]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/net/e1000.c
e1000: remove unnecessary clearing of SWSM.SWSM_SMBI
[karo-tx-uboot.git] / drivers / net / e1000.c
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8
9
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11
12  * SPDX-License-Identifier:     GPL-2.0+
13
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31
32 #include "e1000.h"
33
34 #define TOUT_LOOP   100000
35
36 #define virt_to_bus(devno, v)   pci_virt_to_mem(devno, (void *) (v))
37 #define bus_to_phys(devno, a)   pci_mem_to_phys(devno, a)
38
39 #define E1000_DEFAULT_PCI_PBA   0x00000030
40 #define E1000_DEFAULT_PCIE_PBA  0x000a0026
41
42 /* NIC specific static variables go here */
43
44 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
45 #define E1000_BUFFER_ALIGN      128
46
47 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
48 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
49 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
50
51 static int tx_tail;
52 static int rx_tail, rx_last;
53
54 static struct pci_device_id e1000_supported[] = {
55         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
56         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
57         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
58         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
59         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
60         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
61         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
62         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
63         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
64         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
65         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
66         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
67         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
68         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
69         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
70         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
71         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
72         /* E1000 PCIe card */
73         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
74         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
75         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
76         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
77         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
78         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
79         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
80         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
81         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
82         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
83         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
84         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
85         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
86         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
87         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
88         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
89         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
90         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
91         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
92         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
93         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
94         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
95         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED},
96         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED},
97         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER},
98         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER},
99         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS},
100         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES},
101         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS},
102         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX},
103
104         {}
105 };
106
107 /* Function forward declarations */
108 static int e1000_setup_link(struct eth_device *nic);
109 static int e1000_setup_fiber_link(struct eth_device *nic);
110 static int e1000_setup_copper_link(struct eth_device *nic);
111 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
112 static void e1000_config_collision_dist(struct e1000_hw *hw);
113 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
114 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
115 static int e1000_check_for_link(struct eth_device *nic);
116 static int e1000_wait_autoneg(struct e1000_hw *hw);
117 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
118                                        uint16_t * duplex);
119 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
120                               uint16_t * phy_data);
121 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
122                                uint16_t phy_data);
123 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
124 static int e1000_phy_reset(struct e1000_hw *hw);
125 static int e1000_detect_gig_phy(struct e1000_hw *hw);
126 static void e1000_set_media_type(struct e1000_hw *hw);
127
128 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
129 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
130 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
131
132 #ifndef CONFIG_E1000_NO_NVM
133 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
134 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
135                 uint16_t words,
136                 uint16_t *data);
137 /******************************************************************************
138  * Raises the EEPROM's clock input.
139  *
140  * hw - Struct containing variables accessed by shared code
141  * eecd - EECD's current value
142  *****************************************************************************/
143 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
144 {
145         /* Raise the clock input to the EEPROM (by setting the SK bit), and then
146          * wait 50 microseconds.
147          */
148         *eecd = *eecd | E1000_EECD_SK;
149         E1000_WRITE_REG(hw, EECD, *eecd);
150         E1000_WRITE_FLUSH(hw);
151         udelay(50);
152 }
153
154 /******************************************************************************
155  * Lowers the EEPROM's clock input.
156  *
157  * hw - Struct containing variables accessed by shared code
158  * eecd - EECD's current value
159  *****************************************************************************/
160 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
161 {
162         /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
163          * wait 50 microseconds.
164          */
165         *eecd = *eecd & ~E1000_EECD_SK;
166         E1000_WRITE_REG(hw, EECD, *eecd);
167         E1000_WRITE_FLUSH(hw);
168         udelay(50);
169 }
170
171 /******************************************************************************
172  * Shift data bits out to the EEPROM.
173  *
174  * hw - Struct containing variables accessed by shared code
175  * data - data to send to the EEPROM
176  * count - number of bits to shift out
177  *****************************************************************************/
178 static void
179 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
180 {
181         uint32_t eecd;
182         uint32_t mask;
183
184         /* We need to shift "count" bits out to the EEPROM. So, value in the
185          * "data" parameter will be shifted out to the EEPROM one bit at a time.
186          * In order to do this, "data" must be broken down into bits.
187          */
188         mask = 0x01 << (count - 1);
189         eecd = E1000_READ_REG(hw, EECD);
190         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
191         do {
192                 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
193                  * and then raising and then lowering the clock (the SK bit controls
194                  * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
195                  * by setting "DI" to "0" and then raising and then lowering the clock.
196                  */
197                 eecd &= ~E1000_EECD_DI;
198
199                 if (data & mask)
200                         eecd |= E1000_EECD_DI;
201
202                 E1000_WRITE_REG(hw, EECD, eecd);
203                 E1000_WRITE_FLUSH(hw);
204
205                 udelay(50);
206
207                 e1000_raise_ee_clk(hw, &eecd);
208                 e1000_lower_ee_clk(hw, &eecd);
209
210                 mask = mask >> 1;
211
212         } while (mask);
213
214         /* We leave the "DI" bit set to "0" when we leave this routine. */
215         eecd &= ~E1000_EECD_DI;
216         E1000_WRITE_REG(hw, EECD, eecd);
217 }
218
219 /******************************************************************************
220  * Shift data bits in from the EEPROM
221  *
222  * hw - Struct containing variables accessed by shared code
223  *****************************************************************************/
224 static uint16_t
225 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
226 {
227         uint32_t eecd;
228         uint32_t i;
229         uint16_t data;
230
231         /* In order to read a register from the EEPROM, we need to shift 'count'
232          * bits in from the EEPROM. Bits are "shifted in" by raising the clock
233          * input to the EEPROM (setting the SK bit), and then reading the
234          * value of the "DO" bit.  During this "shifting in" process the
235          * "DI" bit should always be clear.
236          */
237
238         eecd = E1000_READ_REG(hw, EECD);
239
240         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
241         data = 0;
242
243         for (i = 0; i < count; i++) {
244                 data = data << 1;
245                 e1000_raise_ee_clk(hw, &eecd);
246
247                 eecd = E1000_READ_REG(hw, EECD);
248
249                 eecd &= ~(E1000_EECD_DI);
250                 if (eecd & E1000_EECD_DO)
251                         data |= 1;
252
253                 e1000_lower_ee_clk(hw, &eecd);
254         }
255
256         return data;
257 }
258
259 /******************************************************************************
260  * Returns EEPROM to a "standby" state
261  *
262  * hw - Struct containing variables accessed by shared code
263  *****************************************************************************/
264 void e1000_standby_eeprom(struct e1000_hw *hw)
265 {
266         struct e1000_eeprom_info *eeprom = &hw->eeprom;
267         uint32_t eecd;
268
269         eecd = E1000_READ_REG(hw, EECD);
270
271         if (eeprom->type == e1000_eeprom_microwire) {
272                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
273                 E1000_WRITE_REG(hw, EECD, eecd);
274                 E1000_WRITE_FLUSH(hw);
275                 udelay(eeprom->delay_usec);
276
277                 /* Clock high */
278                 eecd |= E1000_EECD_SK;
279                 E1000_WRITE_REG(hw, EECD, eecd);
280                 E1000_WRITE_FLUSH(hw);
281                 udelay(eeprom->delay_usec);
282
283                 /* Select EEPROM */
284                 eecd |= E1000_EECD_CS;
285                 E1000_WRITE_REG(hw, EECD, eecd);
286                 E1000_WRITE_FLUSH(hw);
287                 udelay(eeprom->delay_usec);
288
289                 /* Clock low */
290                 eecd &= ~E1000_EECD_SK;
291                 E1000_WRITE_REG(hw, EECD, eecd);
292                 E1000_WRITE_FLUSH(hw);
293                 udelay(eeprom->delay_usec);
294         } else if (eeprom->type == e1000_eeprom_spi) {
295                 /* Toggle CS to flush commands */
296                 eecd |= E1000_EECD_CS;
297                 E1000_WRITE_REG(hw, EECD, eecd);
298                 E1000_WRITE_FLUSH(hw);
299                 udelay(eeprom->delay_usec);
300                 eecd &= ~E1000_EECD_CS;
301                 E1000_WRITE_REG(hw, EECD, eecd);
302                 E1000_WRITE_FLUSH(hw);
303                 udelay(eeprom->delay_usec);
304         }
305 }
306
307 /***************************************************************************
308 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
309 *
310 * hw - Struct containing variables accessed by shared code
311 ****************************************************************************/
312 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
313 {
314         uint32_t eecd = 0;
315
316         DEBUGFUNC();
317
318         if (hw->mac_type == e1000_ich8lan)
319                 return false;
320
321         if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
322                 eecd = E1000_READ_REG(hw, EECD);
323
324                 /* Isolate bits 15 & 16 */
325                 eecd = ((eecd >> 15) & 0x03);
326
327                 /* If both bits are set, device is Flash type */
328                 if (eecd == 0x03)
329                         return false;
330         }
331         return true;
332 }
333
334 /******************************************************************************
335  * Prepares EEPROM for access
336  *
337  * hw - Struct containing variables accessed by shared code
338  *
339  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
340  * function should be called before issuing a command to the EEPROM.
341  *****************************************************************************/
342 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
343 {
344         struct e1000_eeprom_info *eeprom = &hw->eeprom;
345         uint32_t eecd, i = 0;
346
347         DEBUGFUNC();
348
349         if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
350                 return -E1000_ERR_SWFW_SYNC;
351         eecd = E1000_READ_REG(hw, EECD);
352
353         if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
354                 /* Request EEPROM Access */
355                 if (hw->mac_type > e1000_82544) {
356                         eecd |= E1000_EECD_REQ;
357                         E1000_WRITE_REG(hw, EECD, eecd);
358                         eecd = E1000_READ_REG(hw, EECD);
359                         while ((!(eecd & E1000_EECD_GNT)) &&
360                                 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
361                                 i++;
362                                 udelay(5);
363                                 eecd = E1000_READ_REG(hw, EECD);
364                         }
365                         if (!(eecd & E1000_EECD_GNT)) {
366                                 eecd &= ~E1000_EECD_REQ;
367                                 E1000_WRITE_REG(hw, EECD, eecd);
368                                 DEBUGOUT("Could not acquire EEPROM grant\n");
369                                 return -E1000_ERR_EEPROM;
370                         }
371                 }
372         }
373
374         /* Setup EEPROM for Read/Write */
375
376         if (eeprom->type == e1000_eeprom_microwire) {
377                 /* Clear SK and DI */
378                 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
379                 E1000_WRITE_REG(hw, EECD, eecd);
380
381                 /* Set CS */
382                 eecd |= E1000_EECD_CS;
383                 E1000_WRITE_REG(hw, EECD, eecd);
384         } else if (eeprom->type == e1000_eeprom_spi) {
385                 /* Clear SK and CS */
386                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
387                 E1000_WRITE_REG(hw, EECD, eecd);
388                 udelay(1);
389         }
390
391         return E1000_SUCCESS;
392 }
393
394 /******************************************************************************
395  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
396  * is configured.  Additionally, if this is ICH8, the flash controller GbE
397  * registers must be mapped, or this will crash.
398  *
399  * hw - Struct containing variables accessed by shared code
400  *****************************************************************************/
401 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
402 {
403         struct e1000_eeprom_info *eeprom = &hw->eeprom;
404         uint32_t eecd;
405         int32_t ret_val = E1000_SUCCESS;
406         uint16_t eeprom_size;
407
408         if (hw->mac_type == e1000_igb)
409                 eecd = E1000_READ_REG(hw, I210_EECD);
410         else
411                 eecd = E1000_READ_REG(hw, EECD);
412
413         DEBUGFUNC();
414
415         switch (hw->mac_type) {
416         case e1000_82542_rev2_0:
417         case e1000_82542_rev2_1:
418         case e1000_82543:
419         case e1000_82544:
420                 eeprom->type = e1000_eeprom_microwire;
421                 eeprom->word_size = 64;
422                 eeprom->opcode_bits = 3;
423                 eeprom->address_bits = 6;
424                 eeprom->delay_usec = 50;
425                 eeprom->use_eerd = false;
426                 eeprom->use_eewr = false;
427         break;
428         case e1000_82540:
429         case e1000_82545:
430         case e1000_82545_rev_3:
431         case e1000_82546:
432         case e1000_82546_rev_3:
433                 eeprom->type = e1000_eeprom_microwire;
434                 eeprom->opcode_bits = 3;
435                 eeprom->delay_usec = 50;
436                 if (eecd & E1000_EECD_SIZE) {
437                         eeprom->word_size = 256;
438                         eeprom->address_bits = 8;
439                 } else {
440                         eeprom->word_size = 64;
441                         eeprom->address_bits = 6;
442                 }
443                 eeprom->use_eerd = false;
444                 eeprom->use_eewr = false;
445                 break;
446         case e1000_82541:
447         case e1000_82541_rev_2:
448         case e1000_82547:
449         case e1000_82547_rev_2:
450                 if (eecd & E1000_EECD_TYPE) {
451                         eeprom->type = e1000_eeprom_spi;
452                         eeprom->opcode_bits = 8;
453                         eeprom->delay_usec = 1;
454                         if (eecd & E1000_EECD_ADDR_BITS) {
455                                 eeprom->page_size = 32;
456                                 eeprom->address_bits = 16;
457                         } else {
458                                 eeprom->page_size = 8;
459                                 eeprom->address_bits = 8;
460                         }
461                 } else {
462                         eeprom->type = e1000_eeprom_microwire;
463                         eeprom->opcode_bits = 3;
464                         eeprom->delay_usec = 50;
465                         if (eecd & E1000_EECD_ADDR_BITS) {
466                                 eeprom->word_size = 256;
467                                 eeprom->address_bits = 8;
468                         } else {
469                                 eeprom->word_size = 64;
470                                 eeprom->address_bits = 6;
471                         }
472                 }
473                 eeprom->use_eerd = false;
474                 eeprom->use_eewr = false;
475                 break;
476         case e1000_82571:
477         case e1000_82572:
478                 eeprom->type = e1000_eeprom_spi;
479                 eeprom->opcode_bits = 8;
480                 eeprom->delay_usec = 1;
481                 if (eecd & E1000_EECD_ADDR_BITS) {
482                         eeprom->page_size = 32;
483                         eeprom->address_bits = 16;
484                 } else {
485                         eeprom->page_size = 8;
486                         eeprom->address_bits = 8;
487                 }
488                 eeprom->use_eerd = false;
489                 eeprom->use_eewr = false;
490                 break;
491         case e1000_82573:
492         case e1000_82574:
493                 eeprom->type = e1000_eeprom_spi;
494                 eeprom->opcode_bits = 8;
495                 eeprom->delay_usec = 1;
496                 if (eecd & E1000_EECD_ADDR_BITS) {
497                         eeprom->page_size = 32;
498                         eeprom->address_bits = 16;
499                 } else {
500                         eeprom->page_size = 8;
501                         eeprom->address_bits = 8;
502                 }
503                 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
504                         eeprom->use_eerd = true;
505                         eeprom->use_eewr = true;
506
507                         eeprom->type = e1000_eeprom_flash;
508                         eeprom->word_size = 2048;
509
510                 /* Ensure that the Autonomous FLASH update bit is cleared due to
511                  * Flash update issue on parts which use a FLASH for NVM. */
512                         eecd &= ~E1000_EECD_AUPDEN;
513                         E1000_WRITE_REG(hw, EECD, eecd);
514                 }
515                 break;
516         case e1000_80003es2lan:
517                 eeprom->type = e1000_eeprom_spi;
518                 eeprom->opcode_bits = 8;
519                 eeprom->delay_usec = 1;
520                 if (eecd & E1000_EECD_ADDR_BITS) {
521                         eeprom->page_size = 32;
522                         eeprom->address_bits = 16;
523                 } else {
524                         eeprom->page_size = 8;
525                         eeprom->address_bits = 8;
526                 }
527                 eeprom->use_eerd = true;
528                 eeprom->use_eewr = false;
529                 break;
530         case e1000_igb:
531                 /* i210 has 4k of iNVM mapped as EEPROM */
532                 eeprom->type = e1000_eeprom_invm;
533                 eeprom->opcode_bits = 8;
534                 eeprom->delay_usec = 1;
535                 eeprom->page_size = 32;
536                 eeprom->address_bits = 16;
537                 eeprom->use_eerd = true;
538                 eeprom->use_eewr = false;
539                 break;
540
541         /* ich8lan does not support currently. if needed, please
542          * add corresponding code and functions.
543          */
544 #if 0
545         case e1000_ich8lan:
546                 {
547                 int32_t  i = 0;
548
549                 eeprom->type = e1000_eeprom_ich8;
550                 eeprom->use_eerd = false;
551                 eeprom->use_eewr = false;
552                 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
553                 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
554                                 ICH_FLASH_GFPREG);
555                 /* Zero the shadow RAM structure. But don't load it from NVM
556                  * so as to save time for driver init */
557                 if (hw->eeprom_shadow_ram != NULL) {
558                         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
559                                 hw->eeprom_shadow_ram[i].modified = false;
560                                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
561                         }
562                 }
563
564                 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
565                                 ICH_FLASH_SECTOR_SIZE;
566
567                 hw->flash_bank_size = ((flash_size >> 16)
568                                 & ICH_GFPREG_BASE_MASK) + 1;
569                 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
570
571                 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
572
573                 hw->flash_bank_size /= 2 * sizeof(uint16_t);
574                 break;
575                 }
576 #endif
577         default:
578                 break;
579         }
580
581         if (eeprom->type == e1000_eeprom_spi ||
582             eeprom->type == e1000_eeprom_invm) {
583                 /* eeprom_size will be an enum [0..8] that maps
584                  * to eeprom sizes 128B to
585                  * 32KB (incremented by powers of 2).
586                  */
587                 if (hw->mac_type <= e1000_82547_rev_2) {
588                         /* Set to default value for initial eeprom read. */
589                         eeprom->word_size = 64;
590                         ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
591                                         &eeprom_size);
592                         if (ret_val)
593                                 return ret_val;
594                         eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
595                                 >> EEPROM_SIZE_SHIFT;
596                         /* 256B eeprom size was not supported in earlier
597                          * hardware, so we bump eeprom_size up one to
598                          * ensure that "1" (which maps to 256B) is never
599                          * the result used in the shifting logic below. */
600                         if (eeprom_size)
601                                 eeprom_size++;
602                 } else {
603                         eeprom_size = (uint16_t)((eecd &
604                                 E1000_EECD_SIZE_EX_MASK) >>
605                                 E1000_EECD_SIZE_EX_SHIFT);
606                 }
607
608                 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
609         }
610         return ret_val;
611 }
612
613 /******************************************************************************
614  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
615  *
616  * hw - Struct containing variables accessed by shared code
617  *****************************************************************************/
618 static int32_t
619 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
620 {
621         uint32_t attempts = 100000;
622         uint32_t i, reg = 0;
623         int32_t done = E1000_ERR_EEPROM;
624
625         for (i = 0; i < attempts; i++) {
626                 if (eerd == E1000_EEPROM_POLL_READ) {
627                         if (hw->mac_type == e1000_igb)
628                                 reg = E1000_READ_REG(hw, I210_EERD);
629                         else
630                                 reg = E1000_READ_REG(hw, EERD);
631                 } else {
632                         if (hw->mac_type == e1000_igb)
633                                 reg = E1000_READ_REG(hw, I210_EEWR);
634                         else
635                                 reg = E1000_READ_REG(hw, EEWR);
636                 }
637
638                 if (reg & E1000_EEPROM_RW_REG_DONE) {
639                         done = E1000_SUCCESS;
640                         break;
641                 }
642                 udelay(5);
643         }
644
645         return done;
646 }
647
648 /******************************************************************************
649  * Reads a 16 bit word from the EEPROM using the EERD register.
650  *
651  * hw - Struct containing variables accessed by shared code
652  * offset - offset of  word in the EEPROM to read
653  * data - word read from the EEPROM
654  * words - number of words to read
655  *****************************************************************************/
656 static int32_t
657 e1000_read_eeprom_eerd(struct e1000_hw *hw,
658                         uint16_t offset,
659                         uint16_t words,
660                         uint16_t *data)
661 {
662         uint32_t i, eerd = 0;
663         int32_t error = 0;
664
665         for (i = 0; i < words; i++) {
666                 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
667                         E1000_EEPROM_RW_REG_START;
668
669                 if (hw->mac_type == e1000_igb)
670                         E1000_WRITE_REG(hw, I210_EERD, eerd);
671                 else
672                         E1000_WRITE_REG(hw, EERD, eerd);
673
674                 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
675
676                 if (error)
677                         break;
678
679                 if (hw->mac_type == e1000_igb) {
680                         data[i] = (E1000_READ_REG(hw, I210_EERD) >>
681                                 E1000_EEPROM_RW_REG_DATA);
682                 } else {
683                         data[i] = (E1000_READ_REG(hw, EERD) >>
684                                 E1000_EEPROM_RW_REG_DATA);
685                 }
686
687         }
688
689         return error;
690 }
691
692 void e1000_release_eeprom(struct e1000_hw *hw)
693 {
694         uint32_t eecd;
695
696         DEBUGFUNC();
697
698         eecd = E1000_READ_REG(hw, EECD);
699
700         if (hw->eeprom.type == e1000_eeprom_spi) {
701                 eecd |= E1000_EECD_CS;  /* Pull CS high */
702                 eecd &= ~E1000_EECD_SK; /* Lower SCK */
703
704                 E1000_WRITE_REG(hw, EECD, eecd);
705
706                 udelay(hw->eeprom.delay_usec);
707         } else if (hw->eeprom.type == e1000_eeprom_microwire) {
708                 /* cleanup eeprom */
709
710                 /* CS on Microwire is active-high */
711                 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
712
713                 E1000_WRITE_REG(hw, EECD, eecd);
714
715                 /* Rising edge of clock */
716                 eecd |= E1000_EECD_SK;
717                 E1000_WRITE_REG(hw, EECD, eecd);
718                 E1000_WRITE_FLUSH(hw);
719                 udelay(hw->eeprom.delay_usec);
720
721                 /* Falling edge of clock */
722                 eecd &= ~E1000_EECD_SK;
723                 E1000_WRITE_REG(hw, EECD, eecd);
724                 E1000_WRITE_FLUSH(hw);
725                 udelay(hw->eeprom.delay_usec);
726         }
727
728         /* Stop requesting EEPROM access */
729         if (hw->mac_type > e1000_82544) {
730                 eecd &= ~E1000_EECD_REQ;
731                 E1000_WRITE_REG(hw, EECD, eecd);
732         }
733
734         e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
735 }
736
737 /******************************************************************************
738  * Reads a 16 bit word from the EEPROM.
739  *
740  * hw - Struct containing variables accessed by shared code
741  *****************************************************************************/
742 static int32_t
743 e1000_spi_eeprom_ready(struct e1000_hw *hw)
744 {
745         uint16_t retry_count = 0;
746         uint8_t spi_stat_reg;
747
748         DEBUGFUNC();
749
750         /* Read "Status Register" repeatedly until the LSB is cleared.  The
751          * EEPROM will signal that the command has been completed by clearing
752          * bit 0 of the internal status register.  If it's not cleared within
753          * 5 milliseconds, then error out.
754          */
755         retry_count = 0;
756         do {
757                 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
758                         hw->eeprom.opcode_bits);
759                 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
760                 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
761                         break;
762
763                 udelay(5);
764                 retry_count += 5;
765
766                 e1000_standby_eeprom(hw);
767         } while (retry_count < EEPROM_MAX_RETRY_SPI);
768
769         /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
770          * only 0-5mSec on 5V devices)
771          */
772         if (retry_count >= EEPROM_MAX_RETRY_SPI) {
773                 DEBUGOUT("SPI EEPROM Status error\n");
774                 return -E1000_ERR_EEPROM;
775         }
776
777         return E1000_SUCCESS;
778 }
779
780 /******************************************************************************
781  * Reads a 16 bit word from the EEPROM.
782  *
783  * hw - Struct containing variables accessed by shared code
784  * offset - offset of  word in the EEPROM to read
785  * data - word read from the EEPROM
786  *****************************************************************************/
787 static int32_t
788 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
789                 uint16_t words, uint16_t *data)
790 {
791         struct e1000_eeprom_info *eeprom = &hw->eeprom;
792         uint32_t i = 0;
793
794         DEBUGFUNC();
795
796         /* If eeprom is not yet detected, do so now */
797         if (eeprom->word_size == 0)
798                 e1000_init_eeprom_params(hw);
799
800         /* A check for invalid values:  offset too large, too many words,
801          * and not enough words.
802          */
803         if ((offset >= eeprom->word_size) ||
804                 (words > eeprom->word_size - offset) ||
805                 (words == 0)) {
806                 DEBUGOUT("\"words\" parameter out of bounds."
807                         "Words = %d, size = %d\n", offset, eeprom->word_size);
808                 return -E1000_ERR_EEPROM;
809         }
810
811         /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
812          * directly. In this case, we need to acquire the EEPROM so that
813          * FW or other port software does not interrupt.
814          */
815         if (e1000_is_onboard_nvm_eeprom(hw) == true &&
816                 hw->eeprom.use_eerd == false) {
817
818                 /* Prepare the EEPROM for bit-bang reading */
819                 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
820                         return -E1000_ERR_EEPROM;
821         }
822
823         /* Eerd register EEPROM access requires no eeprom aquire/release */
824         if (eeprom->use_eerd == true)
825                 return e1000_read_eeprom_eerd(hw, offset, words, data);
826
827         /* ich8lan does not support currently. if needed, please
828          * add corresponding code and functions.
829          */
830 #if 0
831         /* ICH EEPROM access is done via the ICH flash controller */
832         if (eeprom->type == e1000_eeprom_ich8)
833                 return e1000_read_eeprom_ich8(hw, offset, words, data);
834 #endif
835         /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
836          * acquired the EEPROM at this point, so any returns should relase it */
837         if (eeprom->type == e1000_eeprom_spi) {
838                 uint16_t word_in;
839                 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
840
841                 if (e1000_spi_eeprom_ready(hw)) {
842                         e1000_release_eeprom(hw);
843                         return -E1000_ERR_EEPROM;
844                 }
845
846                 e1000_standby_eeprom(hw);
847
848                 /* Some SPI eeproms use the 8th address bit embedded in
849                  * the opcode */
850                 if ((eeprom->address_bits == 8) && (offset >= 128))
851                         read_opcode |= EEPROM_A8_OPCODE_SPI;
852
853                 /* Send the READ command (opcode + addr)  */
854                 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
855                 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
856                                 eeprom->address_bits);
857
858                 /* Read the data.  The address of the eeprom internally
859                  * increments with each byte (spi) being read, saving on the
860                  * overhead of eeprom setup and tear-down.  The address
861                  * counter will roll over if reading beyond the size of
862                  * the eeprom, thus allowing the entire memory to be read
863                  * starting from any offset. */
864                 for (i = 0; i < words; i++) {
865                         word_in = e1000_shift_in_ee_bits(hw, 16);
866                         data[i] = (word_in >> 8) | (word_in << 8);
867                 }
868         } else if (eeprom->type == e1000_eeprom_microwire) {
869                 for (i = 0; i < words; i++) {
870                         /* Send the READ command (opcode + addr)  */
871                         e1000_shift_out_ee_bits(hw,
872                                 EEPROM_READ_OPCODE_MICROWIRE,
873                                 eeprom->opcode_bits);
874                         e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
875                                 eeprom->address_bits);
876
877                         /* Read the data.  For microwire, each word requires
878                          * the overhead of eeprom setup and tear-down. */
879                         data[i] = e1000_shift_in_ee_bits(hw, 16);
880                         e1000_standby_eeprom(hw);
881                 }
882         }
883
884         /* End this read operation */
885         e1000_release_eeprom(hw);
886
887         return E1000_SUCCESS;
888 }
889
890 /******************************************************************************
891  * Verifies that the EEPROM has a valid checksum
892  *
893  * hw - Struct containing variables accessed by shared code
894  *
895  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
896  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
897  * valid.
898  *****************************************************************************/
899 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
900 {
901         uint16_t i, checksum, checksum_reg, *buf;
902
903         DEBUGFUNC();
904
905         /* Allocate a temporary buffer */
906         buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
907         if (!buf) {
908                 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
909                 return -E1000_ERR_EEPROM;
910         }
911
912         /* Read the EEPROM */
913         if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
914                 E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
915                 return -E1000_ERR_EEPROM;
916         }
917
918         /* Compute the checksum */
919         checksum = 0;
920         for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
921                 checksum += buf[i];
922         checksum = ((uint16_t)EEPROM_SUM) - checksum;
923         checksum_reg = buf[i];
924
925         /* Verify it! */
926         if (checksum == checksum_reg)
927                 return 0;
928
929         /* Hrm, verification failed, print an error */
930         E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
931         E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
932                         checksum_reg, checksum);
933
934         return -E1000_ERR_EEPROM;
935 }
936 #endif /* CONFIG_E1000_NO_NVM */
937
938 /*****************************************************************************
939  * Set PHY to class A mode
940  * Assumes the following operations will follow to enable the new class mode.
941  *  1. Do a PHY soft reset
942  *  2. Restart auto-negotiation or force link.
943  *
944  * hw - Struct containing variables accessed by shared code
945  ****************************************************************************/
946 static int32_t
947 e1000_set_phy_mode(struct e1000_hw *hw)
948 {
949 #ifndef CONFIG_E1000_NO_NVM
950         int32_t ret_val;
951         uint16_t eeprom_data;
952
953         DEBUGFUNC();
954
955         if ((hw->mac_type == e1000_82545_rev_3) &&
956                 (hw->media_type == e1000_media_type_copper)) {
957                 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
958                                 1, &eeprom_data);
959                 if (ret_val)
960                         return ret_val;
961
962                 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
963                         (eeprom_data & EEPROM_PHY_CLASS_A)) {
964                         ret_val = e1000_write_phy_reg(hw,
965                                         M88E1000_PHY_PAGE_SELECT, 0x000B);
966                         if (ret_val)
967                                 return ret_val;
968                         ret_val = e1000_write_phy_reg(hw,
969                                         M88E1000_PHY_GEN_CONTROL, 0x8104);
970                         if (ret_val)
971                                 return ret_val;
972
973                         hw->phy_reset_disable = false;
974                 }
975         }
976 #endif
977         return E1000_SUCCESS;
978 }
979
980 #ifndef CONFIG_E1000_NO_NVM
981 /***************************************************************************
982  *
983  * Obtaining software semaphore bit (SMBI) before resetting PHY.
984  *
985  * hw: Struct containing variables accessed by shared code
986  *
987  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
988  *            E1000_SUCCESS at any other case.
989  *
990  ***************************************************************************/
991 static int32_t
992 e1000_get_software_semaphore(struct e1000_hw *hw)
993 {
994          int32_t timeout = hw->eeprom.word_size + 1;
995          uint32_t swsm;
996
997         DEBUGFUNC();
998
999         if (hw->mac_type != e1000_80003es2lan)
1000                 return E1000_SUCCESS;
1001
1002         while (timeout) {
1003                 swsm = E1000_READ_REG(hw, SWSM);
1004                 /* If SMBI bit cleared, it is now set and we hold
1005                  * the semaphore */
1006                 if (!(swsm & E1000_SWSM_SMBI))
1007                         break;
1008                 mdelay(1);
1009                 timeout--;
1010         }
1011
1012         if (!timeout) {
1013                 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1014                 return -E1000_ERR_RESET;
1015         }
1016
1017         return E1000_SUCCESS;
1018 }
1019 #endif
1020
1021 /***************************************************************************
1022  * This function clears HW semaphore bits.
1023  *
1024  * hw: Struct containing variables accessed by shared code
1025  *
1026  * returns: - None.
1027  *
1028  ***************************************************************************/
1029 static void
1030 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1031 {
1032 #ifndef CONFIG_E1000_NO_NVM
1033          uint32_t swsm;
1034
1035         DEBUGFUNC();
1036
1037         if (!hw->eeprom_semaphore_present)
1038                 return;
1039
1040         swsm = E1000_READ_REG(hw, SWSM);
1041         if (hw->mac_type == e1000_80003es2lan) {
1042                 /* Release both semaphores. */
1043                 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1044         } else
1045                 swsm &= ~(E1000_SWSM_SWESMBI);
1046         E1000_WRITE_REG(hw, SWSM, swsm);
1047 #endif
1048 }
1049
1050 /***************************************************************************
1051  *
1052  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1053  * adapter or Eeprom access.
1054  *
1055  * hw: Struct containing variables accessed by shared code
1056  *
1057  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1058  *            E1000_SUCCESS at any other case.
1059  *
1060  ***************************************************************************/
1061 static int32_t
1062 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1063 {
1064 #ifndef CONFIG_E1000_NO_NVM
1065         int32_t timeout;
1066         uint32_t swsm;
1067
1068         DEBUGFUNC();
1069
1070         if (!hw->eeprom_semaphore_present)
1071                 return E1000_SUCCESS;
1072
1073         if (hw->mac_type == e1000_80003es2lan) {
1074                 /* Get the SW semaphore. */
1075                 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1076                         return -E1000_ERR_EEPROM;
1077         }
1078
1079         /* Get the FW semaphore. */
1080         timeout = hw->eeprom.word_size + 1;
1081         while (timeout) {
1082                 swsm = E1000_READ_REG(hw, SWSM);
1083                 swsm |= E1000_SWSM_SWESMBI;
1084                 E1000_WRITE_REG(hw, SWSM, swsm);
1085                 /* if we managed to set the bit we got the semaphore. */
1086                 swsm = E1000_READ_REG(hw, SWSM);
1087                 if (swsm & E1000_SWSM_SWESMBI)
1088                         break;
1089
1090                 udelay(50);
1091                 timeout--;
1092         }
1093
1094         if (!timeout) {
1095                 /* Release semaphores */
1096                 e1000_put_hw_eeprom_semaphore(hw);
1097                 DEBUGOUT("Driver can't access the Eeprom - "
1098                                 "SWESMBI bit is set.\n");
1099                 return -E1000_ERR_EEPROM;
1100         }
1101 #endif
1102         return E1000_SUCCESS;
1103 }
1104
1105 /* Take ownership of the PHY */
1106 static int32_t
1107 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1108 {
1109         uint32_t swfw_sync = 0;
1110         uint32_t swmask = mask;
1111         uint32_t fwmask = mask << 16;
1112         int32_t timeout = 200;
1113
1114         DEBUGFUNC();
1115         while (timeout) {
1116                 if (e1000_get_hw_eeprom_semaphore(hw))
1117                         return -E1000_ERR_SWFW_SYNC;
1118
1119                 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1120                 if (!(swfw_sync & (fwmask | swmask)))
1121                         break;
1122
1123                 /* firmware currently using resource (fwmask) */
1124                 /* or other software thread currently using resource (swmask) */
1125                 e1000_put_hw_eeprom_semaphore(hw);
1126                 mdelay(5);
1127                 timeout--;
1128         }
1129
1130         if (!timeout) {
1131                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1132                 return -E1000_ERR_SWFW_SYNC;
1133         }
1134
1135         swfw_sync |= swmask;
1136         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1137
1138         e1000_put_hw_eeprom_semaphore(hw);
1139         return E1000_SUCCESS;
1140 }
1141
1142 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1143 {
1144         uint32_t swfw_sync = 0;
1145
1146         DEBUGFUNC();
1147         while (e1000_get_hw_eeprom_semaphore(hw))
1148                 ; /* Empty */
1149
1150         swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1151         swfw_sync &= ~mask;
1152         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1153
1154         e1000_put_hw_eeprom_semaphore(hw);
1155 }
1156
1157 static bool e1000_is_second_port(struct e1000_hw *hw)
1158 {
1159         switch (hw->mac_type) {
1160         case e1000_80003es2lan:
1161         case e1000_82546:
1162         case e1000_82571:
1163                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1164                         return true;
1165                 /* Fallthrough */
1166         default:
1167                 return false;
1168         }
1169 }
1170
1171 #ifndef CONFIG_E1000_NO_NVM
1172 /******************************************************************************
1173  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1174  * second function of dual function devices
1175  *
1176  * nic - Struct containing variables accessed by shared code
1177  *****************************************************************************/
1178 static int
1179 e1000_read_mac_addr(struct eth_device *nic)
1180 {
1181         struct e1000_hw *hw = nic->priv;
1182         uint16_t offset;
1183         uint16_t eeprom_data;
1184         uint32_t reg_data = 0;
1185         int i;
1186
1187         DEBUGFUNC();
1188
1189         for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1190                 offset = i >> 1;
1191                 if (hw->mac_type == e1000_igb) {
1192                         /* i210 preloads MAC address into RAL/RAH registers */
1193                         if (offset == 0)
1194                                 reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1195                         else if (offset == 1)
1196                                 reg_data >>= 16;
1197                         else if (offset == 2)
1198                                 reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1199                         eeprom_data = reg_data & 0xffff;
1200                 } else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1201                         DEBUGOUT("EEPROM Read Error\n");
1202                         return -E1000_ERR_EEPROM;
1203                 }
1204                 nic->enetaddr[i] = eeprom_data & 0xff;
1205                 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1206         }
1207
1208         /* Invert the last bit if this is the second device */
1209         if (e1000_is_second_port(hw))
1210                 nic->enetaddr[5] ^= 1;
1211
1212 #ifdef CONFIG_E1000_FALLBACK_MAC
1213         if (!is_valid_ethaddr(nic->enetaddr)) {
1214                 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1215
1216                 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1217         }
1218 #endif
1219         return 0;
1220 }
1221 #endif
1222
1223 /******************************************************************************
1224  * Initializes receive address filters.
1225  *
1226  * hw - Struct containing variables accessed by shared code
1227  *
1228  * Places the MAC address in receive address register 0 and clears the rest
1229  * of the receive addresss registers. Clears the multicast table. Assumes
1230  * the receiver is in reset when the routine is called.
1231  *****************************************************************************/
1232 static void
1233 e1000_init_rx_addrs(struct eth_device *nic)
1234 {
1235         struct e1000_hw *hw = nic->priv;
1236         uint32_t i;
1237         uint32_t addr_low;
1238         uint32_t addr_high;
1239
1240         DEBUGFUNC();
1241
1242         /* Setup the receive address. */
1243         DEBUGOUT("Programming MAC Address into RAR[0]\n");
1244         addr_low = (nic->enetaddr[0] |
1245                     (nic->enetaddr[1] << 8) |
1246                     (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1247
1248         addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1249
1250         E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1251         E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1252
1253         /* Zero out the other 15 receive addresses. */
1254         DEBUGOUT("Clearing RAR[1-15]\n");
1255         for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1256                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1257                 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1258         }
1259 }
1260
1261 /******************************************************************************
1262  * Clears the VLAN filer table
1263  *
1264  * hw - Struct containing variables accessed by shared code
1265  *****************************************************************************/
1266 static void
1267 e1000_clear_vfta(struct e1000_hw *hw)
1268 {
1269         uint32_t offset;
1270
1271         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1272                 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1273 }
1274
1275 /******************************************************************************
1276  * Set the mac type member in the hw struct.
1277  *
1278  * hw - Struct containing variables accessed by shared code
1279  *****************************************************************************/
1280 int32_t
1281 e1000_set_mac_type(struct e1000_hw *hw)
1282 {
1283         DEBUGFUNC();
1284
1285         switch (hw->device_id) {
1286         case E1000_DEV_ID_82542:
1287                 switch (hw->revision_id) {
1288                 case E1000_82542_2_0_REV_ID:
1289                         hw->mac_type = e1000_82542_rev2_0;
1290                         break;
1291                 case E1000_82542_2_1_REV_ID:
1292                         hw->mac_type = e1000_82542_rev2_1;
1293                         break;
1294                 default:
1295                         /* Invalid 82542 revision ID */
1296                         return -E1000_ERR_MAC_TYPE;
1297                 }
1298                 break;
1299         case E1000_DEV_ID_82543GC_FIBER:
1300         case E1000_DEV_ID_82543GC_COPPER:
1301                 hw->mac_type = e1000_82543;
1302                 break;
1303         case E1000_DEV_ID_82544EI_COPPER:
1304         case E1000_DEV_ID_82544EI_FIBER:
1305         case E1000_DEV_ID_82544GC_COPPER:
1306         case E1000_DEV_ID_82544GC_LOM:
1307                 hw->mac_type = e1000_82544;
1308                 break;
1309         case E1000_DEV_ID_82540EM:
1310         case E1000_DEV_ID_82540EM_LOM:
1311         case E1000_DEV_ID_82540EP:
1312         case E1000_DEV_ID_82540EP_LOM:
1313         case E1000_DEV_ID_82540EP_LP:
1314                 hw->mac_type = e1000_82540;
1315                 break;
1316         case E1000_DEV_ID_82545EM_COPPER:
1317         case E1000_DEV_ID_82545EM_FIBER:
1318                 hw->mac_type = e1000_82545;
1319                 break;
1320         case E1000_DEV_ID_82545GM_COPPER:
1321         case E1000_DEV_ID_82545GM_FIBER:
1322         case E1000_DEV_ID_82545GM_SERDES:
1323                 hw->mac_type = e1000_82545_rev_3;
1324                 break;
1325         case E1000_DEV_ID_82546EB_COPPER:
1326         case E1000_DEV_ID_82546EB_FIBER:
1327         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1328                 hw->mac_type = e1000_82546;
1329                 break;
1330         case E1000_DEV_ID_82546GB_COPPER:
1331         case E1000_DEV_ID_82546GB_FIBER:
1332         case E1000_DEV_ID_82546GB_SERDES:
1333         case E1000_DEV_ID_82546GB_PCIE:
1334         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1335         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1336                 hw->mac_type = e1000_82546_rev_3;
1337                 break;
1338         case E1000_DEV_ID_82541EI:
1339         case E1000_DEV_ID_82541EI_MOBILE:
1340         case E1000_DEV_ID_82541ER_LOM:
1341                 hw->mac_type = e1000_82541;
1342                 break;
1343         case E1000_DEV_ID_82541ER:
1344         case E1000_DEV_ID_82541GI:
1345         case E1000_DEV_ID_82541GI_LF:
1346         case E1000_DEV_ID_82541GI_MOBILE:
1347                 hw->mac_type = e1000_82541_rev_2;
1348                 break;
1349         case E1000_DEV_ID_82547EI:
1350         case E1000_DEV_ID_82547EI_MOBILE:
1351                 hw->mac_type = e1000_82547;
1352                 break;
1353         case E1000_DEV_ID_82547GI:
1354                 hw->mac_type = e1000_82547_rev_2;
1355                 break;
1356         case E1000_DEV_ID_82571EB_COPPER:
1357         case E1000_DEV_ID_82571EB_FIBER:
1358         case E1000_DEV_ID_82571EB_SERDES:
1359         case E1000_DEV_ID_82571EB_SERDES_DUAL:
1360         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1361         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1362         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1363         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1364         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1365                 hw->mac_type = e1000_82571;
1366                 break;
1367         case E1000_DEV_ID_82572EI_COPPER:
1368         case E1000_DEV_ID_82572EI_FIBER:
1369         case E1000_DEV_ID_82572EI_SERDES:
1370         case E1000_DEV_ID_82572EI:
1371                 hw->mac_type = e1000_82572;
1372                 break;
1373         case E1000_DEV_ID_82573E:
1374         case E1000_DEV_ID_82573E_IAMT:
1375         case E1000_DEV_ID_82573L:
1376                 hw->mac_type = e1000_82573;
1377                 break;
1378         case E1000_DEV_ID_82574L:
1379                 hw->mac_type = e1000_82574;
1380                 break;
1381         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1382         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1383         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1384         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1385                 hw->mac_type = e1000_80003es2lan;
1386                 break;
1387         case E1000_DEV_ID_ICH8_IGP_M_AMT:
1388         case E1000_DEV_ID_ICH8_IGP_AMT:
1389         case E1000_DEV_ID_ICH8_IGP_C:
1390         case E1000_DEV_ID_ICH8_IFE:
1391         case E1000_DEV_ID_ICH8_IFE_GT:
1392         case E1000_DEV_ID_ICH8_IFE_G:
1393         case E1000_DEV_ID_ICH8_IGP_M:
1394                 hw->mac_type = e1000_ich8lan;
1395                 break;
1396         case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1397         case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
1398         case PCI_DEVICE_ID_INTEL_I210_COPPER:
1399         case PCI_DEVICE_ID_INTEL_I211_COPPER:
1400         case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1401         case PCI_DEVICE_ID_INTEL_I210_SERDES:
1402         case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1403         case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1404                 hw->mac_type = e1000_igb;
1405                 break;
1406         default:
1407                 /* Should never have loaded on this device */
1408                 return -E1000_ERR_MAC_TYPE;
1409         }
1410         return E1000_SUCCESS;
1411 }
1412
1413 /******************************************************************************
1414  * Reset the transmit and receive units; mask and clear all interrupts.
1415  *
1416  * hw - Struct containing variables accessed by shared code
1417  *****************************************************************************/
1418 void
1419 e1000_reset_hw(struct e1000_hw *hw)
1420 {
1421         uint32_t ctrl;
1422         uint32_t ctrl_ext;
1423         uint32_t manc;
1424         uint32_t pba = 0;
1425         uint32_t reg;
1426
1427         DEBUGFUNC();
1428
1429         /* get the correct pba value for both PCI and PCIe*/
1430         if (hw->mac_type <  e1000_82571)
1431                 pba = E1000_DEFAULT_PCI_PBA;
1432         else
1433                 pba = E1000_DEFAULT_PCIE_PBA;
1434
1435         /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1436         if (hw->mac_type == e1000_82542_rev2_0) {
1437                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1438                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1439                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1440         }
1441
1442         /* Clear interrupt mask to stop board from generating interrupts */
1443         DEBUGOUT("Masking off all interrupts\n");
1444         if (hw->mac_type == e1000_igb)
1445                 E1000_WRITE_REG(hw, I210_IAM, 0);
1446         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1447
1448         /* Disable the Transmit and Receive units.  Then delay to allow
1449          * any pending transactions to complete before we hit the MAC with
1450          * the global reset.
1451          */
1452         E1000_WRITE_REG(hw, RCTL, 0);
1453         E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1454         E1000_WRITE_FLUSH(hw);
1455
1456         /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1457         hw->tbi_compatibility_on = false;
1458
1459         /* Delay to allow any outstanding PCI transactions to complete before
1460          * resetting the device
1461          */
1462         mdelay(10);
1463
1464         /* Issue a global reset to the MAC.  This will reset the chip's
1465          * transmit, receive, DMA, and link units.  It will not effect
1466          * the current PCI configuration.  The global reset bit is self-
1467          * clearing, and should clear within a microsecond.
1468          */
1469         DEBUGOUT("Issuing a global reset to MAC\n");
1470         ctrl = E1000_READ_REG(hw, CTRL);
1471
1472         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1473
1474         /* Force a reload from the EEPROM if necessary */
1475         if (hw->mac_type == e1000_igb) {
1476                 mdelay(20);
1477                 reg = E1000_READ_REG(hw, STATUS);
1478                 if (reg & E1000_STATUS_PF_RST_DONE)
1479                         DEBUGOUT("PF OK\n");
1480                 reg = E1000_READ_REG(hw, I210_EECD);
1481                 if (reg & E1000_EECD_AUTO_RD)
1482                         DEBUGOUT("EEC OK\n");
1483         } else if (hw->mac_type < e1000_82540) {
1484                 /* Wait for reset to complete */
1485                 udelay(10);
1486                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1487                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1488                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1489                 E1000_WRITE_FLUSH(hw);
1490                 /* Wait for EEPROM reload */
1491                 mdelay(2);
1492         } else {
1493                 /* Wait for EEPROM reload (it happens automatically) */
1494                 mdelay(4);
1495                 /* Dissable HW ARPs on ASF enabled adapters */
1496                 manc = E1000_READ_REG(hw, MANC);
1497                 manc &= ~(E1000_MANC_ARP_EN);
1498                 E1000_WRITE_REG(hw, MANC, manc);
1499         }
1500
1501         /* Clear interrupt mask to stop board from generating interrupts */
1502         DEBUGOUT("Masking off all interrupts\n");
1503         if (hw->mac_type == e1000_igb)
1504                 E1000_WRITE_REG(hw, I210_IAM, 0);
1505         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1506
1507         /* Clear any pending interrupt events. */
1508         E1000_READ_REG(hw, ICR);
1509
1510         /* If MWI was previously enabled, reenable it. */
1511         if (hw->mac_type == e1000_82542_rev2_0) {
1512                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1513         }
1514         if (hw->mac_type != e1000_igb)
1515                 E1000_WRITE_REG(hw, PBA, pba);
1516 }
1517
1518 /******************************************************************************
1519  *
1520  * Initialize a number of hardware-dependent bits
1521  *
1522  * hw: Struct containing variables accessed by shared code
1523  *
1524  * This function contains hardware limitation workarounds for PCI-E adapters
1525  *
1526  *****************************************************************************/
1527 static void
1528 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1529 {
1530         if ((hw->mac_type >= e1000_82571) &&
1531                         (!hw->initialize_hw_bits_disable)) {
1532                 /* Settings common to all PCI-express silicon */
1533                 uint32_t reg_ctrl, reg_ctrl_ext;
1534                 uint32_t reg_tarc0, reg_tarc1;
1535                 uint32_t reg_tctl;
1536                 uint32_t reg_txdctl, reg_txdctl1;
1537
1538                 /* link autonegotiation/sync workarounds */
1539                 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1540                 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1541
1542                 /* Enable not-done TX descriptor counting */
1543                 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1544                 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1545                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1546
1547                 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1548                 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1549                 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1550
1551         /* IGB is cool */
1552         if (hw->mac_type == e1000_igb)
1553                 return;
1554
1555                 switch (hw->mac_type) {
1556                 case e1000_82571:
1557                 case e1000_82572:
1558                         /* Clear PHY TX compatible mode bits */
1559                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1560                         reg_tarc1 &= ~((1 << 30)|(1 << 29));
1561
1562                         /* link autonegotiation/sync workarounds */
1563                         reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1564
1565                         /* TX ring control fixes */
1566                         reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1567
1568                         /* Multiple read bit is reversed polarity */
1569                         reg_tctl = E1000_READ_REG(hw, TCTL);
1570                         if (reg_tctl & E1000_TCTL_MULR)
1571                                 reg_tarc1 &= ~(1 << 28);
1572                         else
1573                                 reg_tarc1 |= (1 << 28);
1574
1575                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1576                         break;
1577                 case e1000_82573:
1578                 case e1000_82574:
1579                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1580                         reg_ctrl_ext &= ~(1 << 23);
1581                         reg_ctrl_ext |= (1 << 22);
1582
1583                         /* TX byte count fix */
1584                         reg_ctrl = E1000_READ_REG(hw, CTRL);
1585                         reg_ctrl &= ~(1 << 29);
1586
1587                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1588                         E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1589                         break;
1590                 case e1000_80003es2lan:
1591         /* improve small packet performace for fiber/serdes */
1592                         if ((hw->media_type == e1000_media_type_fiber)
1593                         || (hw->media_type ==
1594                                 e1000_media_type_internal_serdes)) {
1595                                 reg_tarc0 &= ~(1 << 20);
1596                         }
1597
1598                 /* Multiple read bit is reversed polarity */
1599                         reg_tctl = E1000_READ_REG(hw, TCTL);
1600                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1601                         if (reg_tctl & E1000_TCTL_MULR)
1602                                 reg_tarc1 &= ~(1 << 28);
1603                         else
1604                                 reg_tarc1 |= (1 << 28);
1605
1606                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1607                         break;
1608                 case e1000_ich8lan:
1609                         /* Reduce concurrent DMA requests to 3 from 4 */
1610                         if ((hw->revision_id < 3) ||
1611                         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1612                                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1613                                 reg_tarc0 |= ((1 << 29)|(1 << 28));
1614
1615                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1616                         reg_ctrl_ext |= (1 << 22);
1617                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1618
1619                         /* workaround TX hang with TSO=on */
1620                         reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1621
1622                         /* Multiple read bit is reversed polarity */
1623                         reg_tctl = E1000_READ_REG(hw, TCTL);
1624                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1625                         if (reg_tctl & E1000_TCTL_MULR)
1626                                 reg_tarc1 &= ~(1 << 28);
1627                         else
1628                                 reg_tarc1 |= (1 << 28);
1629
1630                         /* workaround TX hang with TSO=on */
1631                         reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1632
1633                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1634                         break;
1635                 default:
1636                         break;
1637                 }
1638
1639                 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1640         }
1641 }
1642
1643 /******************************************************************************
1644  * Performs basic configuration of the adapter.
1645  *
1646  * hw - Struct containing variables accessed by shared code
1647  *
1648  * Assumes that the controller has previously been reset and is in a
1649  * post-reset uninitialized state. Initializes the receive address registers,
1650  * multicast table, and VLAN filter table. Calls routines to setup link
1651  * configuration and flow control settings. Clears all on-chip counters. Leaves
1652  * the transmit and receive units disabled and uninitialized.
1653  *****************************************************************************/
1654 static int
1655 e1000_init_hw(struct eth_device *nic)
1656 {
1657         struct e1000_hw *hw = nic->priv;
1658         uint32_t ctrl;
1659         uint32_t i;
1660         int32_t ret_val;
1661         uint16_t pcix_cmd_word;
1662         uint16_t pcix_stat_hi_word;
1663         uint16_t cmd_mmrbc;
1664         uint16_t stat_mmrbc;
1665         uint32_t mta_size;
1666         uint32_t reg_data;
1667         uint32_t ctrl_ext;
1668         DEBUGFUNC();
1669         /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1670         if ((hw->mac_type == e1000_ich8lan) &&
1671                 ((hw->revision_id < 3) ||
1672                 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1673                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1674                         reg_data = E1000_READ_REG(hw, STATUS);
1675                         reg_data &= ~0x80000000;
1676                         E1000_WRITE_REG(hw, STATUS, reg_data);
1677         }
1678         /* Do not need initialize Identification LED */
1679
1680         /* Set the media type and TBI compatibility */
1681         e1000_set_media_type(hw);
1682
1683         /* Must be called after e1000_set_media_type
1684          * because media_type is used */
1685         e1000_initialize_hardware_bits(hw);
1686
1687         /* Disabling VLAN filtering. */
1688         DEBUGOUT("Initializing the IEEE VLAN\n");
1689         /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1690         if (hw->mac_type != e1000_ich8lan) {
1691                 if (hw->mac_type < e1000_82545_rev_3)
1692                         E1000_WRITE_REG(hw, VET, 0);
1693                 e1000_clear_vfta(hw);
1694         }
1695
1696         /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1697         if (hw->mac_type == e1000_82542_rev2_0) {
1698                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1699                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1700                                       hw->
1701                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1702                 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1703                 E1000_WRITE_FLUSH(hw);
1704                 mdelay(5);
1705         }
1706
1707         /* Setup the receive address. This involves initializing all of the Receive
1708          * Address Registers (RARs 0 - 15).
1709          */
1710         e1000_init_rx_addrs(nic);
1711
1712         /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1713         if (hw->mac_type == e1000_82542_rev2_0) {
1714                 E1000_WRITE_REG(hw, RCTL, 0);
1715                 E1000_WRITE_FLUSH(hw);
1716                 mdelay(1);
1717                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1718         }
1719
1720         /* Zero out the Multicast HASH table */
1721         DEBUGOUT("Zeroing the MTA\n");
1722         mta_size = E1000_MC_TBL_SIZE;
1723         if (hw->mac_type == e1000_ich8lan)
1724                 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1725         for (i = 0; i < mta_size; i++) {
1726                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1727                 /* use write flush to prevent Memory Write Block (MWB) from
1728                  * occuring when accessing our register space */
1729                 E1000_WRITE_FLUSH(hw);
1730         }
1731 #if 0
1732         /* Set the PCI priority bit correctly in the CTRL register.  This
1733          * determines if the adapter gives priority to receives, or if it
1734          * gives equal priority to transmits and receives.  Valid only on
1735          * 82542 and 82543 silicon.
1736          */
1737         if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1738                 ctrl = E1000_READ_REG(hw, CTRL);
1739                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1740         }
1741 #endif
1742         switch (hw->mac_type) {
1743         case e1000_82545_rev_3:
1744         case e1000_82546_rev_3:
1745         case e1000_igb:
1746                 break;
1747         default:
1748         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1749         if (hw->bus_type == e1000_bus_type_pcix) {
1750                 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1751                                      &pcix_cmd_word);
1752                 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1753                                      &pcix_stat_hi_word);
1754                 cmd_mmrbc =
1755                     (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1756                     PCIX_COMMAND_MMRBC_SHIFT;
1757                 stat_mmrbc =
1758                     (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1759                     PCIX_STATUS_HI_MMRBC_SHIFT;
1760                 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1761                         stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1762                 if (cmd_mmrbc > stat_mmrbc) {
1763                         pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1764                         pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1765                         pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1766                                               pcix_cmd_word);
1767                 }
1768         }
1769                 break;
1770         }
1771
1772         /* More time needed for PHY to initialize */
1773         if (hw->mac_type == e1000_ich8lan)
1774                 mdelay(15);
1775         if (hw->mac_type == e1000_igb)
1776                 mdelay(15);
1777
1778         /* Call a subroutine to configure the link and setup flow control. */
1779         ret_val = e1000_setup_link(nic);
1780
1781         /* Set the transmit descriptor write-back policy */
1782         if (hw->mac_type > e1000_82544) {
1783                 ctrl = E1000_READ_REG(hw, TXDCTL);
1784                 ctrl =
1785                     (ctrl & ~E1000_TXDCTL_WTHRESH) |
1786                     E1000_TXDCTL_FULL_TX_DESC_WB;
1787                 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1788         }
1789
1790         /* Set the receive descriptor write back policy */
1791         if (hw->mac_type >= e1000_82571) {
1792                 ctrl = E1000_READ_REG(hw, RXDCTL);
1793                 ctrl =
1794                     (ctrl & ~E1000_RXDCTL_WTHRESH) |
1795                     E1000_RXDCTL_FULL_RX_DESC_WB;
1796                 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1797         }
1798
1799         switch (hw->mac_type) {
1800         default:
1801                 break;
1802         case e1000_80003es2lan:
1803                 /* Enable retransmit on late collisions */
1804                 reg_data = E1000_READ_REG(hw, TCTL);
1805                 reg_data |= E1000_TCTL_RTLC;
1806                 E1000_WRITE_REG(hw, TCTL, reg_data);
1807
1808                 /* Configure Gigabit Carry Extend Padding */
1809                 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1810                 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1811                 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1812                 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1813
1814                 /* Configure Transmit Inter-Packet Gap */
1815                 reg_data = E1000_READ_REG(hw, TIPG);
1816                 reg_data &= ~E1000_TIPG_IPGT_MASK;
1817                 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1818                 E1000_WRITE_REG(hw, TIPG, reg_data);
1819
1820                 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1821                 reg_data &= ~0x00100000;
1822                 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1823                 /* Fall through */
1824         case e1000_82571:
1825         case e1000_82572:
1826         case e1000_ich8lan:
1827                 ctrl = E1000_READ_REG(hw, TXDCTL1);
1828                 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1829                         | E1000_TXDCTL_FULL_TX_DESC_WB;
1830                 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1831                 break;
1832         case e1000_82573:
1833         case e1000_82574:
1834                 reg_data = E1000_READ_REG(hw, GCR);
1835                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1836                 E1000_WRITE_REG(hw, GCR, reg_data);
1837         case e1000_igb:
1838                 break;
1839         }
1840
1841 #if 0
1842         /* Clear all of the statistics registers (clear on read).  It is
1843          * important that we do this after we have tried to establish link
1844          * because the symbol error count will increment wildly if there
1845          * is no link.
1846          */
1847         e1000_clear_hw_cntrs(hw);
1848
1849         /* ICH8 No-snoop bits are opposite polarity.
1850          * Set to snoop by default after reset. */
1851         if (hw->mac_type == e1000_ich8lan)
1852                 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1853 #endif
1854
1855         if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1856                 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1857                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1858                 /* Relaxed ordering must be disabled to avoid a parity
1859                  * error crash in a PCI slot. */
1860                 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1861                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1862         }
1863
1864         return ret_val;
1865 }
1866
1867 /******************************************************************************
1868  * Configures flow control and link settings.
1869  *
1870  * hw - Struct containing variables accessed by shared code
1871  *
1872  * Determines which flow control settings to use. Calls the apropriate media-
1873  * specific link configuration function. Configures the flow control settings.
1874  * Assuming the adapter has a valid link partner, a valid link should be
1875  * established. Assumes the hardware has previously been reset and the
1876  * transmitter and receiver are not enabled.
1877  *****************************************************************************/
1878 static int
1879 e1000_setup_link(struct eth_device *nic)
1880 {
1881         struct e1000_hw *hw = nic->priv;
1882         int32_t ret_val;
1883 #ifndef CONFIG_E1000_NO_NVM
1884         uint32_t ctrl_ext;
1885         uint16_t eeprom_data;
1886 #endif
1887
1888         DEBUGFUNC();
1889
1890         /* In the case of the phy reset being blocked, we already have a link.
1891          * We do not have to set it up again. */
1892         if (e1000_check_phy_reset_block(hw))
1893                 return E1000_SUCCESS;
1894
1895 #ifndef CONFIG_E1000_NO_NVM
1896         /* Read and store word 0x0F of the EEPROM. This word contains bits
1897          * that determine the hardware's default PAUSE (flow control) mode,
1898          * a bit that determines whether the HW defaults to enabling or
1899          * disabling auto-negotiation, and the direction of the
1900          * SW defined pins. If there is no SW over-ride of the flow
1901          * control setting, then the variable hw->fc will
1902          * be initialized based on a value in the EEPROM.
1903          */
1904         if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1905                                 &eeprom_data) < 0) {
1906                 DEBUGOUT("EEPROM Read Error\n");
1907                 return -E1000_ERR_EEPROM;
1908         }
1909 #endif
1910         if (hw->fc == e1000_fc_default) {
1911                 switch (hw->mac_type) {
1912                 case e1000_ich8lan:
1913                 case e1000_82573:
1914                 case e1000_82574:
1915                 case e1000_igb:
1916                         hw->fc = e1000_fc_full;
1917                         break;
1918                 default:
1919 #ifndef CONFIG_E1000_NO_NVM
1920                         ret_val = e1000_read_eeprom(hw,
1921                                 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1922                         if (ret_val) {
1923                                 DEBUGOUT("EEPROM Read Error\n");
1924                                 return -E1000_ERR_EEPROM;
1925                         }
1926                         if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1927                                 hw->fc = e1000_fc_none;
1928                         else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1929                                     EEPROM_WORD0F_ASM_DIR)
1930                                 hw->fc = e1000_fc_tx_pause;
1931                         else
1932 #endif
1933                                 hw->fc = e1000_fc_full;
1934                         break;
1935                 }
1936         }
1937
1938         /* We want to save off the original Flow Control configuration just
1939          * in case we get disconnected and then reconnected into a different
1940          * hub or switch with different Flow Control capabilities.
1941          */
1942         if (hw->mac_type == e1000_82542_rev2_0)
1943                 hw->fc &= (~e1000_fc_tx_pause);
1944
1945         if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1946                 hw->fc &= (~e1000_fc_rx_pause);
1947
1948         hw->original_fc = hw->fc;
1949
1950         DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1951
1952 #ifndef CONFIG_E1000_NO_NVM
1953         /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1954          * polarity value for the SW controlled pins, and setup the
1955          * Extended Device Control reg with that info.
1956          * This is needed because one of the SW controlled pins is used for
1957          * signal detection.  So this should be done before e1000_setup_pcs_link()
1958          * or e1000_phy_setup() is called.
1959          */
1960         if (hw->mac_type == e1000_82543) {
1961                 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1962                             SWDPIO__EXT_SHIFT);
1963                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1964         }
1965 #endif
1966
1967         /* Call the necessary subroutine to configure the link. */
1968         ret_val = (hw->media_type == e1000_media_type_fiber) ?
1969             e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1970         if (ret_val < 0) {
1971                 return ret_val;
1972         }
1973
1974         /* Initialize the flow control address, type, and PAUSE timer
1975          * registers to their default values.  This is done even if flow
1976          * control is disabled, because it does not hurt anything to
1977          * initialize these registers.
1978          */
1979         DEBUGOUT("Initializing the Flow Control address, type"
1980                         "and timer regs\n");
1981
1982         /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1983         if (hw->mac_type != e1000_ich8lan) {
1984                 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1985                 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1986                 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1987         }
1988
1989         E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1990
1991         /* Set the flow control receive threshold registers.  Normally,
1992          * these registers will be set to a default threshold that may be
1993          * adjusted later by the driver's runtime code.  However, if the
1994          * ability to transmit pause frames in not enabled, then these
1995          * registers will be set to 0.
1996          */
1997         if (!(hw->fc & e1000_fc_tx_pause)) {
1998                 E1000_WRITE_REG(hw, FCRTL, 0);
1999                 E1000_WRITE_REG(hw, FCRTH, 0);
2000         } else {
2001                 /* We need to set up the Receive Threshold high and low water marks
2002                  * as well as (optionally) enabling the transmission of XON frames.
2003                  */
2004                 if (hw->fc_send_xon) {
2005                         E1000_WRITE_REG(hw, FCRTL,
2006                                         (hw->fc_low_water | E1000_FCRTL_XONE));
2007                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2008                 } else {
2009                         E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
2010                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2011                 }
2012         }
2013         return ret_val;
2014 }
2015
2016 /******************************************************************************
2017  * Sets up link for a fiber based adapter
2018  *
2019  * hw - Struct containing variables accessed by shared code
2020  *
2021  * Manipulates Physical Coding Sublayer functions in order to configure
2022  * link. Assumes the hardware has been previously reset and the transmitter
2023  * and receiver are not enabled.
2024  *****************************************************************************/
2025 static int
2026 e1000_setup_fiber_link(struct eth_device *nic)
2027 {
2028         struct e1000_hw *hw = nic->priv;
2029         uint32_t ctrl;
2030         uint32_t status;
2031         uint32_t txcw = 0;
2032         uint32_t i;
2033         uint32_t signal;
2034         int32_t ret_val;
2035
2036         DEBUGFUNC();
2037         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2038          * set when the optics detect a signal. On older adapters, it will be
2039          * cleared when there is a signal
2040          */
2041         ctrl = E1000_READ_REG(hw, CTRL);
2042         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2043                 signal = E1000_CTRL_SWDPIN1;
2044         else
2045                 signal = 0;
2046
2047         printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
2048                ctrl);
2049         /* Take the link out of reset */
2050         ctrl &= ~(E1000_CTRL_LRST);
2051
2052         e1000_config_collision_dist(hw);
2053
2054         /* Check for a software override of the flow control settings, and setup
2055          * the device accordingly.  If auto-negotiation is enabled, then software
2056          * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2057          * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
2058          * auto-negotiation is disabled, then software will have to manually
2059          * configure the two flow control enable bits in the CTRL register.
2060          *
2061          * The possible values of the "fc" parameter are:
2062          *      0:  Flow control is completely disabled
2063          *      1:  Rx flow control is enabled (we can receive pause frames, but
2064          *          not send pause frames).
2065          *      2:  Tx flow control is enabled (we can send pause frames but we do
2066          *          not support receiving pause frames).
2067          *      3:  Both Rx and TX flow control (symmetric) are enabled.
2068          */
2069         switch (hw->fc) {
2070         case e1000_fc_none:
2071                 /* Flow control is completely disabled by a software over-ride. */
2072                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2073                 break;
2074         case e1000_fc_rx_pause:
2075                 /* RX Flow control is enabled and TX Flow control is disabled by a
2076                  * software over-ride. Since there really isn't a way to advertise
2077                  * that we are capable of RX Pause ONLY, we will advertise that we
2078                  * support both symmetric and asymmetric RX PAUSE. Later, we will
2079                  *  disable the adapter's ability to send PAUSE frames.
2080                  */
2081                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2082                 break;
2083         case e1000_fc_tx_pause:
2084                 /* TX Flow control is enabled, and RX Flow control is disabled, by a
2085                  * software over-ride.
2086                  */
2087                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2088                 break;
2089         case e1000_fc_full:
2090                 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2091                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2092                 break;
2093         default:
2094                 DEBUGOUT("Flow control param set incorrectly\n");
2095                 return -E1000_ERR_CONFIG;
2096                 break;
2097         }
2098
2099         /* Since auto-negotiation is enabled, take the link out of reset (the link
2100          * will be in reset, because we previously reset the chip). This will
2101          * restart auto-negotiation.  If auto-neogtiation is successful then the
2102          * link-up status bit will be set and the flow control enable bits (RFCE
2103          * and TFCE) will be set according to their negotiated value.
2104          */
2105         DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2106
2107         E1000_WRITE_REG(hw, TXCW, txcw);
2108         E1000_WRITE_REG(hw, CTRL, ctrl);
2109         E1000_WRITE_FLUSH(hw);
2110
2111         hw->txcw = txcw;
2112         mdelay(1);
2113
2114         /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2115          * indication in the Device Status Register.  Time-out if a link isn't
2116          * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2117          * less than 500 milliseconds even if the other end is doing it in SW).
2118          */
2119         if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2120                 DEBUGOUT("Looking for Link\n");
2121                 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2122                         mdelay(10);
2123                         status = E1000_READ_REG(hw, STATUS);
2124                         if (status & E1000_STATUS_LU)
2125                                 break;
2126                 }
2127                 if (i == (LINK_UP_TIMEOUT / 10)) {
2128                         /* AutoNeg failed to achieve a link, so we'll call
2129                          * e1000_check_for_link. This routine will force the link up if we
2130                          * detect a signal. This will allow us to communicate with
2131                          * non-autonegotiating link partners.
2132                          */
2133                         DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2134                         hw->autoneg_failed = 1;
2135                         ret_val = e1000_check_for_link(nic);
2136                         if (ret_val < 0) {
2137                                 DEBUGOUT("Error while checking for link\n");
2138                                 return ret_val;
2139                         }
2140                         hw->autoneg_failed = 0;
2141                 } else {
2142                         hw->autoneg_failed = 0;
2143                         DEBUGOUT("Valid Link Found\n");
2144                 }
2145         } else {
2146                 DEBUGOUT("No Signal Detected\n");
2147                 return -E1000_ERR_NOLINK;
2148         }
2149         return 0;
2150 }
2151
2152 /******************************************************************************
2153 * Make sure we have a valid PHY and change PHY mode before link setup.
2154 *
2155 * hw - Struct containing variables accessed by shared code
2156 ******************************************************************************/
2157 static int32_t
2158 e1000_copper_link_preconfig(struct e1000_hw *hw)
2159 {
2160         uint32_t ctrl;
2161         int32_t ret_val;
2162         uint16_t phy_data;
2163
2164         DEBUGFUNC();
2165
2166         ctrl = E1000_READ_REG(hw, CTRL);
2167         /* With 82543, we need to force speed and duplex on the MAC equal to what
2168          * the PHY speed and duplex configuration is. In addition, we need to
2169          * perform a hardware reset on the PHY to take it out of reset.
2170          */
2171         if (hw->mac_type > e1000_82543) {
2172                 ctrl |= E1000_CTRL_SLU;
2173                 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2174                 E1000_WRITE_REG(hw, CTRL, ctrl);
2175         } else {
2176                 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2177                                 | E1000_CTRL_SLU);
2178                 E1000_WRITE_REG(hw, CTRL, ctrl);
2179                 ret_val = e1000_phy_hw_reset(hw);
2180                 if (ret_val)
2181                         return ret_val;
2182         }
2183
2184         /* Make sure we have a valid PHY */
2185         ret_val = e1000_detect_gig_phy(hw);
2186         if (ret_val) {
2187                 DEBUGOUT("Error, did not detect valid phy.\n");
2188                 return ret_val;
2189         }
2190         DEBUGOUT("Phy ID = %x\n", hw->phy_id);
2191
2192         /* Set PHY to class A mode (if necessary) */
2193         ret_val = e1000_set_phy_mode(hw);
2194         if (ret_val)
2195                 return ret_val;
2196         if ((hw->mac_type == e1000_82545_rev_3) ||
2197                 (hw->mac_type == e1000_82546_rev_3)) {
2198                 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2199                                 &phy_data);
2200                 phy_data |= 0x00000008;
2201                 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2202                                 phy_data);
2203         }
2204
2205         if (hw->mac_type <= e1000_82543 ||
2206                 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2207                 hw->mac_type == e1000_82541_rev_2
2208                 || hw->mac_type == e1000_82547_rev_2)
2209                         hw->phy_reset_disable = false;
2210
2211         return E1000_SUCCESS;
2212 }
2213
2214 /*****************************************************************************
2215  *
2216  * This function sets the lplu state according to the active flag.  When
2217  * activating lplu this function also disables smart speed and vise versa.
2218  * lplu will not be activated unless the device autonegotiation advertisment
2219  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2220  * hw: Struct containing variables accessed by shared code
2221  * active - true to enable lplu false to disable lplu.
2222  *
2223  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2224  *            E1000_SUCCESS at any other case.
2225  *
2226  ****************************************************************************/
2227
2228 static int32_t
2229 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2230 {
2231         uint32_t phy_ctrl = 0;
2232         int32_t ret_val;
2233         uint16_t phy_data;
2234         DEBUGFUNC();
2235
2236         if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2237             && hw->phy_type != e1000_phy_igp_3)
2238                 return E1000_SUCCESS;
2239
2240         /* During driver activity LPLU should not be used or it will attain link
2241          * from the lowest speeds starting from 10Mbps. The capability is used
2242          * for Dx transitions and states */
2243         if (hw->mac_type == e1000_82541_rev_2
2244                         || hw->mac_type == e1000_82547_rev_2) {
2245                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2246                                 &phy_data);
2247                 if (ret_val)
2248                         return ret_val;
2249         } else if (hw->mac_type == e1000_ich8lan) {
2250                 /* MAC writes into PHY register based on the state transition
2251                  * and start auto-negotiation. SW driver can overwrite the
2252                  * settings in CSR PHY power control E1000_PHY_CTRL register. */
2253                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2254         } else {
2255                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2256                                 &phy_data);
2257                 if (ret_val)
2258                         return ret_val;
2259         }
2260
2261         if (!active) {
2262                 if (hw->mac_type == e1000_82541_rev_2 ||
2263                         hw->mac_type == e1000_82547_rev_2) {
2264                         phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2265                         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2266                                         phy_data);
2267                         if (ret_val)
2268                                 return ret_val;
2269                 } else {
2270                         if (hw->mac_type == e1000_ich8lan) {
2271                                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2272                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2273                         } else {
2274                                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2275                                 ret_val = e1000_write_phy_reg(hw,
2276                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2277                                 if (ret_val)
2278                                         return ret_val;
2279                         }
2280                 }
2281
2282         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2283          * Dx states where the power conservation is most important.  During
2284          * driver activity we should enable SmartSpeed, so performance is
2285          * maintained. */
2286                 if (hw->smart_speed == e1000_smart_speed_on) {
2287                         ret_val = e1000_read_phy_reg(hw,
2288                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2289                         if (ret_val)
2290                                 return ret_val;
2291
2292                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2293                         ret_val = e1000_write_phy_reg(hw,
2294                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2295                         if (ret_val)
2296                                 return ret_val;
2297                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2298                         ret_val = e1000_read_phy_reg(hw,
2299                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2300                         if (ret_val)
2301                                 return ret_val;
2302
2303                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2304                         ret_val = e1000_write_phy_reg(hw,
2305                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2306                         if (ret_val)
2307                                 return ret_val;
2308                 }
2309
2310         } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2311                 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2312                 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2313
2314                 if (hw->mac_type == e1000_82541_rev_2 ||
2315                     hw->mac_type == e1000_82547_rev_2) {
2316                         phy_data |= IGP01E1000_GMII_FLEX_SPD;
2317                         ret_val = e1000_write_phy_reg(hw,
2318                                         IGP01E1000_GMII_FIFO, phy_data);
2319                         if (ret_val)
2320                                 return ret_val;
2321                 } else {
2322                         if (hw->mac_type == e1000_ich8lan) {
2323                                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2324                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2325                         } else {
2326                                 phy_data |= IGP02E1000_PM_D3_LPLU;
2327                                 ret_val = e1000_write_phy_reg(hw,
2328                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2329                                 if (ret_val)
2330                                         return ret_val;
2331                         }
2332                 }
2333
2334                 /* When LPLU is enabled we should disable SmartSpeed */
2335                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2336                                 &phy_data);
2337                 if (ret_val)
2338                         return ret_val;
2339
2340                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2341                 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2342                                 phy_data);
2343                 if (ret_val)
2344                         return ret_val;
2345         }
2346         return E1000_SUCCESS;
2347 }
2348
2349 /*****************************************************************************
2350  *
2351  * This function sets the lplu d0 state according to the active flag.  When
2352  * activating lplu this function also disables smart speed and vise versa.
2353  * lplu will not be activated unless the device autonegotiation advertisment
2354  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2355  * hw: Struct containing variables accessed by shared code
2356  * active - true to enable lplu false to disable lplu.
2357  *
2358  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2359  *            E1000_SUCCESS at any other case.
2360  *
2361  ****************************************************************************/
2362
2363 static int32_t
2364 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2365 {
2366         uint32_t phy_ctrl = 0;
2367         int32_t ret_val;
2368         uint16_t phy_data;
2369         DEBUGFUNC();
2370
2371         if (hw->mac_type <= e1000_82547_rev_2)
2372                 return E1000_SUCCESS;
2373
2374         if (hw->mac_type == e1000_ich8lan) {
2375                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2376         } else if (hw->mac_type == e1000_igb) {
2377                 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2378         } else {
2379                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2380                                 &phy_data);
2381                 if (ret_val)
2382                         return ret_val;
2383         }
2384
2385         if (!active) {
2386                 if (hw->mac_type == e1000_ich8lan) {
2387                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2388                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2389                 } else if (hw->mac_type == e1000_igb) {
2390                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2391                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2392                 } else {
2393                         phy_data &= ~IGP02E1000_PM_D0_LPLU;
2394                         ret_val = e1000_write_phy_reg(hw,
2395                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2396                         if (ret_val)
2397                                 return ret_val;
2398                 }
2399
2400                 if (hw->mac_type == e1000_igb)
2401                         return E1000_SUCCESS;
2402
2403         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2404          * Dx states where the power conservation is most important.  During
2405          * driver activity we should enable SmartSpeed, so performance is
2406          * maintained. */
2407                 if (hw->smart_speed == e1000_smart_speed_on) {
2408                         ret_val = e1000_read_phy_reg(hw,
2409                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2410                         if (ret_val)
2411                                 return ret_val;
2412
2413                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2414                         ret_val = e1000_write_phy_reg(hw,
2415                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2416                         if (ret_val)
2417                                 return ret_val;
2418                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2419                         ret_val = e1000_read_phy_reg(hw,
2420                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2421                         if (ret_val)
2422                                 return ret_val;
2423
2424                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2425                         ret_val = e1000_write_phy_reg(hw,
2426                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2427                         if (ret_val)
2428                                 return ret_val;
2429                 }
2430
2431
2432         } else {
2433
2434                 if (hw->mac_type == e1000_ich8lan) {
2435                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2436                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2437                 } else if (hw->mac_type == e1000_igb) {
2438                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2439                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2440                 } else {
2441                         phy_data |= IGP02E1000_PM_D0_LPLU;
2442                         ret_val = e1000_write_phy_reg(hw,
2443                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2444                         if (ret_val)
2445                                 return ret_val;
2446                 }
2447
2448                 if (hw->mac_type == e1000_igb)
2449                         return E1000_SUCCESS;
2450
2451                 /* When LPLU is enabled we should disable SmartSpeed */
2452                 ret_val = e1000_read_phy_reg(hw,
2453                                 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2454                 if (ret_val)
2455                         return ret_val;
2456
2457                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2458                 ret_val = e1000_write_phy_reg(hw,
2459                                 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2460                 if (ret_val)
2461                         return ret_val;
2462
2463         }
2464         return E1000_SUCCESS;
2465 }
2466
2467 /********************************************************************
2468 * Copper link setup for e1000_phy_igp series.
2469 *
2470 * hw - Struct containing variables accessed by shared code
2471 *********************************************************************/
2472 static int32_t
2473 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2474 {
2475         uint32_t led_ctrl;
2476         int32_t ret_val;
2477         uint16_t phy_data;
2478
2479         DEBUGFUNC();
2480
2481         if (hw->phy_reset_disable)
2482                 return E1000_SUCCESS;
2483
2484         ret_val = e1000_phy_reset(hw);
2485         if (ret_val) {
2486                 DEBUGOUT("Error Resetting the PHY\n");
2487                 return ret_val;
2488         }
2489
2490         /* Wait 15ms for MAC to configure PHY from eeprom settings */
2491         mdelay(15);
2492         if (hw->mac_type != e1000_ich8lan) {
2493                 /* Configure activity LED after PHY reset */
2494                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2495                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2496                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2497                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2498         }
2499
2500         /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2501         if (hw->phy_type == e1000_phy_igp) {
2502                 /* disable lplu d3 during driver init */
2503                 ret_val = e1000_set_d3_lplu_state(hw, false);
2504                 if (ret_val) {
2505                         DEBUGOUT("Error Disabling LPLU D3\n");
2506                         return ret_val;
2507                 }
2508         }
2509
2510         /* disable lplu d0 during driver init */
2511         ret_val = e1000_set_d0_lplu_state(hw, false);
2512         if (ret_val) {
2513                 DEBUGOUT("Error Disabling LPLU D0\n");
2514                 return ret_val;
2515         }
2516         /* Configure mdi-mdix settings */
2517         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2518         if (ret_val)
2519                 return ret_val;
2520
2521         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2522                 hw->dsp_config_state = e1000_dsp_config_disabled;
2523                 /* Force MDI for earlier revs of the IGP PHY */
2524                 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2525                                 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2526                 hw->mdix = 1;
2527
2528         } else {
2529                 hw->dsp_config_state = e1000_dsp_config_enabled;
2530                 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2531
2532                 switch (hw->mdix) {
2533                 case 1:
2534                         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2535                         break;
2536                 case 2:
2537                         phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2538                         break;
2539                 case 0:
2540                 default:
2541                         phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2542                         break;
2543                 }
2544         }
2545         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2546         if (ret_val)
2547                 return ret_val;
2548
2549         /* set auto-master slave resolution settings */
2550         if (hw->autoneg) {
2551                 e1000_ms_type phy_ms_setting = hw->master_slave;
2552
2553                 if (hw->ffe_config_state == e1000_ffe_config_active)
2554                         hw->ffe_config_state = e1000_ffe_config_enabled;
2555
2556                 if (hw->dsp_config_state == e1000_dsp_config_activated)
2557                         hw->dsp_config_state = e1000_dsp_config_enabled;
2558
2559                 /* when autonegotiation advertisment is only 1000Mbps then we
2560                   * should disable SmartSpeed and enable Auto MasterSlave
2561                   * resolution as hardware default. */
2562                 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2563                         /* Disable SmartSpeed */
2564                         ret_val = e1000_read_phy_reg(hw,
2565                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2566                         if (ret_val)
2567                                 return ret_val;
2568                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2569                         ret_val = e1000_write_phy_reg(hw,
2570                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2571                         if (ret_val)
2572                                 return ret_val;
2573                         /* Set auto Master/Slave resolution process */
2574                         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2575                                         &phy_data);
2576                         if (ret_val)
2577                                 return ret_val;
2578                         phy_data &= ~CR_1000T_MS_ENABLE;
2579                         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2580                                         phy_data);
2581                         if (ret_val)
2582                                 return ret_val;
2583                 }
2584
2585                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2586                 if (ret_val)
2587                         return ret_val;
2588
2589                 /* load defaults for future use */
2590                 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2591                                 ((phy_data & CR_1000T_MS_VALUE) ?
2592                                 e1000_ms_force_master :
2593                                 e1000_ms_force_slave) :
2594                                 e1000_ms_auto;
2595
2596                 switch (phy_ms_setting) {
2597                 case e1000_ms_force_master:
2598                         phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2599                         break;
2600                 case e1000_ms_force_slave:
2601                         phy_data |= CR_1000T_MS_ENABLE;
2602                         phy_data &= ~(CR_1000T_MS_VALUE);
2603                         break;
2604                 case e1000_ms_auto:
2605                         phy_data &= ~CR_1000T_MS_ENABLE;
2606                 default:
2607                         break;
2608                 }
2609                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2610                 if (ret_val)
2611                         return ret_val;
2612         }
2613
2614         return E1000_SUCCESS;
2615 }
2616
2617 /*****************************************************************************
2618  * This function checks the mode of the firmware.
2619  *
2620  * returns  - true when the mode is IAMT or false.
2621  ****************************************************************************/
2622 bool
2623 e1000_check_mng_mode(struct e1000_hw *hw)
2624 {
2625         uint32_t fwsm;
2626         DEBUGFUNC();
2627
2628         fwsm = E1000_READ_REG(hw, FWSM);
2629
2630         if (hw->mac_type == e1000_ich8lan) {
2631                 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2632                     (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2633                         return true;
2634         } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2635                        (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2636                         return true;
2637
2638         return false;
2639 }
2640
2641 static int32_t
2642 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2643 {
2644         uint16_t swfw = E1000_SWFW_PHY0_SM;
2645         uint32_t reg_val;
2646         DEBUGFUNC();
2647
2648         if (e1000_is_second_port(hw))
2649                 swfw = E1000_SWFW_PHY1_SM;
2650
2651         if (e1000_swfw_sync_acquire(hw, swfw))
2652                 return -E1000_ERR_SWFW_SYNC;
2653
2654         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2655                         & E1000_KUMCTRLSTA_OFFSET) | data;
2656         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2657         udelay(2);
2658
2659         return E1000_SUCCESS;
2660 }
2661
2662 static int32_t
2663 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2664 {
2665         uint16_t swfw = E1000_SWFW_PHY0_SM;
2666         uint32_t reg_val;
2667         DEBUGFUNC();
2668
2669         if (e1000_is_second_port(hw))
2670                 swfw = E1000_SWFW_PHY1_SM;
2671
2672         if (e1000_swfw_sync_acquire(hw, swfw)) {
2673                 debug("%s[%i]\n", __func__, __LINE__);
2674                 return -E1000_ERR_SWFW_SYNC;
2675         }
2676
2677         /* Write register address */
2678         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2679                         E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2680         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2681         udelay(2);
2682
2683         /* Read the data returned */
2684         reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2685         *data = (uint16_t)reg_val;
2686
2687         return E1000_SUCCESS;
2688 }
2689
2690 /********************************************************************
2691 * Copper link setup for e1000_phy_gg82563 series.
2692 *
2693 * hw - Struct containing variables accessed by shared code
2694 *********************************************************************/
2695 static int32_t
2696 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2697 {
2698         int32_t ret_val;
2699         uint16_t phy_data;
2700         uint32_t reg_data;
2701
2702         DEBUGFUNC();
2703
2704         if (!hw->phy_reset_disable) {
2705                 /* Enable CRS on TX for half-duplex operation. */
2706                 ret_val = e1000_read_phy_reg(hw,
2707                                 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2708                 if (ret_val)
2709                         return ret_val;
2710
2711                 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2712                 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2713                 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2714
2715                 ret_val = e1000_write_phy_reg(hw,
2716                                 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2717                 if (ret_val)
2718                         return ret_val;
2719
2720                 /* Options:
2721                  *   MDI/MDI-X = 0 (default)
2722                  *   0 - Auto for all speeds
2723                  *   1 - MDI mode
2724                  *   2 - MDI-X mode
2725                  *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2726                  */
2727                 ret_val = e1000_read_phy_reg(hw,
2728                                 GG82563_PHY_SPEC_CTRL, &phy_data);
2729                 if (ret_val)
2730                         return ret_val;
2731
2732                 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2733
2734                 switch (hw->mdix) {
2735                 case 1:
2736                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2737                         break;
2738                 case 2:
2739                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2740                         break;
2741                 case 0:
2742                 default:
2743                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2744                         break;
2745                 }
2746
2747                 /* Options:
2748                  *   disable_polarity_correction = 0 (default)
2749                  *       Automatic Correction for Reversed Cable Polarity
2750                  *   0 - Disabled
2751                  *   1 - Enabled
2752                  */
2753                 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2754                 ret_val = e1000_write_phy_reg(hw,
2755                                 GG82563_PHY_SPEC_CTRL, phy_data);
2756
2757                 if (ret_val)
2758                         return ret_val;
2759
2760                 /* SW Reset the PHY so all changes take effect */
2761                 ret_val = e1000_phy_reset(hw);
2762                 if (ret_val) {
2763                         DEBUGOUT("Error Resetting the PHY\n");
2764                         return ret_val;
2765                 }
2766         } /* phy_reset_disable */
2767
2768         if (hw->mac_type == e1000_80003es2lan) {
2769                 /* Bypass RX and TX FIFO's */
2770                 ret_val = e1000_write_kmrn_reg(hw,
2771                                 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2772                                 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2773                                 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2774                 if (ret_val)
2775                         return ret_val;
2776
2777                 ret_val = e1000_read_phy_reg(hw,
2778                                 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2779                 if (ret_val)
2780                         return ret_val;
2781
2782                 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2783                 ret_val = e1000_write_phy_reg(hw,
2784                                 GG82563_PHY_SPEC_CTRL_2, phy_data);
2785
2786                 if (ret_val)
2787                         return ret_val;
2788
2789                 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2790                 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2791                 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2792
2793                 ret_val = e1000_read_phy_reg(hw,
2794                                 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2795                 if (ret_val)
2796                         return ret_val;
2797
2798         /* Do not init these registers when the HW is in IAMT mode, since the
2799          * firmware will have already initialized them.  We only initialize
2800          * them if the HW is not in IAMT mode.
2801          */
2802                 if (e1000_check_mng_mode(hw) == false) {
2803                         /* Enable Electrical Idle on the PHY */
2804                         phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2805                         ret_val = e1000_write_phy_reg(hw,
2806                                         GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2807                         if (ret_val)
2808                                 return ret_val;
2809
2810                         ret_val = e1000_read_phy_reg(hw,
2811                                         GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2812                         if (ret_val)
2813                                 return ret_val;
2814
2815                         phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2816                         ret_val = e1000_write_phy_reg(hw,
2817                                         GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2818
2819                         if (ret_val)
2820                                 return ret_val;
2821                 }
2822
2823                 /* Workaround: Disable padding in Kumeran interface in the MAC
2824                  * and in the PHY to avoid CRC errors.
2825                  */
2826                 ret_val = e1000_read_phy_reg(hw,
2827                                 GG82563_PHY_INBAND_CTRL, &phy_data);
2828                 if (ret_val)
2829                         return ret_val;
2830                 phy_data |= GG82563_ICR_DIS_PADDING;
2831                 ret_val = e1000_write_phy_reg(hw,
2832                                 GG82563_PHY_INBAND_CTRL, phy_data);
2833                 if (ret_val)
2834                         return ret_val;
2835         }
2836         return E1000_SUCCESS;
2837 }
2838
2839 /********************************************************************
2840 * Copper link setup for e1000_phy_m88 series.
2841 *
2842 * hw - Struct containing variables accessed by shared code
2843 *********************************************************************/
2844 static int32_t
2845 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2846 {
2847         int32_t ret_val;
2848         uint16_t phy_data;
2849
2850         DEBUGFUNC();
2851
2852         if (hw->phy_reset_disable)
2853                 return E1000_SUCCESS;
2854
2855         /* Enable CRS on TX. This must be set for half-duplex operation. */
2856         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2857         if (ret_val)
2858                 return ret_val;
2859
2860         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2861
2862         /* Options:
2863          *   MDI/MDI-X = 0 (default)
2864          *   0 - Auto for all speeds
2865          *   1 - MDI mode
2866          *   2 - MDI-X mode
2867          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2868          */
2869         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2870
2871         switch (hw->mdix) {
2872         case 1:
2873                 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2874                 break;
2875         case 2:
2876                 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2877                 break;
2878         case 3:
2879                 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2880                 break;
2881         case 0:
2882         default:
2883                 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2884                 break;
2885         }
2886
2887         /* Options:
2888          *   disable_polarity_correction = 0 (default)
2889          *       Automatic Correction for Reversed Cable Polarity
2890          *   0 - Disabled
2891          *   1 - Enabled
2892          */
2893         phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2894         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2895         if (ret_val)
2896                 return ret_val;
2897
2898         if (hw->phy_revision < M88E1011_I_REV_4) {
2899                 /* Force TX_CLK in the Extended PHY Specific Control Register
2900                  * to 25MHz clock.
2901                  */
2902                 ret_val = e1000_read_phy_reg(hw,
2903                                 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2904                 if (ret_val)
2905                         return ret_val;
2906
2907                 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2908
2909                 if ((hw->phy_revision == E1000_REVISION_2) &&
2910                         (hw->phy_id == M88E1111_I_PHY_ID)) {
2911                         /* Vidalia Phy, set the downshift counter to 5x */
2912                         phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2913                         phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2914                         ret_val = e1000_write_phy_reg(hw,
2915                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2916                         if (ret_val)
2917                                 return ret_val;
2918                 } else {
2919                         /* Configure Master and Slave downshift values */
2920                         phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2921                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2922                         phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2923                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2924                         ret_val = e1000_write_phy_reg(hw,
2925                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2926                         if (ret_val)
2927                                 return ret_val;
2928                 }
2929         }
2930
2931         /* SW Reset the PHY so all changes take effect */
2932         ret_val = e1000_phy_reset(hw);
2933         if (ret_val) {
2934                 DEBUGOUT("Error Resetting the PHY\n");
2935                 return ret_val;
2936         }
2937
2938         return E1000_SUCCESS;
2939 }
2940
2941 /********************************************************************
2942 * Setup auto-negotiation and flow control advertisements,
2943 * and then perform auto-negotiation.
2944 *
2945 * hw - Struct containing variables accessed by shared code
2946 *********************************************************************/
2947 static int32_t
2948 e1000_copper_link_autoneg(struct e1000_hw *hw)
2949 {
2950         int32_t ret_val;
2951         uint16_t phy_data;
2952
2953         DEBUGFUNC();
2954
2955         /* Perform some bounds checking on the hw->autoneg_advertised
2956          * parameter.  If this variable is zero, then set it to the default.
2957          */
2958         hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2959
2960         /* If autoneg_advertised is zero, we assume it was not defaulted
2961          * by the calling code so we set to advertise full capability.
2962          */
2963         if (hw->autoneg_advertised == 0)
2964                 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2965
2966         /* IFE phy only supports 10/100 */
2967         if (hw->phy_type == e1000_phy_ife)
2968                 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2969
2970         DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2971         ret_val = e1000_phy_setup_autoneg(hw);
2972         if (ret_val) {
2973                 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2974                 return ret_val;
2975         }
2976         DEBUGOUT("Restarting Auto-Neg\n");
2977
2978         /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2979          * the Auto Neg Restart bit in the PHY control register.
2980          */
2981         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2982         if (ret_val)
2983                 return ret_val;
2984
2985         phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2986         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2987         if (ret_val)
2988                 return ret_val;
2989
2990         /* Does the user want to wait for Auto-Neg to complete here, or
2991          * check at a later time (for example, callback routine).
2992          */
2993         /* If we do not wait for autonegtation to complete I
2994          * do not see a valid link status.
2995          * wait_autoneg_complete = 1 .
2996          */
2997         if (hw->wait_autoneg_complete) {
2998                 ret_val = e1000_wait_autoneg(hw);
2999                 if (ret_val) {
3000                         DEBUGOUT("Error while waiting for autoneg"
3001                                         "to complete\n");
3002                         return ret_val;
3003                 }
3004         }
3005
3006         hw->get_link_status = true;
3007
3008         return E1000_SUCCESS;
3009 }
3010
3011 /******************************************************************************
3012 * Config the MAC and the PHY after link is up.
3013 *   1) Set up the MAC to the current PHY speed/duplex
3014 *      if we are on 82543.  If we
3015 *      are on newer silicon, we only need to configure
3016 *      collision distance in the Transmit Control Register.
3017 *   2) Set up flow control on the MAC to that established with
3018 *      the link partner.
3019 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
3020 *
3021 * hw - Struct containing variables accessed by shared code
3022 ******************************************************************************/
3023 static int32_t
3024 e1000_copper_link_postconfig(struct e1000_hw *hw)
3025 {
3026         int32_t ret_val;
3027         DEBUGFUNC();
3028
3029         if (hw->mac_type >= e1000_82544) {
3030                 e1000_config_collision_dist(hw);
3031         } else {
3032                 ret_val = e1000_config_mac_to_phy(hw);
3033                 if (ret_val) {
3034                         DEBUGOUT("Error configuring MAC to PHY settings\n");
3035                         return ret_val;
3036                 }
3037         }
3038         ret_val = e1000_config_fc_after_link_up(hw);
3039         if (ret_val) {
3040                 DEBUGOUT("Error Configuring Flow Control\n");
3041                 return ret_val;
3042         }
3043         return E1000_SUCCESS;
3044 }
3045
3046 /******************************************************************************
3047 * Detects which PHY is present and setup the speed and duplex
3048 *
3049 * hw - Struct containing variables accessed by shared code
3050 ******************************************************************************/
3051 static int
3052 e1000_setup_copper_link(struct eth_device *nic)
3053 {
3054         struct e1000_hw *hw = nic->priv;
3055         int32_t ret_val;
3056         uint16_t i;
3057         uint16_t phy_data;
3058         uint16_t reg_data;
3059
3060         DEBUGFUNC();
3061
3062         switch (hw->mac_type) {
3063         case e1000_80003es2lan:
3064         case e1000_ich8lan:
3065                 /* Set the mac to wait the maximum time between each
3066                  * iteration and increase the max iterations when
3067                  * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3068                 ret_val = e1000_write_kmrn_reg(hw,
3069                                 GG82563_REG(0x34, 4), 0xFFFF);
3070                 if (ret_val)
3071                         return ret_val;
3072                 ret_val = e1000_read_kmrn_reg(hw,
3073                                 GG82563_REG(0x34, 9), &reg_data);
3074                 if (ret_val)
3075                         return ret_val;
3076                 reg_data |= 0x3F;
3077                 ret_val = e1000_write_kmrn_reg(hw,
3078                                 GG82563_REG(0x34, 9), reg_data);
3079                 if (ret_val)
3080                         return ret_val;
3081         default:
3082                 break;
3083         }
3084
3085         /* Check if it is a valid PHY and set PHY mode if necessary. */
3086         ret_val = e1000_copper_link_preconfig(hw);
3087         if (ret_val)
3088                 return ret_val;
3089         switch (hw->mac_type) {
3090         case e1000_80003es2lan:
3091                 /* Kumeran registers are written-only */
3092                 reg_data =
3093                 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3094                 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3095                 ret_val = e1000_write_kmrn_reg(hw,
3096                                 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3097                 if (ret_val)
3098                         return ret_val;
3099                 break;
3100         default:
3101                 break;
3102         }
3103
3104         if (hw->phy_type == e1000_phy_igp ||
3105                 hw->phy_type == e1000_phy_igp_3 ||
3106                 hw->phy_type == e1000_phy_igp_2) {
3107                 ret_val = e1000_copper_link_igp_setup(hw);
3108                 if (ret_val)
3109                         return ret_val;
3110         } else if (hw->phy_type == e1000_phy_m88 ||
3111                 hw->phy_type == e1000_phy_igb) {
3112                 ret_val = e1000_copper_link_mgp_setup(hw);
3113                 if (ret_val)
3114                         return ret_val;
3115         } else if (hw->phy_type == e1000_phy_gg82563) {
3116                 ret_val = e1000_copper_link_ggp_setup(hw);
3117                 if (ret_val)
3118                         return ret_val;
3119         }
3120
3121         /* always auto */
3122         /* Setup autoneg and flow control advertisement
3123           * and perform autonegotiation */
3124         ret_val = e1000_copper_link_autoneg(hw);
3125         if (ret_val)
3126                 return ret_val;
3127
3128         /* Check link status. Wait up to 100 microseconds for link to become
3129          * valid.
3130          */
3131         for (i = 0; i < 10; i++) {
3132                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3133                 if (ret_val)
3134                         return ret_val;
3135                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3136                 if (ret_val)
3137                         return ret_val;
3138
3139                 if (phy_data & MII_SR_LINK_STATUS) {
3140                         /* Config the MAC and PHY after link is up */
3141                         ret_val = e1000_copper_link_postconfig(hw);
3142                         if (ret_val)
3143                                 return ret_val;
3144
3145                         DEBUGOUT("Valid link established!!!\n");
3146                         return E1000_SUCCESS;
3147                 }
3148                 udelay(10);
3149         }
3150
3151         DEBUGOUT("Unable to establish link!!!\n");
3152         return E1000_SUCCESS;
3153 }
3154
3155 /******************************************************************************
3156 * Configures PHY autoneg and flow control advertisement settings
3157 *
3158 * hw - Struct containing variables accessed by shared code
3159 ******************************************************************************/
3160 int32_t
3161 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3162 {
3163         int32_t ret_val;
3164         uint16_t mii_autoneg_adv_reg;
3165         uint16_t mii_1000t_ctrl_reg;
3166
3167         DEBUGFUNC();
3168
3169         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3170         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3171         if (ret_val)
3172                 return ret_val;
3173
3174         if (hw->phy_type != e1000_phy_ife) {
3175                 /* Read the MII 1000Base-T Control Register (Address 9). */
3176                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3177                                 &mii_1000t_ctrl_reg);
3178                 if (ret_val)
3179                         return ret_val;
3180         } else
3181                 mii_1000t_ctrl_reg = 0;
3182
3183         /* Need to parse both autoneg_advertised and fc and set up
3184          * the appropriate PHY registers.  First we will parse for
3185          * autoneg_advertised software override.  Since we can advertise
3186          * a plethora of combinations, we need to check each bit
3187          * individually.
3188          */
3189
3190         /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3191          * Advertisement Register (Address 4) and the 1000 mb speed bits in
3192          * the  1000Base-T Control Register (Address 9).
3193          */
3194         mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3195         mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3196
3197         DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3198
3199         /* Do we want to advertise 10 Mb Half Duplex? */
3200         if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3201                 DEBUGOUT("Advertise 10mb Half duplex\n");
3202                 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3203         }
3204
3205         /* Do we want to advertise 10 Mb Full Duplex? */
3206         if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3207                 DEBUGOUT("Advertise 10mb Full duplex\n");
3208                 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3209         }
3210
3211         /* Do we want to advertise 100 Mb Half Duplex? */
3212         if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3213                 DEBUGOUT("Advertise 100mb Half duplex\n");
3214                 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3215         }
3216
3217         /* Do we want to advertise 100 Mb Full Duplex? */
3218         if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3219                 DEBUGOUT("Advertise 100mb Full duplex\n");
3220                 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3221         }
3222
3223         /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3224         if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3225                 DEBUGOUT
3226                     ("Advertise 1000mb Half duplex requested, request denied!\n");
3227         }
3228
3229         /* Do we want to advertise 1000 Mb Full Duplex? */
3230         if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3231                 DEBUGOUT("Advertise 1000mb Full duplex\n");
3232                 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3233         }
3234
3235         /* Check for a software override of the flow control settings, and
3236          * setup the PHY advertisement registers accordingly.  If
3237          * auto-negotiation is enabled, then software will have to set the
3238          * "PAUSE" bits to the correct value in the Auto-Negotiation
3239          * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3240          *
3241          * The possible values of the "fc" parameter are:
3242          *      0:  Flow control is completely disabled
3243          *      1:  Rx flow control is enabled (we can receive pause frames
3244          *          but not send pause frames).
3245          *      2:  Tx flow control is enabled (we can send pause frames
3246          *          but we do not support receiving pause frames).
3247          *      3:  Both Rx and TX flow control (symmetric) are enabled.
3248          *  other:  No software override.  The flow control configuration
3249          *          in the EEPROM is used.
3250          */
3251         switch (hw->fc) {
3252         case e1000_fc_none:     /* 0 */
3253                 /* Flow control (RX & TX) is completely disabled by a
3254                  * software over-ride.
3255                  */
3256                 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3257                 break;
3258         case e1000_fc_rx_pause: /* 1 */
3259                 /* RX Flow control is enabled, and TX Flow control is
3260                  * disabled, by a software over-ride.
3261                  */
3262                 /* Since there really isn't a way to advertise that we are
3263                  * capable of RX Pause ONLY, we will advertise that we
3264                  * support both symmetric and asymmetric RX PAUSE.  Later
3265                  * (in e1000_config_fc_after_link_up) we will disable the
3266                  *hw's ability to send PAUSE frames.
3267                  */
3268                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3269                 break;
3270         case e1000_fc_tx_pause: /* 2 */
3271                 /* TX Flow control is enabled, and RX Flow control is
3272                  * disabled, by a software over-ride.
3273                  */
3274                 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3275                 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3276                 break;
3277         case e1000_fc_full:     /* 3 */
3278                 /* Flow control (both RX and TX) is enabled by a software
3279                  * over-ride.
3280                  */
3281                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3282                 break;
3283         default:
3284                 DEBUGOUT("Flow control param set incorrectly\n");
3285                 return -E1000_ERR_CONFIG;
3286         }
3287
3288         ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3289         if (ret_val)
3290                 return ret_val;
3291
3292         DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3293
3294         if (hw->phy_type != e1000_phy_ife) {
3295                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3296                                 mii_1000t_ctrl_reg);
3297                 if (ret_val)
3298                         return ret_val;
3299         }
3300
3301         return E1000_SUCCESS;
3302 }
3303
3304 /******************************************************************************
3305 * Sets the collision distance in the Transmit Control register
3306 *
3307 * hw - Struct containing variables accessed by shared code
3308 *
3309 * Link should have been established previously. Reads the speed and duplex
3310 * information from the Device Status register.
3311 ******************************************************************************/
3312 static void
3313 e1000_config_collision_dist(struct e1000_hw *hw)
3314 {
3315         uint32_t tctl, coll_dist;
3316
3317         DEBUGFUNC();
3318
3319         if (hw->mac_type < e1000_82543)
3320                 coll_dist = E1000_COLLISION_DISTANCE_82542;
3321         else
3322                 coll_dist = E1000_COLLISION_DISTANCE;
3323
3324         tctl = E1000_READ_REG(hw, TCTL);
3325
3326         tctl &= ~E1000_TCTL_COLD;
3327         tctl |= coll_dist << E1000_COLD_SHIFT;
3328
3329         E1000_WRITE_REG(hw, TCTL, tctl);
3330         E1000_WRITE_FLUSH(hw);
3331 }
3332
3333 /******************************************************************************
3334 * Sets MAC speed and duplex settings to reflect the those in the PHY
3335 *
3336 * hw - Struct containing variables accessed by shared code
3337 * mii_reg - data to write to the MII control register
3338 *
3339 * The contents of the PHY register containing the needed information need to
3340 * be passed in.
3341 ******************************************************************************/
3342 static int
3343 e1000_config_mac_to_phy(struct e1000_hw *hw)
3344 {
3345         uint32_t ctrl;
3346         uint16_t phy_data;
3347
3348         DEBUGFUNC();
3349
3350         /* Read the Device Control Register and set the bits to Force Speed
3351          * and Duplex.
3352          */
3353         ctrl = E1000_READ_REG(hw, CTRL);
3354         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3355         ctrl &= ~(E1000_CTRL_ILOS);
3356         ctrl |= (E1000_CTRL_SPD_SEL);
3357
3358         /* Set up duplex in the Device Control and Transmit Control
3359          * registers depending on negotiated values.
3360          */
3361         if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3362                 DEBUGOUT("PHY Read Error\n");
3363                 return -E1000_ERR_PHY;
3364         }
3365         if (phy_data & M88E1000_PSSR_DPLX)
3366                 ctrl |= E1000_CTRL_FD;
3367         else
3368                 ctrl &= ~E1000_CTRL_FD;
3369
3370         e1000_config_collision_dist(hw);
3371
3372         /* Set up speed in the Device Control register depending on
3373          * negotiated values.
3374          */
3375         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3376                 ctrl |= E1000_CTRL_SPD_1000;
3377         else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3378                 ctrl |= E1000_CTRL_SPD_100;
3379         /* Write the configured values back to the Device Control Reg. */
3380         E1000_WRITE_REG(hw, CTRL, ctrl);
3381         return 0;
3382 }
3383
3384 /******************************************************************************
3385  * Forces the MAC's flow control settings.
3386  *
3387  * hw - Struct containing variables accessed by shared code
3388  *
3389  * Sets the TFCE and RFCE bits in the device control register to reflect
3390  * the adapter settings. TFCE and RFCE need to be explicitly set by
3391  * software when a Copper PHY is used because autonegotiation is managed
3392  * by the PHY rather than the MAC. Software must also configure these
3393  * bits when link is forced on a fiber connection.
3394  *****************************************************************************/
3395 static int
3396 e1000_force_mac_fc(struct e1000_hw *hw)
3397 {
3398         uint32_t ctrl;
3399
3400         DEBUGFUNC();
3401
3402         /* Get the current configuration of the Device Control Register */
3403         ctrl = E1000_READ_REG(hw, CTRL);
3404
3405         /* Because we didn't get link via the internal auto-negotiation
3406          * mechanism (we either forced link or we got link via PHY
3407          * auto-neg), we have to manually enable/disable transmit an
3408          * receive flow control.
3409          *
3410          * The "Case" statement below enables/disable flow control
3411          * according to the "hw->fc" parameter.
3412          *
3413          * The possible values of the "fc" parameter are:
3414          *      0:  Flow control is completely disabled
3415          *      1:  Rx flow control is enabled (we can receive pause
3416          *          frames but not send pause frames).
3417          *      2:  Tx flow control is enabled (we can send pause frames
3418          *          frames but we do not receive pause frames).
3419          *      3:  Both Rx and TX flow control (symmetric) is enabled.
3420          *  other:  No other values should be possible at this point.
3421          */
3422
3423         switch (hw->fc) {
3424         case e1000_fc_none:
3425                 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3426                 break;
3427         case e1000_fc_rx_pause:
3428                 ctrl &= (~E1000_CTRL_TFCE);
3429                 ctrl |= E1000_CTRL_RFCE;
3430                 break;
3431         case e1000_fc_tx_pause:
3432                 ctrl &= (~E1000_CTRL_RFCE);
3433                 ctrl |= E1000_CTRL_TFCE;
3434                 break;
3435         case e1000_fc_full:
3436                 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3437                 break;
3438         default:
3439                 DEBUGOUT("Flow control param set incorrectly\n");
3440                 return -E1000_ERR_CONFIG;
3441         }
3442
3443         /* Disable TX Flow Control for 82542 (rev 2.0) */
3444         if (hw->mac_type == e1000_82542_rev2_0)
3445                 ctrl &= (~E1000_CTRL_TFCE);
3446
3447         E1000_WRITE_REG(hw, CTRL, ctrl);
3448         return 0;
3449 }
3450
3451 /******************************************************************************
3452  * Configures flow control settings after link is established
3453  *
3454  * hw - Struct containing variables accessed by shared code
3455  *
3456  * Should be called immediately after a valid link has been established.
3457  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3458  * and autonegotiation is enabled, the MAC flow control settings will be set
3459  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3460  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3461  *****************************************************************************/
3462 static int32_t
3463 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3464 {
3465         int32_t ret_val;
3466         uint16_t mii_status_reg;
3467         uint16_t mii_nway_adv_reg;
3468         uint16_t mii_nway_lp_ability_reg;
3469         uint16_t speed;
3470         uint16_t duplex;
3471
3472         DEBUGFUNC();
3473
3474         /* Check for the case where we have fiber media and auto-neg failed
3475          * so we had to force link.  In this case, we need to force the
3476          * configuration of the MAC to match the "fc" parameter.
3477          */
3478         if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3479                 || ((hw->media_type == e1000_media_type_internal_serdes)
3480                 && (hw->autoneg_failed))
3481                 || ((hw->media_type == e1000_media_type_copper)
3482                 && (!hw->autoneg))) {
3483                 ret_val = e1000_force_mac_fc(hw);
3484                 if (ret_val < 0) {
3485                         DEBUGOUT("Error forcing flow control settings\n");
3486                         return ret_val;
3487                 }
3488         }
3489
3490         /* Check for the case where we have copper media and auto-neg is
3491          * enabled.  In this case, we need to check and see if Auto-Neg
3492          * has completed, and if so, how the PHY and link partner has
3493          * flow control configured.
3494          */
3495         if (hw->media_type == e1000_media_type_copper) {
3496                 /* Read the MII Status Register and check to see if AutoNeg
3497                  * has completed.  We read this twice because this reg has
3498                  * some "sticky" (latched) bits.
3499                  */
3500                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3501                         DEBUGOUT("PHY Read Error\n");
3502                         return -E1000_ERR_PHY;
3503                 }
3504                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3505                         DEBUGOUT("PHY Read Error\n");
3506                         return -E1000_ERR_PHY;
3507                 }
3508
3509                 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3510                         /* The AutoNeg process has completed, so we now need to
3511                          * read both the Auto Negotiation Advertisement Register
3512                          * (Address 4) and the Auto_Negotiation Base Page Ability
3513                          * Register (Address 5) to determine how flow control was
3514                          * negotiated.
3515                          */
3516                         if (e1000_read_phy_reg
3517                             (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3518                                 DEBUGOUT("PHY Read Error\n");
3519                                 return -E1000_ERR_PHY;
3520                         }
3521                         if (e1000_read_phy_reg
3522                             (hw, PHY_LP_ABILITY,
3523                              &mii_nway_lp_ability_reg) < 0) {
3524                                 DEBUGOUT("PHY Read Error\n");
3525                                 return -E1000_ERR_PHY;
3526                         }
3527
3528                         /* Two bits in the Auto Negotiation Advertisement Register
3529                          * (Address 4) and two bits in the Auto Negotiation Base
3530                          * Page Ability Register (Address 5) determine flow control
3531                          * for both the PHY and the link partner.  The following
3532                          * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3533                          * 1999, describes these PAUSE resolution bits and how flow
3534                          * control is determined based upon these settings.
3535                          * NOTE:  DC = Don't Care
3536                          *
3537                          *   LOCAL DEVICE  |   LINK PARTNER
3538                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3539                          *-------|---------|-------|---------|--------------------
3540                          *   0   |    0    |  DC   |   DC    | e1000_fc_none
3541                          *   0   |    1    |   0   |   DC    | e1000_fc_none
3542                          *   0   |    1    |   1   |    0    | e1000_fc_none
3543                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3544                          *   1   |    0    |   0   |   DC    | e1000_fc_none
3545                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3546                          *   1   |    1    |   0   |    0    | e1000_fc_none
3547                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3548                          *
3549                          */
3550                         /* Are both PAUSE bits set to 1?  If so, this implies
3551                          * Symmetric Flow Control is enabled at both ends.  The
3552                          * ASM_DIR bits are irrelevant per the spec.
3553                          *
3554                          * For Symmetric Flow Control:
3555                          *
3556                          *   LOCAL DEVICE  |   LINK PARTNER
3557                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3558                          *-------|---------|-------|---------|--------------------
3559                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3560                          *
3561                          */
3562                         if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3563                             (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3564                                 /* Now we need to check if the user selected RX ONLY
3565                                  * of pause frames.  In this case, we had to advertise
3566                                  * FULL flow control because we could not advertise RX
3567                                  * ONLY. Hence, we must now check to see if we need to
3568                                  * turn OFF  the TRANSMISSION of PAUSE frames.
3569                                  */
3570                                 if (hw->original_fc == e1000_fc_full) {
3571                                         hw->fc = e1000_fc_full;
3572                                         DEBUGOUT("Flow Control = FULL.\r\n");
3573                                 } else {
3574                                         hw->fc = e1000_fc_rx_pause;
3575                                         DEBUGOUT
3576                                             ("Flow Control = RX PAUSE frames only.\r\n");
3577                                 }
3578                         }
3579                         /* For receiving PAUSE frames ONLY.
3580                          *
3581                          *   LOCAL DEVICE  |   LINK PARTNER
3582                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3583                          *-------|---------|-------|---------|--------------------
3584                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3585                          *
3586                          */
3587                         else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3588                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3589                                  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3590                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3591                         {
3592                                 hw->fc = e1000_fc_tx_pause;
3593                                 DEBUGOUT
3594                                     ("Flow Control = TX PAUSE frames only.\r\n");
3595                         }
3596                         /* For transmitting PAUSE frames ONLY.
3597                          *
3598                          *   LOCAL DEVICE  |   LINK PARTNER
3599                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3600                          *-------|---------|-------|---------|--------------------
3601                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3602                          *
3603                          */
3604                         else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3605                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3606                                  !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3607                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3608                         {
3609                                 hw->fc = e1000_fc_rx_pause;
3610                                 DEBUGOUT
3611                                     ("Flow Control = RX PAUSE frames only.\r\n");
3612                         }
3613                         /* Per the IEEE spec, at this point flow control should be
3614                          * disabled.  However, we want to consider that we could
3615                          * be connected to a legacy switch that doesn't advertise
3616                          * desired flow control, but can be forced on the link
3617                          * partner.  So if we advertised no flow control, that is
3618                          * what we will resolve to.  If we advertised some kind of
3619                          * receive capability (Rx Pause Only or Full Flow Control)
3620                          * and the link partner advertised none, we will configure
3621                          * ourselves to enable Rx Flow Control only.  We can do
3622                          * this safely for two reasons:  If the link partner really
3623                          * didn't want flow control enabled, and we enable Rx, no
3624                          * harm done since we won't be receiving any PAUSE frames
3625                          * anyway.  If the intent on the link partner was to have
3626                          * flow control enabled, then by us enabling RX only, we
3627                          * can at least receive pause frames and process them.
3628                          * This is a good idea because in most cases, since we are
3629                          * predominantly a server NIC, more times than not we will
3630                          * be asked to delay transmission of packets than asking
3631                          * our link partner to pause transmission of frames.
3632                          */
3633                         else if (hw->original_fc == e1000_fc_none ||
3634                                  hw->original_fc == e1000_fc_tx_pause) {
3635                                 hw->fc = e1000_fc_none;
3636                                 DEBUGOUT("Flow Control = NONE.\r\n");
3637                         } else {
3638                                 hw->fc = e1000_fc_rx_pause;
3639                                 DEBUGOUT
3640                                     ("Flow Control = RX PAUSE frames only.\r\n");
3641                         }
3642
3643                         /* Now we need to do one last check...  If we auto-
3644                          * negotiated to HALF DUPLEX, flow control should not be
3645                          * enabled per IEEE 802.3 spec.
3646                          */
3647                         e1000_get_speed_and_duplex(hw, &speed, &duplex);
3648
3649                         if (duplex == HALF_DUPLEX)
3650                                 hw->fc = e1000_fc_none;
3651
3652                         /* Now we call a subroutine to actually force the MAC
3653                          * controller to use the correct flow control settings.
3654                          */
3655                         ret_val = e1000_force_mac_fc(hw);
3656                         if (ret_val < 0) {
3657                                 DEBUGOUT
3658                                     ("Error forcing flow control settings\n");
3659                                 return ret_val;
3660                         }
3661                 } else {
3662                         DEBUGOUT
3663                             ("Copper PHY and Auto Neg has not completed.\r\n");
3664                 }
3665         }
3666         return E1000_SUCCESS;
3667 }
3668
3669 /******************************************************************************
3670  * Checks to see if the link status of the hardware has changed.
3671  *
3672  * hw - Struct containing variables accessed by shared code
3673  *
3674  * Called by any function that needs to check the link status of the adapter.
3675  *****************************************************************************/
3676 static int
3677 e1000_check_for_link(struct eth_device *nic)
3678 {
3679         struct e1000_hw *hw = nic->priv;
3680         uint32_t rxcw;
3681         uint32_t ctrl;
3682         uint32_t status;
3683         uint32_t rctl;
3684         uint32_t signal;
3685         int32_t ret_val;
3686         uint16_t phy_data;
3687         uint16_t lp_capability;
3688
3689         DEBUGFUNC();
3690
3691         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3692          * set when the optics detect a signal. On older adapters, it will be
3693          * cleared when there is a signal
3694          */
3695         ctrl = E1000_READ_REG(hw, CTRL);
3696         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3697                 signal = E1000_CTRL_SWDPIN1;
3698         else
3699                 signal = 0;
3700
3701         status = E1000_READ_REG(hw, STATUS);
3702         rxcw = E1000_READ_REG(hw, RXCW);
3703         DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3704
3705         /* If we have a copper PHY then we only want to go out to the PHY
3706          * registers to see if Auto-Neg has completed and/or if our link
3707          * status has changed.  The get_link_status flag will be set if we
3708          * receive a Link Status Change interrupt or we have Rx Sequence
3709          * Errors.
3710          */
3711         if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3712                 /* First we want to see if the MII Status Register reports
3713                  * link.  If so, then we want to get the current speed/duplex
3714                  * of the PHY.
3715                  * Read the register twice since the link bit is sticky.
3716                  */
3717                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3718                         DEBUGOUT("PHY Read Error\n");
3719                         return -E1000_ERR_PHY;
3720                 }
3721                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3722                         DEBUGOUT("PHY Read Error\n");
3723                         return -E1000_ERR_PHY;
3724                 }
3725
3726                 if (phy_data & MII_SR_LINK_STATUS) {
3727                         hw->get_link_status = false;
3728                 } else {
3729                         /* No link detected */
3730                         return -E1000_ERR_NOLINK;
3731                 }
3732
3733                 /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3734                  * have Si on board that is 82544 or newer, Auto
3735                  * Speed Detection takes care of MAC speed/duplex
3736                  * configuration.  So we only need to configure Collision
3737                  * Distance in the MAC.  Otherwise, we need to force
3738                  * speed/duplex on the MAC to the current PHY speed/duplex
3739                  * settings.
3740                  */
3741                 if (hw->mac_type >= e1000_82544)
3742                         e1000_config_collision_dist(hw);
3743                 else {
3744                         ret_val = e1000_config_mac_to_phy(hw);
3745                         if (ret_val < 0) {
3746                                 DEBUGOUT
3747                                     ("Error configuring MAC to PHY settings\n");
3748                                 return ret_val;
3749                         }
3750                 }
3751
3752                 /* Configure Flow Control now that Auto-Neg has completed. First, we
3753                  * need to restore the desired flow control settings because we may
3754                  * have had to re-autoneg with a different link partner.
3755                  */
3756                 ret_val = e1000_config_fc_after_link_up(hw);
3757                 if (ret_val < 0) {
3758                         DEBUGOUT("Error configuring flow control\n");
3759                         return ret_val;
3760                 }
3761
3762                 /* At this point we know that we are on copper and we have
3763                  * auto-negotiated link.  These are conditions for checking the link
3764                  * parter capability register.  We use the link partner capability to
3765                  * determine if TBI Compatibility needs to be turned on or off.  If
3766                  * the link partner advertises any speed in addition to Gigabit, then
3767                  * we assume that they are GMII-based, and TBI compatibility is not
3768                  * needed. If no other speeds are advertised, we assume the link
3769                  * partner is TBI-based, and we turn on TBI Compatibility.
3770                  */
3771                 if (hw->tbi_compatibility_en) {
3772                         if (e1000_read_phy_reg
3773                             (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3774                                 DEBUGOUT("PHY Read Error\n");
3775                                 return -E1000_ERR_PHY;
3776                         }
3777                         if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3778                                              NWAY_LPAR_10T_FD_CAPS |
3779                                              NWAY_LPAR_100TX_HD_CAPS |
3780                                              NWAY_LPAR_100TX_FD_CAPS |
3781                                              NWAY_LPAR_100T4_CAPS)) {
3782                                 /* If our link partner advertises anything in addition to
3783                                  * gigabit, we do not need to enable TBI compatibility.
3784                                  */
3785                                 if (hw->tbi_compatibility_on) {
3786                                         /* If we previously were in the mode, turn it off. */
3787                                         rctl = E1000_READ_REG(hw, RCTL);
3788                                         rctl &= ~E1000_RCTL_SBP;
3789                                         E1000_WRITE_REG(hw, RCTL, rctl);
3790                                         hw->tbi_compatibility_on = false;
3791                                 }
3792                         } else {
3793                                 /* If TBI compatibility is was previously off, turn it on. For
3794                                  * compatibility with a TBI link partner, we will store bad
3795                                  * packets. Some frames have an additional byte on the end and
3796                                  * will look like CRC errors to to the hardware.
3797                                  */
3798                                 if (!hw->tbi_compatibility_on) {
3799                                         hw->tbi_compatibility_on = true;
3800                                         rctl = E1000_READ_REG(hw, RCTL);
3801                                         rctl |= E1000_RCTL_SBP;
3802                                         E1000_WRITE_REG(hw, RCTL, rctl);
3803                                 }
3804                         }
3805                 }
3806         }
3807         /* If we don't have link (auto-negotiation failed or link partner cannot
3808          * auto-negotiate), the cable is plugged in (we have signal), and our
3809          * link partner is not trying to auto-negotiate with us (we are receiving
3810          * idles or data), we need to force link up. We also need to give
3811          * auto-negotiation time to complete, in case the cable was just plugged
3812          * in. The autoneg_failed flag does this.
3813          */
3814         else if ((hw->media_type == e1000_media_type_fiber) &&
3815                  (!(status & E1000_STATUS_LU)) &&
3816                  ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3817                  (!(rxcw & E1000_RXCW_C))) {
3818                 if (hw->autoneg_failed == 0) {
3819                         hw->autoneg_failed = 1;
3820                         return 0;
3821                 }
3822                 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3823
3824                 /* Disable auto-negotiation in the TXCW register */
3825                 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3826
3827                 /* Force link-up and also force full-duplex. */
3828                 ctrl = E1000_READ_REG(hw, CTRL);
3829                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3830                 E1000_WRITE_REG(hw, CTRL, ctrl);
3831
3832                 /* Configure Flow Control after forcing link up. */
3833                 ret_val = e1000_config_fc_after_link_up(hw);
3834                 if (ret_val < 0) {
3835                         DEBUGOUT("Error configuring flow control\n");
3836                         return ret_val;
3837                 }
3838         }
3839         /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3840          * auto-negotiation in the TXCW register and disable forced link in the
3841          * Device Control register in an attempt to auto-negotiate with our link
3842          * partner.
3843          */
3844         else if ((hw->media_type == e1000_media_type_fiber) &&
3845                  (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3846                 DEBUGOUT
3847                     ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3848                 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3849                 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3850         }
3851         return 0;
3852 }
3853
3854 /******************************************************************************
3855 * Configure the MAC-to-PHY interface for 10/100Mbps
3856 *
3857 * hw - Struct containing variables accessed by shared code
3858 ******************************************************************************/
3859 static int32_t
3860 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3861 {
3862         int32_t ret_val = E1000_SUCCESS;
3863         uint32_t tipg;
3864         uint16_t reg_data;
3865
3866         DEBUGFUNC();
3867
3868         reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3869         ret_val = e1000_write_kmrn_reg(hw,
3870                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3871         if (ret_val)
3872                 return ret_val;
3873
3874         /* Configure Transmit Inter-Packet Gap */
3875         tipg = E1000_READ_REG(hw, TIPG);
3876         tipg &= ~E1000_TIPG_IPGT_MASK;
3877         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3878         E1000_WRITE_REG(hw, TIPG, tipg);
3879
3880         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3881
3882         if (ret_val)
3883                 return ret_val;
3884
3885         if (duplex == HALF_DUPLEX)
3886                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3887         else
3888                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3889
3890         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3891
3892         return ret_val;
3893 }
3894
3895 static int32_t
3896 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3897 {
3898         int32_t ret_val = E1000_SUCCESS;
3899         uint16_t reg_data;
3900         uint32_t tipg;
3901
3902         DEBUGFUNC();
3903
3904         reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3905         ret_val = e1000_write_kmrn_reg(hw,
3906                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3907         if (ret_val)
3908                 return ret_val;
3909
3910         /* Configure Transmit Inter-Packet Gap */
3911         tipg = E1000_READ_REG(hw, TIPG);
3912         tipg &= ~E1000_TIPG_IPGT_MASK;
3913         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3914         E1000_WRITE_REG(hw, TIPG, tipg);
3915
3916         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3917
3918         if (ret_val)
3919                 return ret_val;
3920
3921         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3922         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3923
3924         return ret_val;
3925 }
3926
3927 /******************************************************************************
3928  * Detects the current speed and duplex settings of the hardware.
3929  *
3930  * hw - Struct containing variables accessed by shared code
3931  * speed - Speed of the connection
3932  * duplex - Duplex setting of the connection
3933  *****************************************************************************/
3934 static int
3935 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3936                 uint16_t *duplex)
3937 {
3938         uint32_t status;
3939         int32_t ret_val;
3940         uint16_t phy_data;
3941
3942         DEBUGFUNC();
3943
3944         if (hw->mac_type >= e1000_82543) {
3945                 status = E1000_READ_REG(hw, STATUS);
3946                 if (status & E1000_STATUS_SPEED_1000) {
3947                         *speed = SPEED_1000;
3948                         DEBUGOUT("1000 Mbs, ");
3949                 } else if (status & E1000_STATUS_SPEED_100) {
3950                         *speed = SPEED_100;
3951                         DEBUGOUT("100 Mbs, ");
3952                 } else {
3953                         *speed = SPEED_10;
3954                         DEBUGOUT("10 Mbs, ");
3955                 }
3956
3957                 if (status & E1000_STATUS_FD) {
3958                         *duplex = FULL_DUPLEX;
3959                         DEBUGOUT("Full Duplex\r\n");
3960                 } else {
3961                         *duplex = HALF_DUPLEX;
3962                         DEBUGOUT(" Half Duplex\r\n");
3963                 }
3964         } else {
3965                 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3966                 *speed = SPEED_1000;
3967                 *duplex = FULL_DUPLEX;
3968         }
3969
3970         /* IGP01 PHY may advertise full duplex operation after speed downgrade
3971          * even if it is operating at half duplex.  Here we set the duplex
3972          * settings to match the duplex in the link partner's capabilities.
3973          */
3974         if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3975                 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3976                 if (ret_val)
3977                         return ret_val;
3978
3979                 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3980                         *duplex = HALF_DUPLEX;
3981                 else {
3982                         ret_val = e1000_read_phy_reg(hw,
3983                                         PHY_LP_ABILITY, &phy_data);
3984                         if (ret_val)
3985                                 return ret_val;
3986                         if ((*speed == SPEED_100 &&
3987                                 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3988                                 || (*speed == SPEED_10
3989                                 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3990                                 *duplex = HALF_DUPLEX;
3991                 }
3992         }
3993
3994         if ((hw->mac_type == e1000_80003es2lan) &&
3995                 (hw->media_type == e1000_media_type_copper)) {
3996                 if (*speed == SPEED_1000)
3997                         ret_val = e1000_configure_kmrn_for_1000(hw);
3998                 else
3999                         ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
4000                 if (ret_val)
4001                         return ret_val;
4002         }
4003         return E1000_SUCCESS;
4004 }
4005
4006 /******************************************************************************
4007 * Blocks until autoneg completes or times out (~4.5 seconds)
4008 *
4009 * hw - Struct containing variables accessed by shared code
4010 ******************************************************************************/
4011 static int
4012 e1000_wait_autoneg(struct e1000_hw *hw)
4013 {
4014         uint16_t i;
4015         uint16_t phy_data;
4016
4017         DEBUGFUNC();
4018         DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4019
4020         /* We will wait for autoneg to complete or 4.5 seconds to expire. */
4021         for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4022                 /* Read the MII Status Register and wait for Auto-Neg
4023                  * Complete bit to be set.
4024                  */
4025                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4026                         DEBUGOUT("PHY Read Error\n");
4027                         return -E1000_ERR_PHY;
4028                 }
4029                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4030                         DEBUGOUT("PHY Read Error\n");
4031                         return -E1000_ERR_PHY;
4032                 }
4033                 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4034                         DEBUGOUT("Auto-Neg complete.\n");
4035                         return 0;
4036                 }
4037                 mdelay(100);
4038         }
4039         DEBUGOUT("Auto-Neg timedout.\n");
4040         return -E1000_ERR_TIMEOUT;
4041 }
4042
4043 /******************************************************************************
4044 * Raises the Management Data Clock
4045 *
4046 * hw - Struct containing variables accessed by shared code
4047 * ctrl - Device control register's current value
4048 ******************************************************************************/
4049 static void
4050 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4051 {
4052         /* Raise the clock input to the Management Data Clock (by setting the MDC
4053          * bit), and then delay 2 microseconds.
4054          */
4055         E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4056         E1000_WRITE_FLUSH(hw);
4057         udelay(2);
4058 }
4059
4060 /******************************************************************************
4061 * Lowers the Management Data Clock
4062 *
4063 * hw - Struct containing variables accessed by shared code
4064 * ctrl - Device control register's current value
4065 ******************************************************************************/
4066 static void
4067 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4068 {
4069         /* Lower the clock input to the Management Data Clock (by clearing the MDC
4070          * bit), and then delay 2 microseconds.
4071          */
4072         E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4073         E1000_WRITE_FLUSH(hw);
4074         udelay(2);
4075 }
4076
4077 /******************************************************************************
4078 * Shifts data bits out to the PHY
4079 *
4080 * hw - Struct containing variables accessed by shared code
4081 * data - Data to send out to the PHY
4082 * count - Number of bits to shift out
4083 *
4084 * Bits are shifted out in MSB to LSB order.
4085 ******************************************************************************/
4086 static void
4087 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4088 {
4089         uint32_t ctrl;
4090         uint32_t mask;
4091
4092         /* We need to shift "count" number of bits out to the PHY. So, the value
4093          * in the "data" parameter will be shifted out to the PHY one bit at a
4094          * time. In order to do this, "data" must be broken down into bits.
4095          */
4096         mask = 0x01;
4097         mask <<= (count - 1);
4098
4099         ctrl = E1000_READ_REG(hw, CTRL);
4100
4101         /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4102         ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4103
4104         while (mask) {
4105                 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4106                  * then raising and lowering the Management Data Clock. A "0" is
4107                  * shifted out to the PHY by setting the MDIO bit to "0" and then
4108                  * raising and lowering the clock.
4109                  */
4110                 if (data & mask)
4111                         ctrl |= E1000_CTRL_MDIO;
4112                 else
4113                         ctrl &= ~E1000_CTRL_MDIO;
4114
4115                 E1000_WRITE_REG(hw, CTRL, ctrl);
4116                 E1000_WRITE_FLUSH(hw);
4117
4118                 udelay(2);
4119
4120                 e1000_raise_mdi_clk(hw, &ctrl);
4121                 e1000_lower_mdi_clk(hw, &ctrl);
4122
4123                 mask = mask >> 1;
4124         }
4125 }
4126
4127 /******************************************************************************
4128 * Shifts data bits in from the PHY
4129 *
4130 * hw - Struct containing variables accessed by shared code
4131 *
4132 * Bits are shifted in in MSB to LSB order.
4133 ******************************************************************************/
4134 static uint16_t
4135 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4136 {
4137         uint32_t ctrl;
4138         uint16_t data = 0;
4139         uint8_t i;
4140
4141         /* In order to read a register from the PHY, we need to shift in a total
4142          * of 18 bits from the PHY. The first two bit (turnaround) times are used
4143          * to avoid contention on the MDIO pin when a read operation is performed.
4144          * These two bits are ignored by us and thrown away. Bits are "shifted in"
4145          * by raising the input to the Management Data Clock (setting the MDC bit),
4146          * and then reading the value of the MDIO bit.
4147          */
4148         ctrl = E1000_READ_REG(hw, CTRL);
4149
4150         /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4151         ctrl &= ~E1000_CTRL_MDIO_DIR;
4152         ctrl &= ~E1000_CTRL_MDIO;
4153
4154         E1000_WRITE_REG(hw, CTRL, ctrl);
4155         E1000_WRITE_FLUSH(hw);
4156
4157         /* Raise and Lower the clock before reading in the data. This accounts for
4158          * the turnaround bits. The first clock occurred when we clocked out the
4159          * last bit of the Register Address.
4160          */
4161         e1000_raise_mdi_clk(hw, &ctrl);
4162         e1000_lower_mdi_clk(hw, &ctrl);
4163
4164         for (data = 0, i = 0; i < 16; i++) {
4165                 data = data << 1;
4166                 e1000_raise_mdi_clk(hw, &ctrl);
4167                 ctrl = E1000_READ_REG(hw, CTRL);
4168                 /* Check to see if we shifted in a "1". */
4169                 if (ctrl & E1000_CTRL_MDIO)
4170                         data |= 1;
4171                 e1000_lower_mdi_clk(hw, &ctrl);
4172         }
4173
4174         e1000_raise_mdi_clk(hw, &ctrl);
4175         e1000_lower_mdi_clk(hw, &ctrl);
4176
4177         return data;
4178 }
4179
4180 /*****************************************************************************
4181 * Reads the value from a PHY register
4182 *
4183 * hw - Struct containing variables accessed by shared code
4184 * reg_addr - address of the PHY register to read
4185 ******************************************************************************/
4186 static int
4187 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4188 {
4189         uint32_t i;
4190         uint32_t mdic = 0;
4191         const uint32_t phy_addr = 1;
4192
4193         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4194                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4195                 return -E1000_ERR_PARAM;
4196         }
4197
4198         if (hw->mac_type > e1000_82543) {
4199                 /* Set up Op-code, Phy Address, and register address in the MDI
4200                  * Control register.  The MAC will take care of interfacing with the
4201                  * PHY to retrieve the desired data.
4202                  */
4203                 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4204                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4205                         (E1000_MDIC_OP_READ));
4206
4207                 E1000_WRITE_REG(hw, MDIC, mdic);
4208
4209                 /* Poll the ready bit to see if the MDI read completed */
4210                 for (i = 0; i < 64; i++) {
4211                         udelay(10);
4212                         mdic = E1000_READ_REG(hw, MDIC);
4213                         if (mdic & E1000_MDIC_READY)
4214                                 break;
4215                 }
4216                 if (!(mdic & E1000_MDIC_READY)) {
4217                         DEBUGOUT("MDI Read did not complete\n");
4218                         return -E1000_ERR_PHY;
4219                 }
4220                 if (mdic & E1000_MDIC_ERROR) {
4221                         DEBUGOUT("MDI Error\n");
4222                         return -E1000_ERR_PHY;
4223                 }
4224                 *phy_data = (uint16_t) mdic;
4225         } else {
4226                 /* We must first send a preamble through the MDIO pin to signal the
4227                  * beginning of an MII instruction.  This is done by sending 32
4228                  * consecutive "1" bits.
4229                  */
4230                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4231
4232                 /* Now combine the next few fields that are required for a read
4233                  * operation.  We use this method instead of calling the
4234                  * e1000_shift_out_mdi_bits routine five different times. The format of
4235                  * a MII read instruction consists of a shift out of 14 bits and is
4236                  * defined as follows:
4237                  *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4238                  * followed by a shift in of 18 bits.  This first two bits shifted in
4239                  * are TurnAround bits used to avoid contention on the MDIO pin when a
4240                  * READ operation is performed.  These two bits are thrown away
4241                  * followed by a shift in of 16 bits which contains the desired data.
4242                  */
4243                 mdic = ((reg_addr) | (phy_addr << 5) |
4244                         (PHY_OP_READ << 10) | (PHY_SOF << 12));
4245
4246                 e1000_shift_out_mdi_bits(hw, mdic, 14);
4247
4248                 /* Now that we've shifted out the read command to the MII, we need to
4249                  * "shift in" the 16-bit value (18 total bits) of the requested PHY
4250                  * register address.
4251                  */
4252                 *phy_data = e1000_shift_in_mdi_bits(hw);
4253         }
4254         return 0;
4255 }
4256
4257 /******************************************************************************
4258 * Writes a value to a PHY register
4259 *
4260 * hw - Struct containing variables accessed by shared code
4261 * reg_addr - address of the PHY register to write
4262 * data - data to write to the PHY
4263 ******************************************************************************/
4264 static int
4265 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4266 {
4267         uint32_t i;
4268         uint32_t mdic = 0;
4269         const uint32_t phy_addr = 1;
4270
4271         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4272                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4273                 return -E1000_ERR_PARAM;
4274         }
4275
4276         if (hw->mac_type > e1000_82543) {
4277                 /* Set up Op-code, Phy Address, register address, and data intended
4278                  * for the PHY register in the MDI Control register.  The MAC will take
4279                  * care of interfacing with the PHY to send the desired data.
4280                  */
4281                 mdic = (((uint32_t) phy_data) |
4282                         (reg_addr << E1000_MDIC_REG_SHIFT) |
4283                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4284                         (E1000_MDIC_OP_WRITE));
4285
4286                 E1000_WRITE_REG(hw, MDIC, mdic);
4287
4288                 /* Poll the ready bit to see if the MDI read completed */
4289                 for (i = 0; i < 64; i++) {
4290                         udelay(10);
4291                         mdic = E1000_READ_REG(hw, MDIC);
4292                         if (mdic & E1000_MDIC_READY)
4293                                 break;
4294                 }
4295                 if (!(mdic & E1000_MDIC_READY)) {
4296                         DEBUGOUT("MDI Write did not complete\n");
4297                         return -E1000_ERR_PHY;
4298                 }
4299         } else {
4300                 /* We'll need to use the SW defined pins to shift the write command
4301                  * out to the PHY. We first send a preamble to the PHY to signal the
4302                  * beginning of the MII instruction.  This is done by sending 32
4303                  * consecutive "1" bits.
4304                  */
4305                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4306
4307                 /* Now combine the remaining required fields that will indicate a
4308                  * write operation. We use this method instead of calling the
4309                  * e1000_shift_out_mdi_bits routine for each field in the command. The
4310                  * format of a MII write instruction is as follows:
4311                  * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4312                  */
4313                 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4314                         (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4315                 mdic <<= 16;
4316                 mdic |= (uint32_t) phy_data;
4317
4318                 e1000_shift_out_mdi_bits(hw, mdic, 32);
4319         }
4320         return 0;
4321 }
4322
4323 /******************************************************************************
4324  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4325  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4326  * the caller to figure out how to deal with it.
4327  *
4328  * hw - Struct containing variables accessed by shared code
4329  *
4330  * returns: - E1000_BLK_PHY_RESET
4331  *            E1000_SUCCESS
4332  *
4333  *****************************************************************************/
4334 int32_t
4335 e1000_check_phy_reset_block(struct e1000_hw *hw)
4336 {
4337         uint32_t manc = 0;
4338         uint32_t fwsm = 0;
4339
4340         if (hw->mac_type == e1000_ich8lan) {
4341                 fwsm = E1000_READ_REG(hw, FWSM);
4342                 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4343                                                 : E1000_BLK_PHY_RESET;
4344         }
4345
4346         if (hw->mac_type > e1000_82547_rev_2)
4347                 manc = E1000_READ_REG(hw, MANC);
4348         return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4349                 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4350 }
4351
4352 /***************************************************************************
4353  * Checks if the PHY configuration is done
4354  *
4355  * hw: Struct containing variables accessed by shared code
4356  *
4357  * returns: - E1000_ERR_RESET if fail to reset MAC
4358  *            E1000_SUCCESS at any other case.
4359  *
4360  ***************************************************************************/
4361 static int32_t
4362 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4363 {
4364         int32_t timeout = PHY_CFG_TIMEOUT;
4365         uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4366
4367         DEBUGFUNC();
4368
4369         switch (hw->mac_type) {
4370         default:
4371                 mdelay(10);
4372                 break;
4373
4374         case e1000_80003es2lan:
4375                 /* Separate *_CFG_DONE_* bit for each port */
4376                 if (e1000_is_second_port(hw))
4377                         cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4378                 /* Fall Through */
4379
4380         case e1000_82571:
4381         case e1000_82572:
4382         case e1000_igb:
4383                 while (timeout) {
4384                         if (hw->mac_type == e1000_igb) {
4385                                 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4386                                         break;
4387                         } else {
4388                                 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4389                                         break;
4390                         }
4391                         mdelay(1);
4392                         timeout--;
4393                 }
4394                 if (!timeout) {
4395                         DEBUGOUT("MNG configuration cycle has not "
4396                                         "completed.\n");
4397                         return -E1000_ERR_RESET;
4398                 }
4399                 break;
4400         }
4401
4402         return E1000_SUCCESS;
4403 }
4404
4405 /******************************************************************************
4406 * Returns the PHY to the power-on reset state
4407 *
4408 * hw - Struct containing variables accessed by shared code
4409 ******************************************************************************/
4410 int32_t
4411 e1000_phy_hw_reset(struct e1000_hw *hw)
4412 {
4413         uint16_t swfw = E1000_SWFW_PHY0_SM;
4414         uint32_t ctrl, ctrl_ext;
4415         uint32_t led_ctrl;
4416         int32_t ret_val;
4417
4418         DEBUGFUNC();
4419
4420         /* In the case of the phy reset being blocked, it's not an error, we
4421          * simply return success without performing the reset. */
4422         ret_val = e1000_check_phy_reset_block(hw);
4423         if (ret_val)
4424                 return E1000_SUCCESS;
4425
4426         DEBUGOUT("Resetting Phy...\n");
4427
4428         if (hw->mac_type > e1000_82543) {
4429                 if (e1000_is_second_port(hw))
4430                         swfw = E1000_SWFW_PHY1_SM;
4431
4432                 if (e1000_swfw_sync_acquire(hw, swfw)) {
4433                         DEBUGOUT("Unable to acquire swfw sync\n");
4434                         return -E1000_ERR_SWFW_SYNC;
4435                 }
4436
4437                 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4438                  * bit. Then, take it out of reset.
4439                  */
4440                 ctrl = E1000_READ_REG(hw, CTRL);
4441                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4442                 E1000_WRITE_FLUSH(hw);
4443
4444                 if (hw->mac_type < e1000_82571)
4445                         udelay(10);
4446                 else
4447                         udelay(100);
4448
4449                 E1000_WRITE_REG(hw, CTRL, ctrl);
4450                 E1000_WRITE_FLUSH(hw);
4451
4452                 if (hw->mac_type >= e1000_82571)
4453                         mdelay(10);
4454
4455         } else {
4456                 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4457                  * bit to put the PHY into reset. Then, take it out of reset.
4458                  */
4459                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4460                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4461                 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4462                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4463                 E1000_WRITE_FLUSH(hw);
4464                 mdelay(10);
4465                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4466                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4467                 E1000_WRITE_FLUSH(hw);
4468         }
4469         udelay(150);
4470
4471         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4472                 /* Configure activity LED after PHY reset */
4473                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4474                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4475                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4476                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4477         }
4478
4479         e1000_swfw_sync_release(hw, swfw);
4480
4481         /* Wait for FW to finish PHY configuration. */
4482         ret_val = e1000_get_phy_cfg_done(hw);
4483         if (ret_val != E1000_SUCCESS)
4484                 return ret_val;
4485
4486         return ret_val;
4487 }
4488
4489 /******************************************************************************
4490  * IGP phy init script - initializes the GbE PHY
4491  *
4492  * hw - Struct containing variables accessed by shared code
4493  *****************************************************************************/
4494 static void
4495 e1000_phy_init_script(struct e1000_hw *hw)
4496 {
4497         uint32_t ret_val;
4498         uint16_t phy_saved_data;
4499         DEBUGFUNC();
4500
4501         if (hw->phy_init_script) {
4502                 mdelay(20);
4503
4504                 /* Save off the current value of register 0x2F5B to be
4505                  * restored at the end of this routine. */
4506                 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4507
4508                 /* Disabled the PHY transmitter */
4509                 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4510
4511                 mdelay(20);
4512
4513                 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4514
4515                 mdelay(5);
4516
4517                 switch (hw->mac_type) {
4518                 case e1000_82541:
4519                 case e1000_82547:
4520                         e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4521
4522                         e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4523
4524                         e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4525
4526                         e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4527
4528                         e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4529
4530                         e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4531
4532                         e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4533
4534                         e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4535
4536                         e1000_write_phy_reg(hw, 0x2010, 0x0008);
4537                         break;
4538
4539                 case e1000_82541_rev_2:
4540                 case e1000_82547_rev_2:
4541                         e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4542                         break;
4543                 default:
4544                         break;
4545                 }
4546
4547                 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4548
4549                 mdelay(20);
4550
4551                 /* Now enable the transmitter */
4552                 if (!ret_val)
4553                         e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4554
4555                 if (hw->mac_type == e1000_82547) {
4556                         uint16_t fused, fine, coarse;
4557
4558                         /* Move to analog registers page */
4559                         e1000_read_phy_reg(hw,
4560                                 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4561
4562                         if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4563                                 e1000_read_phy_reg(hw,
4564                                         IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4565
4566                                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4567                                 coarse = fused
4568                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4569
4570                                 if (coarse >
4571                                         IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4572                                         coarse -=
4573                                         IGP01E1000_ANALOG_FUSE_COARSE_10;
4574                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4575                                 } else if (coarse
4576                                         == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4577                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4578
4579                                 fused = (fused
4580                                         & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4581                                         (fine
4582                                         & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4583                                         (coarse
4584                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4585
4586                                 e1000_write_phy_reg(hw,
4587                                         IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4588                                 e1000_write_phy_reg(hw,
4589                                         IGP01E1000_ANALOG_FUSE_BYPASS,
4590                                 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4591                         }
4592                 }
4593         }
4594 }
4595
4596 /******************************************************************************
4597 * Resets the PHY
4598 *
4599 * hw - Struct containing variables accessed by shared code
4600 *
4601 * Sets bit 15 of the MII Control register
4602 ******************************************************************************/
4603 int32_t
4604 e1000_phy_reset(struct e1000_hw *hw)
4605 {
4606         int32_t ret_val;
4607         uint16_t phy_data;
4608
4609         DEBUGFUNC();
4610
4611         /* In the case of the phy reset being blocked, it's not an error, we
4612          * simply return success without performing the reset. */
4613         ret_val = e1000_check_phy_reset_block(hw);
4614         if (ret_val)
4615                 return E1000_SUCCESS;
4616
4617         switch (hw->phy_type) {
4618         case e1000_phy_igp:
4619         case e1000_phy_igp_2:
4620         case e1000_phy_igp_3:
4621         case e1000_phy_ife:
4622         case e1000_phy_igb:
4623                 ret_val = e1000_phy_hw_reset(hw);
4624                 if (ret_val)
4625                         return ret_val;
4626                 break;
4627         default:
4628                 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4629                 if (ret_val)
4630                         return ret_val;
4631
4632                 phy_data |= MII_CR_RESET;
4633                 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4634                 if (ret_val)
4635                         return ret_val;
4636
4637                 udelay(1);
4638                 break;
4639         }
4640
4641         if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4642                 e1000_phy_init_script(hw);
4643
4644         return E1000_SUCCESS;
4645 }
4646
4647 static int e1000_set_phy_type (struct e1000_hw *hw)
4648 {
4649         DEBUGFUNC ();
4650
4651         if (hw->mac_type == e1000_undefined)
4652                 return -E1000_ERR_PHY_TYPE;
4653
4654         switch (hw->phy_id) {
4655         case M88E1000_E_PHY_ID:
4656         case M88E1000_I_PHY_ID:
4657         case M88E1011_I_PHY_ID:
4658         case M88E1111_I_PHY_ID:
4659                 hw->phy_type = e1000_phy_m88;
4660                 break;
4661         case IGP01E1000_I_PHY_ID:
4662                 if (hw->mac_type == e1000_82541 ||
4663                         hw->mac_type == e1000_82541_rev_2 ||
4664                         hw->mac_type == e1000_82547 ||
4665                         hw->mac_type == e1000_82547_rev_2) {
4666                         hw->phy_type = e1000_phy_igp;
4667                         break;
4668                 }
4669         case IGP03E1000_E_PHY_ID:
4670                 hw->phy_type = e1000_phy_igp_3;
4671                 break;
4672         case IFE_E_PHY_ID:
4673         case IFE_PLUS_E_PHY_ID:
4674         case IFE_C_E_PHY_ID:
4675                 hw->phy_type = e1000_phy_ife;
4676                 break;
4677         case GG82563_E_PHY_ID:
4678                 if (hw->mac_type == e1000_80003es2lan) {
4679                         hw->phy_type = e1000_phy_gg82563;
4680                         break;
4681                 }
4682         case BME1000_E_PHY_ID:
4683                 hw->phy_type = e1000_phy_bm;
4684                 break;
4685         case I210_I_PHY_ID:
4686                 hw->phy_type = e1000_phy_igb;
4687                 break;
4688                 /* Fall Through */
4689         default:
4690                 /* Should never have loaded on this device */
4691                 hw->phy_type = e1000_phy_undefined;
4692                 return -E1000_ERR_PHY_TYPE;
4693         }
4694
4695         return E1000_SUCCESS;
4696 }
4697
4698 /******************************************************************************
4699 * Probes the expected PHY address for known PHY IDs
4700 *
4701 * hw - Struct containing variables accessed by shared code
4702 ******************************************************************************/
4703 static int32_t
4704 e1000_detect_gig_phy(struct e1000_hw *hw)
4705 {
4706         int32_t phy_init_status, ret_val;
4707         uint16_t phy_id_high, phy_id_low;
4708         bool match = false;
4709
4710         DEBUGFUNC();
4711
4712         /* The 82571 firmware may still be configuring the PHY.  In this
4713          * case, we cannot access the PHY until the configuration is done.  So
4714          * we explicitly set the PHY values. */
4715         if (hw->mac_type == e1000_82571 ||
4716                 hw->mac_type == e1000_82572) {
4717                 hw->phy_id = IGP01E1000_I_PHY_ID;
4718                 hw->phy_type = e1000_phy_igp_2;
4719                 return E1000_SUCCESS;
4720         }
4721
4722         /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4723          * work- around that forces PHY page 0 to be set or the reads fail.
4724          * The rest of the code in this routine uses e1000_read_phy_reg to
4725          * read the PHY ID.  So for ESB-2 we need to have this set so our
4726          * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4727          * the routines below will figure this out as well. */
4728         if (hw->mac_type == e1000_80003es2lan)
4729                 hw->phy_type = e1000_phy_gg82563;
4730
4731         /* Read the PHY ID Registers to identify which PHY is onboard. */
4732         ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4733         if (ret_val)
4734                 return ret_val;
4735
4736         hw->phy_id = (uint32_t) (phy_id_high << 16);
4737         udelay(20);
4738         ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4739         if (ret_val)
4740                 return ret_val;
4741
4742         hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4743         hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4744
4745         switch (hw->mac_type) {
4746         case e1000_82543:
4747                 if (hw->phy_id == M88E1000_E_PHY_ID)
4748                         match = true;
4749                 break;
4750         case e1000_82544:
4751                 if (hw->phy_id == M88E1000_I_PHY_ID)
4752                         match = true;
4753                 break;
4754         case e1000_82540:
4755         case e1000_82545:
4756         case e1000_82545_rev_3:
4757         case e1000_82546:
4758         case e1000_82546_rev_3:
4759                 if (hw->phy_id == M88E1011_I_PHY_ID)
4760                         match = true;
4761                 break;
4762         case e1000_82541:
4763         case e1000_82541_rev_2:
4764         case e1000_82547:
4765         case e1000_82547_rev_2:
4766                 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4767                         match = true;
4768
4769                 break;
4770         case e1000_82573:
4771                 if (hw->phy_id == M88E1111_I_PHY_ID)
4772                         match = true;
4773                 break;
4774         case e1000_82574:
4775                 if (hw->phy_id == BME1000_E_PHY_ID)
4776                         match = true;
4777                 break;
4778         case e1000_80003es2lan:
4779                 if (hw->phy_id == GG82563_E_PHY_ID)
4780                         match = true;
4781                 break;
4782         case e1000_ich8lan:
4783                 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4784                         match = true;
4785                 if (hw->phy_id == IFE_E_PHY_ID)
4786                         match = true;
4787                 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4788                         match = true;
4789                 if (hw->phy_id == IFE_C_E_PHY_ID)
4790                         match = true;
4791                 break;
4792         case e1000_igb:
4793                 if (hw->phy_id == I210_I_PHY_ID)
4794                         match = true;
4795                 break;
4796         default:
4797                 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4798                 return -E1000_ERR_CONFIG;
4799         }
4800
4801         phy_init_status = e1000_set_phy_type(hw);
4802
4803         if ((match) && (phy_init_status == E1000_SUCCESS)) {
4804                 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4805                 return 0;
4806         }
4807         DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4808         return -E1000_ERR_PHY;
4809 }
4810
4811 /*****************************************************************************
4812  * Set media type and TBI compatibility.
4813  *
4814  * hw - Struct containing variables accessed by shared code
4815  * **************************************************************************/
4816 void
4817 e1000_set_media_type(struct e1000_hw *hw)
4818 {
4819         uint32_t status;
4820
4821         DEBUGFUNC();
4822
4823         if (hw->mac_type != e1000_82543) {
4824                 /* tbi_compatibility is only valid on 82543 */
4825                 hw->tbi_compatibility_en = false;
4826         }
4827
4828         switch (hw->device_id) {
4829         case E1000_DEV_ID_82545GM_SERDES:
4830         case E1000_DEV_ID_82546GB_SERDES:
4831         case E1000_DEV_ID_82571EB_SERDES:
4832         case E1000_DEV_ID_82571EB_SERDES_DUAL:
4833         case E1000_DEV_ID_82571EB_SERDES_QUAD:
4834         case E1000_DEV_ID_82572EI_SERDES:
4835         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4836                 hw->media_type = e1000_media_type_internal_serdes;
4837                 break;
4838         default:
4839                 switch (hw->mac_type) {
4840                 case e1000_82542_rev2_0:
4841                 case e1000_82542_rev2_1:
4842                         hw->media_type = e1000_media_type_fiber;
4843                         break;
4844                 case e1000_ich8lan:
4845                 case e1000_82573:
4846                 case e1000_82574:
4847                 case e1000_igb:
4848                         /* The STATUS_TBIMODE bit is reserved or reused
4849                          * for the this device.
4850                          */
4851                         hw->media_type = e1000_media_type_copper;
4852                         break;
4853                 default:
4854                         status = E1000_READ_REG(hw, STATUS);
4855                         if (status & E1000_STATUS_TBIMODE) {
4856                                 hw->media_type = e1000_media_type_fiber;
4857                                 /* tbi_compatibility not valid on fiber */
4858                                 hw->tbi_compatibility_en = false;
4859                         } else {
4860                                 hw->media_type = e1000_media_type_copper;
4861                         }
4862                         break;
4863                 }
4864         }
4865 }
4866
4867 /**
4868  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4869  *
4870  * e1000_sw_init initializes the Adapter private data structure.
4871  * Fields are initialized based on PCI device information and
4872  * OS network device settings (MTU size).
4873  **/
4874
4875 static int
4876 e1000_sw_init(struct eth_device *nic)
4877 {
4878         struct e1000_hw *hw = (typeof(hw)) nic->priv;
4879         int result;
4880
4881         /* PCI config space info */
4882         pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4883         pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4884         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4885                              &hw->subsystem_vendor_id);
4886         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4887
4888         pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4889         pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4890
4891         /* identify the MAC */
4892         result = e1000_set_mac_type(hw);
4893         if (result) {
4894                 E1000_ERR(hw->nic, "Unknown MAC Type\n");
4895                 return result;
4896         }
4897
4898         switch (hw->mac_type) {
4899         default:
4900                 break;
4901         case e1000_82541:
4902         case e1000_82547:
4903         case e1000_82541_rev_2:
4904         case e1000_82547_rev_2:
4905                 hw->phy_init_script = 1;
4906                 break;
4907         }
4908
4909         /* flow control settings */
4910         hw->fc_high_water = E1000_FC_HIGH_THRESH;
4911         hw->fc_low_water = E1000_FC_LOW_THRESH;
4912         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4913         hw->fc_send_xon = 1;
4914
4915         /* Media type - copper or fiber */
4916         hw->tbi_compatibility_en = true;
4917         e1000_set_media_type(hw);
4918
4919         if (hw->mac_type >= e1000_82543) {
4920                 uint32_t status = E1000_READ_REG(hw, STATUS);
4921
4922                 if (status & E1000_STATUS_TBIMODE) {
4923                         DEBUGOUT("fiber interface\n");
4924                         hw->media_type = e1000_media_type_fiber;
4925                 } else {
4926                         DEBUGOUT("copper interface\n");
4927                         hw->media_type = e1000_media_type_copper;
4928                 }
4929         } else {
4930                 hw->media_type = e1000_media_type_fiber;
4931         }
4932
4933         hw->wait_autoneg_complete = true;
4934         if (hw->mac_type < e1000_82543)
4935                 hw->report_tx_early = 0;
4936         else
4937                 hw->report_tx_early = 1;
4938
4939         return E1000_SUCCESS;
4940 }
4941
4942 void
4943 fill_rx(struct e1000_hw *hw)
4944 {
4945         struct e1000_rx_desc *rd;
4946         unsigned long flush_start, flush_end;
4947
4948         rx_last = rx_tail;
4949         rd = rx_base + rx_tail;
4950         rx_tail = (rx_tail + 1) % 8;
4951         memset(rd, 0, 16);
4952         rd->buffer_addr = cpu_to_le64((unsigned long)packet);
4953
4954         /*
4955          * Make sure there are no stale data in WB over this area, which
4956          * might get written into the memory while the e1000 also writes
4957          * into the same memory area.
4958          */
4959         invalidate_dcache_range((unsigned long)packet,
4960                                 (unsigned long)packet + 4096);
4961         /* Dump the DMA descriptor into RAM. */
4962         flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
4963         flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
4964         flush_dcache_range(flush_start, flush_end);
4965
4966         E1000_WRITE_REG(hw, RDT, rx_tail);
4967 }
4968
4969 /**
4970  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4971  * @adapter: board private structure
4972  *
4973  * Configure the Tx unit of the MAC after a reset.
4974  **/
4975
4976 static void
4977 e1000_configure_tx(struct e1000_hw *hw)
4978 {
4979         unsigned long tctl;
4980         unsigned long tipg, tarc;
4981         uint32_t ipgr1, ipgr2;
4982
4983         E1000_WRITE_REG(hw, TDBAL, (unsigned long)tx_base);
4984         E1000_WRITE_REG(hw, TDBAH, 0);
4985
4986         E1000_WRITE_REG(hw, TDLEN, 128);
4987
4988         /* Setup the HW Tx Head and Tail descriptor pointers */
4989         E1000_WRITE_REG(hw, TDH, 0);
4990         E1000_WRITE_REG(hw, TDT, 0);
4991         tx_tail = 0;
4992
4993         /* Set the default values for the Tx Inter Packet Gap timer */
4994         if (hw->mac_type <= e1000_82547_rev_2 &&
4995             (hw->media_type == e1000_media_type_fiber ||
4996              hw->media_type == e1000_media_type_internal_serdes))
4997                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4998         else
4999                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
5000
5001         /* Set the default values for the Tx Inter Packet Gap timer */
5002         switch (hw->mac_type) {
5003         case e1000_82542_rev2_0:
5004         case e1000_82542_rev2_1:
5005                 tipg = DEFAULT_82542_TIPG_IPGT;
5006                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
5007                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
5008                 break;
5009         case e1000_80003es2lan:
5010                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5011                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
5012                 break;
5013         default:
5014                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5015                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5016                 break;
5017         }
5018         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5019         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
5020         E1000_WRITE_REG(hw, TIPG, tipg);
5021         /* Program the Transmit Control Register */
5022         tctl = E1000_READ_REG(hw, TCTL);
5023         tctl &= ~E1000_TCTL_CT;
5024         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5025             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5026
5027         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5028                 tarc = E1000_READ_REG(hw, TARC0);
5029                 /* set the speed mode bit, we'll clear it if we're not at
5030                  * gigabit link later */
5031                 /* git bit can be set to 1*/
5032         } else if (hw->mac_type == e1000_80003es2lan) {
5033                 tarc = E1000_READ_REG(hw, TARC0);
5034                 tarc |= 1;
5035                 E1000_WRITE_REG(hw, TARC0, tarc);
5036                 tarc = E1000_READ_REG(hw, TARC1);
5037                 tarc |= 1;
5038                 E1000_WRITE_REG(hw, TARC1, tarc);
5039         }
5040
5041
5042         e1000_config_collision_dist(hw);
5043         /* Setup Transmit Descriptor Settings for eop descriptor */
5044         hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5045
5046         /* Need to set up RS bit */
5047         if (hw->mac_type < e1000_82543)
5048                 hw->txd_cmd |= E1000_TXD_CMD_RPS;
5049         else
5050                 hw->txd_cmd |= E1000_TXD_CMD_RS;
5051
5052
5053         if (hw->mac_type == e1000_igb) {
5054                 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5055
5056                 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5057                 reg_txdctl |= 1 << 25;
5058                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5059                 mdelay(20);
5060         }
5061
5062
5063
5064         E1000_WRITE_REG(hw, TCTL, tctl);
5065
5066
5067 }
5068
5069 /**
5070  * e1000_setup_rctl - configure the receive control register
5071  * @adapter: Board private structure
5072  **/
5073 static void
5074 e1000_setup_rctl(struct e1000_hw *hw)
5075 {
5076         uint32_t rctl;
5077
5078         rctl = E1000_READ_REG(hw, RCTL);
5079
5080         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5081
5082         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5083                 | E1000_RCTL_RDMTS_HALF;        /* |
5084                         (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5085
5086         if (hw->tbi_compatibility_on == 1)
5087                 rctl |= E1000_RCTL_SBP;
5088         else
5089                 rctl &= ~E1000_RCTL_SBP;
5090
5091         rctl &= ~(E1000_RCTL_SZ_4096);
5092                 rctl |= E1000_RCTL_SZ_2048;
5093                 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5094         E1000_WRITE_REG(hw, RCTL, rctl);
5095 }
5096
5097 /**
5098  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5099  * @adapter: board private structure
5100  *
5101  * Configure the Rx unit of the MAC after a reset.
5102  **/
5103 static void
5104 e1000_configure_rx(struct e1000_hw *hw)
5105 {
5106         unsigned long rctl, ctrl_ext;
5107         rx_tail = 0;
5108         /* make sure receives are disabled while setting up the descriptors */
5109         rctl = E1000_READ_REG(hw, RCTL);
5110         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5111         if (hw->mac_type >= e1000_82540) {
5112                 /* Set the interrupt throttling rate.  Value is calculated
5113                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5114 #define MAX_INTS_PER_SEC        8000
5115 #define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256)
5116                 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5117         }
5118
5119         if (hw->mac_type >= e1000_82571) {
5120                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5121                 /* Reset delay timers after every interrupt */
5122                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5123                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5124                 E1000_WRITE_FLUSH(hw);
5125         }
5126         /* Setup the Base and Length of the Rx Descriptor Ring */
5127         E1000_WRITE_REG(hw, RDBAL, (unsigned long)rx_base);
5128         E1000_WRITE_REG(hw, RDBAH, 0);
5129
5130         E1000_WRITE_REG(hw, RDLEN, 128);
5131
5132         /* Setup the HW Rx Head and Tail Descriptor Pointers */
5133         E1000_WRITE_REG(hw, RDH, 0);
5134         E1000_WRITE_REG(hw, RDT, 0);
5135         /* Enable Receives */
5136
5137         if (hw->mac_type == e1000_igb) {
5138
5139                 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5140                 reg_rxdctl |= 1 << 25;
5141                 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5142                 mdelay(20);
5143         }
5144
5145         E1000_WRITE_REG(hw, RCTL, rctl);
5146
5147         fill_rx(hw);
5148 }
5149
5150 /**************************************************************************
5151 POLL - Wait for a frame
5152 ***************************************************************************/
5153 static int
5154 e1000_poll(struct eth_device *nic)
5155 {
5156         struct e1000_hw *hw = nic->priv;
5157         struct e1000_rx_desc *rd;
5158         unsigned long inval_start, inval_end;
5159         uint32_t len;
5160
5161         /* return true if there's an ethernet packet ready to read */
5162         rd = rx_base + rx_last;
5163
5164         /* Re-load the descriptor from RAM. */
5165         inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5166         inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5167         invalidate_dcache_range(inval_start, inval_end);
5168
5169         if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5170                 return 0;
5171         /* DEBUGOUT("recv: packet len=%d\n", rd->length); */
5172         /* Packet received, make sure the data are re-loaded from RAM. */
5173         len = le32_to_cpu(rd->length);
5174         invalidate_dcache_range((unsigned long)packet,
5175                                 (unsigned long)packet +
5176                                 roundup(len, ARCH_DMA_MINALIGN));
5177         net_process_received_packet((uchar *)packet, len);
5178         fill_rx(hw);
5179         return 1;
5180 }
5181
5182 /**************************************************************************
5183 TRANSMIT - Transmit a frame
5184 ***************************************************************************/
5185 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5186 {
5187         void *nv_packet = (void *)txpacket;
5188         struct e1000_hw *hw = nic->priv;
5189         struct e1000_tx_desc *txp;
5190         int i = 0;
5191         unsigned long flush_start, flush_end;
5192
5193         txp = tx_base + tx_tail;
5194         tx_tail = (tx_tail + 1) % 8;
5195
5196         txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5197         txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5198         txp->upper.data = 0;
5199
5200         /* Dump the packet into RAM so e1000 can pick them. */
5201         flush_dcache_range((unsigned long)nv_packet,
5202                            (unsigned long)nv_packet +
5203                            roundup(length, ARCH_DMA_MINALIGN));
5204         /* Dump the descriptor into RAM as well. */
5205         flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
5206         flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5207         flush_dcache_range(flush_start, flush_end);
5208
5209         E1000_WRITE_REG(hw, TDT, tx_tail);
5210
5211         E1000_WRITE_FLUSH(hw);
5212         while (1) {
5213                 invalidate_dcache_range(flush_start, flush_end);
5214                 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5215                         break;
5216                 if (i++ > TOUT_LOOP) {
5217                         DEBUGOUT("e1000: tx timeout\n");
5218                         return 0;
5219                 }
5220                 udelay(10);     /* give the nic a chance to write to the register */
5221         }
5222         return 1;
5223 }
5224
5225 /*reset function*/
5226 static inline int
5227 e1000_reset(struct eth_device *nic)
5228 {
5229         struct e1000_hw *hw = nic->priv;
5230
5231         e1000_reset_hw(hw);
5232         if (hw->mac_type >= e1000_82544) {
5233                 E1000_WRITE_REG(hw, WUC, 0);
5234         }
5235         return e1000_init_hw(nic);
5236 }
5237
5238 /**************************************************************************
5239 DISABLE - Turn off ethernet interface
5240 ***************************************************************************/
5241 static void
5242 e1000_disable(struct eth_device *nic)
5243 {
5244         struct e1000_hw *hw = nic->priv;
5245
5246         /* Turn off the ethernet interface */
5247         E1000_WRITE_REG(hw, RCTL, 0);
5248         E1000_WRITE_REG(hw, TCTL, 0);
5249
5250         /* Clear the transmit ring */
5251         E1000_WRITE_REG(hw, TDH, 0);
5252         E1000_WRITE_REG(hw, TDT, 0);
5253
5254         /* Clear the receive ring */
5255         E1000_WRITE_REG(hw, RDH, 0);
5256         E1000_WRITE_REG(hw, RDT, 0);
5257
5258         /* put the card in its initial state */
5259 #if 0
5260         E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5261 #endif
5262         mdelay(10);
5263
5264 }
5265
5266 /**************************************************************************
5267 INIT - set up ethernet interface(s)
5268 ***************************************************************************/
5269 static int
5270 e1000_init(struct eth_device *nic, bd_t * bis)
5271 {
5272         struct e1000_hw *hw = nic->priv;
5273         int ret_val = 0;
5274
5275         ret_val = e1000_reset(nic);
5276         if (ret_val < 0) {
5277                 if ((ret_val == -E1000_ERR_NOLINK) ||
5278                     (ret_val == -E1000_ERR_TIMEOUT)) {
5279                         E1000_ERR(hw->nic, "Valid Link not detected\n");
5280                 } else {
5281                         E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
5282                 }
5283                 return 0;
5284         }
5285         e1000_configure_tx(hw);
5286         e1000_setup_rctl(hw);
5287         e1000_configure_rx(hw);
5288         return 1;
5289 }
5290
5291 /******************************************************************************
5292  * Gets the current PCI bus type of hardware
5293  *
5294  * hw - Struct containing variables accessed by shared code
5295  *****************************************************************************/
5296 void e1000_get_bus_type(struct e1000_hw *hw)
5297 {
5298         uint32_t status;
5299
5300         switch (hw->mac_type) {
5301         case e1000_82542_rev2_0:
5302         case e1000_82542_rev2_1:
5303                 hw->bus_type = e1000_bus_type_pci;
5304                 break;
5305         case e1000_82571:
5306         case e1000_82572:
5307         case e1000_82573:
5308         case e1000_82574:
5309         case e1000_80003es2lan:
5310         case e1000_ich8lan:
5311         case e1000_igb:
5312                 hw->bus_type = e1000_bus_type_pci_express;
5313                 break;
5314         default:
5315                 status = E1000_READ_REG(hw, STATUS);
5316                 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5317                                 e1000_bus_type_pcix : e1000_bus_type_pci;
5318                 break;
5319         }
5320 }
5321
5322 /* A list of all registered e1000 devices */
5323 static LIST_HEAD(e1000_hw_list);
5324
5325 /**************************************************************************
5326 PROBE - Look for an adapter, this routine's visible to the outside
5327 You should omit the last argument struct pci_device * for a non-PCI NIC
5328 ***************************************************************************/
5329 int
5330 e1000_initialize(bd_t * bis)
5331 {
5332         unsigned int i;
5333         pci_dev_t devno;
5334
5335         DEBUGFUNC();
5336
5337         /* Find and probe all the matching PCI devices */
5338         for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5339                 u32 val;
5340
5341                 /*
5342                  * These will never get freed due to errors, this allows us to
5343                  * perform SPI EEPROM programming from U-boot, for example.
5344                  */
5345                 struct eth_device *nic = malloc(sizeof(*nic));
5346                 struct e1000_hw *hw = malloc(sizeof(*hw));
5347                 if (!nic || !hw) {
5348                         printf("e1000#%u: Out of Memory!\n", i);
5349                         free(nic);
5350                         free(hw);
5351                         continue;
5352                 }
5353
5354                 /* Make sure all of the fields are initially zeroed */
5355                 memset(nic, 0, sizeof(*nic));
5356                 memset(hw, 0, sizeof(*hw));
5357
5358                 /* Assign the passed-in values */
5359                 hw->cardnum = i;
5360                 hw->pdev = devno;
5361                 hw->nic = nic;
5362                 nic->priv = hw;
5363
5364                 /* Generate a card name */
5365                 sprintf(nic->name, "e1000#%u", hw->cardnum);
5366
5367                 /* Print a debug message with the IO base address */
5368                 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5369                 E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5370
5371                 /* Try to enable I/O accesses and bus-mastering */
5372                 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5373                 pci_write_config_dword(devno, PCI_COMMAND, val);
5374
5375                 /* Make sure it worked */
5376                 pci_read_config_dword(devno, PCI_COMMAND, &val);
5377                 if (!(val & PCI_COMMAND_MEMORY)) {
5378                         E1000_ERR(nic, "Can't enable I/O memory\n");
5379                         continue;
5380                 }
5381                 if (!(val & PCI_COMMAND_MASTER)) {
5382                         E1000_ERR(nic, "Can't enable bus-mastering\n");
5383                         continue;
5384                 }
5385
5386                 /* Are these variables needed? */
5387                 hw->fc = e1000_fc_default;
5388                 hw->original_fc = e1000_fc_default;
5389                 hw->autoneg_failed = 0;
5390                 hw->autoneg = 1;
5391                 hw->get_link_status = true;
5392 #ifndef CONFIG_E1000_NO_NVM
5393                 hw->eeprom_semaphore_present = true;
5394 #endif
5395                 hw->hw_addr = pci_map_bar(devno,        PCI_BASE_ADDRESS_0,
5396                                                         PCI_REGION_MEM);
5397                 hw->mac_type = e1000_undefined;
5398
5399                 /* MAC and Phy settings */
5400                 if (e1000_sw_init(nic) < 0) {
5401                         E1000_ERR(nic, "Software init failed\n");
5402                         continue;
5403                 }
5404                 if (e1000_check_phy_reset_block(hw))
5405                         E1000_ERR(nic, "PHY Reset is blocked!\n");
5406
5407                 /* Basic init was OK, reset the hardware and allow SPI access */
5408                 e1000_reset_hw(hw);
5409                 list_add_tail(&hw->list_node, &e1000_hw_list);
5410
5411 #ifndef CONFIG_E1000_NO_NVM
5412                 /* Validate the EEPROM and get chipset information */
5413 #if !defined(CONFIG_MVBC_1G)
5414                 if (e1000_init_eeprom_params(hw)) {
5415                         E1000_ERR(nic, "EEPROM is invalid!\n");
5416                         continue;
5417                 }
5418                 if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5419                     e1000_validate_eeprom_checksum(hw))
5420                         continue;
5421 #endif
5422                 e1000_read_mac_addr(nic);
5423 #endif
5424                 e1000_get_bus_type(hw);
5425
5426 #ifndef CONFIG_E1000_NO_NVM
5427                 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5428                        nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5429                        nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5430 #else
5431                 memset(nic->enetaddr, 0, 6);
5432                 printf("e1000: no NVM\n");
5433 #endif
5434
5435                 /* Set up the function pointers and register the device */
5436                 nic->init = e1000_init;
5437                 nic->recv = e1000_poll;
5438                 nic->send = e1000_transmit;
5439                 nic->halt = e1000_disable;
5440                 eth_register(nic);
5441         }
5442
5443         return i;
5444 }
5445
5446 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5447 {
5448         struct e1000_hw *hw;
5449
5450         list_for_each_entry(hw, &e1000_hw_list, list_node)
5451                 if (hw->cardnum == cardnum)
5452                         return hw;
5453
5454         return NULL;
5455 }
5456
5457 #ifdef CONFIG_CMD_E1000
5458 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5459                 int argc, char * const argv[])
5460 {
5461         struct e1000_hw *hw;
5462
5463         if (argc < 3) {
5464                 cmd_usage(cmdtp);
5465                 return 1;
5466         }
5467
5468         /* Make sure we can find the requested e1000 card */
5469         hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5470         if (!hw) {
5471                 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5472                 return 1;
5473         }
5474
5475         if (!strcmp(argv[2], "print-mac-address")) {
5476                 unsigned char *mac = hw->nic->enetaddr;
5477                 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5478                         mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5479                 return 0;
5480         }
5481
5482 #ifdef CONFIG_E1000_SPI
5483         /* Handle the "SPI" subcommand */
5484         if (!strcmp(argv[2], "spi"))
5485                 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5486 #endif
5487
5488         cmd_usage(cmdtp);
5489         return 1;
5490 }
5491
5492 U_BOOT_CMD(
5493         e1000, 7, 0, do_e1000,
5494         "Intel e1000 controller management",
5495         /*  */"<card#> print-mac-address\n"
5496 #ifdef CONFIG_E1000_SPI
5497         "e1000 <card#> spi show [<offset> [<length>]]\n"
5498         "e1000 <card#> spi dump <addr> <offset> <length>\n"
5499         "e1000 <card#> spi program <addr> <offset> <length>\n"
5500         "e1000 <card#> spi checksum [update]\n"
5501 #endif
5502         "       - Manage the Intel E1000 PCI device"
5503 );
5504 #endif /* not CONFIG_CMD_E1000 */