]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/fsl_ifc_spl.c
Merge branch 'master' of git://www.denx.de/git/u-boot-imx
[karo-tx-uboot.git] / drivers / mtd / nand / fsl_ifc_spl.c
1 /*
2  * NAND boot for Freescale Integrated Flash Controller, NAND FCM
3  *
4  * Copyright 2011 Freescale Semiconductor, Inc.
5  * Author: Dipen Dudhat <dipen.dudhat@freescale.com>
6  *
7  * SPDX-License-Identifier:     GPL-2.0+
8  */
9
10 #include <common.h>
11 #include <asm/io.h>
12 #include <fsl_ifc.h>
13 #include <linux/mtd/nand.h>
14
15 static inline int is_blank(uchar *addr, int page_size)
16 {
17         int i;
18
19         for (i = 0; i < page_size; i++) {
20                 if (__raw_readb(&addr[i]) != 0xff)
21                         return 0;
22         }
23
24         /*
25          * For the SPL, don't worry about uncorrectable errors
26          * where the main area is all FFs but shouldn't be.
27          */
28         return 1;
29 }
30
31 /* returns nonzero if entire page is blank */
32 static inline int check_read_ecc(uchar *buf, u32 *eccstat,
33                                  unsigned int bufnum, int page_size)
34 {
35         u32 reg = eccstat[bufnum / 4];
36         int errors = (reg >> ((3 - bufnum % 4) * 8)) & 0xf;
37
38         if (errors == 0xf) { /* uncorrectable */
39                 /* Blank pages fail hw ECC checks */
40                 if (is_blank(buf, page_size))
41                         return 1;
42
43                 puts("ecc error\n");
44                 for (;;)
45                         ;
46         }
47
48         return 0;
49 }
50
51 static inline void nand_wait(uchar *buf, int bufnum, int page_size)
52 {
53         struct fsl_ifc *ifc = IFC_BASE_ADDR;
54         u32 status;
55         u32 eccstat[4];
56         int bufperpage = page_size / 512;
57         int bufnum_end, i;
58
59         bufnum *= bufperpage;
60         bufnum_end = bufnum + bufperpage - 1;
61
62         do {
63                 status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
64         } while (!(status & IFC_NAND_EVTER_STAT_OPC));
65
66         if (status & IFC_NAND_EVTER_STAT_FTOER) {
67                 puts("flash time out error\n");
68                 for (;;)
69                         ;
70         }
71
72         for (i = bufnum / 4; i <= bufnum_end / 4; i++)
73                 eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
74
75         for (i = bufnum; i <= bufnum_end; i++) {
76                 if (check_read_ecc(buf, eccstat, i, page_size))
77                         break;
78         }
79
80         ifc_out32(&ifc->ifc_nand.nand_evter_stat, status);
81 }
82
83 static inline int bad_block(uchar *marker, int port_size)
84 {
85         if (port_size == 8)
86                 return __raw_readb(marker) != 0xff;
87         else
88                 return __raw_readw((u16 *)marker) != 0xffff;
89 }
90
91 int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst)
92 {
93         struct fsl_ifc *ifc = IFC_BASE_ADDR;
94         uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
95         int page_size;
96         int port_size;
97         int pages_per_blk;
98         int blk_size;
99         int bad_marker = 0;
100         int bufnum_mask, bufnum, ver = 0;
101
102         int csor, cspr;
103         int pos = 0;
104         int j = 0;
105
106         int sram_addr;
107         int pg_no;
108         uchar *dst = vdst;
109
110         /* Get NAND Flash configuration */
111         csor = CONFIG_SYS_NAND_CSOR;
112         cspr = CONFIG_SYS_NAND_CSPR;
113
114         port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
115
116         if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_8K) {
117                 page_size = 8192;
118                 bufnum_mask = 0x0;
119         } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_4K) {
120                 page_size = 4096;
121                 bufnum_mask = 0x1;
122         } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_2K) {
123                 page_size = 2048;
124                 bufnum_mask = 0x3;
125         } else {
126                 page_size = 512;
127                 bufnum_mask = 0xf;
128
129                 if (port_size == 8)
130                         bad_marker = 5;
131         }
132
133         ver = ifc_in32(&ifc->ifc_rev);
134         if (ver >= FSL_IFC_V2_0_0)
135                 bufnum_mask = (bufnum_mask * 2) + 1;
136
137         pages_per_blk =
138                 32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT);
139
140         blk_size = pages_per_blk * page_size;
141
142         /* Open Full SRAM mapping for spare are access */
143         ifc_out32(&ifc->ifc_nand.ncfgr, 0x0);
144
145         /* Clear Boot events */
146         ifc_out32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff);
147
148         /* Program FIR/FCR for Large/Small page */
149         if (page_size > 512) {
150                 ifc_out32(&ifc->ifc_nand.nand_fir0,
151                           (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
152                           (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
153                           (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
154                           (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
155                           (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
156                 ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
157
158                 ifc_out32(&ifc->ifc_nand.nand_fcr0,
159                           (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
160                           (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
161         } else {
162                 ifc_out32(&ifc->ifc_nand.nand_fir0,
163                           (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
164                           (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
165                           (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
166                           (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
167                 ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
168
169                 ifc_out32(&ifc->ifc_nand.nand_fcr0,
170                           NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
171         }
172
173         /* Program FBCR = 0 for full page read */
174         ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
175
176         /* Read and copy u-boot on SDRAM from NAND device, In parallel
177          * check for Bad block if found skip it and read continue to
178          * next Block
179          */
180         while (pos < uboot_size) {
181                 int i = 0;
182                 do {
183                         pg_no = offs / page_size;
184                         bufnum = pg_no & bufnum_mask;
185                         sram_addr = bufnum * page_size * 2;
186
187                         ifc_out32(&ifc->ifc_nand.row0, pg_no);
188                         ifc_out32(&ifc->ifc_nand.col0, 0);
189                         /* start read */
190                         ifc_out32(&ifc->ifc_nand.nandseq_strt,
191                                   IFC_NAND_SEQ_STRT_FIR_STRT);
192
193                         /* wait for read to complete */
194                         nand_wait(&buf[sram_addr], bufnum, page_size);
195
196                         /*
197                          * If either of the first two pages are marked bad,
198                          * continue to the next block.
199                          */
200                         if (i++ < 2 &&
201                             bad_block(&buf[sram_addr + page_size + bad_marker],
202                                       port_size)) {
203                                 puts("skipping\n");
204                                 offs = (offs + blk_size) & ~(blk_size - 1);
205                                 pos &= ~(blk_size - 1);
206                                 break;
207                         }
208
209                         for (j = 0; j < page_size; j++)
210                                 dst[pos + j] = __raw_readb(&buf[sram_addr + j]);
211
212                         pos += page_size;
213                         offs += page_size;
214                 } while ((offs & (blk_size - 1)) && (pos < uboot_size));
215         }
216
217         return 0;
218 }
219
220 /*
221  * Main entrypoint for NAND Boot. It's necessary that SDRAM is already
222  * configured and available since this code loads the main U-boot image
223  * from NAND into SDRAM and starts from there.
224  */
225 void nand_boot(void)
226 {
227         __attribute__((noreturn)) void (*uboot)(void);
228         /*
229          * Load U-Boot image from NAND into RAM
230          */
231         nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
232                             CONFIG_SYS_NAND_U_BOOT_SIZE,
233                             (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
234
235 #ifdef CONFIG_NAND_ENV_DST
236         nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
237                             (uchar *)CONFIG_NAND_ENV_DST);
238
239 #ifdef CONFIG_ENV_OFFSET_REDUND
240         nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
241                             (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
242 #endif
243 #endif
244         /*
245          * Jump to U-Boot image
246          */
247 #ifdef CONFIG_SPL_FLUSH_IMAGE
248         /*
249          * Clean d-cache and invalidate i-cache, to
250          * make sure that no stale data is executed.
251          */
252         flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
253 #endif
254         uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
255         uboot();
256 }