]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/atmel_nand.c
at91: nand: switch atmel_nand to generic GPIO API
[karo-tx-uboot.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2  * (C) Copyright 2007-2008
3  * Stelian Pop <stelian@popies.net>
4  * Lead Tech Design <www.leadtechdesign.com>
5  *
6  * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
7  *
8  * Add Programmable Multibit ECC support for various AT91 SoC
9  *     (C) Copyright 2012 ATMEL, Hong Xu
10  *
11  * SPDX-License-Identifier:     GPL-2.0+
12  */
13
14 #include <common.h>
15 #include <asm/gpio.h>
16 #include <asm/arch/gpio.h>
17
18 #include <malloc.h>
19 #include <nand.h>
20 #include <watchdog.h>
21
22 #ifdef CONFIG_ATMEL_NAND_HWECC
23
24 /* Register access macros */
25 #define ecc_readl(add, reg)                             \
26         readl(AT91_BASE_SYS + add + ATMEL_ECC_##reg)
27 #define ecc_writel(add, reg, value)                     \
28         writel((value), AT91_BASE_SYS + add + ATMEL_ECC_##reg)
29
30 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
31
32 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
33
34 struct atmel_nand_host {
35         struct pmecc_regs __iomem *pmecc;
36         struct pmecc_errloc_regs __iomem *pmerrloc;
37         void __iomem            *pmecc_rom_base;
38
39         u8              pmecc_corr_cap;
40         u16             pmecc_sector_size;
41         u32             pmecc_index_table_offset;
42
43         int             pmecc_bytes_per_sector;
44         int             pmecc_sector_number;
45         int             pmecc_degree;   /* Degree of remainders */
46         int             pmecc_cw_len;   /* Length of codeword */
47
48         /* lookup table for alpha_to and index_of */
49         void __iomem    *pmecc_alpha_to;
50         void __iomem    *pmecc_index_of;
51
52         /* data for pmecc computation */
53         int16_t *pmecc_smu;
54         int16_t *pmecc_partial_syn;
55         int16_t *pmecc_si;
56         int16_t *pmecc_lmu; /* polynomal order */
57         int     *pmecc_mu;
58         int     *pmecc_dmu;
59         int     *pmecc_delta;
60 };
61
62 static struct atmel_nand_host pmecc_host;
63 static struct nand_ecclayout atmel_pmecc_oobinfo;
64
65 /*
66  * Return number of ecc bytes per sector according to sector size and
67  * correction capability
68  *
69  * Following table shows what at91 PMECC supported:
70  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
71  * =====================        ================        =================
72  *                2-bits                 4-bytes                  4-bytes
73  *                4-bits                 7-bytes                  7-bytes
74  *                8-bits                13-bytes                 14-bytes
75  *               12-bits                20-bytes                 21-bytes
76  *               24-bits                39-bytes                 42-bytes
77  */
78 static int pmecc_get_ecc_bytes(int cap, int sector_size)
79 {
80         int m = 12 + sector_size / 512;
81         return (m * cap + 7) / 8;
82 }
83
84 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
85         int oobsize, int ecc_len)
86 {
87         int i;
88
89         layout->eccbytes = ecc_len;
90
91         /* ECC will occupy the last ecc_len bytes continuously */
92         for (i = 0; i < ecc_len; i++)
93                 layout->eccpos[i] = oobsize - ecc_len + i;
94
95         layout->oobfree[0].offset = 2;
96         layout->oobfree[0].length =
97                 oobsize - ecc_len - layout->oobfree[0].offset;
98 }
99
100 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
101 {
102         int table_size;
103
104         table_size = host->pmecc_sector_size == 512 ?
105                 PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
106
107         /* the ALPHA lookup table is right behind the INDEX lookup table. */
108         return host->pmecc_rom_base + host->pmecc_index_table_offset +
109                         table_size * sizeof(int16_t);
110 }
111
112 static void pmecc_data_free(struct atmel_nand_host *host)
113 {
114         free(host->pmecc_partial_syn);
115         free(host->pmecc_si);
116         free(host->pmecc_lmu);
117         free(host->pmecc_smu);
118         free(host->pmecc_mu);
119         free(host->pmecc_dmu);
120         free(host->pmecc_delta);
121 }
122
123 static int pmecc_data_alloc(struct atmel_nand_host *host)
124 {
125         const int cap = host->pmecc_corr_cap;
126         int size;
127
128         size = (2 * cap + 1) * sizeof(int16_t);
129         host->pmecc_partial_syn = malloc(size);
130         host->pmecc_si = malloc(size);
131         host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
132         host->pmecc_smu = malloc((cap + 2) * size);
133
134         size = (cap + 1) * sizeof(int);
135         host->pmecc_mu = malloc(size);
136         host->pmecc_dmu = malloc(size);
137         host->pmecc_delta = malloc(size);
138
139         if (host->pmecc_partial_syn &&
140                         host->pmecc_si &&
141                         host->pmecc_lmu &&
142                         host->pmecc_smu &&
143                         host->pmecc_mu &&
144                         host->pmecc_dmu &&
145                         host->pmecc_delta)
146                 return 0;
147
148         /* error happened */
149         pmecc_data_free(host);
150         return -ENOMEM;
151
152 }
153
154 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
155 {
156         struct nand_chip *nand_chip = mtd->priv;
157         struct atmel_nand_host *host = nand_chip->priv;
158         int i;
159         uint32_t value;
160
161         /* Fill odd syndromes */
162         for (i = 0; i < host->pmecc_corr_cap; i++) {
163                 value = readl(&host->pmecc->rem_port[sector].rem[i / 2]);
164                 if (i & 1)
165                         value >>= 16;
166                 value &= 0xffff;
167                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
168         }
169 }
170
171 static void pmecc_substitute(struct mtd_info *mtd)
172 {
173         struct nand_chip *nand_chip = mtd->priv;
174         struct atmel_nand_host *host = nand_chip->priv;
175         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
176         int16_t __iomem *index_of = host->pmecc_index_of;
177         int16_t *partial_syn = host->pmecc_partial_syn;
178         const int cap = host->pmecc_corr_cap;
179         int16_t *si;
180         int i, j;
181
182         /* si[] is a table that holds the current syndrome value,
183          * an element of that table belongs to the field
184          */
185         si = host->pmecc_si;
186
187         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
188
189         /* Computation 2t syndromes based on S(x) */
190         /* Odd syndromes */
191         for (i = 1; i < 2 * cap; i += 2) {
192                 for (j = 0; j < host->pmecc_degree; j++) {
193                         if (partial_syn[i] & (0x1 << j))
194                                 si[i] = readw(alpha_to + i * j) ^ si[i];
195                 }
196         }
197         /* Even syndrome = (Odd syndrome) ** 2 */
198         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
199                 if (si[j] == 0) {
200                         si[i] = 0;
201                 } else {
202                         int16_t tmp;
203
204                         tmp = readw(index_of + si[j]);
205                         tmp = (tmp * 2) % host->pmecc_cw_len;
206                         si[i] = readw(alpha_to + tmp);
207                 }
208         }
209 }
210
211 /*
212  * This function defines a Berlekamp iterative procedure for
213  * finding the value of the error location polynomial.
214  * The input is si[], initialize by pmecc_substitute().
215  * The output is smu[][].
216  *
217  * This function is written according to chip datasheet Chapter:
218  * Find the Error Location Polynomial Sigma(x) of Section:
219  * Programmable Multibit ECC Control (PMECC).
220  */
221 static void pmecc_get_sigma(struct mtd_info *mtd)
222 {
223         struct nand_chip *nand_chip = mtd->priv;
224         struct atmel_nand_host *host = nand_chip->priv;
225
226         int16_t *lmu = host->pmecc_lmu;
227         int16_t *si = host->pmecc_si;
228         int *mu = host->pmecc_mu;
229         int *dmu = host->pmecc_dmu;     /* Discrepancy */
230         int *delta = host->pmecc_delta; /* Delta order */
231         int cw_len = host->pmecc_cw_len;
232         const int16_t cap = host->pmecc_corr_cap;
233         const int num = 2 * cap + 1;
234         int16_t __iomem *index_of = host->pmecc_index_of;
235         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
236         int i, j, k;
237         uint32_t dmu_0_count, tmp;
238         int16_t *smu = host->pmecc_smu;
239
240         /* index of largest delta */
241         int ro;
242         int largest;
243         int diff;
244
245         /* Init the Sigma(x) */
246         memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));
247
248         dmu_0_count = 0;
249
250         /* First Row */
251
252         /* Mu */
253         mu[0] = -1;
254
255         smu[0] = 1;
256
257         /* discrepancy set to 1 */
258         dmu[0] = 1;
259         /* polynom order set to 0 */
260         lmu[0] = 0;
261         /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
262         delta[0] = -1;
263
264         /* Second Row */
265
266         /* Mu */
267         mu[1] = 0;
268         /* Sigma(x) set to 1 */
269         smu[num] = 1;
270
271         /* discrepancy set to S1 */
272         dmu[1] = si[1];
273
274         /* polynom order set to 0 */
275         lmu[1] = 0;
276
277         /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
278         delta[1] = 0;
279
280         for (i = 1; i <= cap; i++) {
281                 mu[i + 1] = i << 1;
282                 /* Begin Computing Sigma (Mu+1) and L(mu) */
283                 /* check if discrepancy is set to 0 */
284                 if (dmu[i] == 0) {
285                         dmu_0_count++;
286
287                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
288                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
289                                 tmp += 2;
290                         else
291                                 tmp += 1;
292
293                         if (dmu_0_count == tmp) {
294                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
295                                         smu[(cap + 1) * num + j] =
296                                                         smu[i * num + j];
297
298                                 lmu[cap + 1] = lmu[i];
299                                 return;
300                         }
301
302                         /* copy polynom */
303                         for (j = 0; j <= lmu[i] >> 1; j++)
304                                 smu[(i + 1) * num + j] = smu[i * num + j];
305
306                         /* copy previous polynom order to the next */
307                         lmu[i + 1] = lmu[i];
308                 } else {
309                         ro = 0;
310                         largest = -1;
311                         /* find largest delta with dmu != 0 */
312                         for (j = 0; j < i; j++) {
313                                 if ((dmu[j]) && (delta[j] > largest)) {
314                                         largest = delta[j];
315                                         ro = j;
316                                 }
317                         }
318
319                         /* compute difference */
320                         diff = (mu[i] - mu[ro]);
321
322                         /* Compute degree of the new smu polynomial */
323                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
324                                 lmu[i + 1] = lmu[i];
325                         else
326                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
327
328                         /* Init smu[i+1] with 0 */
329                         for (k = 0; k < num; k++)
330                                 smu[(i + 1) * num + k] = 0;
331
332                         /* Compute smu[i+1] */
333                         for (k = 0; k <= lmu[ro] >> 1; k++) {
334                                 int16_t a, b, c;
335
336                                 if (!(smu[ro * num + k] && dmu[i]))
337                                         continue;
338                                 a = readw(index_of + dmu[i]);
339                                 b = readw(index_of + dmu[ro]);
340                                 c = readw(index_of + smu[ro * num + k]);
341                                 tmp = a + (cw_len - b) + c;
342                                 a = readw(alpha_to + tmp % cw_len);
343                                 smu[(i + 1) * num + (k + diff)] = a;
344                         }
345
346                         for (k = 0; k <= lmu[i] >> 1; k++)
347                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
348                 }
349
350                 /* End Computing Sigma (Mu+1) and L(mu) */
351                 /* In either case compute delta */
352                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
353
354                 /* Do not compute discrepancy for the last iteration */
355                 if (i >= cap)
356                         continue;
357
358                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
359                         tmp = 2 * (i - 1);
360                         if (k == 0) {
361                                 dmu[i + 1] = si[tmp + 3];
362                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
363                                 int16_t a, b, c;
364                                 a = readw(index_of +
365                                                 smu[(i + 1) * num + k]);
366                                 b = si[2 * (i - 1) + 3 - k];
367                                 c = readw(index_of + b);
368                                 tmp = a + c;
369                                 tmp %= cw_len;
370                                 dmu[i + 1] = readw(alpha_to + tmp) ^
371                                         dmu[i + 1];
372                         }
373                 }
374         }
375 }
376
377 static int pmecc_err_location(struct mtd_info *mtd)
378 {
379         struct nand_chip *nand_chip = mtd->priv;
380         struct atmel_nand_host *host = nand_chip->priv;
381         const int cap = host->pmecc_corr_cap;
382         const int num = 2 * cap + 1;
383         int sector_size = host->pmecc_sector_size;
384         int err_nbr = 0;        /* number of error */
385         int roots_nbr;          /* number of roots */
386         int i;
387         uint32_t val;
388         int16_t *smu = host->pmecc_smu;
389         int timeout = PMECC_MAX_TIMEOUT_US;
390
391         writel(PMERRLOC_DISABLE, &host->pmerrloc->eldis);
392
393         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
394                 writel(smu[(cap + 1) * num + i], &host->pmerrloc->sigma[i]);
395                 err_nbr++;
396         }
397
398         val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
399         if (sector_size == 1024)
400                 val |= PMERRLOC_ELCFG_SECTOR_1024;
401
402         writel(val, &host->pmerrloc->elcfg);
403         writel(sector_size * 8 + host->pmecc_degree * cap,
404                         &host->pmerrloc->elen);
405
406         while (--timeout) {
407                 if (readl(&host->pmerrloc->elisr) & PMERRLOC_CALC_DONE)
408                         break;
409                 WATCHDOG_RESET();
410                 udelay(1);
411         }
412
413         if (!timeout) {
414                 printk(KERN_ERR "atmel_nand : Timeout to calculate PMECC error location\n");
415                 return -1;
416         }
417
418         roots_nbr = (readl(&host->pmerrloc->elisr) & PMERRLOC_ERR_NUM_MASK)
419                         >> 8;
420         /* Number of roots == degree of smu hence <= cap */
421         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
422                 return err_nbr - 1;
423
424         /* Number of roots does not match the degree of smu
425          * unable to correct error */
426         return -1;
427 }
428
429 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
430                 int sector_num, int extra_bytes, int err_nbr)
431 {
432         struct nand_chip *nand_chip = mtd->priv;
433         struct atmel_nand_host *host = nand_chip->priv;
434         int i = 0;
435         int byte_pos, bit_pos, sector_size, pos;
436         uint32_t tmp;
437         uint8_t err_byte;
438
439         sector_size = host->pmecc_sector_size;
440
441         while (err_nbr) {
442                 tmp = readl(&host->pmerrloc->el[i]) - 1;
443                 byte_pos = tmp / 8;
444                 bit_pos  = tmp % 8;
445
446                 if (byte_pos >= (sector_size + extra_bytes))
447                         BUG();  /* should never happen */
448
449                 if (byte_pos < sector_size) {
450                         err_byte = *(buf + byte_pos);
451                         *(buf + byte_pos) ^= (1 << bit_pos);
452
453                         pos = sector_num * host->pmecc_sector_size + byte_pos;
454                         printk(KERN_INFO "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
455                                 pos, bit_pos, err_byte, *(buf + byte_pos));
456                 } else {
457                         /* Bit flip in OOB area */
458                         tmp = sector_num * host->pmecc_bytes_per_sector
459                                         + (byte_pos - sector_size);
460                         err_byte = ecc[tmp];
461                         ecc[tmp] ^= (1 << bit_pos);
462
463                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
464                         printk(KERN_INFO "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
465                                 pos, bit_pos, err_byte, ecc[tmp]);
466                 }
467
468                 i++;
469                 err_nbr--;
470         }
471
472         return;
473 }
474
475 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
476         u8 *ecc)
477 {
478         struct nand_chip *nand_chip = mtd->priv;
479         struct atmel_nand_host *host = nand_chip->priv;
480         int i, err_nbr, eccbytes;
481         uint8_t *buf_pos;
482
483         eccbytes = nand_chip->ecc.bytes;
484         for (i = 0; i < eccbytes; i++)
485                 if (ecc[i] != 0xff)
486                         goto normal_check;
487         /* Erased page, return OK */
488         return 0;
489
490 normal_check:
491         for (i = 0; i < host->pmecc_sector_number; i++) {
492                 err_nbr = 0;
493                 if (pmecc_stat & 0x1) {
494                         buf_pos = buf + i * host->pmecc_sector_size;
495
496                         pmecc_gen_syndrome(mtd, i);
497                         pmecc_substitute(mtd);
498                         pmecc_get_sigma(mtd);
499
500                         err_nbr = pmecc_err_location(mtd);
501                         if (err_nbr == -1) {
502                                 printk(KERN_ERR "PMECC: Too many errors\n");
503                                 mtd->ecc_stats.failed++;
504                                 return -EIO;
505                         } else {
506                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
507                                         host->pmecc_bytes_per_sector, err_nbr);
508                                 mtd->ecc_stats.corrected += err_nbr;
509                         }
510                 }
511                 pmecc_stat >>= 1;
512         }
513
514         return 0;
515 }
516
517 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
518         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
519 {
520         struct atmel_nand_host *host = chip->priv;
521         int eccsize = chip->ecc.size;
522         uint8_t *oob = chip->oob_poi;
523         uint32_t *eccpos = chip->ecc.layout->eccpos;
524         uint32_t stat;
525         int timeout = PMECC_MAX_TIMEOUT_US;
526
527         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
528         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
529         pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
530                 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
531
532         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
533         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
534
535         chip->read_buf(mtd, buf, eccsize);
536         chip->read_buf(mtd, oob, mtd->oobsize);
537
538         while (--timeout) {
539                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
540                         break;
541                 WATCHDOG_RESET();
542                 udelay(1);
543         }
544
545         if (!timeout) {
546                 printk(KERN_ERR "atmel_nand : Timeout to read PMECC page\n");
547                 return -1;
548         }
549
550         stat = pmecc_readl(host->pmecc, isr);
551         if (stat != 0)
552                 if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
553                         return -EIO;
554
555         return 0;
556 }
557
558 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
559                 struct nand_chip *chip, const uint8_t *buf,
560                 int oob_required)
561 {
562         struct atmel_nand_host *host = chip->priv;
563         uint32_t *eccpos = chip->ecc.layout->eccpos;
564         int i, j;
565         int timeout = PMECC_MAX_TIMEOUT_US;
566
567         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
568         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
569
570         pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
571                 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
572
573         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
574         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
575
576         chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
577
578         while (--timeout) {
579                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
580                         break;
581                 WATCHDOG_RESET();
582                 udelay(1);
583         }
584
585         if (!timeout) {
586                 printk(KERN_ERR "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
587                 goto out;
588         }
589
590         for (i = 0; i < host->pmecc_sector_number; i++) {
591                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
592                         int pos;
593
594                         pos = i * host->pmecc_bytes_per_sector + j;
595                         chip->oob_poi[eccpos[pos]] =
596                                 readb(&host->pmecc->ecc_port[i].ecc[j]);
597                 }
598         }
599         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
600 out:
601         return 0;
602 }
603
604 static void atmel_pmecc_core_init(struct mtd_info *mtd)
605 {
606         struct nand_chip *nand_chip = mtd->priv;
607         struct atmel_nand_host *host = nand_chip->priv;
608         uint32_t val = 0;
609         struct nand_ecclayout *ecc_layout;
610
611         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
612         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
613
614         switch (host->pmecc_corr_cap) {
615         case 2:
616                 val = PMECC_CFG_BCH_ERR2;
617                 break;
618         case 4:
619                 val = PMECC_CFG_BCH_ERR4;
620                 break;
621         case 8:
622                 val = PMECC_CFG_BCH_ERR8;
623                 break;
624         case 12:
625                 val = PMECC_CFG_BCH_ERR12;
626                 break;
627         case 24:
628                 val = PMECC_CFG_BCH_ERR24;
629                 break;
630         }
631
632         if (host->pmecc_sector_size == 512)
633                 val |= PMECC_CFG_SECTOR512;
634         else if (host->pmecc_sector_size == 1024)
635                 val |= PMECC_CFG_SECTOR1024;
636
637         switch (host->pmecc_sector_number) {
638         case 1:
639                 val |= PMECC_CFG_PAGE_1SECTOR;
640                 break;
641         case 2:
642                 val |= PMECC_CFG_PAGE_2SECTORS;
643                 break;
644         case 4:
645                 val |= PMECC_CFG_PAGE_4SECTORS;
646                 break;
647         case 8:
648                 val |= PMECC_CFG_PAGE_8SECTORS;
649                 break;
650         }
651
652         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
653                 | PMECC_CFG_AUTO_DISABLE);
654         pmecc_writel(host->pmecc, cfg, val);
655
656         ecc_layout = nand_chip->ecc.layout;
657         pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
658         pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
659         pmecc_writel(host->pmecc, eaddr,
660                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
661         /* See datasheet about PMECC Clock Control Register */
662         pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
663         pmecc_writel(host->pmecc, idr, 0xff);
664         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
665 }
666
667 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
668 /*
669  * get_onfi_ecc_param - Get ECC requirement from ONFI parameters
670  * @ecc_bits: store the ONFI ECC correct bits capbility
671  * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
672  *
673  * Returns -1 if ONFI parameters is not supported. In this case @ecc_bits,
674  * @sector_size are initialize to 0.
675  * Return 0 if success to get the ECC requirement.
676  */
677 static int get_onfi_ecc_param(struct nand_chip *chip,
678                 int *ecc_bits, int *sector_size)
679 {
680         *ecc_bits = *sector_size = 0;
681
682         if (chip->onfi_params.ecc_bits == 0xff)
683                 /* TODO: the sector_size and ecc_bits need to be find in
684                  * extended ecc parameter, currently we don't support it.
685                  */
686                 return -1;
687
688         *ecc_bits = chip->onfi_params.ecc_bits;
689
690         /* The default sector size (ecc codeword size) is 512 */
691         *sector_size = 512;
692
693         return 0;
694 }
695
696 /*
697  * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
698  *                    pmecc_corr_cap or pmecc_sector_size is 0, then set it as
699  *                    ONFI ECC parameters.
700  * @host: point to an atmel_nand_host structure.
701  *        if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
702  *        if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
703  * @chip: point to an nand_chip structure.
704  * @cap: store the ONFI ECC correct bits capbility
705  * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
706  *
707  * Return 0 if success. otherwise return the error code.
708  */
709 static int pmecc_choose_ecc(struct atmel_nand_host *host,
710                 struct nand_chip *chip,
711                 int *cap, int *sector_size)
712 {
713         /* Get ECC requirement from ONFI parameters */
714         *cap = *sector_size = 0;
715         if (chip->onfi_version) {
716                 if (!get_onfi_ecc_param(chip, cap, sector_size)) {
717                         MTDDEBUG(MTD_DEBUG_LEVEL1, "ONFI params, minimum required ECC: %d bits in %d bytes\n",
718                                 *cap, *sector_size);
719                 } else {
720                         dev_info(host->dev, "NAND chip ECC reqirement is in Extended ONFI parameter, we don't support yet.\n");
721                 }
722         } else {
723                 dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes");
724         }
725         if (*cap == 0 && *sector_size == 0) {
726                 /* Non-ONFI compliant or use extended ONFI parameters */
727                 *cap = 2;
728                 *sector_size = 512;
729         }
730
731         /* If head file doesn't specify then use the one in ONFI parameters */
732         if (host->pmecc_corr_cap == 0) {
733                 /* use the most fitable ecc bits (the near bigger one ) */
734                 if (*cap <= 2)
735                         host->pmecc_corr_cap = 2;
736                 else if (*cap <= 4)
737                         host->pmecc_corr_cap = 4;
738                 else if (*cap <= 8)
739                         host->pmecc_corr_cap = 8;
740                 else if (*cap <= 12)
741                         host->pmecc_corr_cap = 12;
742                 else if (*cap <= 24)
743                         host->pmecc_corr_cap = 24;
744                 else
745                         return -EINVAL;
746         }
747         if (host->pmecc_sector_size == 0) {
748                 /* use the most fitable sector size (the near smaller one ) */
749                 if (*sector_size >= 1024)
750                         host->pmecc_sector_size = 1024;
751                 else if (*sector_size >= 512)
752                         host->pmecc_sector_size = 512;
753                 else
754                         return -EINVAL;
755         }
756         return 0;
757 }
758 #endif
759
760 static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
761                 struct mtd_info *mtd)
762 {
763         struct atmel_nand_host *host;
764         int cap, sector_size;
765
766         host = nand->priv = &pmecc_host;
767
768         nand->ecc.mode = NAND_ECC_HW;
769         nand->ecc.calculate = NULL;
770         nand->ecc.correct = NULL;
771         nand->ecc.hwctl = NULL;
772
773 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
774         host->pmecc_corr_cap = host->pmecc_sector_size = 0;
775
776 #ifdef CONFIG_PMECC_CAP
777         host->pmecc_corr_cap = CONFIG_PMECC_CAP;
778 #endif
779 #ifdef CONFIG_PMECC_SECTOR_SIZE
780         host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
781 #endif
782         /* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
783          * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
784          * from ONFI.
785          */
786         if (pmecc_choose_ecc(host, nand, &cap, &sector_size)) {
787                 dev_err(host->dev, "The NAND flash's ECC requirement(ecc_bits: %d, sector_size: %d) are not support!",
788                                 cap, sector_size);
789                 return -EINVAL;
790         }
791
792         if (cap > host->pmecc_corr_cap)
793                 dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
794                                 host->pmecc_corr_cap, cap);
795         if (sector_size < host->pmecc_sector_size)
796                 dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
797                                 host->pmecc_sector_size, sector_size);
798 #else   /* CONFIG_SYS_NAND_ONFI_DETECTION */
799         host->pmecc_corr_cap = CONFIG_PMECC_CAP;
800         host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
801 #endif
802
803         cap = host->pmecc_corr_cap;
804         sector_size = host->pmecc_sector_size;
805
806         /* TODO: need check whether cap & sector_size is validate */
807
808         if (host->pmecc_sector_size == 512)
809                 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
810         else
811                 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
812
813         MTDDEBUG(MTD_DEBUG_LEVEL1,
814                 "Initialize PMECC params, cap: %d, sector: %d\n",
815                 cap, sector_size);
816
817         host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
818         host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
819                         ATMEL_BASE_PMERRLOC;
820         host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
821
822         /* ECC is calculated for the whole page (1 step) */
823         nand->ecc.size = mtd->writesize;
824
825         /* set ECC page size and oob layout */
826         switch (mtd->writesize) {
827         case 2048:
828         case 4096:
829                 host->pmecc_degree = (sector_size == 512) ?
830                         PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
831                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
832                 host->pmecc_sector_number = mtd->writesize / sector_size;
833                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
834                         cap, sector_size);
835                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
836                 host->pmecc_index_of = host->pmecc_rom_base +
837                         host->pmecc_index_table_offset;
838
839                 nand->ecc.steps = 1;
840                 nand->ecc.bytes = host->pmecc_bytes_per_sector *
841                                        host->pmecc_sector_number;
842                 if (nand->ecc.bytes > mtd->oobsize - 2) {
843                         printk(KERN_ERR "No room for ECC bytes\n");
844                         return -EINVAL;
845                 }
846                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
847                                         mtd->oobsize,
848                                         nand->ecc.bytes);
849                 nand->ecc.layout = &atmel_pmecc_oobinfo;
850                 break;
851         case 512:
852         case 1024:
853                 /* TODO */
854                 printk(KERN_ERR "Unsupported page size for PMECC, use Software ECC\n");
855         default:
856                 /* page size not handled by HW ECC */
857                 /* switching back to soft ECC */
858                 nand->ecc.mode = NAND_ECC_SOFT;
859                 nand->ecc.read_page = NULL;
860                 nand->ecc.postpad = 0;
861                 nand->ecc.prepad = 0;
862                 nand->ecc.bytes = 0;
863                 return 0;
864         }
865
866         /* Allocate data for PMECC computation */
867         if (pmecc_data_alloc(host)) {
868                 dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
869                 return -ENOMEM;
870         }
871
872         nand->ecc.read_page = atmel_nand_pmecc_read_page;
873         nand->ecc.write_page = atmel_nand_pmecc_write_page;
874         nand->ecc.strength = cap;
875
876         atmel_pmecc_core_init(mtd);
877
878         return 0;
879 }
880
881 #else
882
883 /* oob layout for large page size
884  * bad block info is on bytes 0 and 1
885  * the bytes have to be consecutives to avoid
886  * several NAND_CMD_RNDOUT during read
887  */
888 static struct nand_ecclayout atmel_oobinfo_large = {
889         .eccbytes = 4,
890         .eccpos = {60, 61, 62, 63},
891         .oobfree = {
892                 {2, 58}
893         },
894 };
895
896 /* oob layout for small page size
897  * bad block info is on bytes 4 and 5
898  * the bytes have to be consecutives to avoid
899  * several NAND_CMD_RNDOUT during read
900  */
901 static struct nand_ecclayout atmel_oobinfo_small = {
902         .eccbytes = 4,
903         .eccpos = {0, 1, 2, 3},
904         .oobfree = {
905                 {6, 10}
906         },
907 };
908
909 /*
910  * Calculate HW ECC
911  *
912  * function called after a write
913  *
914  * mtd:        MTD block structure
915  * dat:        raw data (unused)
916  * ecc_code:   buffer for ECC
917  */
918 static int atmel_nand_calculate(struct mtd_info *mtd,
919                 const u_char *dat, unsigned char *ecc_code)
920 {
921         unsigned int ecc_value;
922
923         /* get the first 2 ECC bytes */
924         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
925
926         ecc_code[0] = ecc_value & 0xFF;
927         ecc_code[1] = (ecc_value >> 8) & 0xFF;
928
929         /* get the last 2 ECC bytes */
930         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
931
932         ecc_code[2] = ecc_value & 0xFF;
933         ecc_code[3] = (ecc_value >> 8) & 0xFF;
934
935         return 0;
936 }
937
938 /*
939  * HW ECC read page function
940  *
941  * mtd:        mtd info structure
942  * chip:       nand chip info structure
943  * buf:        buffer to store read data
944  * oob_required:    caller expects OOB data read to chip->oob_poi
945  */
946 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
947                                 uint8_t *buf, int oob_required, int page)
948 {
949         int eccsize = chip->ecc.size;
950         int eccbytes = chip->ecc.bytes;
951         uint32_t *eccpos = chip->ecc.layout->eccpos;
952         uint8_t *p = buf;
953         uint8_t *oob = chip->oob_poi;
954         uint8_t *ecc_pos;
955         int stat;
956
957         /* read the page */
958         chip->read_buf(mtd, p, eccsize);
959
960         /* move to ECC position if needed */
961         if (eccpos[0] != 0) {
962                 /* This only works on large pages
963                  * because the ECC controller waits for
964                  * NAND_CMD_RNDOUTSTART after the
965                  * NAND_CMD_RNDOUT.
966                  * anyway, for small pages, the eccpos[0] == 0
967                  */
968                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
969                                 mtd->writesize + eccpos[0], -1);
970         }
971
972         /* the ECC controller needs to read the ECC just after the data */
973         ecc_pos = oob + eccpos[0];
974         chip->read_buf(mtd, ecc_pos, eccbytes);
975
976         /* check if there's an error */
977         stat = chip->ecc.correct(mtd, p, oob, NULL);
978
979         if (stat < 0)
980                 mtd->ecc_stats.failed++;
981         else
982                 mtd->ecc_stats.corrected += stat;
983
984         /* get back to oob start (end of page) */
985         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
986
987         /* read the oob */
988         chip->read_buf(mtd, oob, mtd->oobsize);
989
990         return 0;
991 }
992
993 /*
994  * HW ECC Correction
995  *
996  * function called after a read
997  *
998  * mtd:        MTD block structure
999  * dat:        raw data read from the chip
1000  * read_ecc:   ECC from the chip (unused)
1001  * isnull:     unused
1002  *
1003  * Detect and correct a 1 bit error for a page
1004  */
1005 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1006                 u_char *read_ecc, u_char *isnull)
1007 {
1008         struct nand_chip *nand_chip = mtd->priv;
1009         unsigned int ecc_status;
1010         unsigned int ecc_word, ecc_bit;
1011
1012         /* get the status from the Status Register */
1013         ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
1014
1015         /* if there's no error */
1016         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1017                 return 0;
1018
1019         /* get error bit offset (4 bits) */
1020         ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
1021         /* get word address (12 bits) */
1022         ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
1023         ecc_word >>= 4;
1024
1025         /* if there are multiple errors */
1026         if (ecc_status & ATMEL_ECC_MULERR) {
1027                 /* check if it is a freshly erased block
1028                  * (filled with 0xff) */
1029                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1030                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1031                         /* the block has just been erased, return OK */
1032                         return 0;
1033                 }
1034                 /* it doesn't seems to be a freshly
1035                  * erased block.
1036                  * We can't correct so many errors */
1037                 printk(KERN_WARNING "atmel_nand : multiple errors detected."
1038                                 " Unable to correct.\n");
1039                 return -EIO;
1040         }
1041
1042         /* if there's a single bit error : we can correct it */
1043         if (ecc_status & ATMEL_ECC_ECCERR) {
1044                 /* there's nothing much to do here.
1045                  * the bit error is on the ECC itself.
1046                  */
1047                 printk(KERN_WARNING "atmel_nand : one bit error on ECC code."
1048                                 " Nothing to correct\n");
1049                 return 0;
1050         }
1051
1052         printk(KERN_WARNING "atmel_nand : one bit error on data."
1053                         " (word offset in the page :"
1054                         " 0x%x bit offset : 0x%x)\n",
1055                         ecc_word, ecc_bit);
1056         /* correct the error */
1057         if (nand_chip->options & NAND_BUSWIDTH_16) {
1058                 /* 16 bits words */
1059                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1060         } else {
1061                 /* 8 bits words */
1062                 dat[ecc_word] ^= (1 << ecc_bit);
1063         }
1064         printk(KERN_WARNING "atmel_nand : error corrected\n");
1065         return 1;
1066 }
1067
1068 /*
1069  * Enable HW ECC : unused on most chips
1070  */
1071 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1072 {
1073 }
1074
1075 int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
1076 {
1077         nand->ecc.mode = NAND_ECC_HW;
1078         nand->ecc.calculate = atmel_nand_calculate;
1079         nand->ecc.correct = atmel_nand_correct;
1080         nand->ecc.hwctl = atmel_nand_hwctl;
1081         nand->ecc.read_page = atmel_nand_read_page;
1082         nand->ecc.bytes = 4;
1083
1084         if (nand->ecc.mode == NAND_ECC_HW) {
1085                 /* ECC is calculated for the whole page (1 step) */
1086                 nand->ecc.size = mtd->writesize;
1087
1088                 /* set ECC page size and oob layout */
1089                 switch (mtd->writesize) {
1090                 case 512:
1091                         nand->ecc.layout = &atmel_oobinfo_small;
1092                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1093                                         ATMEL_ECC_PAGESIZE_528);
1094                         break;
1095                 case 1024:
1096                         nand->ecc.layout = &atmel_oobinfo_large;
1097                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1098                                         ATMEL_ECC_PAGESIZE_1056);
1099                         break;
1100                 case 2048:
1101                         nand->ecc.layout = &atmel_oobinfo_large;
1102                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1103                                         ATMEL_ECC_PAGESIZE_2112);
1104                         break;
1105                 case 4096:
1106                         nand->ecc.layout = &atmel_oobinfo_large;
1107                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1108                                         ATMEL_ECC_PAGESIZE_4224);
1109                         break;
1110                 default:
1111                         /* page size not handled by HW ECC */
1112                         /* switching back to soft ECC */
1113                         nand->ecc.mode = NAND_ECC_SOFT;
1114                         nand->ecc.calculate = NULL;
1115                         nand->ecc.correct = NULL;
1116                         nand->ecc.hwctl = NULL;
1117                         nand->ecc.read_page = NULL;
1118                         nand->ecc.postpad = 0;
1119                         nand->ecc.prepad = 0;
1120                         nand->ecc.bytes = 0;
1121                         break;
1122                 }
1123         }
1124
1125         return 0;
1126 }
1127
1128 #endif /* CONFIG_ATMEL_NAND_HW_PMECC */
1129
1130 #endif /* CONFIG_ATMEL_NAND_HWECC */
1131
1132 static void at91_nand_hwcontrol(struct mtd_info *mtd,
1133                                          int cmd, unsigned int ctrl)
1134 {
1135         struct nand_chip *this = mtd->priv;
1136
1137         if (ctrl & NAND_CTRL_CHANGE) {
1138                 ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
1139                 IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
1140                              | CONFIG_SYS_NAND_MASK_CLE);
1141
1142                 if (ctrl & NAND_CLE)
1143                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
1144                 if (ctrl & NAND_ALE)
1145                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
1146
1147 #ifdef CONFIG_SYS_NAND_ENABLE_PIN
1148                 gpio_set_value(CONFIG_SYS_NAND_ENABLE_PIN, !(ctrl & NAND_NCE));
1149 #endif
1150                 this->IO_ADDR_W = (void *) IO_ADDR_W;
1151         }
1152
1153         if (cmd != NAND_CMD_NONE)
1154                 writeb(cmd, this->IO_ADDR_W);
1155 }
1156
1157 #ifdef CONFIG_SYS_NAND_READY_PIN
1158 static int at91_nand_ready(struct mtd_info *mtd)
1159 {
1160         return gpio_get_value(CONFIG_SYS_NAND_READY_PIN);
1161 }
1162 #endif
1163
1164 #ifndef CONFIG_SYS_NAND_BASE_LIST
1165 #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
1166 #endif
1167 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
1168 static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
1169
1170 int atmel_nand_chip_init(int devnum, ulong base_addr)
1171 {
1172         int ret;
1173         struct mtd_info *mtd = &nand_info[devnum];
1174         struct nand_chip *nand = &nand_chip[devnum];
1175
1176         mtd->priv = nand;
1177         nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
1178
1179         nand->ecc.mode = NAND_ECC_SOFT;
1180 #ifdef CONFIG_SYS_NAND_DBW_16
1181         nand->options = NAND_BUSWIDTH_16;
1182 #endif
1183         nand->cmd_ctrl = at91_nand_hwcontrol;
1184 #ifdef CONFIG_SYS_NAND_READY_PIN
1185         nand->dev_ready = at91_nand_ready;
1186 #endif
1187         nand->chip_delay = 20;
1188
1189         ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1190         if (ret)
1191                 return ret;
1192
1193 #ifdef CONFIG_ATMEL_NAND_HWECC
1194 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1195         ret = atmel_pmecc_nand_init_params(nand, mtd);
1196 #else
1197         ret = atmel_hwecc_nand_init_param(nand, mtd);
1198 #endif
1199         if (ret)
1200                 return ret;
1201 #endif
1202
1203         ret = nand_scan_tail(mtd);
1204         if (!ret)
1205                 nand_register(devnum);
1206
1207         return ret;
1208 }
1209
1210 void board_nand_init(void)
1211 {
1212         int i;
1213         for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1214                 if (atmel_nand_chip_init(i, base_addr[i]))
1215                         printk(KERN_ERR "atmel_nand: Fail to initialize #%d chip",
1216                                 i);
1217 }