn) {
1662                 /* nil range */
1663                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1664                            failed\n", __func__, __LINE__);
1665                 return 0;
1666         }
1667
1668         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1669                    __func__, __LINE__, work_bgn, work_end);
1670
1671         /* *************************************************************** */
1672         /*
1673          * * We need to calculate the number of dtaps that equal a ptap
1674          * * To do that we'll back up a ptap and re-find the edge of the
1675          * * window using dtaps
1676          */
1677
1678         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1679                    for tracking\n", __func__, __LINE__);
1680
1681         /* Special case code for backing up a phase */
1682         if (p == 0) {
1683                 p = IO_DQS_EN_PHASE_MAX;
1684                 rw_mgr_decr_vfifo(grp, &v);
1685                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1686                            cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1687                            v, p);
1688         } else {
1689                 p = p - 1;
1690                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1691                            phase only: v=%u p=%u", __func__, __LINE__,
1692                            v, p);
1693         }
1694
1695         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1696
1697         /*
1698          * Increase dtap until we first see a passing read (in case the
1699          * window is smaller than a ptap),
1700          * and then a failing read to mark the edge of the window again
1701          */
1702
1703         /* Find a passing read */
1704         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1705                    __func__, __LINE__);
1706         found_passing_read = 0;
1707         found_failing_read = 0;
1708         initial_failing_dtap = d;
1709         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1710                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1711                            read d=%u\n", __func__, __LINE__, d);
1712                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1713
1714                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1715                                                              PASS_ONE_BIT,
1716                                                              &bit_chk, 0)) {
1717                         found_passing_read = 1;
1718                         break;
1719                 }
1720         }
1721
1722         if (found_passing_read) {
1723                 /* Find a failing read */
1724                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1725                            read\n", __func__, __LINE__);
1726                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1727                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1728                                    testing read d=%u\n", __func__, __LINE__, d);
1729                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1730
1731                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1732                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1733                                 found_failing_read = 1;
1734                                 break;
1735                         }
1736                 }
1737         } else {
1738                 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1739                            calculate dtaps", __func__, __LINE__);
1740                 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1741         }
1742
1743         /*
1744          * The dynamically calculated dtaps_per_ptap is only valid if we
1745          * found a passing/failing read. If we didn't, it means d hit the max
1746          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1747          * statically calculated value.
1748          */
1749         if (found_passing_read && found_failing_read)
1750                 dtaps_per_ptap = d - initial_failing_dtap;
1751
1752         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1753         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1754                    - %u = %u",  __func__, __LINE__, d,
1755                    initial_failing_dtap, dtaps_per_ptap);
1756
1757         /* ******************************************** */
1758         /* * step 6:  Find the centre of the window   * */
1759         if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1760                                    &work_mid, &work_end) == 0)
1761                 return 0;
1762
1763         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1764                    vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1765                    v, p-1, d);
1766         return 1;
1767 }
1768
1769 /* per-bit deskew DQ and center */
1770 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1771         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1772         uint32_t use_read_test, uint32_t update_fom)
1773 {
1774         uint32_t i, p, d, min_index;
1775         /*
1776          * Store these as signed since there are comparisons with
1777          * signed numbers.
1778          */
1779         uint32_t bit_chk;
1780         uint32_t sticky_bit_chk;
1781         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1782         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1783         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1784         int32_t mid;
1785         int32_t orig_mid_min, mid_min;
1786         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1787                 final_dqs_en;
1788         int32_t dq_margin, dqs_margin;
1789         uint32_t stop;
1790         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1791         uint32_t addr;
1792
1793         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1794
1795         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1796         start_dqs = readl(addr + (read_group << 2));
1797         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1798                 start_dqs_en = readl(addr + ((read_group << 2)
1799                                      - IO_DQS_EN_DELAY_OFFSET));
1800
1801         /* set the left and right edge of each bit to an illegal value */
1802         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1803         sticky_bit_chk = 0;
1804         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1805                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1806                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1807         }
1808
1809         /* Search for the left edge of the window for each bit */
1810         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1811                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1812
1813                 writel(0, &sdr_scc_mgr->update);
1814
1815                 /*
1816                  * Stop searching when the read test doesn't pass AND when
1817                  * we've seen a passing read on every bit.
1818                  */
1819                 if (use_read_test) {
1820                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1821                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1822                                 &bit_chk, 0, 0);
1823                 } else {
1824                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1825                                                         0, PASS_ONE_BIT,
1826                                                         &bit_chk, 0);
1827                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1828                                 (read_group - (write_group *
1829                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1830                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1831                         stop = (bit_chk == 0);
1832                 }
1833                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1834                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1835                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1836                            && %u", __func__, __LINE__, d,
1837                            sticky_bit_chk,
1838                         param->read_correct_mask, stop);
1839
1840                 if (stop == 1) {
1841                         break;
1842                 } else {
1843                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1844                                 if (bit_chk & 1) {
1845                                         /* Remember a passing test as the
1846                                         left_edge */
1847                                         left_edge[i] = d;
1848                                 } else {
1849                                         /* If a left edge has not been seen yet,
1850                                         then a future passing test will mark
1851                                         this edge as the right edge */
1852                                         if (left_edge[i] ==
1853                                                 IO_IO_IN_DELAY_MAX + 1) {
1854                                                 right_edge[i] = -(d + 1);
1855                                         }
1856                                 }
1857                                 bit_chk = bit_chk >> 1;
1858                         }
1859                 }
1860         }
1861
1862         /* Reset DQ delay chains to 0 */
1863         scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1864         sticky_bit_chk = 0;
1865         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1866                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1867                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1868                            i, left_edge[i], i, right_edge[i]);
1869
1870                 /*
1871                  * Check for cases where we haven't found the left edge,
1872                  * which makes our assignment of the the right edge invalid.
1873                  * Reset it to the illegal value.
1874                  */
1875                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1876                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1877                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1878                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1879                                    right_edge[%u]: %d\n", __func__, __LINE__,
1880                                    i, right_edge[i]);
1881                 }
1882
1883                 /*
1884                  * Reset sticky bit (except for bits where we have seen
1885                  * both the left and right edge).
1886                  */
1887                 sticky_bit_chk = sticky_bit_chk << 1;
1888                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1889                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1890                         sticky_bit_chk = sticky_bit_chk | 1;
1891                 }
1892
1893                 if (i == 0)
1894                         break;
1895         }
1896
1897         /* Search for the right edge of the window for each bit */
1898         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1899                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1900                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1901                         uint32_t delay = d + start_dqs_en;
1902                         if (delay > IO_DQS_EN_DELAY_MAX)
1903                                 delay = IO_DQS_EN_DELAY_MAX;
1904                         scc_mgr_set_dqs_en_delay(read_group, delay);
1905                 }
1906                 scc_mgr_load_dqs(read_group);
1907
1908                 writel(0, &sdr_scc_mgr->update);
1909
1910                 /*
1911                  * Stop searching when the read test doesn't pass AND when
1912                  * we've seen a passing read on every bit.
1913                  */
1914                 if (use_read_test) {
1915                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1916                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1917                                 &bit_chk, 0, 0);
1918                 } else {
1919                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1920                                                         0, PASS_ONE_BIT,
1921                                                         &bit_chk, 0);
1922                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1923                                 (read_group - (write_group *
1924                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1925                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1926                         stop = (bit_chk == 0);
1927                 }
1928                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1929                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1930
1931                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1932                            %u && %u", __func__, __LINE__, d,
1933                            sticky_bit_chk, param->read_correct_mask, stop);
1934
1935                 if (stop == 1) {
1936                         break;
1937                 } else {
1938                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1939                                 if (bit_chk & 1) {
1940                                         /* Remember a passing test as
1941                                         the right_edge */
1942                                         right_edge[i] = d;
1943                                 } else {
1944                                         if (d != 0) {
1945                                                 /* If a right edge has not been
1946                                                 seen yet, then a future passing
1947                                                 test will mark this edge as the
1948                                                 left edge */
1949                                                 if (right_edge[i] ==
1950                                                 IO_IO_IN_DELAY_MAX + 1) {
1951                                                         left_edge[i] = -(d + 1);
1952                                                 }
1953                                         } else {
1954                                                 /* d = 0 failed, but it passed
1955                                                 when testing the left edge,
1956                                                 so it must be marginal,
1957                                                 set it to -1 */
1958                                                 if (right_edge[i] ==
1959                                                         IO_IO_IN_DELAY_MAX + 1 &&
1960                                                         left_edge[i] !=
1961                                                         IO_IO_IN_DELAY_MAX
1962                                                         + 1) {
1963                                                         right_edge[i] = -1;
1964                                                 }
1965                                                 /* If a right edge has not been
1966                                                 seen yet, then a future passing
1967                                                 test will mark this edge as the
1968                                                 left edge */
1969                                                 else if (right_edge[i] ==
1970                                                         IO_IO_IN_DELAY_MAX +
1971                                                         1) {
1972                                                         left_edge[i] = -(d + 1);
1973                                                 }
1974                                         }
1975                                 }
1976
1977                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1978                                            d=%u]: ", __func__, __LINE__, d);
1979                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1980                                            (int)(bit_chk & 1), i, left_edge[i]);
1981                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1982                                            right_edge[i]);
1983                                 bit_chk = bit_chk >> 1;
1984                         }
1985                 }
1986         }
1987
1988         /* Check that all bits have a window */
1989         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1990                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1991                            %d right_edge[%u]: %d", __func__, __LINE__,
1992                            i, left_edge[i], i, right_edge[i]);
1993                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1994                         == IO_IO_IN_DELAY_MAX + 1)) {
1995                         /*
1996                          * Restore delay chain settings before letting the loop
1997                          * in rw_mgr_mem_calibrate_vfifo to retry different
1998                          * dqs/ck relationships.
1999                          */
2000                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2001                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2002                                 scc_mgr_set_dqs_en_delay(read_group,
2003                                                          start_dqs_en);
2004                         }
2005                         scc_mgr_load_dqs(read_group);
2006                         writel(0, &sdr_scc_mgr->update);
2007
2008                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2009                                    find edge [%u]: %d %d", __func__, __LINE__,
2010                                    i, left_edge[i], right_edge[i]);
2011                         if (use_read_test) {
2012                                 set_failing_group_stage(read_group *
2013                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2014                                         CAL_STAGE_VFIFO,
2015                                         CAL_SUBSTAGE_VFIFO_CENTER);
2016                         } else {
2017                                 set_failing_group_stage(read_group *
2018                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2019                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2020                                         CAL_SUBSTAGE_VFIFO_CENTER);
2021                         }
2022                         return 0;
2023                 }
2024         }
2025
2026         /* Find middle of window for each DQ bit */
2027         mid_min = left_edge[0] - right_edge[0];
2028         min_index = 0;
2029         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2030                 mid = left_edge[i] - right_edge[i];
2031                 if (mid < mid_min) {
2032                         mid_min = mid;
2033                         min_index = i;
2034                 }
2035         }
2036
2037         /*
2038          * -mid_min/2 represents the amount that we need to move DQS.
2039          * If mid_min is odd and positive we'll need to add one to
2040          * make sure the rounding in further calculations is correct
2041          * (always bias to the right), so just add 1 for all positive values.
2042          */
2043         if (mid_min > 0)
2044                 mid_min++;
2045
2046         mid_min = mid_min / 2;
2047
2048         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2049                    __func__, __LINE__, mid_min, min_index);
2050
2051         /* Determine the amount we can change DQS (which is -mid_min) */
2052         orig_mid_min = mid_min;
2053         new_dqs = start_dqs - mid_min;
2054         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2055                 new_dqs = IO_DQS_IN_DELAY_MAX;
2056         else if (new_dqs < 0)
2057                 new_dqs = 0;
2058
2059         mid_min = start_dqs - new_dqs;
2060         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2061                    mid_min, new_dqs);
2062
2063         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2064                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2065                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2066                 else if (start_dqs_en - mid_min < 0)
2067                         mid_min += start_dqs_en - mid_min;
2068         }
2069         new_dqs = start_dqs - mid_min;
2070
2071         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2072                    new_dqs=%d mid_min=%d\n", start_dqs,
2073                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2074                    new_dqs, mid_min);
2075
2076         /* Initialize data for export structures */
2077         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2078         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2079
2080         /* add delay to bring centre of all DQ windows to the same "level" */
2081         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2082                 /* Use values before divide by 2 to reduce round off error */
2083                 shift_dq = (left_edge[i] - right_edge[i] -
2084                         (left_edge[min_index] - right_edge[min_index]))/2  +
2085                         (orig_mid_min - mid_min);
2086
2087                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2088                            shift_dq[%u]=%d\n", i, shift_dq);
2089
2090                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2091                 temp_dq_in_delay1 = readl(addr + (p << 2));
2092                 temp_dq_in_delay2 = readl(addr + (i << 2));
2093
2094                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2095                         (int32_t)IO_IO_IN_DELAY_MAX) {
2096                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2097                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2098                         shift_dq = -(int32_t)temp_dq_in_delay1;
2099                 }
2100                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2101                            shift_dq[%u]=%d\n", i, shift_dq);
2102                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2103                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2104                 scc_mgr_load_dq(p);
2105
2106                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2107                            left_edge[i] - shift_dq + (-mid_min),
2108                            right_edge[i] + shift_dq - (-mid_min));
2109                 /* To determine values for export structures */
2110                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2111                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2112
2113                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2114                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2115         }
2116
2117         final_dqs = new_dqs;
2118         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2119                 final_dqs_en = start_dqs_en - mid_min;
2120
2121         /* Move DQS-en */
2122         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2123                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2124                 scc_mgr_load_dqs(read_group);
2125         }
2126
2127         /* Move DQS */
2128         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2129         scc_mgr_load_dqs(read_group);
2130         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2131                    dqs_margin=%d", __func__, __LINE__,
2132                    dq_margin, dqs_margin);
2133
2134         /*
2135          * Do not remove this line as it makes sure all of our decisions
2136          * have been applied. Apply the update bit.
2137          */
2138         writel(0, &sdr_scc_mgr->update);
2139
2140         return (dq_margin >= 0) && (dqs_margin >= 0);
2141 }
2142
2143 /**
2144  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2145  * @rw_group:   Read/Write Group
2146  * @phase:      DQ/DQS phase
2147  *
2148  * Because initially no communication ca be reliably performed with the memory
2149  * device, the sequencer uses a guaranteed write mechanism to write data into
2150  * the memory device.
2151  */
2152 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2153                                                  const u32 phase)
2154 {
2155         int ret;
2156
2157         /* Set a particular DQ/DQS phase. */
2158         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2159
2160         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2161                    __func__, __LINE__, rw_group, phase);
2162
2163         /*
2164          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2165          * Load up the patterns used by read calibration using the
2166          * current DQDQS phase.
2167          */
2168         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2169
2170         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2171                 return 0;
2172
2173         /*
2174          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2175          * Back-to-Back reads of the patterns used for calibration.
2176          */
2177         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2178         if (ret)
2179                 debug_cond(DLEVEL == 1,
2180                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2181                            __func__, __LINE__, rw_group, phase);
2182         return ret;
2183 }
2184
2185 /**
2186  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2187  * @rw_group:   Read/Write Group
2188  * @test_bgn:   Rank at which the test begins
2189  *
2190  * DQS enable calibration ensures reliable capture of the DQ signal without
2191  * glitches on the DQS line.
2192  */
2193 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2194                                                        const u32 test_bgn)
2195 {
2196         /*
2197          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2198          * DQS and DQS Eanble Signal Relationships.
2199          */
2200
2201         /* We start at zero, so have one less dq to devide among */
2202         const u32 delay_step = IO_IO_IN_DELAY_MAX /
2203                                (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2204         int found;
2205         u32 i, p, d, r;
2206
2207         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2208
2209         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2210         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2211              r += NUM_RANKS_PER_SHADOW_REG) {
2212                 for (i = 0, p = test_bgn, d = 0;
2213                      i < RW_MGR_MEM_DQ_PER_READ_DQS;
2214                      i++, p++, d += delay_step) {
2215                         debug_cond(DLEVEL == 1,
2216                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2217                                    __func__, __LINE__, rw_group, r, i, p, d);
2218
2219                         scc_mgr_set_dq_in_delay(p, d);
2220                         scc_mgr_load_dq(p);
2221                 }
2222
2223                 writel(0, &sdr_scc_mgr->update);
2224         }
2225
2226         /*
2227          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2228          * dq_in_delay values
2229          */
2230         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2231
2232         debug_cond(DLEVEL == 1,
2233                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2234                    __func__, __LINE__, rw_group, found);
2235
2236         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2237              r += NUM_RANKS_PER_SHADOW_REG) {
2238                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2239                 writel(0, &sdr_scc_mgr->update);
2240         }
2241
2242         if (!found)
2243                 return -EINVAL;
2244
2245         return 0;
2246
2247 }
2248
2249 /**
2250  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2251  * @rw_group:           Read/Write Group
2252  * @test_bgn:           Rank at which the test begins
2253  * @use_read_test:      Perform a read test
2254  * @update_fom:         Update FOM
2255  *
2256  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2257  * within a group.
2258  */
2259 static int
2260 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2261                                       const int use_read_test,
2262                                       const int update_fom)
2263
2264 {
2265         int ret, grp_calibrated;
2266         u32 rank_bgn, sr;
2267
2268         /*
2269          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2270          * Read per-bit deskew can be done on a per shadow register basis.
2271          */
2272         grp_calibrated = 1;
2273         for (rank_bgn = 0, sr = 0;
2274              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2275              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2276                 /* Check if this set of ranks should be skipped entirely. */
2277                 if (param->skip_shadow_regs[sr])
2278                         continue;
2279
2280                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2281                                                         rw_group, test_bgn,
2282                                                         use_read_test,
2283                                                         update_fom);
2284                 if (ret)
2285                         continue;
2286
2287                 grp_calibrated = 0;
2288         }
2289
2290         if (!grp_calibrated)
2291                 return -EIO;
2292
2293         return 0;
2294 }
2295
2296 /**
2297  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2298  * @rw_group:           Read/Write Group
2299  * @test_bgn:           Rank at which the test begins
2300  *
2301  * Stage 1: Calibrate the read valid prediction FIFO.
2302  *
2303  * This function implements UniPHY calibration Stage 1, as explained in
2304  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2305  *
2306  * - read valid prediction will consist of finding:
2307  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2308  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2309  *  - we also do a per-bit deskew on the DQ lines.
2310  */
2311 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2312 {
2313         uint32_t p, d;
2314         uint32_t dtaps_per_ptap;
2315         uint32_t failed_substage;
2316
2317         int ret;
2318
2319         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2320
2321         /* Update info for sims */
2322         reg_file_set_group(rw_group);
2323         reg_file_set_stage(CAL_STAGE_VFIFO);
2324         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2325
2326         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2327
2328         /* USER Determine number of delay taps for each phase tap. */
2329         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2330                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2331
2332         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2333                 /*
2334                  * In RLDRAMX we may be messing the delay of pins in
2335                  * the same write rw_group but outside of the current read
2336                  * the rw_group, but that's ok because we haven't calibrated
2337                  * output side yet.
2338                  */
2339                 if (d > 0) {
2340                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2341                                                                 rw_group, d);
2342                 }
2343
2344                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2345                         /* 1) Guaranteed Write */
2346                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2347                         if (ret)
2348                                 break;
2349
2350                         /* 2) DQS Enable Calibration */
2351                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2352                                                                           test_bgn);
2353                         if (ret) {
2354                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2355                                 continue;
2356                         }
2357
2358                         /* 3) Centering DQ/DQS */
2359                         /*
2360                          * If doing read after write calibration, do not update
2361                          * FOM now. Do it then.
2362                          */
2363                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2364                                                                 test_bgn, 1, 0);
2365                         if (ret) {
2366                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2367                                 continue;
2368                         }
2369
2370                         /* All done. */
2371                         goto cal_done_ok;
2372                 }
2373         }
2374
2375         /* Calibration Stage 1 failed. */
2376         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2377         return 0;
2378
2379         /* Calibration Stage 1 completed OK. */
2380 cal_done_ok:
2381         /*
2382          * Reset the delay chains back to zero if they have moved > 1
2383          * (check for > 1 because loop will increase d even when pass in
2384          * first case).
2385          */
2386         if (d > 2)
2387                 scc_mgr_zero_group(rw_group, 1);
2388
2389         return 1;
2390 }
2391
2392 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2393 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2394                                                uint32_t test_bgn)
2395 {
2396         uint32_t rank_bgn, sr;
2397         uint32_t grp_calibrated;
2398         uint32_t write_group;
2399
2400         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2401
2402         /* update info for sims */
2403
2404         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2405         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2406
2407         write_group = read_group;
2408
2409         /* update info for sims */
2410         reg_file_set_group(read_group);
2411
2412         grp_calibrated = 1;
2413         /* Read per-bit deskew can be done on a per shadow register basis */
2414         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2415                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2416                 /* Determine if this set of ranks should be skipped entirely */
2417                 if (!param->skip_shadow_regs[sr]) {
2418                 /* This is the last calibration round, update FOM here */
2419                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2420                                                                 write_group,
2421                                                                 read_group,
2422                                                                 test_bgn, 0,
2423                                                                 1)) {
2424                                 grp_calibrated = 0;
2425                         }
2426                 }
2427         }
2428
2429
2430         if (grp_calibrated == 0) {
2431                 set_failing_group_stage(write_group,
2432                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2433                                         CAL_SUBSTAGE_VFIFO_CENTER);
2434                 return 0;
2435         }
2436
2437         return 1;
2438 }
2439
2440 /* Calibrate LFIFO to find smallest read latency */
2441 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2442 {
2443         uint32_t found_one;
2444         uint32_t bit_chk;
2445
2446         debug("%s:%d\n", __func__, __LINE__);
2447
2448         /* update info for sims */
2449         reg_file_set_stage(CAL_STAGE_LFIFO);
2450         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2451
2452         /* Load up the patterns used by read calibration for all ranks */
2453         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2454         found_one = 0;
2455
2456         do {
2457                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2458                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2459                            __func__, __LINE__, gbl->curr_read_lat);
2460
2461                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2462                                                               NUM_READ_TESTS,
2463                                                               PASS_ALL_BITS,
2464                                                               &bit_chk, 1)) {
2465                         break;
2466                 }
2467
2468                 found_one = 1;
2469                 /* reduce read latency and see if things are working */
2470                 /* correctly */
2471                 gbl->curr_read_lat--;
2472         } while (gbl->curr_read_lat > 0);
2473
2474         /* reset the fifos to get pointers to known state */
2475
2476         writel(0, &phy_mgr_cmd->fifo_reset);
2477
2478         if (found_one) {
2479                 /* add a fudge factor to the read latency that was determined */
2480                 gbl->curr_read_lat += 2;
2481                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2482                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2483                            read_lat=%u\n", __func__, __LINE__,
2484                            gbl->curr_read_lat);
2485                 return 1;
2486         } else {
2487                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2488                                         CAL_SUBSTAGE_READ_LATENCY);
2489
2490                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2491                            read_lat=%u\n", __func__, __LINE__,
2492                            gbl->curr_read_lat);
2493                 return 0;
2494         }
2495 }
2496
2497 /*
2498  * issue write test command.
2499  * two variants are provided. one that just tests a write pattern and
2500  * another that tests datamask functionality.
2501  */
2502 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2503                                                   uint32_t test_dm)
2504 {
2505         uint32_t mcc_instruction;
2506         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2507                 ENABLE_SUPER_QUICK_CALIBRATION);
2508         uint32_t rw_wl_nop_cycles;
2509         uint32_t addr;
2510
2511         /*
2512          * Set counter and jump addresses for the right
2513          * number of NOP cycles.
2514          * The number of supported NOP cycles can range from -1 to infinity
2515          * Three different cases are handled:
2516          *
2517          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2518          *    mechanism will be used to insert the right number of NOPs
2519          *
2520          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2521          *    issuing the write command will jump straight to the
2522          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2523          *    data (for RLD), skipping
2524          *    the NOP micro-instruction all together
2525          *
2526          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2527          *    turned on in the same micro-instruction that issues the write
2528          *    command. Then we need
2529          *    to directly jump to the micro-instruction that sends out the data
2530          *
2531          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2532          *       (2 and 3). One jump-counter (0) is used to perform multiple
2533          *       write-read operations.
2534          *       one counter left to issue this command in "multiple-group" mode
2535          */
2536
2537         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2538
2539         if (rw_wl_nop_cycles == -1) {
2540                 /*
2541                  * CNTR 2 - We want to execute the special write operation that
2542                  * turns on DQS right away and then skip directly to the
2543                  * instruction that sends out the data. We set the counter to a
2544                  * large number so that the jump is always taken.
2545                  */
2546                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2547
2548                 /* CNTR 3 - Not used */
2549                 if (test_dm) {
2550                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2551                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2552                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2553                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2554                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2555                 } else {
2556                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2557                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2558                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2559                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2560                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2561                 }
2562         } else if (rw_wl_nop_cycles == 0) {
2563                 /*
2564                  * CNTR 2 - We want to skip the NOP operation and go straight
2565                  * to the DQS enable instruction. We set the counter to a large
2566                  * number so that the jump is always taken.
2567                  */
2568                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2569
2570                 /* CNTR 3 - Not used */
2571                 if (test_dm) {
2572                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2573                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2574                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2575                 } else {
2576                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2577                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2578                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2579                 }
2580         } else {
2581                 /*
2582                  * CNTR 2 - In this case we want to execute the next instruction
2583                  * and NOT take the jump. So we set the counter to 0. The jump
2584                  * address doesn't count.
2585                  */
2586                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2587                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2588
2589                 /*
2590                  * CNTR 3 - Set the nop counter to the number of cycles we
2591                  * need to loop for, minus 1.
2592                  */
2593                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2594                 if (test_dm) {
2595                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2596                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2597                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2598                 } else {
2599                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2600                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2601                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2602                 }
2603         }
2604
2605         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2606                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2607
2608         if (quick_write_mode)
2609                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2610         else
2611                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2612
2613         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2614
2615         /*
2616          * CNTR 1 - This is used to ensure enough time elapses
2617          * for read data to come back.
2618          */
2619         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2620
2621         if (test_dm) {
2622                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2623                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2624         } else {
2625                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2626                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2627         }
2628
2629         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2630         writel(mcc_instruction, addr + (group << 2));
2631 }
2632
2633 /* Test writes, can check for a single bit pass or multiple bit pass */
2634 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2635         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2636         uint32_t *bit_chk, uint32_t all_ranks)
2637 {
2638         uint32_t r;
2639         uint32_t correct_mask_vg;
2640         uint32_t tmp_bit_chk;
2641         uint32_t vg;
2642         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2643                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2644         uint32_t addr_rw_mgr;
2645         uint32_t base_rw_mgr;
2646
2647         *bit_chk = param->write_correct_mask;
2648         correct_mask_vg = param->write_correct_mask_vg;
2649
2650         for (r = rank_bgn; r < rank_end; r++) {
2651                 if (param->skip_ranks[r]) {
2652                         /* request to skip the rank */
2653                         continue;
2654                 }
2655
2656                 /* set rank */
2657                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2658
2659                 tmp_bit_chk = 0;
2660                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2661                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2662                         /* reset the fifos to get pointers to known state */
2663                         writel(0, &phy_mgr_cmd->fifo_reset);
2664
2665                         tmp_bit_chk = tmp_bit_chk <<
2666                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2667                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2668                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2669                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2670                                 use_dm);
2671
2672                         base_rw_mgr = readl(addr_rw_mgr);
2673                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2674                         if (vg == 0)
2675                                 break;
2676                 }
2677                 *bit_chk &= tmp_bit_chk;
2678         }
2679
2680         if (all_correct) {
2681                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2682                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2683                            %u => %lu", write_group, use_dm,
2684                            *bit_chk, param->write_correct_mask,
2685                            (long unsigned int)(*bit_chk ==
2686                            param->write_correct_mask));
2687                 return *bit_chk == param->write_correct_mask;
2688         } else {
2689                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2690                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2691                        write_group, use_dm, *bit_chk);
2692                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2693                         (long unsigned int)(*bit_chk != 0));
2694                 return *bit_chk != 0x00;
2695         }
2696 }
2697
2698 /*
2699  * center all windows. do per-bit-deskew to possibly increase size of
2700  * certain windows.
2701  */
2702 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2703         uint32_t write_group, uint32_t test_bgn)
2704 {
2705         uint32_t i, p, min_index;
2706         int32_t d;
2707         /*
2708          * Store these as signed since there are comparisons with
2709          * signed numbers.
2710          */
2711         uint32_t bit_chk;
2712         uint32_t sticky_bit_chk;
2713         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2714         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2715         int32_t mid;
2716         int32_t mid_min, orig_mid_min;
2717         int32_t new_dqs, start_dqs, shift_dq;
2718         int32_t dq_margin, dqs_margin, dm_margin;
2719         uint32_t stop;
2720         uint32_t temp_dq_out1_delay;
2721         uint32_t addr;
2722
2723         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2724
2725         dm_margin = 0;
2726
2727         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2728         start_dqs = readl(addr +
2729                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2730
2731         /* per-bit deskew */
2732
2733         /*
2734          * set the left and right edge of each bit to an illegal value
2735          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2736          */
2737         sticky_bit_chk = 0;
2738         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2739                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2740                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2741         }
2742
2743         /* Search for the left edge of the window for each bit */
2744         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2745                 scc_mgr_apply_group_dq_out1_delay(write_group, d);
2746
2747                 writel(0, &sdr_scc_mgr->update);
2748
2749                 /*
2750                  * Stop searching when the read test doesn't pass AND when
2751                  * we've seen a passing read on every bit.
2752                  */
2753                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2754                         0, PASS_ONE_BIT, &bit_chk, 0);
2755                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2756                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2757                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2758                            == %u && %u [bit_chk= %u ]\n",
2759                         d, sticky_bit_chk, param->write_correct_mask,
2760                         stop, bit_chk);
2761
2762                 if (stop == 1) {
2763                         break;
2764                 } else {
2765                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2766                                 if (bit_chk & 1) {
2767                                         /*
2768                                          * Remember a passing test as the
2769                                          * left_edge.
2770                                          */
2771                                         left_edge[i] = d;
2772                                 } else {
2773                                         /*
2774                                          * If a left edge has not been seen
2775                                          * yet, then a future passing test will
2776                                          * mark this edge as the right edge.
2777                                          */
2778                                         if (left_edge[i] ==
2779                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2780                                                 right_edge[i] = -(d + 1);
2781                                         }
2782                                 }
2783                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2784                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2785                                            (int)(bit_chk & 1), i, left_edge[i]);
2786                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2787                                        right_edge[i]);
2788                                 bit_chk = bit_chk >> 1;
2789                         }
2790                 }
2791         }
2792
2793         /* Reset DQ delay chains to 0 */
2794         scc_mgr_apply_group_dq_out1_delay(0);
2795         sticky_bit_chk = 0;
2796         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2797                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2798                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2799                            i, left_edge[i], i, right_edge[i]);
2800
2801                 /*
2802                  * Check for cases where we haven't found the left edge,
2803                  * which makes our assignment of the the right edge invalid.
2804                  * Reset it to the illegal value.
2805                  */
2806                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2807                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2808                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2809                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2810                                    right_edge[%u]: %d\n", __func__, __LINE__,
2811                                    i, right_edge[i]);
2812                 }
2813
2814                 /*
2815                  * Reset sticky bit (except for bits where we have
2816                  * seen the left edge).
2817                  */
2818                 sticky_bit_chk = sticky_bit_chk << 1;
2819                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2820                         sticky_bit_chk = sticky_bit_chk | 1;
2821
2822                 if (i == 0)
2823                         break;
2824         }
2825
2826         /* Search for the right edge of the window for each bit */
2827         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2828                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2829                                                         d + start_dqs);
2830
2831                 writel(0, &sdr_scc_mgr->update);
2832
2833                 /*
2834                  * Stop searching when the read test doesn't pass AND when
2835                  * we've seen a passing read on every bit.
2836                  */
2837                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2838                         0, PASS_ONE_BIT, &bit_chk, 0);
2839
2840                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2841                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2842
2843                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2844                            %u && %u\n", d, sticky_bit_chk,
2845                            param->write_correct_mask, stop);
2846
2847                 if (stop == 1) {
2848                         if (d == 0) {
2849                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2850                                         i++) {
2851                                         /* d = 0 failed, but it passed when
2852                                         testing the left edge, so it must be
2853                                         marginal, set it to -1 */
2854                                         if (right_edge[i] ==
2855                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2856                                                 left_edge[i] !=
2857                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2858                                                 right_edge[i] = -1;
2859                                         }
2860                                 }
2861                         }
2862                         break;
2863                 } else {
2864                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2865                                 if (bit_chk & 1) {
2866                                         /*
2867                                          * Remember a passing test as
2868                                          * the right_edge.
2869                                          */
2870                                         right_edge[i] = d;
2871                                 } else {
2872                                         if (d != 0) {
2873                                                 /*
2874                                                  * If a right edge has not
2875                                                  * been seen yet, then a future
2876                                                  * passing test will mark this
2877                                                  * edge as the left edge.
2878                                                  */
2879                                                 if (right_edge[i] ==
2880                                                     IO_IO_OUT1_DELAY_MAX + 1)
2881                                                         left_edge[i] = -(d + 1);
2882                                         } else {
2883                                                 /*
2884                                                  * d = 0 failed, but it passed
2885                                                  * when testing the left edge,
2886                                                  * so it must be marginal, set
2887                                                  * it to -1.
2888                                                  */
2889                                                 if (right_edge[i] ==
2890                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2891                                                     left_edge[i] !=
2892                                                     IO_IO_OUT1_DELAY_MAX + 1)
2893                                                         right_edge[i] = -1;
2894                                                 /*
2895                                                  * If a right edge has not been
2896                                                  * seen yet, then a future
2897                                                  * passing test will mark this
2898                                                  * edge as the left edge.
2899                                                  */
2900                                                 else if (right_edge[i] ==
2901                                                         IO_IO_OUT1_DELAY_MAX +
2902                                                         1)
2903                                                         left_edge[i] = -(d + 1);
2904                                         }
2905                                 }
2906                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2907                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2908                                            (int)(bit_chk & 1), i, left_edge[i]);
2909                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2910                                            right_edge[i]);
2911                                 bit_chk = bit_chk >> 1;
2912                         }
2913                 }
2914         }
2915
2916         /* Check that all bits have a window */
2917         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2918                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2919                            %d right_edge[%u]: %d", __func__, __LINE__,
2920                            i, left_edge[i], i, right_edge[i]);
2921                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2922                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2923                         set_failing_group_stage(test_bgn + i,
2924                                                 CAL_STAGE_WRITES,
2925                                                 CAL_SUBSTAGE_WRITES_CENTER);
2926                         return 0;
2927                 }
2928         }
2929
2930         /* Find middle of window for each DQ bit */
2931         mid_min = left_edge[0] - right_edge[0];
2932         min_index = 0;
2933         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2934                 mid = left_edge[i] - right_edge[i];
2935                 if (mid < mid_min) {
2936                         mid_min = mid;
2937                         min_index = i;
2938                 }
2939         }
2940
2941         /*
2942          * -mid_min/2 represents the amount that we need to move DQS.
2943          * If mid_min is odd and positive we'll need to add one to
2944          * make sure the rounding in further calculations is correct
2945          * (always bias to the right), so just add 1 for all positive values.
2946          */
2947         if (mid_min > 0)
2948                 mid_min++;
2949         mid_min = mid_min / 2;
2950         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2951                    __LINE__, mid_min);
2952
2953         /* Determine the amount we can change DQS (which is -mid_min) */
2954         orig_mid_min = mid_min;
2955         new_dqs = start_dqs;
2956         mid_min = 0;
2957         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2958                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2959         /* Initialize data for export structures */
2960         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2961         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2962
2963         /* add delay to bring centre of all DQ windows to the same "level" */
2964         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2965                 /* Use values before divide by 2 to reduce round off error */
2966                 shift_dq = (left_edge[i] - right_edge[i] -
2967                         (left_edge[min_index] - right_edge[min_index]))/2  +
2968                 (orig_mid_min - mid_min);
2969
2970                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2971                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2972
2973                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2974                 temp_dq_out1_delay = readl(addr + (i << 2));
2975                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2976                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2977                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2978                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2979                         shift_dq = -(int32_t)temp_dq_out1_delay;
2980                 }
2981                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2982                            i, shift_dq);
2983                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2984                 scc_mgr_load_dq(i);
2985
2986                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2987                            left_edge[i] - shift_dq + (-mid_min),
2988                            right_edge[i] + shift_dq - (-mid_min));
2989                 /* To determine values for export structures */
2990                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2991                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2992
2993                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2994                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2995         }
2996
2997         /* Move DQS */
2998         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2999         writel(0, &sdr_scc_mgr->update);
3000
3001         /* Centre DM */
3002         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3003
3004         /*
3005          * set the left and right edge of each bit to an illegal value,
3006          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3007          */
3008         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3009         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3010         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3011         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3012         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3013         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3014         int32_t win_best = 0;
3015
3016         /* Search for the/part of the window with DM shift */
3017         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3018                 scc_mgr_apply_group_dm_out1_delay(d);
3019                 writel(0, &sdr_scc_mgr->update);
3020
3021                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3022                                                     PASS_ALL_BITS, &bit_chk,
3023                                                     0)) {
3024                         /* USE Set current end of the window */
3025                         end_curr = -d;
3026                         /*
3027                          * If a starting edge of our window has not been seen
3028                          * this is our current start of the DM window.
3029                          */
3030                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3031                                 bgn_curr = -d;
3032
3033                         /*
3034                          * If current window is bigger than best seen.
3035                          * Set best seen to be current window.
3036                          */
3037                         if ((end_curr-bgn_curr+1) > win_best) {
3038                                 win_best = end_curr-bgn_curr+1;
3039                                 bgn_best = bgn_curr;
3040                                 end_best = end_curr;
3041                         }
3042                 } else {
3043                         /* We just saw a failing test. Reset temp edge */
3044                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3045                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3046                         }
3047                 }
3048
3049
3050         /* Reset DM delay chains to 0 */
3051         scc_mgr_apply_group_dm_out1_delay(0);
3052
3053         /*
3054          * Check to see if the current window nudges up aganist 0 delay.
3055          * If so we need to continue the search by shifting DQS otherwise DQS
3056          * search begins as a new search. */
3057         if (end_curr != 0) {
3058                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3059                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3060         }
3061
3062         /* Search for the/part of the window with DQS shifts */
3063         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3064                 /*
3065                  * Note: This only shifts DQS, so are we limiting ourselve to
3066                  * width of DQ unnecessarily.
3067                  */
3068                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3069                                                         d + new_dqs);
3070
3071                 writel(0, &sdr_scc_mgr->update);
3072                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3073                                                     PASS_ALL_BITS, &bit_chk,
3074                                                     0)) {
3075                         /* USE Set current end of the window */
3076                         end_curr = d;
3077                         /*
3078                          * If a beginning edge of our window has not been seen
3079                          * this is our current begin of the DM window.
3080                          */
3081                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3082                                 bgn_curr = d;
3083
3084                         /*
3085                          * If current window is bigger than best seen. Set best
3086                          * seen to be current window.
3087                          */
3088                         if ((end_curr-bgn_curr+1) > win_best) {
3089                                 win_best = end_curr-bgn_curr+1;
3090                                 bgn_best = bgn_curr;
3091                                 end_best = end_curr;
3092                         }
3093                 } else {
3094                         /* We just saw a failing test. Reset temp edge */
3095                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3096                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3097
3098                         /* Early exit optimization: if ther remaining delay
3099                         chain space is less than already seen largest window
3100                         we can exit */
3101                         if ((win_best-1) >
3102                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3103                                         break;
3104                                 }
3105                         }
3106                 }
3107
3108         /* assign left and right edge for cal and reporting; */
3109         left_edge[0] = -1*bgn_best;
3110         right_edge[0] = end_best;
3111
3112         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3113                    __LINE__, left_edge[0], right_edge[0]);
3114
3115         /* Move DQS (back to orig) */
3116         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3117
3118         /* Move DM */
3119
3120         /* Find middle of window for the DM bit */
3121         mid = (left_edge[0] - right_edge[0]) / 2;
3122
3123         /* only move right, since we are not moving DQS/DQ */
3124         if (mid < 0)
3125                 mid = 0;
3126
3127         /* dm_marign should fail if we never find a window */
3128         if (win_best == 0)
3129                 dm_margin = -1;
3130         else
3131                 dm_margin = left_edge[0] - mid;
3132
3133         scc_mgr_apply_group_dm_out1_delay(mid);
3134         writel(0, &sdr_scc_mgr->update);
3135
3136         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3137                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3138                    right_edge[0], mid, dm_margin);
3139         /* Export values */
3140         gbl->fom_out += dq_margin + dqs_margin;
3141
3142         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3143                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3144                    dq_margin, dqs_margin, dm_margin);
3145
3146         /*
3147          * Do not remove this line as it makes sure all of our
3148          * decisions have been applied.
3149          */
3150         writel(0, &sdr_scc_mgr->update);
3151         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3152 }
3153
3154 /* calibrate the write operations */
3155 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3156         uint32_t test_bgn)
3157 {
3158         /* update info for sims */
3159         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3160
3161         reg_file_set_stage(CAL_STAGE_WRITES);
3162         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3163
3164         reg_file_set_group(g);
3165
3166         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3167                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3168                                         CAL_SUBSTAGE_WRITES_CENTER);
3169                 return 0;
3170         }
3171
3172         return 1;
3173 }
3174
3175 /**
3176  * mem_precharge_and_activate() - Precharge all banks and activate
3177  *
3178  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3179  */
3180 static void mem_precharge_and_activate(void)
3181 {
3182         int r;
3183
3184         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3185                 /* Test if the rank should be skipped. */
3186                 if (param->skip_ranks[r])
3187                         continue;
3188
3189                 /* Set rank. */
3190                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3191
3192                 /* Precharge all banks. */
3193                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3194                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3195
3196                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3197                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3198                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3199
3200                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3201                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3202                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3203
3204                 /* Activate rows. */
3205                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3206                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3207         }
3208 }
3209
3210 /**
3211  * mem_init_latency() - Configure memory RLAT and WLAT settings
3212  *
3213  * Configure memory RLAT and WLAT parameters.
3214  */
3215 static void mem_init_latency(void)
3216 {
3217         /*
3218          * For AV/CV, LFIFO is hardened and always runs at full rate
3219          * so max latency in AFI clocks, used here, is correspondingly
3220          * smaller.
3221          */
3222         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3223         u32 rlat, wlat;
3224
3225         debug("%s:%d\n", __func__, __LINE__);
3226
3227         /*
3228          * Read in write latency.
3229          * WL for Hard PHY does not include additive latency.
3230          */
3231         wlat = readl(&data_mgr->t_wl_add);
3232         wlat += readl(&data_mgr->mem_t_add);
3233
3234         gbl->rw_wl_nop_cycles = wlat - 1;
3235
3236         /* Read in readl latency. */
3237         rlat = readl(&data_mgr->t_rl_add);
3238
3239         /* Set a pretty high read latency initially. */
3240         gbl->curr_read_lat = rlat + 16;
3241         if (gbl->curr_read_lat > max_latency)
3242                 gbl->curr_read_lat = max_latency;
3243
3244         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3245
3246         /* Advertise write latency. */
3247         writel(wlat, &phy_mgr_cfg->afi_wlat);
3248 }
3249
3250 /**
3251  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3252  *
3253  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3254  */
3255 static void mem_skip_calibrate(void)
3256 {
3257         uint32_t vfifo_offset;
3258         uint32_t i, j, r;
3259
3260         debug("%s:%d\n", __func__, __LINE__);
3261         /* Need to update every shadow register set used by the interface */
3262         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3263              r += NUM_RANKS_PER_SHADOW_REG) {
3264                 /*
3265                  * Set output phase alignment settings appropriate for
3266                  * skip calibration.
3267                  */
3268                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3269                         scc_mgr_set_dqs_en_phase(i, 0);
3270 #if IO_DLL_CHAIN_LENGTH == 6
3271                         scc_mgr_set_dqdqs_output_phase(i, 6);
3272 #else
3273                         scc_mgr_set_dqdqs_output_phase(i, 7);
3274 #endif
3275                         /*
3276                          * Case:33398
3277                          *
3278                          * Write data arrives to the I/O two cycles before write
3279                          * latency is reached (720 deg).
3280                          *   -> due to bit-slip in a/c bus
3281                          *   -> to allow board skew where dqs is longer than ck
3282                          *      -> how often can this happen!?
3283                          *      -> can claim back some ptaps for high freq
3284                          *       support if we can relax this, but i digress...
3285                          *
3286                          * The write_clk leads mem_ck by 90 deg
3287                          * The minimum ptap of the OPA is 180 deg
3288                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3289                          * The write_clk is always delayed by 2 ptaps
3290                          *
3291                          * Hence, to make DQS aligned to CK, we need to delay
3292                          * DQS by:
3293                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3294                          *
3295                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3296                          * gives us the number of ptaps, which simplies to:
3297                          *
3298                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3299                          */
3300                         scc_mgr_set_dqdqs_output_phase(i,
3301                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3302                 }
3303                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3304                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3305
3306                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3307                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3308                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3309                 }
3310                 writel(0xff, &sdr_scc_mgr->dq_ena);
3311                 writel(0xff, &sdr_scc_mgr->dm_ena);
3312                 writel(0, &sdr_scc_mgr->update);
3313         }
3314
3315         /* Compensate for simulation model behaviour */
3316         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3317                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3318                 scc_mgr_load_dqs(i);
3319         }
3320         writel(0, &sdr_scc_mgr->update);
3321
3322         /*
3323          * ArriaV has hard FIFOs that can only be initialized by incrementing
3324          * in sequencer.
3325          */
3326         vfifo_offset = CALIB_VFIFO_OFFSET;
3327         for (j = 0; j < vfifo_offset; j++)
3328                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3329         writel(0, &phy_mgr_cmd->fifo_reset);
3330
3331         /*
3332          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3333          * setting from generation-time constant.
3334          */
3335         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3336         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3337 }
3338
3339 /**
3340  * mem_calibrate() - Memory calibration entry point.
3341  *
3342  * Perform memory calibration.
3343  */
3344 static uint32_t mem_calibrate(void)
3345 {
3346         uint32_t i;
3347         uint32_t rank_bgn, sr;
3348         uint32_t write_group, write_test_bgn;
3349         uint32_t read_group, read_test_bgn;
3350         uint32_t run_groups, current_run;
3351         uint32_t failing_groups = 0;
3352         uint32_t group_failed = 0;
3353
3354         const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3355                                 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3356
3357         debug("%s:%d\n", __func__, __LINE__);
3358
3359         /* Initialize the data settings */
3360         gbl->error_substage = CAL_SUBSTAGE_NIL;
3361         gbl->error_stage = CAL_STAGE_NIL;
3362         gbl->error_group = 0xff;
3363         gbl->fom_in = 0;
3364         gbl->fom_out = 0;
3365
3366         /* Initialize WLAT and RLAT. */
3367         mem_init_latency();
3368
3369         /* Initialize bit slips. */
3370         mem_precharge_and_activate();
3371
3372         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3373                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3374                           SCC_MGR_GROUP_COUNTER_OFFSET);
3375                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3376                 if (i == 0)
3377                         scc_mgr_set_hhp_extras();
3378
3379                 scc_set_bypass_mode(i);
3380         }
3381
3382         /* Calibration is skipped. */
3383         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3384                 /*
3385                  * Set VFIFO and LFIFO to instant-on settings in skip
3386                  * calibration mode.
3387                  */
3388                 mem_skip_calibrate();
3389
3390                 /*
3391                  * Do not remove this line as it makes sure all of our
3392                  * decisions have been applied.
3393                  */
3394                 writel(0, &sdr_scc_mgr->update);
3395                 return 1;
3396         }
3397
3398         /* Calibration is not skipped. */
3399         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3400                 /*
3401                  * Zero all delay chain/phase settings for all
3402                  * groups and all shadow register sets.
3403                  */
3404                 scc_mgr_zero_all();
3405
3406                 run_groups = ~param->skip_groups;
3407
3408                 for (write_group = 0, write_test_bgn = 0; write_group
3409                         < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3410                         write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3411
3412                         /* Initialize the group failure */
3413                         group_failed = 0;
3414
3415                         current_run = run_groups & ((1 <<
3416                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3417                         run_groups = run_groups >>
3418                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3419
3420                         if (current_run == 0)
3421                                 continue;
3422
3423                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3424                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3425                         scc_mgr_zero_group(write_group, 0);
3426
3427                         for (read_group = write_group * rwdqs_ratio,
3428                              read_test_bgn = 0;
3429                              read_group < (write_group + 1) * rwdqs_ratio;
3430                              read_group++,
3431                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3432                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3433                                         continue;
3434
3435                                 /* Calibrate the VFIFO */
3436                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3437                                                                read_test_bgn))
3438                                         continue;
3439
3440                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3441                                         return 0;
3442
3443                                 /* The group failed, we're done. */
3444                                 goto grp_failed;
3445                         }
3446
3447                         /* Calibrate the output side */
3448                         for (rank_bgn = 0, sr = 0;
3449                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3450                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3451                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3452                                         continue;
3453
3454                                 /* Not needed in quick mode! */
3455                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3456                                         continue;
3457
3458                                 /*
3459                                  * Determine if this set of ranks
3460                                  * should be skipped entirely.
3461                                  */
3462                                 if (param->skip_shadow_regs[sr])
3463                                         continue;
3464
3465                                 /* Calibrate WRITEs */
3466                                 if (rw_mgr_mem_calibrate_writes(rank_bgn,
3467                                                 write_group, write_test_bgn))
3468                                         continue;
3469
3470                                 group_failed = 1;
3471                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3472                                         return 0;
3473                         }
3474
3475                         /* Some group failed, we're done. */
3476                         if (group_failed)
3477                                 goto grp_failed;
3478
3479                         for (read_group = write_group * rwdqs_ratio,
3480                              read_test_bgn = 0;
3481                              read_group < (write_group + 1) * rwdqs_ratio;
3482                              read_group++,
3483                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3484                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3485                                         continue;
3486
3487                                 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3488                                                                 read_test_bgn))
3489                                         continue;
3490
3491                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3492                                         return 0;
3493
3494                                 /* The group failed, we're done. */
3495                                 goto grp_failed;
3496                         }
3497
3498                         /* No group failed, continue as usual. */
3499                         continue;
3500
3501 grp_failed:             /* A group failed, increment the counter. */
3502                         failing_groups++;
3503                 }
3504
3505                 /*
3506                  * USER If there are any failing groups then report
3507                  * the failure.
3508                  */
3509                 if (failing_groups != 0)
3510                         return 0;
3511
3512                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3513                         continue;
3514
3515                 /*
3516                  * If we're skipping groups as part of debug,
3517                  * don't calibrate LFIFO.
3518                  */
3519                 if (param->skip_groups != 0)
3520                         continue;
3521
3522                 /* Calibrate the LFIFO */
3523                 if (!rw_mgr_mem_calibrate_lfifo())
3524                         return 0;
3525         }
3526
3527         /*
3528          * Do not remove this line as it makes sure all of our decisions
3529          * have been applied.
3530          */
3531         writel(0, &sdr_scc_mgr->update);
3532         return 1;
3533 }
3534
3535 /**
3536  * run_mem_calibrate() - Perform memory calibration
3537  *
3538  * This function triggers the entire memory calibration procedure.
3539  */
3540 static int run_mem_calibrate(void)
3541 {
3542         int pass;
3543
3544         debug("%s:%d\n", __func__, __LINE__);
3545
3546         /* Reset pass/fail status shown on afi_cal_success/fail */
3547         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3548
3549         /* Stop tracking manager. */
3550         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3551
3552         phy_mgr_initialize();
3553         rw_mgr_mem_initialize();
3554
3555         /* Perform the actual memory calibration. */
3556         pass = mem_calibrate();
3557
3558         mem_precharge_and_activate();
3559         writel(0, &phy_mgr_cmd->fifo_reset);
3560
3561         /* Handoff. */
3562         rw_mgr_mem_handoff();
3563         /*
3564          * In Hard PHY this is a 2-bit control:
3565          * 0: AFI Mux Select
3566          * 1: DDIO Mux Select
3567          */
3568         writel(0x2, &phy_mgr_cfg->mux_sel);
3569
3570         /* Start tracking manager. */
3571         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3572
3573         return pass;
3574 }
3575
3576 /**
3577  * debug_mem_calibrate() - Report result of memory calibration
3578  * @pass:       Value indicating whether calibration passed or failed
3579  *
3580  * This function reports the results of the memory calibration
3581  * and writes debug information into the register file.
3582  */
3583 static void debug_mem_calibrate(int pass)
3584 {
3585         uint32_t debug_info;
3586
3587         if (pass) {
3588                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3589
3590                 gbl->fom_in /= 2;
3591                 gbl->fom_out /= 2;
3592
3593                 if (gbl->fom_in > 0xff)
3594                         gbl->fom_in = 0xff;
3595
3596                 if (gbl->fom_out > 0xff)
3597                         gbl->fom_out = 0xff;
3598
3599                 /* Update the FOM in the register file */
3600                 debug_info = gbl->fom_in;
3601                 debug_info |= gbl->fom_out << 8;
3602                 writel(debug_info, &sdr_reg_file->fom);
3603
3604                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3605                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3606         } else {
3607                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3608
3609                 debug_info = gbl->error_stage;
3610                 debug_info |= gbl->error_substage << 8;
3611                 debug_info |= gbl->error_group << 16;
3612
3613                 writel(debug_info, &sdr_reg_file->failing_stage);
3614                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3615                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3616
3617                 /* Update the failing group/stage in the register file */
3618                 debug_info = gbl->error_stage;
3619                 debug_info |= gbl->error_substage << 8;
3620                 debug_info |= gbl->error_group << 16;
3621                 writel(debug_info, &sdr_reg_file->failing_stage);
3622         }
3623
3624         printf("%s: Calibration complete\n", __FILE__);
3625 }
3626
3627 /**
3628  * hc_initialize_rom_data() - Initialize ROM data
3629  *
3630  * Initialize ROM data.
3631  */
3632 static void hc_initialize_rom_data(void)
3633 {
3634         u32 i, addr;
3635
3636         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3637         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3638                 writel(inst_rom_init[i], addr + (i << 2));
3639
3640         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3641         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3642                 writel(ac_rom_init[i], addr + (i << 2));
3643 }
3644
3645 /**
3646  * initialize_reg_file() - Initialize SDR register file
3647  *
3648  * Initialize SDR register file.
3649  */
3650 static void initialize_reg_file(void)
3651 {
3652         /* Initialize the register file with the correct data */
3653         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3654         writel(0, &sdr_reg_file->debug_data_addr);
3655         writel(0, &sdr_reg_file->cur_stage);
3656         writel(0, &sdr_reg_file->fom);
3657         writel(0, &sdr_reg_file->failing_stage);
3658         writel(0, &sdr_reg_file->debug1);
3659         writel(0, &sdr_reg_file->debug2);
3660 }
3661
3662 /**
3663  * initialize_hps_phy() - Initialize HPS PHY
3664  *
3665  * Initialize HPS PHY.
3666  */
3667 static void initialize_hps_phy(void)
3668 {
3669         uint32_t reg;
3670         /*
3671          * Tracking also gets configured here because it's in the
3672          * same register.
3673          */
3674         uint32_t trk_sample_count = 7500;
3675         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3676         /*
3677          * Format is number of outer loops in the 16 MSB, sample
3678          * count in 16 LSB.
3679          */
3680
3681         reg = 0;
3682         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3683         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3684         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3685         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3686         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3687         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3688         /*
3689          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3690          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3691          */
3692         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3693         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3694                 trk_sample_count);
3695         writel(reg, &sdr_ctrl->phy_ctrl0);
3696
3697         reg = 0;
3698         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3699                 trk_sample_count >>
3700                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3701         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3702                 trk_long_idle_sample_count);
3703         writel(reg, &sdr_ctrl->phy_ctrl1);
3704
3705         reg = 0;
3706         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3707                 trk_long_idle_sample_count >>
3708                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3709         writel(reg, &sdr_ctrl->phy_ctrl2);
3710 }
3711
3712 /**
3713  * initialize_tracking() - Initialize tracking
3714  *
3715  * Initialize the register file with usable initial data.
3716  */
3717 static void initialize_tracking(void)
3718 {
3719         /*
3720          * Initialize the register file with the correct data.
3721          * Compute usable version of value in case we skip full
3722          * computation later.
3723          */
3724         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3725                &sdr_reg_file->dtaps_per_ptap);
3726
3727         /* trk_sample_count */
3728         writel(7500, &sdr_reg_file->trk_sample_count);
3729
3730         /* longidle outer loop [15:0] */
3731         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3732
3733         /*
3734          * longidle sample count [31:24]
3735          * trfc, worst case of 933Mhz 4Gb [23:16]
3736          * trcd, worst case [15:8]
3737          * vfifo wait [7:0]
3738          */
3739         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3740                &sdr_reg_file->delays);
3741
3742         /* mux delay */
3743         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3744                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3745                &sdr_reg_file->trk_rw_mgr_addr);
3746
3747         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3748                &sdr_reg_file->trk_read_dqs_width);
3749
3750         /* trefi [7:0] */
3751         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3752                &sdr_reg_file->trk_rfsh);
3753 }
3754
3755 int sdram_calibration_full(void)
3756 {
3757         struct param_type my_param;
3758         struct gbl_type my_gbl;
3759         uint32_t pass;
3760
3761         memset(&my_param, 0, sizeof(my_param));
3762         memset(&my_gbl, 0, sizeof(my_gbl));
3763
3764         param = &my_param;
3765         gbl = &my_gbl;
3766
3767         /* Set the calibration enabled by default */
3768         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3769         /*
3770          * Only sweep all groups (regardless of fail state) by default
3771          * Set enabled read test by default.
3772          */
3773 #if DISABLE_GUARANTEED_READ
3774         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3775 #endif
3776         /* Initialize the register file */
3777         initialize_reg_file();
3778
3779         /* Initialize any PHY CSR */
3780         initialize_hps_phy();
3781
3782         scc_mgr_initialize();
3783
3784         initialize_tracking();
3785
3786         printf("%s: Preparing to start memory calibration\n", __FILE__);
3787
3788         debug("%s:%d\n", __func__, __LINE__);
3789         debug_cond(DLEVEL == 1,
3790                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3791                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3792                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3793                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3794                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3795         debug_cond(DLEVEL == 1,
3796                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3797                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3798                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3799                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3800         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3801                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3802         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3803                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3804                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3805         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3806                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3807                    IO_IO_OUT2_DELAY_MAX);
3808         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3809                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3810
3811         hc_initialize_rom_data();
3812
3813         /* update info for sims */
3814         reg_file_set_stage(CAL_STAGE_NIL);
3815         reg_file_set_group(0);
3816
3817         /*
3818          * Load global needed for those actions that require
3819          * some dynamic calibration support.
3820          */
3821         dyn_calib_steps = STATIC_CALIB_STEPS;
3822         /*
3823          * Load global to allow dynamic selection of delay loop settings
3824          * based on calibration mode.
3825          */
3826         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3827                 skip_delay_mask = 0xff;
3828         else
3829                 skip_delay_mask = 0x0;
3830
3831         pass = run_mem_calibrate();
3832         debug_mem_calibrate(pass);
3833         return pass;
3834 }