]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/fsl/ddr4_dimm_params.c
Merge branch 'master' of git://git.denx.de/u-boot-fsl-qoriq
[karo-tx-uboot.git] / drivers / ddr / fsl / ddr4_dimm_params.c
1 /*
2  * Copyright 2014 Freescale Semiconductor, Inc.
3  *
4  * calculate the organization and timing parameter
5  * from ddr3 spd, please refer to the spec
6  * JEDEC standard No.21-C 4_01_02_12R23A.pdf
7  *
8  *
9  */
10
11 #include <common.h>
12 #include <fsl_ddr_sdram.h>
13
14 #include <fsl_ddr.h>
15
16 /*
17  * Calculate the Density of each Physical Rank.
18  * Returned size is in bytes.
19  *
20  * Total DIMM size =
21  * sdram capacity(bit) / 8 * primary bus width / sdram width
22  *                     * Logical Ranks per DIMM
23  *
24  * where: sdram capacity  = spd byte4[3:0]
25  *        primary bus width = spd byte13[2:0]
26  *        sdram width = spd byte12[2:0]
27  *        Logical Ranks per DIMM = spd byte12[5:3] for SDP, DDP, QDP
28  *                                 spd byte12{5:3] * spd byte6[6:4] for 3DS
29  *
30  * To simplify each rank size = total DIMM size / Number of Package Ranks
31  * where Number of Package Ranks = spd byte12[5:3]
32  *
33  * SPD byte4 - sdram density and banks
34  *      bit[3:0]        size(bit)       size(byte)
35  *      0000            256Mb           32MB
36  *      0001            512Mb           64MB
37  *      0010            1Gb             128MB
38  *      0011            2Gb             256MB
39  *      0100            4Gb             512MB
40  *      0101            8Gb             1GB
41  *      0110            16Gb            2GB
42  *      0111            32Gb            4GB
43  *
44  * SPD byte13 - module memory bus width
45  *      bit[2:0]        primary bus width
46  *      000             8bits
47  *      001             16bits
48  *      010             32bits
49  *      011             64bits
50  *
51  * SPD byte12 - module organization
52  *      bit[2:0]        sdram device width
53  *      000             4bits
54  *      001             8bits
55  *      010             16bits
56  *      011             32bits
57  *
58  * SPD byte12 - module organization
59  *      bit[5:3]        number of package ranks per DIMM
60  *      000             1
61  *      001             2
62  *      010             3
63  *      011             4
64  *
65  * SPD byte6 - SDRAM package type
66  *      bit[6:4]        Die count
67  *      000             1
68  *      001             2
69  *      010             3
70  *      011             4
71  *      100             5
72  *      101             6
73  *      110             7
74  *      111             8
75  *
76  * SPD byte6 - SRAM package type
77  *      bit[1:0]        Signal loading
78  *      00              Not specified
79  *      01              Multi load stack
80  *      10              Sigle load stack (3DS)
81  *      11              Reserved
82  */
83 static unsigned long long
84 compute_ranksize(const struct ddr4_spd_eeprom_s *spd)
85 {
86         unsigned long long bsize;
87
88         int nbit_sdram_cap_bsize = 0;
89         int nbit_primary_bus_width = 0;
90         int nbit_sdram_width = 0;
91         int die_count = 0;
92         bool package_3ds;
93
94         if ((spd->density_banks & 0xf) <= 7)
95                 nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28;
96         if ((spd->bus_width & 0x7) < 4)
97                 nbit_primary_bus_width = (spd->bus_width & 0x7) + 3;
98         if ((spd->organization & 0x7) < 4)
99                 nbit_sdram_width = (spd->organization & 0x7) + 2;
100         package_3ds = (spd->package_type & 0x3) == 0x2;
101         if (package_3ds)
102                 die_count = (spd->package_type >> 4) & 0x7;
103
104         bsize = 1ULL << (nbit_sdram_cap_bsize - 3 +
105                          nbit_primary_bus_width - nbit_sdram_width +
106                          die_count);
107
108         debug("DDR: DDR III rank density = 0x%16llx\n", bsize);
109
110         return bsize;
111 }
112
113 #define spd_to_ps(mtb, ftb)     \
114         (mtb * pdimm->mtb_ps + (ftb * pdimm->ftb_10th_ps) / 10)
115 /*
116  * ddr_compute_dimm_parameters for DDR4 SPD
117  *
118  * Compute DIMM parameters based upon the SPD information in spd.
119  * Writes the results to the dimm_params_t structure pointed by pdimm.
120  *
121  */
122 unsigned int
123 ddr_compute_dimm_parameters(const generic_spd_eeprom_t *spd,
124                             dimm_params_t *pdimm,
125                             unsigned int dimm_number)
126 {
127         unsigned int retval;
128         int i;
129
130         if (spd->mem_type) {
131                 if (spd->mem_type != SPD_MEMTYPE_DDR4) {
132                         printf("DIMM %u: is not a DDR4 SPD.\n", dimm_number);
133                         return 1;
134                 }
135         } else {
136                 memset(pdimm, 0, sizeof(dimm_params_t));
137                 return 1;
138         }
139
140         retval = ddr4_spd_check(spd);
141         if (retval) {
142                 printf("DIMM %u: failed checksum\n", dimm_number);
143                 return 2;
144         }
145
146         /*
147          * The part name in ASCII in the SPD EEPROM is not null terminated.
148          * Guarantee null termination here by presetting all bytes to 0
149          * and copying the part name in ASCII from the SPD onto it
150          */
151         memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
152         if ((spd->info_size_crc & 0xF) > 2)
153                 memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
154
155         /* DIMM organization parameters */
156         pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1;
157         pdimm->rank_density = compute_ranksize(spd);
158         pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
159         pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7));
160         if ((spd->bus_width >> 3) & 0x3)
161                 pdimm->ec_sdram_width = 8;
162         else
163                 pdimm->ec_sdram_width = 0;
164         pdimm->data_width = pdimm->primary_sdram_width
165                           + pdimm->ec_sdram_width;
166         pdimm->device_width = 1 << ((spd->organization & 0x7) + 2);
167
168         /* These are the types defined by the JEDEC SPD spec */
169         pdimm->mirrored_dimm = 0;
170         pdimm->registered_dimm = 0;
171         switch (spd->module_type & DDR4_SPD_MODULETYPE_MASK) {
172         case DDR4_SPD_MODULETYPE_RDIMM:
173                 /* Registered/buffered DIMMs */
174                 pdimm->registered_dimm = 1;
175                 break;
176
177         case DDR4_SPD_MODULETYPE_UDIMM:
178         case DDR4_SPD_MODULETYPE_SO_DIMM:
179                 /* Unbuffered DIMMs */
180                 if (spd->mod_section.unbuffered.addr_mapping & 0x1)
181                         pdimm->mirrored_dimm = 1;
182                 break;
183
184         default:
185                 printf("unknown module_type 0x%02X\n", spd->module_type);
186                 return 1;
187         }
188
189         /* SDRAM device parameters */
190         pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12;
191         pdimm->n_col_addr = (spd->addressing & 0x7) + 9;
192         pdimm->bank_addr_bits = (spd->density_banks >> 4) & 0x3;
193         pdimm->bank_group_bits = (spd->density_banks >> 6) & 0x3;
194
195         /*
196          * The SPD spec has not the ECC bit,
197          * We consider the DIMM as ECC capability
198          * when the extension bus exist
199          */
200         if (pdimm->ec_sdram_width)
201                 pdimm->edc_config = 0x02;
202         else
203                 pdimm->edc_config = 0x00;
204
205         /*
206          * The SPD spec has not the burst length byte
207          * but DDR4 spec has nature BL8 and BC4,
208          * BL8 -bit3, BC4 -bit2
209          */
210         pdimm->burst_lengths_bitmask = 0x0c;
211         pdimm->row_density = __ilog2(pdimm->rank_density);
212
213         /* MTB - medium timebase
214          * The MTB in the SPD spec is 125ps,
215          *
216          * FTB - fine timebase
217          * use 1/10th of ps as our unit to avoid floating point
218          * eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps
219          */
220         if ((spd->timebases & 0xf) == 0x0) {
221                 pdimm->mtb_ps = 125;
222                 pdimm->ftb_10th_ps = 10;
223
224         } else {
225                 printf("Unknown Timebases\n");
226         }
227
228         /* sdram minimum cycle time */
229         pdimm->tckmin_x_ps = spd_to_ps(spd->tck_min, spd->fine_tck_min);
230
231         /* sdram max cycle time */
232         pdimm->tckmax_ps = spd_to_ps(spd->tck_max, spd->fine_tck_max);
233
234         /*
235          * CAS latency supported
236          * bit0 - CL7
237          * bit4 - CL11
238          * bit8 - CL15
239          * bit12- CL19
240          * bit16- CL23
241          */
242         pdimm->caslat_x  = (spd->caslat_b1 << 7)        |
243                            (spd->caslat_b2 << 15)       |
244                            (spd->caslat_b3 << 23);
245
246         BUG_ON(spd->caslat_b4 != 0);
247
248         /*
249          * min CAS latency time
250          */
251         pdimm->taa_ps = spd_to_ps(spd->taa_min, spd->fine_taa_min);
252
253         /*
254          * min RAS to CAS delay time
255          */
256         pdimm->trcd_ps = spd_to_ps(spd->trcd_min, spd->fine_trcd_min);
257
258         /*
259          * Min Row Precharge Delay Time
260          */
261         pdimm->trp_ps = spd_to_ps(spd->trp_min, spd->fine_trp_min);
262
263         /* min active to precharge delay time */
264         pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) +
265                           spd->tras_min_lsb) * pdimm->mtb_ps;
266
267         /* min active to actice/refresh delay time */
268         pdimm->trc_ps = spd_to_ps((((spd->tras_trc_ext & 0xf0) << 4) +
269                                    spd->trc_min_lsb), spd->fine_trc_min);
270         /* Min Refresh Recovery Delay Time */
271         pdimm->trfc1_ps = ((spd->trfc1_min_msb << 8) | (spd->trfc1_min_lsb)) *
272                        pdimm->mtb_ps;
273         pdimm->trfc2_ps = ((spd->trfc2_min_msb << 8) | (spd->trfc2_min_lsb)) *
274                        pdimm->mtb_ps;
275         pdimm->trfc4_ps = ((spd->trfc4_min_msb << 8) | (spd->trfc4_min_lsb)) *
276                         pdimm->mtb_ps;
277         /* min four active window delay time */
278         pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min) *
279                         pdimm->mtb_ps;
280
281         /* min row active to row active delay time, different bank group */
282         pdimm->trrds_ps = spd_to_ps(spd->trrds_min, spd->fine_trrds_min);
283         /* min row active to row active delay time, same bank group */
284         pdimm->trrdl_ps = spd_to_ps(spd->trrdl_min, spd->fine_trrdl_min);
285         /* min CAS to CAS Delay Time (tCCD_Lmin), same bank group */
286         pdimm->tccdl_ps = spd_to_ps(spd->tccdl_min, spd->fine_tccdl_min);
287
288         /*
289          * Average periodic refresh interval
290          * tREFI = 7.8 us at normal temperature range
291          */
292         pdimm->refresh_rate_ps = 7800000;
293
294         for (i = 0; i < 18; i++)
295                 pdimm->dq_mapping[i] = spd->mapping[i];
296
297         pdimm->dq_mapping_ors = ((spd->mapping[0] >> 6) & 0x3) == 0 ? 1 : 0;
298
299         return 0;
300 }