]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/atmel_nand.c
Merge branch 'master' of git://git.denx.de/u-boot-arm
[karo-tx-uboot.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2  * (C) Copyright 2007-2008
3  * Stelian Pop <stelian@popies.net>
4  * Lead Tech Design <www.leadtechdesign.com>
5  *
6  * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
7  *
8  * Add Programmable Multibit ECC support for various AT91 SoC
9  *     (C) Copyright 2012 ATMEL, Hong Xu
10  *
11  * SPDX-License-Identifier:     GPL-2.0+
12  */
13
14 #include <common.h>
15 #include <asm/gpio.h>
16 #include <asm/arch/gpio.h>
17
18 #include <malloc.h>
19 #include <nand.h>
20 #include <watchdog.h>
21 #include <linux/mtd/nand_ecc.h>
22
23 #ifdef CONFIG_ATMEL_NAND_HWECC
24
25 /* Register access macros */
26 #define ecc_readl(add, reg)                             \
27         readl(AT91_BASE_SYS + add + ATMEL_ECC_##reg)
28 #define ecc_writel(add, reg, value)                     \
29         writel((value), AT91_BASE_SYS + add + ATMEL_ECC_##reg)
30
31 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
32
33 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
34
35 #ifdef CONFIG_SPL_BUILD
36 #undef CONFIG_SYS_NAND_ONFI_DETECTION
37 #endif
38
39 struct atmel_nand_host {
40         struct pmecc_regs __iomem *pmecc;
41         struct pmecc_errloc_regs __iomem *pmerrloc;
42         void __iomem            *pmecc_rom_base;
43
44         u8              pmecc_corr_cap;
45         u16             pmecc_sector_size;
46         u32             pmecc_index_table_offset;
47
48         int             pmecc_bytes_per_sector;
49         int             pmecc_sector_number;
50         int             pmecc_degree;   /* Degree of remainders */
51         int             pmecc_cw_len;   /* Length of codeword */
52
53         /* lookup table for alpha_to and index_of */
54         void __iomem    *pmecc_alpha_to;
55         void __iomem    *pmecc_index_of;
56
57         /* data for pmecc computation */
58         int16_t *pmecc_smu;
59         int16_t *pmecc_partial_syn;
60         int16_t *pmecc_si;
61         int16_t *pmecc_lmu; /* polynomal order */
62         int     *pmecc_mu;
63         int     *pmecc_dmu;
64         int     *pmecc_delta;
65 };
66
67 static struct atmel_nand_host pmecc_host;
68 static struct nand_ecclayout atmel_pmecc_oobinfo;
69
70 /*
71  * Return number of ecc bytes per sector according to sector size and
72  * correction capability
73  *
74  * Following table shows what at91 PMECC supported:
75  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
76  * =====================        ================        =================
77  *                2-bits                 4-bytes                  4-bytes
78  *                4-bits                 7-bytes                  7-bytes
79  *                8-bits                13-bytes                 14-bytes
80  *               12-bits                20-bytes                 21-bytes
81  *               24-bits                39-bytes                 42-bytes
82  */
83 static int pmecc_get_ecc_bytes(int cap, int sector_size)
84 {
85         int m = 12 + sector_size / 512;
86         return (m * cap + 7) / 8;
87 }
88
89 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
90         int oobsize, int ecc_len)
91 {
92         int i;
93
94         layout->eccbytes = ecc_len;
95
96         /* ECC will occupy the last ecc_len bytes continuously */
97         for (i = 0; i < ecc_len; i++)
98                 layout->eccpos[i] = oobsize - ecc_len + i;
99
100         layout->oobfree[0].offset = 2;
101         layout->oobfree[0].length =
102                 oobsize - ecc_len - layout->oobfree[0].offset;
103 }
104
105 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
106 {
107         int table_size;
108
109         table_size = host->pmecc_sector_size == 512 ?
110                 PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
111
112         /* the ALPHA lookup table is right behind the INDEX lookup table. */
113         return host->pmecc_rom_base + host->pmecc_index_table_offset +
114                         table_size * sizeof(int16_t);
115 }
116
117 static void pmecc_data_free(struct atmel_nand_host *host)
118 {
119         free(host->pmecc_partial_syn);
120         free(host->pmecc_si);
121         free(host->pmecc_lmu);
122         free(host->pmecc_smu);
123         free(host->pmecc_mu);
124         free(host->pmecc_dmu);
125         free(host->pmecc_delta);
126 }
127
128 static int pmecc_data_alloc(struct atmel_nand_host *host)
129 {
130         const int cap = host->pmecc_corr_cap;
131         int size;
132
133         size = (2 * cap + 1) * sizeof(int16_t);
134         host->pmecc_partial_syn = malloc(size);
135         host->pmecc_si = malloc(size);
136         host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
137         host->pmecc_smu = malloc((cap + 2) * size);
138
139         size = (cap + 1) * sizeof(int);
140         host->pmecc_mu = malloc(size);
141         host->pmecc_dmu = malloc(size);
142         host->pmecc_delta = malloc(size);
143
144         if (host->pmecc_partial_syn &&
145                         host->pmecc_si &&
146                         host->pmecc_lmu &&
147                         host->pmecc_smu &&
148                         host->pmecc_mu &&
149                         host->pmecc_dmu &&
150                         host->pmecc_delta)
151                 return 0;
152
153         /* error happened */
154         pmecc_data_free(host);
155         return -ENOMEM;
156
157 }
158
159 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
160 {
161         struct nand_chip *nand_chip = mtd->priv;
162         struct atmel_nand_host *host = nand_chip->priv;
163         int i;
164         uint32_t value;
165
166         /* Fill odd syndromes */
167         for (i = 0; i < host->pmecc_corr_cap; i++) {
168                 value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]);
169                 if (i & 1)
170                         value >>= 16;
171                 value &= 0xffff;
172                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
173         }
174 }
175
176 static void pmecc_substitute(struct mtd_info *mtd)
177 {
178         struct nand_chip *nand_chip = mtd->priv;
179         struct atmel_nand_host *host = nand_chip->priv;
180         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
181         int16_t __iomem *index_of = host->pmecc_index_of;
182         int16_t *partial_syn = host->pmecc_partial_syn;
183         const int cap = host->pmecc_corr_cap;
184         int16_t *si;
185         int i, j;
186
187         /* si[] is a table that holds the current syndrome value,
188          * an element of that table belongs to the field
189          */
190         si = host->pmecc_si;
191
192         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
193
194         /* Computation 2t syndromes based on S(x) */
195         /* Odd syndromes */
196         for (i = 1; i < 2 * cap; i += 2) {
197                 for (j = 0; j < host->pmecc_degree; j++) {
198                         if (partial_syn[i] & (0x1 << j))
199                                 si[i] = readw(alpha_to + i * j) ^ si[i];
200                 }
201         }
202         /* Even syndrome = (Odd syndrome) ** 2 */
203         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
204                 if (si[j] == 0) {
205                         si[i] = 0;
206                 } else {
207                         int16_t tmp;
208
209                         tmp = readw(index_of + si[j]);
210                         tmp = (tmp * 2) % host->pmecc_cw_len;
211                         si[i] = readw(alpha_to + tmp);
212                 }
213         }
214 }
215
216 /*
217  * This function defines a Berlekamp iterative procedure for
218  * finding the value of the error location polynomial.
219  * The input is si[], initialize by pmecc_substitute().
220  * The output is smu[][].
221  *
222  * This function is written according to chip datasheet Chapter:
223  * Find the Error Location Polynomial Sigma(x) of Section:
224  * Programmable Multibit ECC Control (PMECC).
225  */
226 static void pmecc_get_sigma(struct mtd_info *mtd)
227 {
228         struct nand_chip *nand_chip = mtd->priv;
229         struct atmel_nand_host *host = nand_chip->priv;
230
231         int16_t *lmu = host->pmecc_lmu;
232         int16_t *si = host->pmecc_si;
233         int *mu = host->pmecc_mu;
234         int *dmu = host->pmecc_dmu;     /* Discrepancy */
235         int *delta = host->pmecc_delta; /* Delta order */
236         int cw_len = host->pmecc_cw_len;
237         const int16_t cap = host->pmecc_corr_cap;
238         const int num = 2 * cap + 1;
239         int16_t __iomem *index_of = host->pmecc_index_of;
240         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
241         int i, j, k;
242         uint32_t dmu_0_count, tmp;
243         int16_t *smu = host->pmecc_smu;
244
245         /* index of largest delta */
246         int ro;
247         int largest;
248         int diff;
249
250         /* Init the Sigma(x) */
251         memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));
252
253         dmu_0_count = 0;
254
255         /* First Row */
256
257         /* Mu */
258         mu[0] = -1;
259
260         smu[0] = 1;
261
262         /* discrepancy set to 1 */
263         dmu[0] = 1;
264         /* polynom order set to 0 */
265         lmu[0] = 0;
266         /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
267         delta[0] = -1;
268
269         /* Second Row */
270
271         /* Mu */
272         mu[1] = 0;
273         /* Sigma(x) set to 1 */
274         smu[num] = 1;
275
276         /* discrepancy set to S1 */
277         dmu[1] = si[1];
278
279         /* polynom order set to 0 */
280         lmu[1] = 0;
281
282         /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
283         delta[1] = 0;
284
285         for (i = 1; i <= cap; i++) {
286                 mu[i + 1] = i << 1;
287                 /* Begin Computing Sigma (Mu+1) and L(mu) */
288                 /* check if discrepancy is set to 0 */
289                 if (dmu[i] == 0) {
290                         dmu_0_count++;
291
292                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
293                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
294                                 tmp += 2;
295                         else
296                                 tmp += 1;
297
298                         if (dmu_0_count == tmp) {
299                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
300                                         smu[(cap + 1) * num + j] =
301                                                         smu[i * num + j];
302
303                                 lmu[cap + 1] = lmu[i];
304                                 return;
305                         }
306
307                         /* copy polynom */
308                         for (j = 0; j <= lmu[i] >> 1; j++)
309                                 smu[(i + 1) * num + j] = smu[i * num + j];
310
311                         /* copy previous polynom order to the next */
312                         lmu[i + 1] = lmu[i];
313                 } else {
314                         ro = 0;
315                         largest = -1;
316                         /* find largest delta with dmu != 0 */
317                         for (j = 0; j < i; j++) {
318                                 if ((dmu[j]) && (delta[j] > largest)) {
319                                         largest = delta[j];
320                                         ro = j;
321                                 }
322                         }
323
324                         /* compute difference */
325                         diff = (mu[i] - mu[ro]);
326
327                         /* Compute degree of the new smu polynomial */
328                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
329                                 lmu[i + 1] = lmu[i];
330                         else
331                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
332
333                         /* Init smu[i+1] with 0 */
334                         for (k = 0; k < num; k++)
335                                 smu[(i + 1) * num + k] = 0;
336
337                         /* Compute smu[i+1] */
338                         for (k = 0; k <= lmu[ro] >> 1; k++) {
339                                 int16_t a, b, c;
340
341                                 if (!(smu[ro * num + k] && dmu[i]))
342                                         continue;
343                                 a = readw(index_of + dmu[i]);
344                                 b = readw(index_of + dmu[ro]);
345                                 c = readw(index_of + smu[ro * num + k]);
346                                 tmp = a + (cw_len - b) + c;
347                                 a = readw(alpha_to + tmp % cw_len);
348                                 smu[(i + 1) * num + (k + diff)] = a;
349                         }
350
351                         for (k = 0; k <= lmu[i] >> 1; k++)
352                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
353                 }
354
355                 /* End Computing Sigma (Mu+1) and L(mu) */
356                 /* In either case compute delta */
357                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
358
359                 /* Do not compute discrepancy for the last iteration */
360                 if (i >= cap)
361                         continue;
362
363                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
364                         tmp = 2 * (i - 1);
365                         if (k == 0) {
366                                 dmu[i + 1] = si[tmp + 3];
367                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
368                                 int16_t a, b, c;
369                                 a = readw(index_of +
370                                                 smu[(i + 1) * num + k]);
371                                 b = si[2 * (i - 1) + 3 - k];
372                                 c = readw(index_of + b);
373                                 tmp = a + c;
374                                 tmp %= cw_len;
375                                 dmu[i + 1] = readw(alpha_to + tmp) ^
376                                         dmu[i + 1];
377                         }
378                 }
379         }
380 }
381
382 static int pmecc_err_location(struct mtd_info *mtd)
383 {
384         struct nand_chip *nand_chip = mtd->priv;
385         struct atmel_nand_host *host = nand_chip->priv;
386         const int cap = host->pmecc_corr_cap;
387         const int num = 2 * cap + 1;
388         int sector_size = host->pmecc_sector_size;
389         int err_nbr = 0;        /* number of error */
390         int roots_nbr;          /* number of roots */
391         int i;
392         uint32_t val;
393         int16_t *smu = host->pmecc_smu;
394         int timeout = PMECC_MAX_TIMEOUT_US;
395
396         pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE);
397
398         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
399                 pmecc_writel(host->pmerrloc, sigma[i],
400                              smu[(cap + 1) * num + i]);
401                 err_nbr++;
402         }
403
404         val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
405         if (sector_size == 1024)
406                 val |= PMERRLOC_ELCFG_SECTOR_1024;
407
408         pmecc_writel(host->pmerrloc, elcfg, val);
409         pmecc_writel(host->pmerrloc, elen,
410                      sector_size * 8 + host->pmecc_degree * cap);
411
412         while (--timeout) {
413                 if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE)
414                         break;
415                 WATCHDOG_RESET();
416                 udelay(1);
417         }
418
419         if (!timeout) {
420                 dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n");
421                 return -1;
422         }
423
424         roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK)
425                         >> 8;
426         /* Number of roots == degree of smu hence <= cap */
427         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
428                 return err_nbr - 1;
429
430         /* Number of roots does not match the degree of smu
431          * unable to correct error */
432         return -1;
433 }
434
435 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
436                 int sector_num, int extra_bytes, int err_nbr)
437 {
438         struct nand_chip *nand_chip = mtd->priv;
439         struct atmel_nand_host *host = nand_chip->priv;
440         int i = 0;
441         int byte_pos, bit_pos, sector_size, pos;
442         uint32_t tmp;
443         uint8_t err_byte;
444
445         sector_size = host->pmecc_sector_size;
446
447         while (err_nbr) {
448                 tmp = pmecc_readl(host->pmerrloc, el[i]) - 1;
449                 byte_pos = tmp / 8;
450                 bit_pos  = tmp % 8;
451
452                 if (byte_pos >= (sector_size + extra_bytes))
453                         BUG();  /* should never happen */
454
455                 if (byte_pos < sector_size) {
456                         err_byte = *(buf + byte_pos);
457                         *(buf + byte_pos) ^= (1 << bit_pos);
458
459                         pos = sector_num * host->pmecc_sector_size + byte_pos;
460                         dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
461                                 pos, bit_pos, err_byte, *(buf + byte_pos));
462                 } else {
463                         /* Bit flip in OOB area */
464                         tmp = sector_num * host->pmecc_bytes_per_sector
465                                         + (byte_pos - sector_size);
466                         err_byte = ecc[tmp];
467                         ecc[tmp] ^= (1 << bit_pos);
468
469                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
470                         dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
471                                 pos, bit_pos, err_byte, ecc[tmp]);
472                 }
473
474                 i++;
475                 err_nbr--;
476         }
477
478         return;
479 }
480
481 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
482         u8 *ecc)
483 {
484         struct nand_chip *nand_chip = mtd->priv;
485         struct atmel_nand_host *host = nand_chip->priv;
486         int i, err_nbr, eccbytes;
487         uint8_t *buf_pos;
488
489         eccbytes = nand_chip->ecc.bytes;
490         for (i = 0; i < eccbytes; i++)
491                 if (ecc[i] != 0xff)
492                         goto normal_check;
493         /* Erased page, return OK */
494         return 0;
495
496 normal_check:
497         for (i = 0; i < host->pmecc_sector_number; i++) {
498                 err_nbr = 0;
499                 if (pmecc_stat & 0x1) {
500                         buf_pos = buf + i * host->pmecc_sector_size;
501
502                         pmecc_gen_syndrome(mtd, i);
503                         pmecc_substitute(mtd);
504                         pmecc_get_sigma(mtd);
505
506                         err_nbr = pmecc_err_location(mtd);
507                         if (err_nbr == -1) {
508                                 dev_err(host->dev, "PMECC: Too many errors\n");
509                                 mtd->ecc_stats.failed++;
510                                 return -EIO;
511                         } else {
512                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
513                                         host->pmecc_bytes_per_sector, err_nbr);
514                                 mtd->ecc_stats.corrected += err_nbr;
515                         }
516                 }
517                 pmecc_stat >>= 1;
518         }
519
520         return 0;
521 }
522
523 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
524         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
525 {
526         struct atmel_nand_host *host = chip->priv;
527         int eccsize = chip->ecc.size;
528         uint8_t *oob = chip->oob_poi;
529         uint32_t *eccpos = chip->ecc.layout->eccpos;
530         uint32_t stat;
531         int timeout = PMECC_MAX_TIMEOUT_US;
532
533         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
534         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
535         pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
536                 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
537
538         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
539         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
540
541         chip->read_buf(mtd, buf, eccsize);
542         chip->read_buf(mtd, oob, mtd->oobsize);
543
544         while (--timeout) {
545                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
546                         break;
547                 WATCHDOG_RESET();
548                 udelay(1);
549         }
550
551         if (!timeout) {
552                 dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n");
553                 return -1;
554         }
555
556         stat = pmecc_readl(host->pmecc, isr);
557         if (stat != 0)
558                 if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
559                         return -EIO;
560
561         return 0;
562 }
563
564 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
565                 struct nand_chip *chip, const uint8_t *buf,
566                 int oob_required)
567 {
568         struct atmel_nand_host *host = chip->priv;
569         uint32_t *eccpos = chip->ecc.layout->eccpos;
570         int i, j;
571         int timeout = PMECC_MAX_TIMEOUT_US;
572
573         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
574         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
575
576         pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
577                 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
578
579         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
580         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
581
582         chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
583
584         while (--timeout) {
585                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
586                         break;
587                 WATCHDOG_RESET();
588                 udelay(1);
589         }
590
591         if (!timeout) {
592                 dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
593                 goto out;
594         }
595
596         for (i = 0; i < host->pmecc_sector_number; i++) {
597                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
598                         int pos;
599
600                         pos = i * host->pmecc_bytes_per_sector + j;
601                         chip->oob_poi[eccpos[pos]] =
602                                 pmecc_readb(host->pmecc, ecc_port[i].ecc[j]);
603                 }
604         }
605         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
606 out:
607         return 0;
608 }
609
610 static void atmel_pmecc_core_init(struct mtd_info *mtd)
611 {
612         struct nand_chip *nand_chip = mtd->priv;
613         struct atmel_nand_host *host = nand_chip->priv;
614         uint32_t val = 0;
615         struct nand_ecclayout *ecc_layout;
616
617         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
618         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
619
620         switch (host->pmecc_corr_cap) {
621         case 2:
622                 val = PMECC_CFG_BCH_ERR2;
623                 break;
624         case 4:
625                 val = PMECC_CFG_BCH_ERR4;
626                 break;
627         case 8:
628                 val = PMECC_CFG_BCH_ERR8;
629                 break;
630         case 12:
631                 val = PMECC_CFG_BCH_ERR12;
632                 break;
633         case 24:
634                 val = PMECC_CFG_BCH_ERR24;
635                 break;
636         }
637
638         if (host->pmecc_sector_size == 512)
639                 val |= PMECC_CFG_SECTOR512;
640         else if (host->pmecc_sector_size == 1024)
641                 val |= PMECC_CFG_SECTOR1024;
642
643         switch (host->pmecc_sector_number) {
644         case 1:
645                 val |= PMECC_CFG_PAGE_1SECTOR;
646                 break;
647         case 2:
648                 val |= PMECC_CFG_PAGE_2SECTORS;
649                 break;
650         case 4:
651                 val |= PMECC_CFG_PAGE_4SECTORS;
652                 break;
653         case 8:
654                 val |= PMECC_CFG_PAGE_8SECTORS;
655                 break;
656         }
657
658         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
659                 | PMECC_CFG_AUTO_DISABLE);
660         pmecc_writel(host->pmecc, cfg, val);
661
662         ecc_layout = nand_chip->ecc.layout;
663         pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
664         pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
665         pmecc_writel(host->pmecc, eaddr,
666                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
667         /* See datasheet about PMECC Clock Control Register */
668         pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
669         pmecc_writel(host->pmecc, idr, 0xff);
670         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
671 }
672
673 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
674 /*
675  * get_onfi_ecc_param - Get ECC requirement from ONFI parameters
676  * @ecc_bits: store the ONFI ECC correct bits capbility
677  * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
678  *
679  * Returns -1 if ONFI parameters is not supported. In this case @ecc_bits,
680  * @sector_size are initialize to 0.
681  * Return 0 if success to get the ECC requirement.
682  */
683 static int get_onfi_ecc_param(struct nand_chip *chip,
684                 int *ecc_bits, int *sector_size)
685 {
686         *ecc_bits = *sector_size = 0;
687
688         if (chip->onfi_params.ecc_bits == 0xff)
689                 /* TODO: the sector_size and ecc_bits need to be find in
690                  * extended ecc parameter, currently we don't support it.
691                  */
692                 return -1;
693
694         *ecc_bits = chip->onfi_params.ecc_bits;
695
696         /* The default sector size (ecc codeword size) is 512 */
697         *sector_size = 512;
698
699         return 0;
700 }
701
702 /*
703  * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
704  *                    pmecc_corr_cap or pmecc_sector_size is 0, then set it as
705  *                    ONFI ECC parameters.
706  * @host: point to an atmel_nand_host structure.
707  *        if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
708  *        if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
709  * @chip: point to an nand_chip structure.
710  * @cap: store the ONFI ECC correct bits capbility
711  * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
712  *
713  * Return 0 if success. otherwise return the error code.
714  */
715 static int pmecc_choose_ecc(struct atmel_nand_host *host,
716                 struct nand_chip *chip,
717                 int *cap, int *sector_size)
718 {
719         /* Get ECC requirement from ONFI parameters */
720         *cap = *sector_size = 0;
721         if (chip->onfi_version) {
722                 if (!get_onfi_ecc_param(chip, cap, sector_size)) {
723                         MTDDEBUG(MTD_DEBUG_LEVEL1, "ONFI params, minimum required ECC: %d bits in %d bytes\n",
724                                 *cap, *sector_size);
725                 } else {
726                         dev_info(host->dev, "NAND chip ECC reqirement is in Extended ONFI parameter, we don't support yet.\n");
727                 }
728         } else {
729                 dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes");
730         }
731         if (*cap == 0 && *sector_size == 0) {
732                 /* Non-ONFI compliant or use extended ONFI parameters */
733                 *cap = 2;
734                 *sector_size = 512;
735         }
736
737         /* If head file doesn't specify then use the one in ONFI parameters */
738         if (host->pmecc_corr_cap == 0) {
739                 /* use the most fitable ecc bits (the near bigger one ) */
740                 if (*cap <= 2)
741                         host->pmecc_corr_cap = 2;
742                 else if (*cap <= 4)
743                         host->pmecc_corr_cap = 4;
744                 else if (*cap <= 8)
745                         host->pmecc_corr_cap = 8;
746                 else if (*cap <= 12)
747                         host->pmecc_corr_cap = 12;
748                 else if (*cap <= 24)
749                         host->pmecc_corr_cap = 24;
750                 else
751                         return -EINVAL;
752         }
753         if (host->pmecc_sector_size == 0) {
754                 /* use the most fitable sector size (the near smaller one ) */
755                 if (*sector_size >= 1024)
756                         host->pmecc_sector_size = 1024;
757                 else if (*sector_size >= 512)
758                         host->pmecc_sector_size = 512;
759                 else
760                         return -EINVAL;
761         }
762         return 0;
763 }
764 #endif
765
766 #if defined(NO_GALOIS_TABLE_IN_ROM)
767 static uint16_t *pmecc_galois_table;
768 static inline int deg(unsigned int poly)
769 {
770         /* polynomial degree is the most-significant bit index */
771         return fls(poly) - 1;
772 }
773
774 static int build_gf_tables(int mm, unsigned int poly,
775                            int16_t *index_of, int16_t *alpha_to)
776 {
777         unsigned int i, x = 1;
778         const unsigned int k = 1 << deg(poly);
779         unsigned int nn = (1 << mm) - 1;
780
781         /* primitive polynomial must be of degree m */
782         if (k != (1u << mm))
783                 return -EINVAL;
784
785         for (i = 0; i < nn; i++) {
786                 alpha_to[i] = x;
787                 index_of[x] = i;
788                 if (i && (x == 1))
789                         /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
790                         return -EINVAL;
791                 x <<= 1;
792                 if (x & k)
793                         x ^= poly;
794         }
795
796         alpha_to[nn] = 1;
797         index_of[0] = 0;
798
799         return 0;
800 }
801
802 static uint16_t *create_lookup_table(int sector_size)
803 {
804         int degree = (sector_size == 512) ?
805                         PMECC_GF_DIMENSION_13 :
806                         PMECC_GF_DIMENSION_14;
807         unsigned int poly = (sector_size == 512) ?
808                         PMECC_GF_13_PRIMITIVE_POLY :
809                         PMECC_GF_14_PRIMITIVE_POLY;
810         int table_size = (sector_size == 512) ?
811                         PMECC_INDEX_TABLE_SIZE_512 :
812                         PMECC_INDEX_TABLE_SIZE_1024;
813
814         int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL);
815         if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
816                 return NULL;
817
818         return (uint16_t *)addr;
819 }
820 #endif
821
822 static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
823                 struct mtd_info *mtd)
824 {
825         struct atmel_nand_host *host;
826         int cap, sector_size;
827
828         host = nand->priv = &pmecc_host;
829
830         nand->ecc.mode = NAND_ECC_HW;
831         nand->ecc.calculate = NULL;
832         nand->ecc.correct = NULL;
833         nand->ecc.hwctl = NULL;
834
835 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
836         host->pmecc_corr_cap = host->pmecc_sector_size = 0;
837
838 #ifdef CONFIG_PMECC_CAP
839         host->pmecc_corr_cap = CONFIG_PMECC_CAP;
840 #endif
841 #ifdef CONFIG_PMECC_SECTOR_SIZE
842         host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
843 #endif
844         /* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
845          * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
846          * from ONFI.
847          */
848         if (pmecc_choose_ecc(host, nand, &cap, &sector_size)) {
849                 dev_err(host->dev, "The NAND flash's ECC requirement(ecc_bits: %d, sector_size: %d) are not support!",
850                                 cap, sector_size);
851                 return -EINVAL;
852         }
853
854         if (cap > host->pmecc_corr_cap)
855                 dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
856                                 host->pmecc_corr_cap, cap);
857         if (sector_size < host->pmecc_sector_size)
858                 dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
859                                 host->pmecc_sector_size, sector_size);
860 #else   /* CONFIG_SYS_NAND_ONFI_DETECTION */
861         host->pmecc_corr_cap = CONFIG_PMECC_CAP;
862         host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
863 #endif
864
865         cap = host->pmecc_corr_cap;
866         sector_size = host->pmecc_sector_size;
867
868         /* TODO: need check whether cap & sector_size is validate */
869 #if defined(NO_GALOIS_TABLE_IN_ROM)
870         /*
871          * As pmecc_rom_base is the begin of the gallois field table, So the
872          * index offset just set as 0.
873          */
874         host->pmecc_index_table_offset = 0;
875 #else
876         if (host->pmecc_sector_size == 512)
877                 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
878         else
879                 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
880 #endif
881
882         MTDDEBUG(MTD_DEBUG_LEVEL1,
883                 "Initialize PMECC params, cap: %d, sector: %d\n",
884                 cap, sector_size);
885
886         host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
887         host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
888                         ATMEL_BASE_PMERRLOC;
889 #if defined(NO_GALOIS_TABLE_IN_ROM)
890         pmecc_galois_table = create_lookup_table(host->pmecc_sector_size);
891         if (!pmecc_galois_table) {
892                 dev_err(host->dev, "out of memory\n");
893                 return -ENOMEM;
894         }
895
896         host->pmecc_rom_base = (void __iomem *)pmecc_galois_table;
897 #else
898         host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
899 #endif
900
901         /* ECC is calculated for the whole page (1 step) */
902         nand->ecc.size = mtd->writesize;
903
904         /* set ECC page size and oob layout */
905         switch (mtd->writesize) {
906         case 2048:
907         case 4096:
908         case 8192:
909                 host->pmecc_degree = (sector_size == 512) ?
910                         PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
911                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
912                 host->pmecc_sector_number = mtd->writesize / sector_size;
913                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
914                         cap, sector_size);
915                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
916                 host->pmecc_index_of = host->pmecc_rom_base +
917                         host->pmecc_index_table_offset;
918
919                 nand->ecc.steps = 1;
920                 nand->ecc.bytes = host->pmecc_bytes_per_sector *
921                                        host->pmecc_sector_number;
922
923                 if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
924                         dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n",
925                                         MTD_MAX_ECCPOS_ENTRIES_LARGE);
926                         return -EINVAL;
927                 }
928
929                 if (nand->ecc.bytes > mtd->oobsize - 2) {
930                         dev_err(host->dev, "No room for ECC bytes\n");
931                         return -EINVAL;
932                 }
933                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
934                                         mtd->oobsize,
935                                         nand->ecc.bytes);
936                 nand->ecc.layout = &atmel_pmecc_oobinfo;
937                 break;
938         case 512:
939         case 1024:
940                 /* TODO */
941                 dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n");
942         default:
943                 /* page size not handled by HW ECC */
944                 /* switching back to soft ECC */
945                 nand->ecc.mode = NAND_ECC_SOFT;
946                 nand->ecc.read_page = NULL;
947                 nand->ecc.postpad = 0;
948                 nand->ecc.prepad = 0;
949                 nand->ecc.bytes = 0;
950                 return 0;
951         }
952
953         /* Allocate data for PMECC computation */
954         if (pmecc_data_alloc(host)) {
955                 dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
956                 return -ENOMEM;
957         }
958
959         nand->options |= NAND_NO_SUBPAGE_WRITE;
960         nand->ecc.read_page = atmel_nand_pmecc_read_page;
961         nand->ecc.write_page = atmel_nand_pmecc_write_page;
962         nand->ecc.strength = cap;
963
964         atmel_pmecc_core_init(mtd);
965
966         return 0;
967 }
968
969 #else
970
971 /* oob layout for large page size
972  * bad block info is on bytes 0 and 1
973  * the bytes have to be consecutives to avoid
974  * several NAND_CMD_RNDOUT during read
975  */
976 static struct nand_ecclayout atmel_oobinfo_large = {
977         .eccbytes = 4,
978         .eccpos = {60, 61, 62, 63},
979         .oobfree = {
980                 {2, 58}
981         },
982 };
983
984 /* oob layout for small page size
985  * bad block info is on bytes 4 and 5
986  * the bytes have to be consecutives to avoid
987  * several NAND_CMD_RNDOUT during read
988  */
989 static struct nand_ecclayout atmel_oobinfo_small = {
990         .eccbytes = 4,
991         .eccpos = {0, 1, 2, 3},
992         .oobfree = {
993                 {6, 10}
994         },
995 };
996
997 /*
998  * Calculate HW ECC
999  *
1000  * function called after a write
1001  *
1002  * mtd:        MTD block structure
1003  * dat:        raw data (unused)
1004  * ecc_code:   buffer for ECC
1005  */
1006 static int atmel_nand_calculate(struct mtd_info *mtd,
1007                 const u_char *dat, unsigned char *ecc_code)
1008 {
1009         unsigned int ecc_value;
1010
1011         /* get the first 2 ECC bytes */
1012         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
1013
1014         ecc_code[0] = ecc_value & 0xFF;
1015         ecc_code[1] = (ecc_value >> 8) & 0xFF;
1016
1017         /* get the last 2 ECC bytes */
1018         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
1019
1020         ecc_code[2] = ecc_value & 0xFF;
1021         ecc_code[3] = (ecc_value >> 8) & 0xFF;
1022
1023         return 0;
1024 }
1025
1026 /*
1027  * HW ECC read page function
1028  *
1029  * mtd:        mtd info structure
1030  * chip:       nand chip info structure
1031  * buf:        buffer to store read data
1032  * oob_required:    caller expects OOB data read to chip->oob_poi
1033  */
1034 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1035                                 uint8_t *buf, int oob_required, int page)
1036 {
1037         int eccsize = chip->ecc.size;
1038         int eccbytes = chip->ecc.bytes;
1039         uint32_t *eccpos = chip->ecc.layout->eccpos;
1040         uint8_t *p = buf;
1041         uint8_t *oob = chip->oob_poi;
1042         uint8_t *ecc_pos;
1043         int stat;
1044
1045         /* read the page */
1046         chip->read_buf(mtd, p, eccsize);
1047
1048         /* move to ECC position if needed */
1049         if (eccpos[0] != 0) {
1050                 /* This only works on large pages
1051                  * because the ECC controller waits for
1052                  * NAND_CMD_RNDOUTSTART after the
1053                  * NAND_CMD_RNDOUT.
1054                  * anyway, for small pages, the eccpos[0] == 0
1055                  */
1056                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1057                                 mtd->writesize + eccpos[0], -1);
1058         }
1059
1060         /* the ECC controller needs to read the ECC just after the data */
1061         ecc_pos = oob + eccpos[0];
1062         chip->read_buf(mtd, ecc_pos, eccbytes);
1063
1064         /* check if there's an error */
1065         stat = chip->ecc.correct(mtd, p, oob, NULL);
1066
1067         if (stat < 0)
1068                 mtd->ecc_stats.failed++;
1069         else
1070                 mtd->ecc_stats.corrected += stat;
1071
1072         /* get back to oob start (end of page) */
1073         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1074
1075         /* read the oob */
1076         chip->read_buf(mtd, oob, mtd->oobsize);
1077
1078         return 0;
1079 }
1080
1081 /*
1082  * HW ECC Correction
1083  *
1084  * function called after a read
1085  *
1086  * mtd:        MTD block structure
1087  * dat:        raw data read from the chip
1088  * read_ecc:   ECC from the chip (unused)
1089  * isnull:     unused
1090  *
1091  * Detect and correct a 1 bit error for a page
1092  */
1093 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1094                 u_char *read_ecc, u_char *isnull)
1095 {
1096         struct nand_chip *nand_chip = mtd->priv;
1097         unsigned int ecc_status;
1098         unsigned int ecc_word, ecc_bit;
1099
1100         /* get the status from the Status Register */
1101         ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
1102
1103         /* if there's no error */
1104         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1105                 return 0;
1106
1107         /* get error bit offset (4 bits) */
1108         ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
1109         /* get word address (12 bits) */
1110         ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
1111         ecc_word >>= 4;
1112
1113         /* if there are multiple errors */
1114         if (ecc_status & ATMEL_ECC_MULERR) {
1115                 /* check if it is a freshly erased block
1116                  * (filled with 0xff) */
1117                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1118                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1119                         /* the block has just been erased, return OK */
1120                         return 0;
1121                 }
1122                 /* it doesn't seems to be a freshly
1123                  * erased block.
1124                  * We can't correct so many errors */
1125                 dev_warn(host->dev, "atmel_nand : multiple errors detected."
1126                                 " Unable to correct.\n");
1127                 return -EIO;
1128         }
1129
1130         /* if there's a single bit error : we can correct it */
1131         if (ecc_status & ATMEL_ECC_ECCERR) {
1132                 /* there's nothing much to do here.
1133                  * the bit error is on the ECC itself.
1134                  */
1135                 dev_warn(host->dev, "atmel_nand : one bit error on ECC code."
1136                                 " Nothing to correct\n");
1137                 return 0;
1138         }
1139
1140         dev_warn(host->dev, "atmel_nand : one bit error on data."
1141                         " (word offset in the page :"
1142                         " 0x%x bit offset : 0x%x)\n",
1143                         ecc_word, ecc_bit);
1144         /* correct the error */
1145         if (nand_chip->options & NAND_BUSWIDTH_16) {
1146                 /* 16 bits words */
1147                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1148         } else {
1149                 /* 8 bits words */
1150                 dat[ecc_word] ^= (1 << ecc_bit);
1151         }
1152         dev_warn(host->dev, "atmel_nand : error corrected\n");
1153         return 1;
1154 }
1155
1156 /*
1157  * Enable HW ECC : unused on most chips
1158  */
1159 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1160 {
1161 }
1162
1163 int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
1164 {
1165         nand->ecc.mode = NAND_ECC_HW;
1166         nand->ecc.calculate = atmel_nand_calculate;
1167         nand->ecc.correct = atmel_nand_correct;
1168         nand->ecc.hwctl = atmel_nand_hwctl;
1169         nand->ecc.read_page = atmel_nand_read_page;
1170         nand->ecc.bytes = 4;
1171
1172         if (nand->ecc.mode == NAND_ECC_HW) {
1173                 /* ECC is calculated for the whole page (1 step) */
1174                 nand->ecc.size = mtd->writesize;
1175
1176                 /* set ECC page size and oob layout */
1177                 switch (mtd->writesize) {
1178                 case 512:
1179                         nand->ecc.layout = &atmel_oobinfo_small;
1180                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1181                                         ATMEL_ECC_PAGESIZE_528);
1182                         break;
1183                 case 1024:
1184                         nand->ecc.layout = &atmel_oobinfo_large;
1185                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1186                                         ATMEL_ECC_PAGESIZE_1056);
1187                         break;
1188                 case 2048:
1189                         nand->ecc.layout = &atmel_oobinfo_large;
1190                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1191                                         ATMEL_ECC_PAGESIZE_2112);
1192                         break;
1193                 case 4096:
1194                         nand->ecc.layout = &atmel_oobinfo_large;
1195                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1196                                         ATMEL_ECC_PAGESIZE_4224);
1197                         break;
1198                 default:
1199                         /* page size not handled by HW ECC */
1200                         /* switching back to soft ECC */
1201                         nand->ecc.mode = NAND_ECC_SOFT;
1202                         nand->ecc.calculate = NULL;
1203                         nand->ecc.correct = NULL;
1204                         nand->ecc.hwctl = NULL;
1205                         nand->ecc.read_page = NULL;
1206                         nand->ecc.postpad = 0;
1207                         nand->ecc.prepad = 0;
1208                         nand->ecc.bytes = 0;
1209                         break;
1210                 }
1211         }
1212
1213         return 0;
1214 }
1215
1216 #endif /* CONFIG_ATMEL_NAND_HW_PMECC */
1217
1218 #endif /* CONFIG_ATMEL_NAND_HWECC */
1219
1220 static void at91_nand_hwcontrol(struct mtd_info *mtd,
1221                                          int cmd, unsigned int ctrl)
1222 {
1223         struct nand_chip *this = mtd->priv;
1224
1225         if (ctrl & NAND_CTRL_CHANGE) {
1226                 ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
1227                 IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
1228                              | CONFIG_SYS_NAND_MASK_CLE);
1229
1230                 if (ctrl & NAND_CLE)
1231                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
1232                 if (ctrl & NAND_ALE)
1233                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
1234
1235 #ifdef CONFIG_SYS_NAND_ENABLE_PIN
1236                 gpio_set_value(CONFIG_SYS_NAND_ENABLE_PIN, !(ctrl & NAND_NCE));
1237 #endif
1238                 this->IO_ADDR_W = (void *) IO_ADDR_W;
1239         }
1240
1241         if (cmd != NAND_CMD_NONE)
1242                 writeb(cmd, this->IO_ADDR_W);
1243 }
1244
1245 #ifdef CONFIG_SYS_NAND_READY_PIN
1246 static int at91_nand_ready(struct mtd_info *mtd)
1247 {
1248         return gpio_get_value(CONFIG_SYS_NAND_READY_PIN);
1249 }
1250 #endif
1251
1252 #ifdef CONFIG_SPL_BUILD
1253 /* The following code is for SPL */
1254 static nand_info_t mtd;
1255 static struct nand_chip nand_chip;
1256
1257 static int nand_command(int block, int page, uint32_t offs, u8 cmd)
1258 {
1259         struct nand_chip *this = mtd.priv;
1260         int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1261         void (*hwctrl)(struct mtd_info *mtd, int cmd,
1262                         unsigned int ctrl) = this->cmd_ctrl;
1263
1264         while (!this->dev_ready(&mtd))
1265                 ;
1266
1267         if (cmd == NAND_CMD_READOOB) {
1268                 offs += CONFIG_SYS_NAND_PAGE_SIZE;
1269                 cmd = NAND_CMD_READ0;
1270         }
1271
1272         hwctrl(&mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1273
1274         if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
1275                 offs >>= 1;
1276
1277         hwctrl(&mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1278         hwctrl(&mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);
1279         hwctrl(&mtd, (page_addr & 0xff), NAND_CTRL_ALE);
1280         hwctrl(&mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);
1281 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1282         hwctrl(&mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);
1283 #endif
1284         hwctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1285
1286         hwctrl(&mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1287         hwctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1288
1289         while (!this->dev_ready(&mtd))
1290                 ;
1291
1292         return 0;
1293 }
1294
1295 static int nand_is_bad_block(int block)
1296 {
1297         struct nand_chip *this = mtd.priv;
1298
1299         nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
1300
1301         if (this->options & NAND_BUSWIDTH_16) {
1302                 if (readw(this->IO_ADDR_R) != 0xffff)
1303                         return 1;
1304         } else {
1305                 if (readb(this->IO_ADDR_R) != 0xff)
1306                         return 1;
1307         }
1308
1309         return 0;
1310 }
1311
1312 #ifdef CONFIG_SPL_NAND_ECC
1313 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
1314 #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
1315                   CONFIG_SYS_NAND_ECCSIZE)
1316 #define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
1317
1318 static int nand_read_page(int block, int page, void *dst)
1319 {
1320         struct nand_chip *this = mtd.priv;
1321         u_char ecc_calc[ECCTOTAL];
1322         u_char ecc_code[ECCTOTAL];
1323         u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
1324         int eccsize = CONFIG_SYS_NAND_ECCSIZE;
1325         int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
1326         int eccsteps = ECCSTEPS;
1327         int i;
1328         uint8_t *p = dst;
1329         nand_command(block, page, 0, NAND_CMD_READ0);
1330
1331         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1332                 if (this->ecc.mode != NAND_ECC_SOFT)
1333                         this->ecc.hwctl(&mtd, NAND_ECC_READ);
1334                 this->read_buf(&mtd, p, eccsize);
1335                 this->ecc.calculate(&mtd, p, &ecc_calc[i]);
1336         }
1337         this->read_buf(&mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
1338
1339         for (i = 0; i < ECCTOTAL; i++)
1340                 ecc_code[i] = oob_data[nand_ecc_pos[i]];
1341
1342         eccsteps = ECCSTEPS;
1343         p = dst;
1344
1345         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1346                 this->ecc.correct(&mtd, p, &ecc_code[i], &ecc_calc[i]);
1347
1348         return 0;
1349 }
1350
1351 int spl_nand_erase_one(int block, int page)
1352 {
1353         struct nand_chip *this = mtd.priv;
1354         void (*hwctrl)(struct mtd_info *mtd, int cmd,
1355                         unsigned int ctrl) = this->cmd_ctrl;
1356         int page_addr;
1357
1358         if (nand_chip.select_chip)
1359                 nand_chip.select_chip(&mtd, 0);
1360
1361         page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1362         hwctrl(&mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1363         /* Row address */
1364         hwctrl(&mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1365         hwctrl(&mtd, ((page_addr >> 8) & 0xff),
1366                NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1367 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1368         /* One more address cycle for devices > 128MiB */
1369         hwctrl(&mtd, (page_addr >> 16) & 0x0f,
1370                NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1371 #endif
1372
1373         hwctrl(&mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1374         udelay(2000);
1375
1376         while (!this->dev_ready(&mtd))
1377                 ;
1378
1379         nand_deselect();
1380
1381         return 0;
1382 }
1383 #else
1384 static int nand_read_page(int block, int page, void *dst)
1385 {
1386         struct nand_chip *this = mtd.priv;
1387
1388         nand_command(block, page, 0, NAND_CMD_READ0);
1389         atmel_nand_pmecc_read_page(&mtd, this, dst, 0, page);
1390
1391         return 0;
1392 }
1393 #endif /* CONFIG_SPL_NAND_ECC */
1394
1395 int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
1396 {
1397         unsigned int block, lastblock;
1398         unsigned int page;
1399
1400         block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
1401         lastblock = (offs + size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
1402         page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
1403
1404         while (block <= lastblock) {
1405                 if (!nand_is_bad_block(block)) {
1406                         while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
1407                                 nand_read_page(block, page, dst);
1408                                 dst += CONFIG_SYS_NAND_PAGE_SIZE;
1409                                 page++;
1410                         }
1411
1412                         page = 0;
1413                 } else {
1414                         lastblock++;
1415                 }
1416
1417                 block++;
1418         }
1419
1420         return 0;
1421 }
1422
1423 int at91_nand_wait_ready(struct mtd_info *mtd)
1424 {
1425         struct nand_chip *this = mtd->priv;
1426
1427         udelay(this->chip_delay);
1428
1429         return 1;
1430 }
1431
1432 int board_nand_init(struct nand_chip *nand)
1433 {
1434         int ret = 0;
1435
1436         nand->ecc.mode = NAND_ECC_SOFT;
1437 #ifdef CONFIG_SYS_NAND_DBW_16
1438         nand->options = NAND_BUSWIDTH_16;
1439         nand->read_buf = nand_read_buf16;
1440 #else
1441         nand->read_buf = nand_read_buf;
1442 #endif
1443         nand->cmd_ctrl = at91_nand_hwcontrol;
1444 #ifdef CONFIG_SYS_NAND_READY_PIN
1445         nand->dev_ready = at91_nand_ready;
1446 #else
1447         nand->dev_ready = at91_nand_wait_ready;
1448 #endif
1449         nand->chip_delay = 20;
1450
1451 #ifdef CONFIG_ATMEL_NAND_HWECC
1452 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1453         ret = atmel_pmecc_nand_init_params(nand, &mtd);
1454 #endif
1455 #endif
1456
1457         return ret;
1458 }
1459
1460 void nand_init(void)
1461 {
1462         mtd.writesize = CONFIG_SYS_NAND_PAGE_SIZE;
1463         mtd.oobsize = CONFIG_SYS_NAND_OOBSIZE;
1464         mtd.priv = &nand_chip;
1465         nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
1466         nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
1467         board_nand_init(&nand_chip);
1468
1469 #ifdef CONFIG_SPL_NAND_ECC
1470         if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
1471                 nand_chip.ecc.calculate = nand_calculate_ecc;
1472                 nand_chip.ecc.correct = nand_correct_data;
1473         }
1474 #endif
1475
1476         if (nand_chip.select_chip)
1477                 nand_chip.select_chip(&mtd, 0);
1478 }
1479
1480 void nand_deselect(void)
1481 {
1482         if (nand_chip.select_chip)
1483                 nand_chip.select_chip(&mtd, -1);
1484 }
1485
1486 #else
1487
1488 #ifndef CONFIG_SYS_NAND_BASE_LIST
1489 #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
1490 #endif
1491 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
1492 static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
1493
1494 int atmel_nand_chip_init(int devnum, ulong base_addr)
1495 {
1496         int ret;
1497         struct mtd_info *mtd = &nand_info[devnum];
1498         struct nand_chip *nand = &nand_chip[devnum];
1499
1500         mtd->priv = nand;
1501         nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
1502
1503 #ifdef CONFIG_NAND_ECC_BCH
1504         nand->ecc.mode = NAND_ECC_SOFT_BCH;
1505 #else
1506         nand->ecc.mode = NAND_ECC_SOFT;
1507 #endif
1508 #ifdef CONFIG_SYS_NAND_DBW_16
1509         nand->options = NAND_BUSWIDTH_16;
1510 #endif
1511         nand->cmd_ctrl = at91_nand_hwcontrol;
1512 #ifdef CONFIG_SYS_NAND_READY_PIN
1513         nand->dev_ready = at91_nand_ready;
1514 #endif
1515         nand->chip_delay = 75;
1516
1517         ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1518         if (ret)
1519                 return ret;
1520
1521 #ifdef CONFIG_ATMEL_NAND_HWECC
1522 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1523         ret = atmel_pmecc_nand_init_params(nand, mtd);
1524 #else
1525         ret = atmel_hwecc_nand_init_param(nand, mtd);
1526 #endif
1527         if (ret)
1528                 return ret;
1529 #endif
1530
1531         ret = nand_scan_tail(mtd);
1532         if (!ret)
1533                 nand_register(devnum);
1534
1535         return ret;
1536 }
1537
1538 void board_nand_init(void)
1539 {
1540         int i;
1541         for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1542                 if (atmel_nand_chip_init(i, base_addr[i]))
1543                         dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip",
1544                                 i);
1545 }
1546 #endif /* CONFIG_SPL_BUILD */