]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up sdr_*_phase() part 6
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34
35 static struct socfpga_data_mgr *data_mgr =
36         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41 #define DELTA_D         1
42
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60         STATIC_SKIP_DELAY_LOOPS)
61
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73
74 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
75
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77         ((non_skip_value) & skip_delay_mask)
78
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84         uint32_t write_group, uint32_t use_dm,
85         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88         uint32_t substage)
89 {
90         /*
91          * Only set the global stage if there was not been any other
92          * failing group
93          */
94         if (gbl->error_stage == CAL_STAGE_NIL)  {
95                 gbl->error_substage = substage;
96                 gbl->error_stage = stage;
97                 gbl->error_group = group;
98         }
99 }
100
101 static void reg_file_set_group(u16 set_group)
102 {
103         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105
106 static void reg_file_set_stage(u8 set_stage)
107 {
108         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113         set_sub_stage &= 0xff;
114         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124         u32 ratio;
125
126         debug("%s:%d\n", __func__, __LINE__);
127         /* Calibration has control over path to memory */
128         /*
129          * In Hard PHY this is a 2-bit control:
130          * 0: AFI Mux Select
131          * 1: DDIO Mux Select
132          */
133         writel(0x3, &phy_mgr_cfg->mux_sel);
134
135         /* USER memory clock is not stable we begin initialization  */
136         writel(0, &phy_mgr_cfg->reset_mem_stbl);
137
138         /* USER calibration status all set to zero */
139         writel(0, &phy_mgr_cfg->cal_status);
140
141         writel(0, &phy_mgr_cfg->cal_debug_info);
142
143         /* Init params only if we do NOT skip calibration. */
144         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145                 return;
146
147         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149         param->read_correct_mask_vg = (1 << ratio) - 1;
150         param->write_correct_mask_vg = (1 << ratio) - 1;
151         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153         ratio = RW_MGR_MEM_DATA_WIDTH /
154                 RW_MGR_MEM_DATA_MASK_WIDTH;
155         param->dm_correct_mask = (1 << ratio) - 1;
156 }
157
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:       Rank mask
161  * @odt_mode:   ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167         u32 odt_mask_0 = 0;
168         u32 odt_mask_1 = 0;
169         u32 cs_and_odt_mask;
170
171         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172                 odt_mask_0 = 0x0;
173                 odt_mask_1 = 0x0;
174         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
175                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176                 case 1: /* 1 Rank */
177                         /* Read: ODT = 0 ; Write: ODT = 1 */
178                         odt_mask_0 = 0x0;
179                         odt_mask_1 = 0x1;
180                         break;
181                 case 2: /* 2 Ranks */
182                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183                                 /*
184                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
185                                  *   OR
186                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187                                  *
188                                  * Since MEM_NUMBER_OF_RANKS is 2, they
189                                  * are both single rank with 2 CS each
190                                  * (special for RDIMM).
191                                  *
192                                  * Read: Turn on ODT on the opposite rank
193                                  * Write: Turn on ODT on all ranks
194                                  */
195                                 odt_mask_0 = 0x3 & ~(1 << rank);
196                                 odt_mask_1 = 0x3;
197                         } else {
198                                 /*
199                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
200                                  *
201                                  * Read: Turn on ODT off on all ranks
202                                  * Write: Turn on ODT on active rank
203                                  */
204                                 odt_mask_0 = 0x0;
205                                 odt_mask_1 = 0x3 & (1 << rank);
206                         }
207                         break;
208                 case 4: /* 4 Ranks */
209                         /* Read:
210                          * ----------+-----------------------+
211                          *           |         ODT           |
212                          * Read From +-----------------------+
213                          *   Rank    |  3  |  2  |  1  |  0  |
214                          * ----------+-----+-----+-----+-----+
215                          *     0     |  0  |  1  |  0  |  0  |
216                          *     1     |  1  |  0  |  0  |  0  |
217                          *     2     |  0  |  0  |  0  |  1  |
218                          *     3     |  0  |  0  |  1  |  0  |
219                          * ----------+-----+-----+-----+-----+
220                          *
221                          * Write:
222                          * ----------+-----------------------+
223                          *           |         ODT           |
224                          * Write To  +-----------------------+
225                          *   Rank    |  3  |  2  |  1  |  0  |
226                          * ----------+-----+-----+-----+-----+
227                          *     0     |  0  |  1  |  0  |  1  |
228                          *     1     |  1  |  0  |  1  |  0  |
229                          *     2     |  0  |  1  |  0  |  1  |
230                          *     3     |  1  |  0  |  1  |  0  |
231                          * ----------+-----+-----+-----+-----+
232                          */
233                         switch (rank) {
234                         case 0:
235                                 odt_mask_0 = 0x4;
236                                 odt_mask_1 = 0x5;
237                                 break;
238                         case 1:
239                                 odt_mask_0 = 0x8;
240                                 odt_mask_1 = 0xA;
241                                 break;
242                         case 2:
243                                 odt_mask_0 = 0x1;
244                                 odt_mask_1 = 0x5;
245                                 break;
246                         case 3:
247                                 odt_mask_0 = 0x2;
248                                 odt_mask_1 = 0xA;
249                                 break;
250                         }
251                         break;
252                 }
253         }
254
255         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256                           ((0xFF & odt_mask_0) << 8) |
257                           ((0xFF & odt_mask_1) << 16);
258         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:        Base offset in SCC Manager space
265  * @grp:        Read/Write group
266  * @val:        Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282         /*
283          * Clear register file for HPS. 16 (2^4) is the size of the
284          * full register file in the scc mgr:
285          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286          *                             MEM_IF_READ_DQS_WIDTH - 1);
287          */
288         int i;
289
290         for (i = 0; i < 16; i++) {
291                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292                            __func__, __LINE__, i);
293                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294         }
295 }
296
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320                     delay);
321 }
322
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336                     delay);
337 }
338
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343                     delay);
344 }
345
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349         writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355         writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367         writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:        Base offset in SCC Manager space
373  * @grp:        Read/Write group
374  * @val:        Value to be set
375  * @update:     If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381                                   const int update)
382 {
383         u32 r;
384
385         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386              r += NUM_RANKS_PER_SHADOW_REG) {
387                 scc_mgr_set(off, grp, val);
388
389                 if (update || (r == 0)) {
390                         writel(grp, &sdr_scc_mgr->dqs_ena);
391                         writel(0, &sdr_scc_mgr->update);
392                 }
393         }
394 }
395
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398         /*
399          * USER although the h/w doesn't support different phases per
400          * shadow register, for simplicity our scc manager modeling
401          * keeps different phase settings per shadow reg, and it's
402          * important for us to keep them in sync to match h/w.
403          * for efficiency, the scan chain update should occur only
404          * once to sr0.
405          */
406         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407                               read_group, phase, 0);
408 }
409
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411                                                      uint32_t phase)
412 {
413         /*
414          * USER although the h/w doesn't support different phases per
415          * shadow register, for simplicity our scc manager modeling
416          * keeps different phase settings per shadow reg, and it's
417          * important for us to keep them in sync to match h/w.
418          * for efficiency, the scan chain update should occur only
419          * once to sr0.
420          */
421         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422                               write_group, phase, 0);
423 }
424
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426                                                uint32_t delay)
427 {
428         /*
429          * In shadow register mode, the T11 settings are stored in
430          * registers in the core, which are updated by the DQS_ENA
431          * signals. Not issuing the SCC_MGR_UPD command allows us to
432          * save lots of rank switching overhead, by calling
433          * select_shadow_regs_for_update with update_scan_chains
434          * set to 0.
435          */
436         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437                               read_group, delay, 1);
438         writel(0, &sdr_scc_mgr->update);
439 }
440
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:        Write group
444  * @delay:              Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452         const int base = write_group * ratio;
453         int i;
454         /*
455          * Load the setting in the SCC manager
456          * Although OCT affects only write data, the OCT delay is controlled
457          * by the DQS logic block which is instantiated once per read group.
458          * For protocols where a write group consists of multiple read groups,
459          * the setting must be set multiple times.
460          */
461         for (i = 0; i < ratio; i++)
462                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472         /*
473          * Load the fixed setting in the SCC manager
474          * bits: 0:0 = 1'b1     - DQS bypass
475          * bits: 1:1 = 1'b1     - DQ bypass
476          * bits: 4:2 = 3'b001   - rfifo_mode
477          * bits: 6:5 = 2'b01    - rfifo clock_select
478          * bits: 7:7 = 1'b0     - separate gating from ungating setting
479          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
480          */
481         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482                           (1 << 2) | (1 << 1) | (1 << 0);
483         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484                          SCC_MGR_HHP_GLOBALS_OFFSET |
485                          SCC_MGR_HHP_EXTRAS_OFFSET;
486
487         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488                    __func__, __LINE__);
489         writel(value, addr);
490         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491                    __func__, __LINE__);
492 }
493
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501         int i, r;
502
503         /*
504          * USER Zero all DQS config settings, across all groups and all
505          * shadow registers
506          */
507         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508              r += NUM_RANKS_PER_SHADOW_REG) {
509                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510                         /*
511                          * The phases actually don't exist on a per-rank basis,
512                          * but there's no harm updating them several times, so
513                          * let's keep the code simple.
514                          */
515                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516                         scc_mgr_set_dqs_en_phase(i, 0);
517                         scc_mgr_set_dqs_en_delay(i, 0);
518                 }
519
520                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521                         scc_mgr_set_dqdqs_output_phase(i, 0);
522                         /* Arria V/Cyclone V don't have out2. */
523                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524                 }
525         }
526
527         /* Multicast to all DQS group enables. */
528         writel(0xff, &sdr_scc_mgr->dqs_ena);
529         writel(0, &sdr_scc_mgr->update);
530 }
531
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:        Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540         /* Multicast to all DQ enables. */
541         writel(0xff, &sdr_scc_mgr->dq_ena);
542         writel(0xff, &sdr_scc_mgr->dm_ena);
543
544         /* Update current DQS IO enable. */
545         writel(0, &sdr_scc_mgr->dqs_io_ena);
546
547         /* Update the DQS logic. */
548         writel(write_group, &sdr_scc_mgr->dqs_ena);
549
550         /* Hit update. */
551         writel(0, &sdr_scc_mgr->update);
552 }
553
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:        Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564         const int base = write_group * ratio;
565         int i;
566         /*
567          * Load the setting in the SCC manager
568          * Although OCT affects only write data, the OCT delay is controlled
569          * by the DQS logic block which is instantiated once per read group.
570          * For protocols where a write group consists of multiple read groups,
571          * the setting must be set multiple times.
572          */
573         for (i = 0; i < ratio; i++)
574                 writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584         int i, r;
585
586         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587              r += NUM_RANKS_PER_SHADOW_REG) {
588                 /* Zero all DQ config settings. */
589                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590                         scc_mgr_set_dq_out1_delay(i, 0);
591                         if (!out_only)
592                                 scc_mgr_set_dq_in_delay(i, 0);
593                 }
594
595                 /* Multicast to all DQ enables. */
596                 writel(0xff, &sdr_scc_mgr->dq_ena);
597
598                 /* Zero all DM config settings. */
599                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600                         scc_mgr_set_dm_out1_delay(i, 0);
601
602                 /* Multicast to all DM enables. */
603                 writel(0xff, &sdr_scc_mgr->dm_ena);
604
605                 /* Zero all DQS IO settings. */
606                 if (!out_only)
607                         scc_mgr_set_dqs_io_in_delay(0);
608
609                 /* Arria V/Cyclone V don't have out2. */
610                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612                 scc_mgr_load_dqs_for_write_group(write_group);
613
614                 /* Multicast to all DQS IO enables (only 1 in total). */
615                 writel(0, &sdr_scc_mgr->dqs_io_ena);
616
617                 /* Hit update to zero everything. */
618                 writel(0, &sdr_scc_mgr->update);
619         }
620 }
621
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628         uint32_t i, p;
629
630         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631                 scc_mgr_set_dq_in_delay(p, delay);
632                 scc_mgr_load_dq(p);
633         }
634 }
635
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:              Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644         int i;
645
646         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647                 scc_mgr_set_dq_out1_delay(i, delay);
648                 scc_mgr_load_dq(i);
649         }
650 }
651
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655         uint32_t i;
656
657         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658                 scc_mgr_set_dm_out1_delay(i, delay1);
659                 scc_mgr_load_dm(i);
660         }
661 }
662
663
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666                                                     uint32_t delay)
667 {
668         scc_mgr_set_dqs_out1_delay(delay);
669         scc_mgr_load_dqs_io();
670
671         scc_mgr_set_oct_out1_delay(write_group, delay);
672         scc_mgr_load_dqs_for_write_group(write_group);
673 }
674
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:        Write group
678  * @delay:              Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683                                                   const u32 delay)
684 {
685         u32 i, new_delay;
686
687         /* DQ shift */
688         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689                 scc_mgr_load_dq(i);
690
691         /* DM shift */
692         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693                 scc_mgr_load_dm(i);
694
695         /* DQS shift */
696         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698                 debug_cond(DLEVEL == 1,
699                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700                            __func__, __LINE__, write_group, delay, new_delay,
701                            IO_IO_OUT2_DELAY_MAX,
702                            new_delay - IO_IO_OUT2_DELAY_MAX);
703                 new_delay -= IO_IO_OUT2_DELAY_MAX;
704                 scc_mgr_set_dqs_out1_delay(new_delay);
705         }
706
707         scc_mgr_load_dqs_io();
708
709         /* OCT shift */
710         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712                 debug_cond(DLEVEL == 1,
713                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714                            __func__, __LINE__, write_group, delay,
715                            new_delay, IO_IO_OUT2_DELAY_MAX,
716                            new_delay - IO_IO_OUT2_DELAY_MAX);
717                 new_delay -= IO_IO_OUT2_DELAY_MAX;
718                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
719         }
720
721         scc_mgr_load_dqs_for_write_group(write_group);
722 }
723
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:        Write group
727  * @delay:              Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733                                                 const u32 delay)
734 {
735         int r;
736
737         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738              r += NUM_RANKS_PER_SHADOW_REG) {
739                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740                 writel(0, &sdr_scc_mgr->update);
741         }
742 }
743
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752         /*
753          * To save space, we replace return with jump to special shared
754          * RETURN instruction so we set the counter to large value so that
755          * we always jump.
756          */
757         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767         uint32_t afi_clocks;
768         uint8_t inner = 0;
769         uint8_t outer = 0;
770         uint16_t c_loop = 0;
771
772         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774
775         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776         /* scale (rounding up) to get afi clocks */
777
778         /*
779          * Note, we don't bother accounting for being off a little bit
780          * because of a few extra instructions in outer loops
781          * Note, the loops have a test at the end, and do the test before
782          * the decrement, and so always perform the loop
783          * 1 time more than the counter value
784          */
785         if (afi_clocks == 0) {
786                 ;
787         } else if (afi_clocks <= 0x100) {
788                 inner = afi_clocks-1;
789                 outer = 0;
790                 c_loop = 0;
791         } else if (afi_clocks <= 0x10000) {
792                 inner = 0xff;
793                 outer = (afi_clocks-1) >> 8;
794                 c_loop = 0;
795         } else {
796                 inner = 0xff;
797                 outer = 0xff;
798                 c_loop = (afi_clocks-1) >> 16;
799         }
800
801         /*
802          * rom instructions are structured as follows:
803          *
804          *    IDLE_LOOP2: jnz cntr0, TARGET_A
805          *    IDLE_LOOP1: jnz cntr1, TARGET_B
806          *                return
807          *
808          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809          * TARGET_B is set to IDLE_LOOP2 as well
810          *
811          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813          *
814          * a little confusing, but it helps save precious space in the inst_rom
815          * and sequencer rom and keeps the delays more accurate and reduces
816          * overhead
817          */
818         if (afi_clocks <= 0x100) {
819                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820                         &sdr_rw_load_mgr_regs->load_cntr1);
821
822                 writel(RW_MGR_IDLE_LOOP1,
823                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
824
825                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827         } else {
828                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829                         &sdr_rw_load_mgr_regs->load_cntr0);
830
831                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832                         &sdr_rw_load_mgr_regs->load_cntr1);
833
834                 writel(RW_MGR_IDLE_LOOP2,
835                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
836
837                 writel(RW_MGR_IDLE_LOOP2,
838                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
839
840                 /* hack to get around compiler not being smart enough */
841                 if (afi_clocks <= 0x10000) {
842                         /* only need to run once */
843                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845                 } else {
846                         do {
847                                 writel(RW_MGR_IDLE_LOOP2,
848                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
849                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850                         } while (c_loop-- != 0);
851                 }
852         }
853         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:      Counter 0 value
859  * @cntr1:      Counter 1 value
860  * @cntr2:      Counter 2 value
861  * @jump:       Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869
870         /* Load counters */
871         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872                &sdr_rw_load_mgr_regs->load_cntr0);
873         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874                &sdr_rw_load_mgr_regs->load_cntr1);
875         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876                &sdr_rw_load_mgr_regs->load_cntr2);
877
878         /* Load jump address */
879         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882
883         /* Execute count instruction */
884         writel(jump, grpaddr);
885 }
886
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:       Final instruction 1
890  * @fin2:       Final instruction 2
891  * @precharge:  If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896                                  const int precharge)
897 {
898         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900         u32 r;
901
902         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903                 if (param->skip_ranks[r]) {
904                         /* request to skip the rank */
905                         continue;
906                 }
907
908                 /* set rank */
909                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910
911                 /* precharge all banks ... */
912                 if (precharge)
913                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914
915                 /*
916                  * USER Use Mirror-ed commands for odd ranks if address
917                  * mirrorring is on
918                  */
919                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920                         set_jump_as_return();
921                         writel(RW_MGR_MRS2_MIRR, grpaddr);
922                         delay_for_n_mem_clocks(4);
923                         set_jump_as_return();
924                         writel(RW_MGR_MRS3_MIRR, grpaddr);
925                         delay_for_n_mem_clocks(4);
926                         set_jump_as_return();
927                         writel(RW_MGR_MRS1_MIRR, grpaddr);
928                         delay_for_n_mem_clocks(4);
929                         set_jump_as_return();
930                         writel(fin1, grpaddr);
931                 } else {
932                         set_jump_as_return();
933                         writel(RW_MGR_MRS2, grpaddr);
934                         delay_for_n_mem_clocks(4);
935                         set_jump_as_return();
936                         writel(RW_MGR_MRS3, grpaddr);
937                         delay_for_n_mem_clocks(4);
938                         set_jump_as_return();
939                         writel(RW_MGR_MRS1, grpaddr);
940                         set_jump_as_return();
941                         writel(fin2, grpaddr);
942                 }
943
944                 if (precharge)
945                         continue;
946
947                 set_jump_as_return();
948                 writel(RW_MGR_ZQCL, grpaddr);
949
950                 /* tZQinit = tDLLK = 512 ck cycles */
951                 delay_for_n_mem_clocks(512);
952         }
953 }
954
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962         debug("%s:%d\n", __func__, __LINE__);
963
964         /* The reset / cke part of initialization is broadcasted to all ranks */
965         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967
968         /*
969          * Here's how you load register for a loop
970          * Counters are located @ 0x800
971          * Jump address are located @ 0xC00
972          * For both, registers 0 to 3 are selected using bits 3 and 2, like
973          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974          * I know this ain't pretty, but Avalon bus throws away the 2 least
975          * significant bits
976          */
977
978         /* Start with memory RESET activated */
979
980         /* tINIT = 200us */
981
982         /*
983          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984          * If a and b are the number of iteration in 2 nested loops
985          * it takes the following number of cycles to complete the operation:
986          * number_of_cycles = ((2 + n) * a + 2) * b
987          * where n is the number of instruction in the inner loop
988          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989          * b = 6A
990          */
991         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992                                   SEQ_TINIT_CNTR2_VAL,
993                                   RW_MGR_INIT_RESET_0_CKE_0);
994
995         /* Indicate that memory is stable. */
996         writel(1, &phy_mgr_cfg->reset_mem_stbl);
997
998         /*
999          * transition the RESET to high
1000          * Wait for 500us
1001          */
1002
1003         /*
1004          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005          * If a and b are the number of iteration in 2 nested loops
1006          * it takes the following number of cycles to complete the operation
1007          * number_of_cycles = ((2 + n) * a + 2) * b
1008          * where n is the number of instruction in the inner loop
1009          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010          * b = FF
1011          */
1012         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013                                   SEQ_TRESET_CNTR2_VAL,
1014                                   RW_MGR_INIT_RESET_1_CKE_0);
1015
1016         /* Bring up clock enable. */
1017
1018         /* tXRP < 250 ck cycles */
1019         delay_for_n_mem_clocks(250);
1020
1021         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022                              0);
1023 }
1024
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032         /*
1033          * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034          * other commands, but we will have plenty of NIOS cycles before
1035          * actual handoff so its okay.
1036          */
1037 }
1038
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:   Rank number
1042  * @group:      Read/Write Group
1043  * @all_ranks:  Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050                                         const u32 all_ranks)
1051 {
1052         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054         const u32 addr_offset =
1055                          (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056         const u32 rank_end = all_ranks ?
1057                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1058                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061         const u32 correct_mask_vg = param->read_correct_mask_vg;
1062
1063         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064         int vg, r;
1065         int ret = 0;
1066
1067         bit_chk = param->read_correct_mask;
1068
1069         for (r = rank_bgn; r < rank_end; r++) {
1070                 /* Request to skip the rank */
1071                 if (param->skip_ranks[r])
1072                         continue;
1073
1074                 /* Set rank */
1075                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076
1077                 /* Load up a constant bursts of read commands */
1078                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079                 writel(RW_MGR_GUARANTEED_READ,
1080                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081
1082                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083                 writel(RW_MGR_GUARANTEED_READ_CONT,
1084                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085
1086                 tmp_bit_chk = 0;
1087                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088                      vg >= 0; vg--) {
1089                         /* Reset the FIFOs to get pointers to known state. */
1090                         writel(0, &phy_mgr_cmd->fifo_reset);
1091                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093                         writel(RW_MGR_GUARANTEED_READ,
1094                                addr + addr_offset + (vg << 2));
1095
1096                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097                         tmp_bit_chk <<= shift_ratio;
1098                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099                 }
1100
1101                 bit_chk &= tmp_bit_chk;
1102         }
1103
1104         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105
1106         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107
1108         if (bit_chk != param->read_correct_mask)
1109                 ret = -EIO;
1110
1111         debug_cond(DLEVEL == 1,
1112                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113                    __func__, __LINE__, group, bit_chk,
1114                    param->read_correct_mask, ret);
1115
1116         return ret;
1117 }
1118
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:   Rank number
1122  * @all_ranks:  Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127                                                     const int all_ranks)
1128 {
1129         const u32 rank_end = all_ranks ?
1130                         RW_MGR_MEM_NUMBER_OF_RANKS :
1131                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132         u32 r;
1133
1134         debug("%s:%d\n", __func__, __LINE__);
1135
1136         for (r = rank_bgn; r < rank_end; r++) {
1137                 if (param->skip_ranks[r])
1138                         /* request to skip the rank */
1139                         continue;
1140
1141                 /* set rank */
1142                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143
1144                 /* Load up a constant bursts */
1145                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146
1147                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149
1150                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151
1152                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154
1155                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156
1157                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159
1160                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161
1162                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164
1165                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167         }
1168
1169         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179         uint32_t all_groups, uint32_t all_ranks)
1180 {
1181         uint32_t r, vg;
1182         uint32_t correct_mask_vg;
1183         uint32_t tmp_bit_chk;
1184         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186         uint32_t addr;
1187         uint32_t base_rw_mgr;
1188
1189         *bit_chk = param->read_correct_mask;
1190         correct_mask_vg = param->read_correct_mask_vg;
1191
1192         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194
1195         for (r = rank_bgn; r < rank_end; r++) {
1196                 if (param->skip_ranks[r])
1197                         /* request to skip the rank */
1198                         continue;
1199
1200                 /* set rank */
1201                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202
1203                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204
1205                 writel(RW_MGR_READ_B2B_WAIT1,
1206                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207
1208                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209                 writel(RW_MGR_READ_B2B_WAIT2,
1210                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211
1212                 if (quick_read_mode)
1213                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214                         /* need at least two (1+1) reads to capture failures */
1215                 else if (all_groups)
1216                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217                 else
1218                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219
1220                 writel(RW_MGR_READ_B2B,
1221                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222                 if (all_groups)
1223                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225                                &sdr_rw_load_mgr_regs->load_cntr3);
1226                 else
1227                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228
1229                 writel(RW_MGR_READ_B2B,
1230                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231
1232                 tmp_bit_chk = 0;
1233                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234                         /* reset the fifos to get pointers to known state */
1235                         writel(0, &phy_mgr_cmd->fifo_reset);
1236                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238
1239                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241
1242                         if (all_groups)
1243                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244                         else
1245                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246
1247                         writel(RW_MGR_READ_B2B, addr +
1248                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249                                vg) << 2));
1250
1251                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253
1254                         if (vg == 0)
1255                                 break;
1256                 }
1257                 *bit_chk &= tmp_bit_chk;
1258         }
1259
1260         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262
1263         if (all_correct) {
1264                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266                            (%u == %u) => %lu", __func__, __LINE__, group,
1267                            all_groups, *bit_chk, param->read_correct_mask,
1268                            (long unsigned int)(*bit_chk ==
1269                            param->read_correct_mask));
1270                 return *bit_chk == param->read_correct_mask;
1271         } else  {
1272                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274                            (%u != %lu) => %lu\n", __func__, __LINE__,
1275                            group, all_groups, *bit_chk, (long unsigned int)0,
1276                            (long unsigned int)(*bit_chk != 0x00));
1277                 return *bit_chk != 0x00;
1278         }
1279 }
1280
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283         uint32_t all_groups)
1284 {
1285         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286                                               bit_chk, all_groups, 1);
1287 }
1288
1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1290 {
1291         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1292         (*v)++;
1293 }
1294
1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1296 {
1297         uint32_t i;
1298
1299         for (i = 0; i < VFIFO_SIZE-1; i++)
1300                 rw_mgr_incr_vfifo(grp, v);
1301 }
1302
1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1304 {
1305         uint32_t  v;
1306         uint32_t fail_cnt = 0;
1307         uint32_t test_status;
1308
1309         for (v = 0; v < VFIFO_SIZE; ) {
1310                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1311                            __func__, __LINE__, v);
1312                 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1313                         (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1314                 if (!test_status) {
1315                         fail_cnt++;
1316
1317                         if (fail_cnt == 2)
1318                                 break;
1319                 }
1320
1321                 /* fiddle with FIFO */
1322                 rw_mgr_incr_vfifo(grp, &v);
1323         }
1324
1325         if (v >= VFIFO_SIZE) {
1326                 /* no failing read found!! Something must have gone wrong */
1327                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1328                            __func__, __LINE__);
1329                 return 0;
1330         } else {
1331                 return v;
1332         }
1333 }
1334
1335 /**
1336  * sdr_find_phase() - Find DQS enable phase
1337  * @working:    If 1, look for working phase, if 0, look for non-working phase
1338  * @grp:        Read/Write group
1339  * @v:          VFIFO value
1340  * @work:       Working window position
1341  * @i:          Iterator
1342  * @p:          DQS Phase Iterator
1343  *
1344  * Find working or non-working DQS enable phase setting.
1345  */
1346 static int sdr_find_phase(int working, const u32 grp, u32 *v, u32 *work,
1347                           u32 *i, u32 *p)
1348 {
1349         u32 ret, bit_chk;
1350         const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1351
1352         for (; *i < end; (*i)++) {
1353                 if (working)
1354                         *p = 0;
1355
1356                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) {
1357                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1358
1359                         ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1360                                                 PASS_ONE_BIT, &bit_chk, 0);
1361                         if (!working)
1362                                 ret = !ret;
1363
1364                         if (ret)
1365                                 return 0;
1366
1367                         *work += IO_DELAY_PER_OPA_TAP;
1368                 }
1369
1370                 if (*p > IO_DQS_EN_PHASE_MAX) {
1371                         /* Fiddle with FIFO. */
1372                         rw_mgr_incr_vfifo(grp, v);
1373                         if (!working)
1374                                 *p = 0;
1375                 }
1376         }
1377
1378         return -EINVAL;
1379 }
1380
1381 static int sdr_working_phase(uint32_t grp,
1382                               uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1383                               uint32_t *v, uint32_t *d, uint32_t *p,
1384                               uint32_t *i)
1385 {
1386         int ret;
1387
1388         *work_bgn = 0;
1389
1390         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1391                 *i = 0;
1392                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1393                 ret = sdr_find_phase(1, grp, v, work_bgn, i, p);
1394                 if (!ret)
1395                         return 0;
1396                 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1397         }
1398
1399         /* Cannot find working solution */
1400         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1401                    __func__, __LINE__);
1402         return -EINVAL;
1403 }
1404
1405 static void sdr_backup_phase(uint32_t grp,
1406                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1407                              uint32_t *p)
1408 {
1409         uint32_t tmp_delay;
1410         u32 bit_chk;
1411
1412         /* Special case code for backing up a phase */
1413         if (*p == 0) {
1414                 *p = IO_DQS_EN_PHASE_MAX;
1415                 rw_mgr_decr_vfifo(grp, v);
1416         } else {
1417                 (*p)--;
1418         }
1419         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1420         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1421
1422         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1423                 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1424                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1425
1426                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1427                                                              PASS_ONE_BIT,
1428                                                              &bit_chk, 0)) {
1429                         *work_bgn = tmp_delay;
1430                         break;
1431                 }
1432         }
1433
1434         /*
1435          * Restore VFIFO to old state before we decremented it
1436          * (if needed).
1437          */
1438         (*p)++;
1439         if (*p > IO_DQS_EN_PHASE_MAX) {
1440                 *p = 0;
1441                 rw_mgr_incr_vfifo(grp, v);
1442         }
1443
1444         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1445 }
1446
1447 static int sdr_nonworking_phase(uint32_t grp,
1448                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1449                              uint32_t *p, uint32_t *i,
1450                              uint32_t *work_end)
1451 {
1452         int ret;
1453
1454         (*p)++;
1455         *work_end += IO_DELAY_PER_OPA_TAP;
1456         if (*p > IO_DQS_EN_PHASE_MAX) {
1457                 /* Fiddle with FIFO. */
1458                 *p = 0;
1459                 rw_mgr_incr_vfifo(grp, v);
1460         }
1461
1462         ret = sdr_find_phase(0, grp, v, work_end, i, p);
1463         if (ret) {
1464                 /* Cannot see edge of failing read. */
1465                 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1466                            __func__, __LINE__);
1467         }
1468
1469         return ret;
1470 }
1471
1472 /**
1473  * sdr_find_window_center() - Find center of the working DQS window.
1474  * @grp:        Read/Write group
1475  * @work_bgn:   First working settings
1476  * @work_end:   Last working settings
1477  * @val:        VFIFO value
1478  *
1479  * Find center of the working DQS enable window.
1480  */
1481 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1482                                   const u32 work_end, const u32 val)
1483 {
1484         u32 bit_chk, work_mid, v = val;
1485         int tmp_delay = 0;
1486         int i, p, d;
1487
1488         work_mid = (work_bgn + work_end) / 2;
1489
1490         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1491                    work_bgn, work_end, work_mid);
1492         /* Get the middle delay to be less than a VFIFO delay */
1493         tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1494
1495         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1496         work_mid %= tmp_delay;
1497         debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1498
1499         tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1500         if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1501                 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1502         p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1503
1504         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1505
1506         d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1507         if (d > IO_DQS_EN_DELAY_MAX)
1508                 d = IO_DQS_EN_DELAY_MAX;
1509         tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1510
1511         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1512
1513         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1514         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1515
1516         /*
1517          * push vfifo until we can successfully calibrate. We can do this
1518          * because the largest possible margin in 1 VFIFO cycle.
1519          */
1520         for (i = 0; i < VFIFO_SIZE; i++) {
1521                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1522                            v);
1523                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1524                                                              PASS_ONE_BIT,
1525                                                              &bit_chk, 0)) {
1526                         debug_cond(DLEVEL == 2,
1527                                    "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n",
1528                                    __func__, __LINE__, v, p, d);
1529                         return 0;
1530                 }
1531
1532                 /* Fiddle with FIFO. */
1533                 rw_mgr_incr_vfifo(grp, &v);
1534         }
1535
1536         debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1537                    __func__, __LINE__);
1538         return -EINVAL;
1539 }
1540
1541 /* find a good dqs enable to use */
1542 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1543 {
1544         uint32_t v, d, p, i;
1545         uint32_t bit_chk;
1546         uint32_t dtaps_per_ptap;
1547         uint32_t work_bgn, work_end;
1548         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1549
1550         debug("%s:%d %u\n", __func__, __LINE__, grp);
1551
1552         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1553
1554         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1555         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1556
1557         /* ************************************************************** */
1558         /* * Step 0 : Determine number of delay taps for each phase tap * */
1559         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1560
1561         /* ********************************************************* */
1562         /* * Step 1 : First push vfifo until we get a failing read * */
1563         v = find_vfifo_read(grp, &bit_chk);
1564
1565         /* ******************************************************** */
1566         /* * step 2: find first working phase, increment in ptaps * */
1567         work_bgn = 0;
1568         if (sdr_working_phase(grp, dtaps_per_ptap, &work_bgn, &v, &d, &p, &i))
1569                 return 0;
1570
1571         work_end = work_bgn;
1572
1573         /*
1574          * If d is 0 then the working window covers a phase tap and
1575          * we can follow the old procedure otherwise, we've found the beginning,
1576          * and we need to increment the dtaps until we find the end.
1577          */
1578         if (d == 0) {
1579                 /* ********************************************************* */
1580                 /* * step 3a: if we have room, back off by one and
1581                 increment in dtaps * */
1582
1583                 sdr_backup_phase(grp, &work_bgn, &v, &d, &p);
1584
1585                 /* ********************************************************* */
1586                 /* * step 4a: go forward from working phase to non working
1587                 phase, increment in ptaps * */
1588                 if (sdr_nonworking_phase(grp, &work_bgn, &v, &d, &p,
1589                                          &i, &work_end))
1590                         return 0;
1591
1592                 /* ********************************************************* */
1593                 /* * step 5a:  back off one from last, increment in dtaps  * */
1594
1595                 /* Special case code for backing up a phase */
1596                 if (p == 0) {
1597                         p = IO_DQS_EN_PHASE_MAX;
1598                         rw_mgr_decr_vfifo(grp, &v);
1599                 } else {
1600                         p = p - 1;
1601                 }
1602
1603                 work_end -= IO_DELAY_PER_OPA_TAP;
1604                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1605
1606                 /* * The actual increment of dtaps is done outside of
1607                 the if/else loop to share code */
1608                 d = 0;
1609
1610                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1611                            vfifo=%u ptap=%u\n", __func__, __LINE__,
1612                            v, p);
1613         } else {
1614                 /* ******************************************************* */
1615                 /* * step 3-5b:  Find the right edge of the window using
1616                 delay taps   * */
1617                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1618                            ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1619                            v, p, d, work_bgn);
1620
1621                 work_end = work_bgn;
1622         }
1623
1624         /* The dtap increment to find the failing edge is done here */
1625         for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1626                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1627                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1628                                    end-2: dtap=%u\n", __func__, __LINE__, d);
1629                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1630
1631                         if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1632                                                                       PASS_ONE_BIT,
1633                                                                       &bit_chk, 0)) {
1634                                 break;
1635                         }
1636         }
1637
1638         /* Go back to working dtap */
1639         if (d != 0)
1640                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1641
1642         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1643                    ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1644                    v, p, d-1, work_end);
1645
1646         if (work_end < work_bgn) {
1647                 /* nil range */
1648                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1649                            failed\n", __func__, __LINE__);
1650                 return 0;
1651         }
1652
1653         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1654                    __func__, __LINE__, work_bgn, work_end);
1655
1656         /* *************************************************************** */
1657         /*
1658          * * We need to calculate the number of dtaps that equal a ptap
1659          * * To do that we'll back up a ptap and re-find the edge of the
1660          * * window using dtaps
1661          */
1662
1663         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1664                    for tracking\n", __func__, __LINE__);
1665
1666         /* Special case code for backing up a phase */
1667         if (p == 0) {
1668                 p = IO_DQS_EN_PHASE_MAX;
1669                 rw_mgr_decr_vfifo(grp, &v);
1670                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1671                            cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1672                            v, p);
1673         } else {
1674                 p = p - 1;
1675                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1676                            phase only: v=%u p=%u", __func__, __LINE__,
1677                            v, p);
1678         }
1679
1680         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1681
1682         /*
1683          * Increase dtap until we first see a passing read (in case the
1684          * window is smaller than a ptap),
1685          * and then a failing read to mark the edge of the window again
1686          */
1687
1688         /* Find a passing read */
1689         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1690                    __func__, __LINE__);
1691         found_passing_read = 0;
1692         found_failing_read = 0;
1693         initial_failing_dtap = d;
1694         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1695                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1696                            read d=%u\n", __func__, __LINE__, d);
1697                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1698
1699                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1700                                                              PASS_ONE_BIT,
1701                                                              &bit_chk, 0)) {
1702                         found_passing_read = 1;
1703                         break;
1704                 }
1705         }
1706
1707         if (found_passing_read) {
1708                 /* Find a failing read */
1709                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1710                            read\n", __func__, __LINE__);
1711                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1712                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1713                                    testing read d=%u\n", __func__, __LINE__, d);
1714                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1715
1716                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1717                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1718                                 found_failing_read = 1;
1719                                 break;
1720                         }
1721                 }
1722         } else {
1723                 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1724                            calculate dtaps", __func__, __LINE__);
1725                 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1726         }
1727
1728         /*
1729          * The dynamically calculated dtaps_per_ptap is only valid if we
1730          * found a passing/failing read. If we didn't, it means d hit the max
1731          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1732          * statically calculated value.
1733          */
1734         if (found_passing_read && found_failing_read)
1735                 dtaps_per_ptap = d - initial_failing_dtap;
1736
1737         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1738         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1739                    - %u = %u",  __func__, __LINE__, d,
1740                    initial_failing_dtap, dtaps_per_ptap);
1741
1742         /* ******************************************** */
1743         /* * step 6:  Find the centre of the window   * */
1744         if (sdr_find_window_centre(grp, work_bgn, work_end, v))
1745                 return 0; /* FIXME: Old code, return 0 means failure :-( */
1746
1747         return 1;
1748 }
1749
1750 /* per-bit deskew DQ and center */
1751 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1752         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1753         uint32_t use_read_test, uint32_t update_fom)
1754 {
1755         uint32_t i, p, d, min_index;
1756         /*
1757          * Store these as signed since there are comparisons with
1758          * signed numbers.
1759          */
1760         uint32_t bit_chk;
1761         uint32_t sticky_bit_chk;
1762         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1763         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1764         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1765         int32_t mid;
1766         int32_t orig_mid_min, mid_min;
1767         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1768                 final_dqs_en;
1769         int32_t dq_margin, dqs_margin;
1770         uint32_t stop;
1771         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1772         uint32_t addr;
1773
1774         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1775
1776         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1777         start_dqs = readl(addr + (read_group << 2));
1778         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1779                 start_dqs_en = readl(addr + ((read_group << 2)
1780                                      - IO_DQS_EN_DELAY_OFFSET));
1781
1782         /* set the left and right edge of each bit to an illegal value */
1783         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1784         sticky_bit_chk = 0;
1785         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1786                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1787                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1788         }
1789
1790         /* Search for the left edge of the window for each bit */
1791         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1792                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1793
1794                 writel(0, &sdr_scc_mgr->update);
1795
1796                 /*
1797                  * Stop searching when the read test doesn't pass AND when
1798                  * we've seen a passing read on every bit.
1799                  */
1800                 if (use_read_test) {
1801                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1802                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1803                                 &bit_chk, 0, 0);
1804                 } else {
1805                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1806                                                         0, PASS_ONE_BIT,
1807                                                         &bit_chk, 0);
1808                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1809                                 (read_group - (write_group *
1810                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1811                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1812                         stop = (bit_chk == 0);
1813                 }
1814                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1815                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1816                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1817                            && %u", __func__, __LINE__, d,
1818                            sticky_bit_chk,
1819                         param->read_correct_mask, stop);
1820
1821                 if (stop == 1) {
1822                         break;
1823                 } else {
1824                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1825                                 if (bit_chk & 1) {
1826                                         /* Remember a passing test as the
1827                                         left_edge */
1828                                         left_edge[i] = d;
1829                                 } else {
1830                                         /* If a left edge has not been seen yet,
1831                                         then a future passing test will mark
1832                                         this edge as the right edge */
1833                                         if (left_edge[i] ==
1834                                                 IO_IO_IN_DELAY_MAX + 1) {
1835                                                 right_edge[i] = -(d + 1);
1836                                         }
1837                                 }
1838                                 bit_chk = bit_chk >> 1;
1839                         }
1840                 }
1841         }
1842
1843         /* Reset DQ delay chains to 0 */
1844         scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1845         sticky_bit_chk = 0;
1846         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1847                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1848                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1849                            i, left_edge[i], i, right_edge[i]);
1850
1851                 /*
1852                  * Check for cases where we haven't found the left edge,
1853                  * which makes our assignment of the the right edge invalid.
1854                  * Reset it to the illegal value.
1855                  */
1856                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1857                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1858                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1859                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1860                                    right_edge[%u]: %d\n", __func__, __LINE__,
1861                                    i, right_edge[i]);
1862                 }
1863
1864                 /*
1865                  * Reset sticky bit (except for bits where we have seen
1866                  * both the left and right edge).
1867                  */
1868                 sticky_bit_chk = sticky_bit_chk << 1;
1869                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1870                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1871                         sticky_bit_chk = sticky_bit_chk | 1;
1872                 }
1873
1874                 if (i == 0)
1875                         break;
1876         }
1877
1878         /* Search for the right edge of the window for each bit */
1879         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1880                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1881                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1882                         uint32_t delay = d + start_dqs_en;
1883                         if (delay > IO_DQS_EN_DELAY_MAX)
1884                                 delay = IO_DQS_EN_DELAY_MAX;
1885                         scc_mgr_set_dqs_en_delay(read_group, delay);
1886                 }
1887                 scc_mgr_load_dqs(read_group);
1888
1889                 writel(0, &sdr_scc_mgr->update);
1890
1891                 /*
1892                  * Stop searching when the read test doesn't pass AND when
1893                  * we've seen a passing read on every bit.
1894                  */
1895                 if (use_read_test) {
1896                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1897                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1898                                 &bit_chk, 0, 0);
1899                 } else {
1900                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1901                                                         0, PASS_ONE_BIT,
1902                                                         &bit_chk, 0);
1903                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1904                                 (read_group - (write_group *
1905                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1906                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1907                         stop = (bit_chk == 0);
1908                 }
1909                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1910                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1911
1912                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1913                            %u && %u", __func__, __LINE__, d,
1914                            sticky_bit_chk, param->read_correct_mask, stop);
1915
1916                 if (stop == 1) {
1917                         break;
1918                 } else {
1919                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1920                                 if (bit_chk & 1) {
1921                                         /* Remember a passing test as
1922                                         the right_edge */
1923                                         right_edge[i] = d;
1924                                 } else {
1925                                         if (d != 0) {
1926                                                 /* If a right edge has not been
1927                                                 seen yet, then a future passing
1928                                                 test will mark this edge as the
1929                                                 left edge */
1930                                                 if (right_edge[i] ==
1931                                                 IO_IO_IN_DELAY_MAX + 1) {
1932                                                         left_edge[i] = -(d + 1);
1933                                                 }
1934                                         } else {
1935                                                 /* d = 0 failed, but it passed
1936                                                 when testing the left edge,
1937                                                 so it must be marginal,
1938                                                 set it to -1 */
1939                                                 if (right_edge[i] ==
1940                                                         IO_IO_IN_DELAY_MAX + 1 &&
1941                                                         left_edge[i] !=
1942                                                         IO_IO_IN_DELAY_MAX
1943                                                         + 1) {
1944                                                         right_edge[i] = -1;
1945                                                 }
1946                                                 /* If a right edge has not been
1947                                                 seen yet, then a future passing
1948                                                 test will mark this edge as the
1949                                                 left edge */
1950                                                 else if (right_edge[i] ==
1951                                                         IO_IO_IN_DELAY_MAX +
1952                                                         1) {
1953                                                         left_edge[i] = -(d + 1);
1954                                                 }
1955                                         }
1956                                 }
1957
1958                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1959                                            d=%u]: ", __func__, __LINE__, d);
1960                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1961                                            (int)(bit_chk & 1), i, left_edge[i]);
1962                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1963                                            right_edge[i]);
1964                                 bit_chk = bit_chk >> 1;
1965                         }
1966                 }
1967         }
1968
1969         /* Check that all bits have a window */
1970         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1971                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1972                            %d right_edge[%u]: %d", __func__, __LINE__,
1973                            i, left_edge[i], i, right_edge[i]);
1974                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1975                         == IO_IO_IN_DELAY_MAX + 1)) {
1976                         /*
1977                          * Restore delay chain settings before letting the loop
1978                          * in rw_mgr_mem_calibrate_vfifo to retry different
1979                          * dqs/ck relationships.
1980                          */
1981                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
1982                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1983                                 scc_mgr_set_dqs_en_delay(read_group,
1984                                                          start_dqs_en);
1985                         }
1986                         scc_mgr_load_dqs(read_group);
1987                         writel(0, &sdr_scc_mgr->update);
1988
1989                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
1990                                    find edge [%u]: %d %d", __func__, __LINE__,
1991                                    i, left_edge[i], right_edge[i]);
1992                         if (use_read_test) {
1993                                 set_failing_group_stage(read_group *
1994                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
1995                                         CAL_STAGE_VFIFO,
1996                                         CAL_SUBSTAGE_VFIFO_CENTER);
1997                         } else {
1998                                 set_failing_group_stage(read_group *
1999                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2000                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2001                                         CAL_SUBSTAGE_VFIFO_CENTER);
2002                         }
2003                         return 0;
2004                 }
2005         }
2006
2007         /* Find middle of window for each DQ bit */
2008         mid_min = left_edge[0] - right_edge[0];
2009         min_index = 0;
2010         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2011                 mid = left_edge[i] - right_edge[i];
2012                 if (mid < mid_min) {
2013                         mid_min = mid;
2014                         min_index = i;
2015                 }
2016         }
2017
2018         /*
2019          * -mid_min/2 represents the amount that we need to move DQS.
2020          * If mid_min is odd and positive we'll need to add one to
2021          * make sure the rounding in further calculations is correct
2022          * (always bias to the right), so just add 1 for all positive values.
2023          */
2024         if (mid_min > 0)
2025                 mid_min++;
2026
2027         mid_min = mid_min / 2;
2028
2029         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2030                    __func__, __LINE__, mid_min, min_index);
2031
2032         /* Determine the amount we can change DQS (which is -mid_min) */
2033         orig_mid_min = mid_min;
2034         new_dqs = start_dqs - mid_min;
2035         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2036                 new_dqs = IO_DQS_IN_DELAY_MAX;
2037         else if (new_dqs < 0)
2038                 new_dqs = 0;
2039
2040         mid_min = start_dqs - new_dqs;
2041         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2042                    mid_min, new_dqs);
2043
2044         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2045                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2046                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2047                 else if (start_dqs_en - mid_min < 0)
2048                         mid_min += start_dqs_en - mid_min;
2049         }
2050         new_dqs = start_dqs - mid_min;
2051
2052         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2053                    new_dqs=%d mid_min=%d\n", start_dqs,
2054                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2055                    new_dqs, mid_min);
2056
2057         /* Initialize data for export structures */
2058         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2059         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2060
2061         /* add delay to bring centre of all DQ windows to the same "level" */
2062         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2063                 /* Use values before divide by 2 to reduce round off error */
2064                 shift_dq = (left_edge[i] - right_edge[i] -
2065                         (left_edge[min_index] - right_edge[min_index]))/2  +
2066                         (orig_mid_min - mid_min);
2067
2068                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2069                            shift_dq[%u]=%d\n", i, shift_dq);
2070
2071                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2072                 temp_dq_in_delay1 = readl(addr + (p << 2));
2073                 temp_dq_in_delay2 = readl(addr + (i << 2));
2074
2075                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2076                         (int32_t)IO_IO_IN_DELAY_MAX) {
2077                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2078                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2079                         shift_dq = -(int32_t)temp_dq_in_delay1;
2080                 }
2081                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2082                            shift_dq[%u]=%d\n", i, shift_dq);
2083                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2084                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2085                 scc_mgr_load_dq(p);
2086
2087                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2088                            left_edge[i] - shift_dq + (-mid_min),
2089                            right_edge[i] + shift_dq - (-mid_min));
2090                 /* To determine values for export structures */
2091                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2092                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2093
2094                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2095                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2096         }
2097
2098         final_dqs = new_dqs;
2099         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2100                 final_dqs_en = start_dqs_en - mid_min;
2101
2102         /* Move DQS-en */
2103         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2104                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2105                 scc_mgr_load_dqs(read_group);
2106         }
2107
2108         /* Move DQS */
2109         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2110         scc_mgr_load_dqs(read_group);
2111         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2112                    dqs_margin=%d", __func__, __LINE__,
2113                    dq_margin, dqs_margin);
2114
2115         /*
2116          * Do not remove this line as it makes sure all of our decisions
2117          * have been applied. Apply the update bit.
2118          */
2119         writel(0, &sdr_scc_mgr->update);
2120
2121         return (dq_margin >= 0) && (dqs_margin >= 0);
2122 }
2123
2124 /**
2125  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2126  * @rw_group:   Read/Write Group
2127  * @phase:      DQ/DQS phase
2128  *
2129  * Because initially no communication ca be reliably performed with the memory
2130  * device, the sequencer uses a guaranteed write mechanism to write data into
2131  * the memory device.
2132  */
2133 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2134                                                  const u32 phase)
2135 {
2136         int ret;
2137
2138         /* Set a particular DQ/DQS phase. */
2139         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2140
2141         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2142                    __func__, __LINE__, rw_group, phase);
2143
2144         /*
2145          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2146          * Load up the patterns used by read calibration using the
2147          * current DQDQS phase.
2148          */
2149         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2150
2151         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2152                 return 0;
2153
2154         /*
2155          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2156          * Back-to-Back reads of the patterns used for calibration.
2157          */
2158         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2159         if (ret)
2160                 debug_cond(DLEVEL == 1,
2161                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2162                            __func__, __LINE__, rw_group, phase);
2163         return ret;
2164 }
2165
2166 /**
2167  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2168  * @rw_group:   Read/Write Group
2169  * @test_bgn:   Rank at which the test begins
2170  *
2171  * DQS enable calibration ensures reliable capture of the DQ signal without
2172  * glitches on the DQS line.
2173  */
2174 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2175                                                        const u32 test_bgn)
2176 {
2177         /*
2178          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2179          * DQS and DQS Eanble Signal Relationships.
2180          */
2181
2182         /* We start at zero, so have one less dq to devide among */
2183         const u32 delay_step = IO_IO_IN_DELAY_MAX /
2184                                (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2185         int found;
2186         u32 i, p, d, r;
2187
2188         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2189
2190         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2191         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2192              r += NUM_RANKS_PER_SHADOW_REG) {
2193                 for (i = 0, p = test_bgn, d = 0;
2194                      i < RW_MGR_MEM_DQ_PER_READ_DQS;
2195                      i++, p++, d += delay_step) {
2196                         debug_cond(DLEVEL == 1,
2197                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2198                                    __func__, __LINE__, rw_group, r, i, p, d);
2199
2200                         scc_mgr_set_dq_in_delay(p, d);
2201                         scc_mgr_load_dq(p);
2202                 }
2203
2204                 writel(0, &sdr_scc_mgr->update);
2205         }
2206
2207         /*
2208          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2209          * dq_in_delay values
2210          */
2211         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2212
2213         debug_cond(DLEVEL == 1,
2214                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2215                    __func__, __LINE__, rw_group, found);
2216
2217         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2218              r += NUM_RANKS_PER_SHADOW_REG) {
2219                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2220                 writel(0, &sdr_scc_mgr->update);
2221         }
2222
2223         if (!found)
2224                 return -EINVAL;
2225
2226         return 0;
2227
2228 }
2229
2230 /**
2231  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2232  * @rw_group:           Read/Write Group
2233  * @test_bgn:           Rank at which the test begins
2234  * @use_read_test:      Perform a read test
2235  * @update_fom:         Update FOM
2236  *
2237  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2238  * within a group.
2239  */
2240 static int
2241 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2242                                       const int use_read_test,
2243                                       const int update_fom)
2244
2245 {
2246         int ret, grp_calibrated;
2247         u32 rank_bgn, sr;
2248
2249         /*
2250          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2251          * Read per-bit deskew can be done on a per shadow register basis.
2252          */
2253         grp_calibrated = 1;
2254         for (rank_bgn = 0, sr = 0;
2255              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2256              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2257                 /* Check if this set of ranks should be skipped entirely. */
2258                 if (param->skip_shadow_regs[sr])
2259                         continue;
2260
2261                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2262                                                         rw_group, test_bgn,
2263                                                         use_read_test,
2264                                                         update_fom);
2265                 if (ret)
2266                         continue;
2267
2268                 grp_calibrated = 0;
2269         }
2270
2271         if (!grp_calibrated)
2272                 return -EIO;
2273
2274         return 0;
2275 }
2276
2277 /**
2278  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2279  * @rw_group:           Read/Write Group
2280  * @test_bgn:           Rank at which the test begins
2281  *
2282  * Stage 1: Calibrate the read valid prediction FIFO.
2283  *
2284  * This function implements UniPHY calibration Stage 1, as explained in
2285  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2286  *
2287  * - read valid prediction will consist of finding:
2288  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2289  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2290  *  - we also do a per-bit deskew on the DQ lines.
2291  */
2292 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2293 {
2294         uint32_t p, d;
2295         uint32_t dtaps_per_ptap;
2296         uint32_t failed_substage;
2297
2298         int ret;
2299
2300         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2301
2302         /* Update info for sims */
2303         reg_file_set_group(rw_group);
2304         reg_file_set_stage(CAL_STAGE_VFIFO);
2305         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2306
2307         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2308
2309         /* USER Determine number of delay taps for each phase tap. */
2310         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2311                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2312
2313         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2314                 /*
2315                  * In RLDRAMX we may be messing the delay of pins in
2316                  * the same write rw_group but outside of the current read
2317                  * the rw_group, but that's ok because we haven't calibrated
2318                  * output side yet.
2319                  */
2320                 if (d > 0) {
2321                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2322                                                                 rw_group, d);
2323                 }
2324
2325                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2326                         /* 1) Guaranteed Write */
2327                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2328                         if (ret)
2329                                 break;
2330
2331                         /* 2) DQS Enable Calibration */
2332                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2333                                                                           test_bgn);
2334                         if (ret) {
2335                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2336                                 continue;
2337                         }
2338
2339                         /* 3) Centering DQ/DQS */
2340                         /*
2341                          * If doing read after write calibration, do not update
2342                          * FOM now. Do it then.
2343                          */
2344                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2345                                                                 test_bgn, 1, 0);
2346                         if (ret) {
2347                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2348                                 continue;
2349                         }
2350
2351                         /* All done. */
2352                         goto cal_done_ok;
2353                 }
2354         }
2355
2356         /* Calibration Stage 1 failed. */
2357         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2358         return 0;
2359
2360         /* Calibration Stage 1 completed OK. */
2361 cal_done_ok:
2362         /*
2363          * Reset the delay chains back to zero if they have moved > 1
2364          * (check for > 1 because loop will increase d even when pass in
2365          * first case).
2366          */
2367         if (d > 2)
2368                 scc_mgr_zero_group(rw_group, 1);
2369
2370         return 1;
2371 }
2372
2373 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2374 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2375                                                uint32_t test_bgn)
2376 {
2377         uint32_t rank_bgn, sr;
2378         uint32_t grp_calibrated;
2379         uint32_t write_group;
2380
2381         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2382
2383         /* update info for sims */
2384
2385         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2386         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2387
2388         write_group = read_group;
2389
2390         /* update info for sims */
2391         reg_file_set_group(read_group);
2392
2393         grp_calibrated = 1;
2394         /* Read per-bit deskew can be done on a per shadow register basis */
2395         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2396                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2397                 /* Determine if this set of ranks should be skipped entirely */
2398                 if (!param->skip_shadow_regs[sr]) {
2399                 /* This is the last calibration round, update FOM here */
2400                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2401                                                                 write_group,
2402                                                                 read_group,
2403                                                                 test_bgn, 0,
2404                                                                 1)) {
2405                                 grp_calibrated = 0;
2406                         }
2407                 }
2408         }
2409
2410
2411         if (grp_calibrated == 0) {
2412                 set_failing_group_stage(write_group,
2413                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2414                                         CAL_SUBSTAGE_VFIFO_CENTER);
2415                 return 0;
2416         }
2417
2418         return 1;
2419 }
2420
2421 /* Calibrate LFIFO to find smallest read latency */
2422 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2423 {
2424         uint32_t found_one;
2425         uint32_t bit_chk;
2426
2427         debug("%s:%d\n", __func__, __LINE__);
2428
2429         /* update info for sims */
2430         reg_file_set_stage(CAL_STAGE_LFIFO);
2431         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2432
2433         /* Load up the patterns used by read calibration for all ranks */
2434         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2435         found_one = 0;
2436
2437         do {
2438                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2439                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2440                            __func__, __LINE__, gbl->curr_read_lat);
2441
2442                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2443                                                               NUM_READ_TESTS,
2444                                                               PASS_ALL_BITS,
2445                                                               &bit_chk, 1)) {
2446                         break;
2447                 }
2448
2449                 found_one = 1;
2450                 /* reduce read latency and see if things are working */
2451                 /* correctly */
2452                 gbl->curr_read_lat--;
2453         } while (gbl->curr_read_lat > 0);
2454
2455         /* reset the fifos to get pointers to known state */
2456
2457         writel(0, &phy_mgr_cmd->fifo_reset);
2458
2459         if (found_one) {
2460                 /* add a fudge factor to the read latency that was determined */
2461                 gbl->curr_read_lat += 2;
2462                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2463                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2464                            read_lat=%u\n", __func__, __LINE__,
2465                            gbl->curr_read_lat);
2466                 return 1;
2467         } else {
2468                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2469                                         CAL_SUBSTAGE_READ_LATENCY);
2470
2471                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2472                            read_lat=%u\n", __func__, __LINE__,
2473                            gbl->curr_read_lat);
2474                 return 0;
2475         }
2476 }
2477
2478 /*
2479  * issue write test command.
2480  * two variants are provided. one that just tests a write pattern and
2481  * another that tests datamask functionality.
2482  */
2483 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2484                                                   uint32_t test_dm)
2485 {
2486         uint32_t mcc_instruction;
2487         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2488                 ENABLE_SUPER_QUICK_CALIBRATION);
2489         uint32_t rw_wl_nop_cycles;
2490         uint32_t addr;
2491
2492         /*
2493          * Set counter and jump addresses for the right
2494          * number of NOP cycles.
2495          * The number of supported NOP cycles can range from -1 to infinity
2496          * Three different cases are handled:
2497          *
2498          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2499          *    mechanism will be used to insert the right number of NOPs
2500          *
2501          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2502          *    issuing the write command will jump straight to the
2503          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2504          *    data (for RLD), skipping
2505          *    the NOP micro-instruction all together
2506          *
2507          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2508          *    turned on in the same micro-instruction that issues the write
2509          *    command. Then we need
2510          *    to directly jump to the micro-instruction that sends out the data
2511          *
2512          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2513          *       (2 and 3). One jump-counter (0) is used to perform multiple
2514          *       write-read operations.
2515          *       one counter left to issue this command in "multiple-group" mode
2516          */
2517
2518         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2519
2520         if (rw_wl_nop_cycles == -1) {
2521                 /*
2522                  * CNTR 2 - We want to execute the special write operation that
2523                  * turns on DQS right away and then skip directly to the
2524                  * instruction that sends out the data. We set the counter to a
2525                  * large number so that the jump is always taken.
2526                  */
2527                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2528
2529                 /* CNTR 3 - Not used */
2530                 if (test_dm) {
2531                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2532                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2533                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2534                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2535                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2536                 } else {
2537                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2538                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2539                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2540                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2541                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2542                 }
2543         } else if (rw_wl_nop_cycles == 0) {
2544                 /*
2545                  * CNTR 2 - We want to skip the NOP operation and go straight
2546                  * to the DQS enable instruction. We set the counter to a large
2547                  * number so that the jump is always taken.
2548                  */
2549                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2550
2551                 /* CNTR 3 - Not used */
2552                 if (test_dm) {
2553                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2554                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2555                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2556                 } else {
2557                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2558                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2559                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2560                 }
2561         } else {
2562                 /*
2563                  * CNTR 2 - In this case we want to execute the next instruction
2564                  * and NOT take the jump. So we set the counter to 0. The jump
2565                  * address doesn't count.
2566                  */
2567                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2568                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2569
2570                 /*
2571                  * CNTR 3 - Set the nop counter to the number of cycles we
2572                  * need to loop for, minus 1.
2573                  */
2574                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2575                 if (test_dm) {
2576                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2577                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2578                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2579                 } else {
2580                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2581                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2582                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2583                 }
2584         }
2585
2586         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2587                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2588
2589         if (quick_write_mode)
2590                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2591         else
2592                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2593
2594         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2595
2596         /*
2597          * CNTR 1 - This is used to ensure enough time elapses
2598          * for read data to come back.
2599          */
2600         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2601
2602         if (test_dm) {
2603                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2604                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2605         } else {
2606                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2607                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2608         }
2609
2610         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2611         writel(mcc_instruction, addr + (group << 2));
2612 }
2613
2614 /* Test writes, can check for a single bit pass or multiple bit pass */
2615 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2616         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2617         uint32_t *bit_chk, uint32_t all_ranks)
2618 {
2619         uint32_t r;
2620         uint32_t correct_mask_vg;
2621         uint32_t tmp_bit_chk;
2622         uint32_t vg;
2623         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2624                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2625         uint32_t addr_rw_mgr;
2626         uint32_t base_rw_mgr;
2627
2628         *bit_chk = param->write_correct_mask;
2629         correct_mask_vg = param->write_correct_mask_vg;
2630
2631         for (r = rank_bgn; r < rank_end; r++) {
2632                 if (param->skip_ranks[r]) {
2633                         /* request to skip the rank */
2634                         continue;
2635                 }
2636
2637                 /* set rank */
2638                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2639
2640                 tmp_bit_chk = 0;
2641                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2642                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2643                         /* reset the fifos to get pointers to known state */
2644                         writel(0, &phy_mgr_cmd->fifo_reset);
2645
2646                         tmp_bit_chk = tmp_bit_chk <<
2647                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2648                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2649                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2650                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2651                                 use_dm);
2652
2653                         base_rw_mgr = readl(addr_rw_mgr);
2654                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2655                         if (vg == 0)
2656                                 break;
2657                 }
2658                 *bit_chk &= tmp_bit_chk;
2659         }
2660
2661         if (all_correct) {
2662                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2663                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2664                            %u => %lu", write_group, use_dm,
2665                            *bit_chk, param->write_correct_mask,
2666                            (long unsigned int)(*bit_chk ==
2667                            param->write_correct_mask));
2668                 return *bit_chk == param->write_correct_mask;
2669         } else {
2670                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2671                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2672                        write_group, use_dm, *bit_chk);
2673                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2674                         (long unsigned int)(*bit_chk != 0));
2675                 return *bit_chk != 0x00;
2676         }
2677 }
2678
2679 /*
2680  * center all windows. do per-bit-deskew to possibly increase size of
2681  * certain windows.
2682  */
2683 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2684         uint32_t write_group, uint32_t test_bgn)
2685 {
2686         uint32_t i, p, min_index;
2687         int32_t d;
2688         /*
2689          * Store these as signed since there are comparisons with
2690          * signed numbers.
2691          */
2692         uint32_t bit_chk;
2693         uint32_t sticky_bit_chk;
2694         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2695         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2696         int32_t mid;
2697         int32_t mid_min, orig_mid_min;
2698         int32_t new_dqs, start_dqs, shift_dq;
2699         int32_t dq_margin, dqs_margin, dm_margin;
2700         uint32_t stop;
2701         uint32_t temp_dq_out1_delay;
2702         uint32_t addr;
2703
2704         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2705
2706         dm_margin = 0;
2707
2708         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2709         start_dqs = readl(addr +
2710                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2711
2712         /* per-bit deskew */
2713
2714         /*
2715          * set the left and right edge of each bit to an illegal value
2716          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2717          */
2718         sticky_bit_chk = 0;
2719         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2720                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2721                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2722         }
2723
2724         /* Search for the left edge of the window for each bit */
2725         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2726                 scc_mgr_apply_group_dq_out1_delay(write_group, d);
2727
2728                 writel(0, &sdr_scc_mgr->update);
2729
2730                 /*
2731                  * Stop searching when the read test doesn't pass AND when
2732                  * we've seen a passing read on every bit.
2733                  */
2734                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2735                         0, PASS_ONE_BIT, &bit_chk, 0);
2736                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2737                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2738                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2739                            == %u && %u [bit_chk= %u ]\n",
2740                         d, sticky_bit_chk, param->write_correct_mask,
2741                         stop, bit_chk);
2742
2743                 if (stop == 1) {
2744                         break;
2745                 } else {
2746                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2747                                 if (bit_chk & 1) {
2748                                         /*
2749                                          * Remember a passing test as the
2750                                          * left_edge.
2751                                          */
2752                                         left_edge[i] = d;
2753                                 } else {
2754                                         /*
2755                                          * If a left edge has not been seen
2756                                          * yet, then a future passing test will
2757                                          * mark this edge as the right edge.
2758                                          */
2759                                         if (left_edge[i] ==
2760                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2761                                                 right_edge[i] = -(d + 1);
2762                                         }
2763                                 }
2764                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2765                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2766                                            (int)(bit_chk & 1), i, left_edge[i]);
2767                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2768                                        right_edge[i]);
2769                                 bit_chk = bit_chk >> 1;
2770                         }
2771                 }
2772         }
2773
2774         /* Reset DQ delay chains to 0 */
2775         scc_mgr_apply_group_dq_out1_delay(0);
2776         sticky_bit_chk = 0;
2777         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2778                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2779                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2780                            i, left_edge[i], i, right_edge[i]);
2781
2782                 /*
2783                  * Check for cases where we haven't found the left edge,
2784                  * which makes our assignment of the the right edge invalid.
2785                  * Reset it to the illegal value.
2786                  */
2787                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2788                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2789                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2790                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2791                                    right_edge[%u]: %d\n", __func__, __LINE__,
2792                                    i, right_edge[i]);
2793                 }
2794
2795                 /*
2796                  * Reset sticky bit (except for bits where we have
2797                  * seen the left edge).
2798                  */
2799                 sticky_bit_chk = sticky_bit_chk << 1;
2800                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2801                         sticky_bit_chk = sticky_bit_chk | 1;
2802
2803                 if (i == 0)
2804                         break;
2805         }
2806
2807         /* Search for the right edge of the window for each bit */
2808         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2809                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2810                                                         d + start_dqs);
2811
2812                 writel(0, &sdr_scc_mgr->update);
2813
2814                 /*
2815                  * Stop searching when the read test doesn't pass AND when
2816                  * we've seen a passing read on every bit.
2817                  */
2818                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2819                         0, PASS_ONE_BIT, &bit_chk, 0);
2820
2821                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2822                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2823
2824                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2825                            %u && %u\n", d, sticky_bit_chk,
2826                            param->write_correct_mask, stop);
2827
2828                 if (stop == 1) {
2829                         if (d == 0) {
2830                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2831                                         i++) {
2832                                         /* d = 0 failed, but it passed when
2833                                         testing the left edge, so it must be
2834                                         marginal, set it to -1 */
2835                                         if (right_edge[i] ==
2836                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2837                                                 left_edge[i] !=
2838                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2839                                                 right_edge[i] = -1;
2840                                         }
2841                                 }
2842                         }
2843                         break;
2844                 } else {
2845                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2846                                 if (bit_chk & 1) {
2847                                         /*
2848                                          * Remember a passing test as
2849                                          * the right_edge.
2850                                          */
2851                                         right_edge[i] = d;
2852                                 } else {
2853                                         if (d != 0) {
2854                                                 /*
2855                                                  * If a right edge has not
2856                                                  * been seen yet, then a future
2857                                                  * passing test will mark this
2858                                                  * edge as the left edge.
2859                                                  */
2860                                                 if (right_edge[i] ==
2861                                                     IO_IO_OUT1_DELAY_MAX + 1)
2862                                                         left_edge[i] = -(d + 1);
2863                                         } else {
2864                                                 /*
2865                                                  * d = 0 failed, but it passed
2866                                                  * when testing the left edge,
2867                                                  * so it must be marginal, set
2868                                                  * it to -1.
2869                                                  */
2870                                                 if (right_edge[i] ==
2871                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2872                                                     left_edge[i] !=
2873                                                     IO_IO_OUT1_DELAY_MAX + 1)
2874                                                         right_edge[i] = -1;
2875                                                 /*
2876                                                  * If a right edge has not been
2877                                                  * seen yet, then a future
2878                                                  * passing test will mark this
2879                                                  * edge as the left edge.
2880                                                  */
2881                                                 else if (right_edge[i] ==
2882                                                         IO_IO_OUT1_DELAY_MAX +
2883                                                         1)
2884                                                         left_edge[i] = -(d + 1);
2885                                         }
2886                                 }
2887                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2888                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2889                                            (int)(bit_chk & 1), i, left_edge[i]);
2890                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2891                                            right_edge[i]);
2892                                 bit_chk = bit_chk >> 1;
2893                         }
2894                 }
2895         }
2896
2897         /* Check that all bits have a window */
2898         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2899                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2900                            %d right_edge[%u]: %d", __func__, __LINE__,
2901                            i, left_edge[i], i, right_edge[i]);
2902                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2903                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2904                         set_failing_group_stage(test_bgn + i,
2905                                                 CAL_STAGE_WRITES,
2906                                                 CAL_SUBSTAGE_WRITES_CENTER);
2907                         return 0;
2908                 }
2909         }
2910
2911         /* Find middle of window for each DQ bit */
2912         mid_min = left_edge[0] - right_edge[0];
2913         min_index = 0;
2914         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2915                 mid = left_edge[i] - right_edge[i];
2916                 if (mid < mid_min) {
2917                         mid_min = mid;
2918                         min_index = i;
2919                 }
2920         }
2921
2922         /*
2923          * -mid_min/2 represents the amount that we need to move DQS.
2924          * If mid_min is odd and positive we'll need to add one to
2925          * make sure the rounding in further calculations is correct
2926          * (always bias to the right), so just add 1 for all positive values.
2927          */
2928         if (mid_min > 0)
2929                 mid_min++;
2930         mid_min = mid_min / 2;
2931         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2932                    __LINE__, mid_min);
2933
2934         /* Determine the amount we can change DQS (which is -mid_min) */
2935         orig_mid_min = mid_min;
2936         new_dqs = start_dqs;
2937         mid_min = 0;
2938         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2939                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2940         /* Initialize data for export structures */
2941         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2942         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2943
2944         /* add delay to bring centre of all DQ windows to the same "level" */
2945         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2946                 /* Use values before divide by 2 to reduce round off error */
2947                 shift_dq = (left_edge[i] - right_edge[i] -
2948                         (left_edge[min_index] - right_edge[min_index]))/2  +
2949                 (orig_mid_min - mid_min);
2950
2951                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2952                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2953
2954                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2955                 temp_dq_out1_delay = readl(addr + (i << 2));
2956                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2957                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2958                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2959                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2960                         shift_dq = -(int32_t)temp_dq_out1_delay;
2961                 }
2962                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2963                            i, shift_dq);
2964                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2965                 scc_mgr_load_dq(i);
2966
2967                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2968                            left_edge[i] - shift_dq + (-mid_min),
2969                            right_edge[i] + shift_dq - (-mid_min));
2970                 /* To determine values for export structures */
2971                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2972                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2973
2974                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2975                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2976         }
2977
2978         /* Move DQS */
2979         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2980         writel(0, &sdr_scc_mgr->update);
2981
2982         /* Centre DM */
2983         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2984
2985         /*
2986          * set the left and right edge of each bit to an illegal value,
2987          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2988          */
2989         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2990         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2991         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2992         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2993         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2994         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2995         int32_t win_best = 0;
2996
2997         /* Search for the/part of the window with DM shift */
2998         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2999                 scc_mgr_apply_group_dm_out1_delay(d);
3000                 writel(0, &sdr_scc_mgr->update);
3001
3002                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3003                                                     PASS_ALL_BITS, &bit_chk,
3004                                                     0)) {
3005                         /* USE Set current end of the window */
3006                         end_curr = -d;
3007                         /*
3008                          * If a starting edge of our window has not been seen
3009                          * this is our current start of the DM window.
3010                          */
3011                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3012                                 bgn_curr = -d;
3013
3014                         /*
3015                          * If current window is bigger than best seen.
3016                          * Set best seen to be current window.
3017                          */
3018                         if ((end_curr-bgn_curr+1) > win_best) {
3019                                 win_best = end_curr-bgn_curr+1;
3020                                 bgn_best = bgn_curr;
3021                                 end_best = end_curr;
3022                         }
3023                 } else {
3024                         /* We just saw a failing test. Reset temp edge */
3025                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3026                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3027                         }
3028                 }
3029
3030
3031         /* Reset DM delay chains to 0 */
3032         scc_mgr_apply_group_dm_out1_delay(0);
3033
3034         /*
3035          * Check to see if the current window nudges up aganist 0 delay.
3036          * If so we need to continue the search by shifting DQS otherwise DQS
3037          * search begins as a new search. */
3038         if (end_curr != 0) {
3039                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3040                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3041         }
3042
3043         /* Search for the/part of the window with DQS shifts */
3044         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3045                 /*
3046                  * Note: This only shifts DQS, so are we limiting ourselve to
3047                  * width of DQ unnecessarily.
3048                  */
3049                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3050                                                         d + new_dqs);
3051
3052                 writel(0, &sdr_scc_mgr->update);
3053                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3054                                                     PASS_ALL_BITS, &bit_chk,
3055                                                     0)) {
3056                         /* USE Set current end of the window */
3057                         end_curr = d;
3058                         /*
3059                          * If a beginning edge of our window has not been seen
3060                          * this is our current begin of the DM window.
3061                          */
3062                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3063                                 bgn_curr = d;
3064
3065                         /*
3066                          * If current window is bigger than best seen. Set best
3067                          * seen to be current window.
3068                          */
3069                         if ((end_curr-bgn_curr+1) > win_best) {
3070                                 win_best = end_curr-bgn_curr+1;
3071                                 bgn_best = bgn_curr;
3072                                 end_best = end_curr;
3073                         }
3074                 } else {
3075                         /* We just saw a failing test. Reset temp edge */
3076                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3077                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3078
3079                         /* Early exit optimization: if ther remaining delay
3080                         chain space is less than already seen largest window
3081                         we can exit */
3082                         if ((win_best-1) >
3083                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3084                                         break;
3085                                 }
3086                         }
3087                 }
3088
3089         /* assign left and right edge for cal and reporting; */
3090         left_edge[0] = -1*bgn_best;
3091         right_edge[0] = end_best;
3092
3093         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3094                    __LINE__, left_edge[0], right_edge[0]);
3095
3096         /* Move DQS (back to orig) */
3097         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3098
3099         /* Move DM */
3100
3101         /* Find middle of window for the DM bit */
3102         mid = (left_edge[0] - right_edge[0]) / 2;
3103
3104         /* only move right, since we are not moving DQS/DQ */
3105         if (mid < 0)
3106                 mid = 0;
3107
3108         /* dm_marign should fail if we never find a window */
3109         if (win_best == 0)
3110                 dm_margin = -1;
3111         else
3112                 dm_margin = left_edge[0] - mid;
3113
3114         scc_mgr_apply_group_dm_out1_delay(mid);
3115         writel(0, &sdr_scc_mgr->update);
3116
3117         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3118                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3119                    right_edge[0], mid, dm_margin);
3120         /* Export values */
3121         gbl->fom_out += dq_margin + dqs_margin;
3122
3123         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3124                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3125                    dq_margin, dqs_margin, dm_margin);
3126
3127         /*
3128          * Do not remove this line as it makes sure all of our
3129          * decisions have been applied.
3130          */
3131         writel(0, &sdr_scc_mgr->update);
3132         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3133 }
3134
3135 /* calibrate the write operations */
3136 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3137         uint32_t test_bgn)
3138 {
3139         /* update info for sims */
3140         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3141
3142         reg_file_set_stage(CAL_STAGE_WRITES);
3143         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3144
3145         reg_file_set_group(g);
3146
3147         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3148                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3149                                         CAL_SUBSTAGE_WRITES_CENTER);
3150                 return 0;
3151         }
3152
3153         return 1;
3154 }
3155
3156 /**
3157  * mem_precharge_and_activate() - Precharge all banks and activate
3158  *
3159  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3160  */
3161 static void mem_precharge_and_activate(void)
3162 {
3163         int r;
3164
3165         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3166                 /* Test if the rank should be skipped. */
3167                 if (param->skip_ranks[r])
3168                         continue;
3169
3170                 /* Set rank. */
3171                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3172
3173                 /* Precharge all banks. */
3174                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3175                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3176
3177                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3178                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3179                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3180
3181                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3182                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3183                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3184
3185                 /* Activate rows. */
3186                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3187                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3188         }
3189 }
3190
3191 /**
3192  * mem_init_latency() - Configure memory RLAT and WLAT settings
3193  *
3194  * Configure memory RLAT and WLAT parameters.
3195  */
3196 static void mem_init_latency(void)
3197 {
3198         /*
3199          * For AV/CV, LFIFO is hardened and always runs at full rate
3200          * so max latency in AFI clocks, used here, is correspondingly
3201          * smaller.
3202          */
3203         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3204         u32 rlat, wlat;
3205
3206         debug("%s:%d\n", __func__, __LINE__);
3207
3208         /*
3209          * Read in write latency.
3210          * WL for Hard PHY does not include additive latency.
3211          */
3212         wlat = readl(&data_mgr->t_wl_add);
3213         wlat += readl(&data_mgr->mem_t_add);
3214
3215         gbl->rw_wl_nop_cycles = wlat - 1;
3216
3217         /* Read in readl latency. */
3218         rlat = readl(&data_mgr->t_rl_add);
3219
3220         /* Set a pretty high read latency initially. */
3221         gbl->curr_read_lat = rlat + 16;
3222         if (gbl->curr_read_lat > max_latency)
3223                 gbl->curr_read_lat = max_latency;
3224
3225         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3226
3227         /* Advertise write latency. */
3228         writel(wlat, &phy_mgr_cfg->afi_wlat);
3229 }
3230
3231 /**
3232  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3233  *
3234  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3235  */
3236 static void mem_skip_calibrate(void)
3237 {
3238         uint32_t vfifo_offset;
3239         uint32_t i, j, r;
3240
3241         debug("%s:%d\n", __func__, __LINE__);
3242         /* Need to update every shadow register set used by the interface */
3243         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3244              r += NUM_RANKS_PER_SHADOW_REG) {
3245                 /*
3246                  * Set output phase alignment settings appropriate for
3247                  * skip calibration.
3248                  */
3249                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3250                         scc_mgr_set_dqs_en_phase(i, 0);
3251 #if IO_DLL_CHAIN_LENGTH == 6
3252                         scc_mgr_set_dqdqs_output_phase(i, 6);
3253 #else
3254                         scc_mgr_set_dqdqs_output_phase(i, 7);
3255 #endif
3256                         /*
3257                          * Case:33398
3258                          *
3259                          * Write data arrives to the I/O two cycles before write
3260                          * latency is reached (720 deg).
3261                          *   -> due to bit-slip in a/c bus
3262                          *   -> to allow board skew where dqs is longer than ck
3263                          *      -> how often can this happen!?
3264                          *      -> can claim back some ptaps for high freq
3265                          *       support if we can relax this, but i digress...
3266                          *
3267                          * The write_clk leads mem_ck by 90 deg
3268                          * The minimum ptap of the OPA is 180 deg
3269                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3270                          * The write_clk is always delayed by 2 ptaps
3271                          *
3272                          * Hence, to make DQS aligned to CK, we need to delay
3273                          * DQS by:
3274                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3275                          *
3276                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3277                          * gives us the number of ptaps, which simplies to:
3278                          *
3279                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3280                          */
3281                         scc_mgr_set_dqdqs_output_phase(i,
3282                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3283                 }
3284                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3285                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3286
3287                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3288                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3289                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3290                 }
3291                 writel(0xff, &sdr_scc_mgr->dq_ena);
3292                 writel(0xff, &sdr_scc_mgr->dm_ena);
3293                 writel(0, &sdr_scc_mgr->update);
3294         }
3295
3296         /* Compensate for simulation model behaviour */
3297         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3298                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3299                 scc_mgr_load_dqs(i);
3300         }
3301         writel(0, &sdr_scc_mgr->update);
3302
3303         /*
3304          * ArriaV has hard FIFOs that can only be initialized by incrementing
3305          * in sequencer.
3306          */
3307         vfifo_offset = CALIB_VFIFO_OFFSET;
3308         for (j = 0; j < vfifo_offset; j++)
3309                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3310         writel(0, &phy_mgr_cmd->fifo_reset);
3311
3312         /*
3313          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3314          * setting from generation-time constant.
3315          */
3316         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3317         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3318 }
3319
3320 /**
3321  * mem_calibrate() - Memory calibration entry point.
3322  *
3323  * Perform memory calibration.
3324  */
3325 static uint32_t mem_calibrate(void)
3326 {
3327         uint32_t i;
3328         uint32_t rank_bgn, sr;
3329         uint32_t write_group, write_test_bgn;
3330         uint32_t read_group, read_test_bgn;
3331         uint32_t run_groups, current_run;
3332         uint32_t failing_groups = 0;
3333         uint32_t group_failed = 0;
3334
3335         const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3336                                 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3337
3338         debug("%s:%d\n", __func__, __LINE__);
3339
3340         /* Initialize the data settings */
3341         gbl->error_substage = CAL_SUBSTAGE_NIL;
3342         gbl->error_stage = CAL_STAGE_NIL;
3343         gbl->error_group = 0xff;
3344         gbl->fom_in = 0;
3345         gbl->fom_out = 0;
3346
3347         /* Initialize WLAT and RLAT. */
3348         mem_init_latency();
3349
3350         /* Initialize bit slips. */
3351         mem_precharge_and_activate();
3352
3353         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3354                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3355                           SCC_MGR_GROUP_COUNTER_OFFSET);
3356                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3357                 if (i == 0)
3358                         scc_mgr_set_hhp_extras();
3359
3360                 scc_set_bypass_mode(i);
3361         }
3362
3363         /* Calibration is skipped. */
3364         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3365                 /*
3366                  * Set VFIFO and LFIFO to instant-on settings in skip
3367                  * calibration mode.
3368                  */
3369                 mem_skip_calibrate();
3370
3371                 /*
3372                  * Do not remove this line as it makes sure all of our
3373                  * decisions have been applied.
3374                  */
3375                 writel(0, &sdr_scc_mgr->update);
3376                 return 1;
3377         }
3378
3379         /* Calibration is not skipped. */
3380         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3381                 /*
3382                  * Zero all delay chain/phase settings for all
3383                  * groups and all shadow register sets.
3384                  */
3385                 scc_mgr_zero_all();
3386
3387                 run_groups = ~param->skip_groups;
3388
3389                 for (write_group = 0, write_test_bgn = 0; write_group
3390                         < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3391                         write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3392
3393                         /* Initialize the group failure */
3394                         group_failed = 0;
3395
3396                         current_run = run_groups & ((1 <<
3397                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3398                         run_groups = run_groups >>
3399                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3400
3401                         if (current_run == 0)
3402                                 continue;
3403
3404                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3405                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3406                         scc_mgr_zero_group(write_group, 0);
3407
3408                         for (read_group = write_group * rwdqs_ratio,
3409                              read_test_bgn = 0;
3410                              read_group < (write_group + 1) * rwdqs_ratio;
3411                              read_group++,
3412                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3413                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3414                                         continue;
3415
3416                                 /* Calibrate the VFIFO */
3417                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3418                                                                read_test_bgn))
3419                                         continue;
3420
3421                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3422                                         return 0;
3423
3424                                 /* The group failed, we're done. */
3425                                 goto grp_failed;
3426                         }
3427
3428                         /* Calibrate the output side */
3429                         for (rank_bgn = 0, sr = 0;
3430                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3431                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3432                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3433                                         continue;
3434
3435                                 /* Not needed in quick mode! */
3436                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3437                                         continue;
3438
3439                                 /*
3440                                  * Determine if this set of ranks
3441                                  * should be skipped entirely.
3442                                  */
3443                                 if (param->skip_shadow_regs[sr])
3444                                         continue;
3445
3446                                 /* Calibrate WRITEs */
3447                                 if (rw_mgr_mem_calibrate_writes(rank_bgn,
3448                                                 write_group, write_test_bgn))
3449                                         continue;
3450
3451                                 group_failed = 1;
3452                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3453                                         return 0;
3454                         }
3455
3456                         /* Some group failed, we're done. */
3457                         if (group_failed)
3458                                 goto grp_failed;
3459
3460                         for (read_group = write_group * rwdqs_ratio,
3461                              read_test_bgn = 0;
3462                              read_group < (write_group + 1) * rwdqs_ratio;
3463                              read_group++,
3464                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3465                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3466                                         continue;
3467
3468                                 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3469                                                                 read_test_bgn))
3470                                         continue;
3471
3472                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3473                                         return 0;
3474
3475                                 /* The group failed, we're done. */
3476                                 goto grp_failed;
3477                         }
3478
3479                         /* No group failed, continue as usual. */
3480                         continue;
3481
3482 grp_failed:             /* A group failed, increment the counter. */
3483                         failing_groups++;
3484                 }
3485
3486                 /*
3487                  * USER If there are any failing groups then report
3488                  * the failure.
3489                  */
3490                 if (failing_groups != 0)
3491                         return 0;
3492
3493                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3494                         continue;
3495
3496                 /*
3497                  * If we're skipping groups as part of debug,
3498                  * don't calibrate LFIFO.
3499                  */
3500                 if (param->skip_groups != 0)
3501                         continue;
3502
3503                 /* Calibrate the LFIFO */
3504                 if (!rw_mgr_mem_calibrate_lfifo())
3505                         return 0;
3506         }
3507
3508         /*
3509          * Do not remove this line as it makes sure all of our decisions
3510          * have been applied.
3511          */
3512         writel(0, &sdr_scc_mgr->update);
3513         return 1;
3514 }
3515
3516 /**
3517  * run_mem_calibrate() - Perform memory calibration
3518  *
3519  * This function triggers the entire memory calibration procedure.
3520  */
3521 static int run_mem_calibrate(void)
3522 {
3523         int pass;
3524
3525         debug("%s:%d\n", __func__, __LINE__);
3526
3527         /* Reset pass/fail status shown on afi_cal_success/fail */
3528         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3529
3530         /* Stop tracking manager. */
3531         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3532
3533         phy_mgr_initialize();
3534         rw_mgr_mem_initialize();
3535
3536         /* Perform the actual memory calibration. */
3537         pass = mem_calibrate();
3538
3539         mem_precharge_and_activate();
3540         writel(0, &phy_mgr_cmd->fifo_reset);
3541
3542         /* Handoff. */
3543         rw_mgr_mem_handoff();
3544         /*
3545          * In Hard PHY this is a 2-bit control:
3546          * 0: AFI Mux Select
3547          * 1: DDIO Mux Select
3548          */
3549         writel(0x2, &phy_mgr_cfg->mux_sel);
3550
3551         /* Start tracking manager. */
3552         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3553
3554         return pass;
3555 }
3556
3557 /**
3558  * debug_mem_calibrate() - Report result of memory calibration
3559  * @pass:       Value indicating whether calibration passed or failed
3560  *
3561  * This function reports the results of the memory calibration
3562  * and writes debug information into the register file.
3563  */
3564 static void debug_mem_calibrate(int pass)
3565 {
3566         uint32_t debug_info;
3567
3568         if (pass) {
3569                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3570
3571                 gbl->fom_in /= 2;
3572                 gbl->fom_out /= 2;
3573
3574                 if (gbl->fom_in > 0xff)
3575                         gbl->fom_in = 0xff;
3576
3577                 if (gbl->fom_out > 0xff)
3578                         gbl->fom_out = 0xff;
3579
3580                 /* Update the FOM in the register file */
3581                 debug_info = gbl->fom_in;
3582                 debug_info |= gbl->fom_out << 8;
3583                 writel(debug_info, &sdr_reg_file->fom);
3584
3585                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3586                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3587         } else {
3588                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3589
3590                 debug_info = gbl->error_stage;
3591                 debug_info |= gbl->error_substage << 8;
3592                 debug_info |= gbl->error_group << 16;
3593
3594                 writel(debug_info, &sdr_reg_file->failing_stage);
3595                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3596                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3597
3598                 /* Update the failing group/stage in the register file */
3599                 debug_info = gbl->error_stage;
3600                 debug_info |= gbl->error_substage << 8;
3601                 debug_info |= gbl->error_group << 16;
3602                 writel(debug_info, &sdr_reg_file->failing_stage);
3603         }
3604
3605         printf("%s: Calibration complete\n", __FILE__);
3606 }
3607
3608 /**
3609  * hc_initialize_rom_data() - Initialize ROM data
3610  *
3611  * Initialize ROM data.
3612  */
3613 static void hc_initialize_rom_data(void)
3614 {
3615         u32 i, addr;
3616
3617         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3618         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3619                 writel(inst_rom_init[i], addr + (i << 2));
3620
3621         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3622         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3623                 writel(ac_rom_init[i], addr + (i << 2));
3624 }
3625
3626 /**
3627  * initialize_reg_file() - Initialize SDR register file
3628  *
3629  * Initialize SDR register file.
3630  */
3631 static void initialize_reg_file(void)
3632 {
3633         /* Initialize the register file with the correct data */
3634         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3635         writel(0, &sdr_reg_file->debug_data_addr);
3636         writel(0, &sdr_reg_file->cur_stage);
3637         writel(0, &sdr_reg_file->fom);
3638         writel(0, &sdr_reg_file->failing_stage);
3639         writel(0, &sdr_reg_file->debug1);
3640         writel(0, &sdr_reg_file->debug2);
3641 }
3642
3643 /**
3644  * initialize_hps_phy() - Initialize HPS PHY
3645  *
3646  * Initialize HPS PHY.
3647  */
3648 static void initialize_hps_phy(void)
3649 {
3650         uint32_t reg;
3651         /*
3652          * Tracking also gets configured here because it's in the
3653          * same register.
3654          */
3655         uint32_t trk_sample_count = 7500;
3656         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3657         /*
3658          * Format is number of outer loops in the 16 MSB, sample
3659          * count in 16 LSB.
3660          */
3661
3662         reg = 0;
3663         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3664         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3665         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3666         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3667         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3668         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3669         /*
3670          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3671          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3672          */
3673         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3674         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3675                 trk_sample_count);
3676         writel(reg, &sdr_ctrl->phy_ctrl0);
3677
3678         reg = 0;
3679         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3680                 trk_sample_count >>
3681                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3682         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3683                 trk_long_idle_sample_count);
3684         writel(reg, &sdr_ctrl->phy_ctrl1);
3685
3686         reg = 0;
3687         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3688                 trk_long_idle_sample_count >>
3689                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3690         writel(reg, &sdr_ctrl->phy_ctrl2);
3691 }
3692
3693 /**
3694  * initialize_tracking() - Initialize tracking
3695  *
3696  * Initialize the register file with usable initial data.
3697  */
3698 static void initialize_tracking(void)
3699 {
3700         /*
3701          * Initialize the register file with the correct data.
3702          * Compute usable version of value in case we skip full
3703          * computation later.
3704          */
3705         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3706                &sdr_reg_file->dtaps_per_ptap);
3707
3708         /* trk_sample_count */
3709         writel(7500, &sdr_reg_file->trk_sample_count);
3710
3711         /* longidle outer loop [15:0] */
3712         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3713
3714         /*
3715          * longidle sample count [31:24]
3716          * trfc, worst case of 933Mhz 4Gb [23:16]
3717          * trcd, worst case [15:8]
3718          * vfifo wait [7:0]
3719          */
3720         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3721                &sdr_reg_file->delays);
3722
3723         /* mux delay */
3724         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3725                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3726                &sdr_reg_file->trk_rw_mgr_addr);
3727
3728         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3729                &sdr_reg_file->trk_read_dqs_width);
3730
3731         /* trefi [7:0] */
3732         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3733                &sdr_reg_file->trk_rfsh);
3734 }
3735
3736 int sdram_calibration_full(void)
3737 {
3738         struct param_type my_param;
3739         struct gbl_type my_gbl;
3740         uint32_t pass;
3741
3742         memset(&my_param, 0, sizeof(my_param));
3743         memset(&my_gbl, 0, sizeof(my_gbl));
3744
3745         param = &my_param;
3746         gbl = &my_gbl;
3747
3748         /* Set the calibration enabled by default */
3749         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3750         /*
3751          * Only sweep all groups (regardless of fail state) by default
3752          * Set enabled read test by default.
3753          */
3754 #if DISABLE_GUARANTEED_READ
3755         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3756 #endif
3757         /* Initialize the register file */
3758         initialize_reg_file();
3759
3760         /* Initialize any PHY CSR */
3761         initialize_hps_phy();
3762
3763         scc_mgr_initialize();
3764
3765         initialize_tracking();
3766
3767         printf("%s: Preparing to start memory calibration\n", __FILE__);
3768
3769         debug("%s:%d\n", __func__, __LINE__);
3770         debug_cond(DLEVEL == 1,
3771                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3772                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3773                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3774                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3775                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3776         debug_cond(DLEVEL == 1,
3777                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3778                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3779                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3780                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3781         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3782                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3783         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3784                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3785                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3786         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3787                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3788                    IO_IO_OUT2_DELAY_MAX);
3789         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3790                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3791
3792         hc_initialize_rom_data();
3793
3794         /* update info for sims */
3795         reg_file_set_stage(CAL_STAGE_NIL);
3796         reg_file_set_group(0);
3797
3798         /*
3799          * Load global needed for those actions that require
3800          * some dynamic calibration support.
3801          */
3802         dyn_calib_steps = STATIC_CALIB_STEPS;
3803         /*
3804          * Load global to allow dynamic selection of delay loop settings
3805          * based on calibration mode.
3806          */
3807         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3808                 skip_delay_mask = 0xff;
3809         else
3810                 skip_delay_mask = 0x0;
3811
3812         pass = run_mem_calibrate();
3813         debug_mem_calibrate(pass);
3814         return pass;
3815 }