]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - include/linux/usb/gadget.h
Merge branch 'master' of git://git.denx.de/u-boot-arc
[karo-tx-uboot.git] / include / linux / usb / gadget.h
1 /*
2  * <linux/usb/gadget.h>
3  *
4  * We call the USB code inside a Linux-based peripheral device a "gadget"
5  * driver, except for the hardware-specific bus glue.  One USB host can
6  * master many USB gadgets, but the gadgets are only slaved to one host.
7  *
8  *
9  * (C) Copyright 2002-2004 by David Brownell
10  * All Rights Reserved.
11  *
12  * This software is licensed under the GNU GPL version 2.
13  *
14  * Ported to U-boot by: Thomas Smits <ts.smits@gmail.com> and
15  *                      Remy Bohmer <linux@bohmer.net>
16  */
17
18 #ifndef __LINUX_USB_GADGET_H
19 #define __LINUX_USB_GADGET_H
20
21 #include <errno.h>
22 #include <linux/compat.h>
23 #include <linux/list.h>
24
25 struct usb_ep;
26
27 /**
28  * struct usb_request - describes one i/o request
29  * @buf: Buffer used for data.  Always provide this; some controllers
30  *      only use PIO, or don't use DMA for some endpoints.
31  * @dma: DMA address corresponding to 'buf'.  If you don't set this
32  *      field, and the usb controller needs one, it is responsible
33  *      for mapping and unmapping the buffer.
34  * @length: Length of that data
35  * @no_interrupt: If true, hints that no completion irq is needed.
36  *      Helpful sometimes with deep request queues that are handled
37  *      directly by DMA controllers.
38  * @zero: If true, when writing data, makes the last packet be "short"
39  *     by adding a zero length packet as needed;
40  * @short_not_ok: When reading data, makes short packets be
41  *     treated as errors (queue stops advancing till cleanup).
42  * @complete: Function called when request completes, so this request and
43  *      its buffer may be re-used.
44  *      Reads terminate with a short packet, or when the buffer fills,
45  *      whichever comes first.  When writes terminate, some data bytes
46  *      will usually still be in flight (often in a hardware fifo).
47  *      Errors (for reads or writes) stop the queue from advancing
48  *      until the completion function returns, so that any transfers
49  *      invalidated by the error may first be dequeued.
50  * @context: For use by the completion callback
51  * @list: For use by the gadget driver.
52  * @status: Reports completion code, zero or a negative errno.
53  *      Normally, faults block the transfer queue from advancing until
54  *      the completion callback returns.
55  *      Code "-ESHUTDOWN" indicates completion caused by device disconnect,
56  *      or when the driver disabled the endpoint.
57  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
58  *      transfers) this may be less than the requested length.  If the
59  *      short_not_ok flag is set, short reads are treated as errors
60  *      even when status otherwise indicates successful completion.
61  *      Note that for writes (IN transfers) some data bytes may still
62  *      reside in a device-side FIFO when the request is reported as
63  *      complete.
64  *
65  * These are allocated/freed through the endpoint they're used with.  The
66  * hardware's driver can add extra per-request data to the memory it returns,
67  * which often avoids separate memory allocations (potential failures),
68  * later when the request is queued.
69  *
70  * Request flags affect request handling, such as whether a zero length
71  * packet is written (the "zero" flag), whether a short read should be
72  * treated as an error (blocking request queue advance, the "short_not_ok"
73  * flag), or hinting that an interrupt is not required (the "no_interrupt"
74  * flag, for use with deep request queues).
75  *
76  * Bulk endpoints can use any size buffers, and can also be used for interrupt
77  * transfers. interrupt-only endpoints can be much less functional.
78  *
79  * NOTE:  this is analagous to 'struct urb' on the host side, except that
80  * it's thinner and promotes more pre-allocation.
81  */
82
83 struct usb_request {
84         void                    *buf;
85         unsigned                length;
86         dma_addr_t              dma;
87
88         unsigned                no_interrupt:1;
89         unsigned                zero:1;
90         unsigned                short_not_ok:1;
91
92         void                    (*complete)(struct usb_ep *ep,
93                                         struct usb_request *req);
94         void                    *context;
95         struct list_head        list;
96
97         int                     status;
98         unsigned                actual;
99 };
100
101 /*-------------------------------------------------------------------------*/
102
103 /* endpoint-specific parts of the api to the usb controller hardware.
104  * unlike the urb model, (de)multiplexing layers are not required.
105  * (so this api could slash overhead if used on the host side...)
106  *
107  * note that device side usb controllers commonly differ in how many
108  * endpoints they support, as well as their capabilities.
109  */
110 struct usb_ep_ops {
111         int (*enable) (struct usb_ep *ep,
112                 const struct usb_endpoint_descriptor *desc);
113         int (*disable) (struct usb_ep *ep);
114
115         struct usb_request *(*alloc_request) (struct usb_ep *ep,
116                 gfp_t gfp_flags);
117         void (*free_request) (struct usb_ep *ep, struct usb_request *req);
118
119         int (*queue) (struct usb_ep *ep, struct usb_request *req,
120                 gfp_t gfp_flags);
121         int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
122
123         int (*set_halt) (struct usb_ep *ep, int value);
124         int (*fifo_status) (struct usb_ep *ep);
125         void (*fifo_flush) (struct usb_ep *ep);
126 };
127
128 /**
129  * struct usb_ep - device side representation of USB endpoint
130  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
131  * @ops: Function pointers used to access hardware-specific operations.
132  * @ep_list:the gadget's ep_list holds all of its endpoints
133  * @maxpacket:The maximum packet size used on this endpoint.  The initial
134  *      value can sometimes be reduced (hardware allowing), according to
135  *      the endpoint descriptor used to configure the endpoint.
136  * @driver_data:for use by the gadget driver.  all other fields are
137  *      read-only to gadget drivers.
138  *
139  * the bus controller driver lists all the general purpose endpoints in
140  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
141  * and is accessed only in response to a driver setup() callback.
142  */
143 struct usb_ep {
144         void                    *driver_data;
145         const char              *name;
146         const struct usb_ep_ops *ops;
147         struct list_head        ep_list;
148         unsigned                maxpacket:16;
149 };
150
151 /*-------------------------------------------------------------------------*/
152
153 /**
154  * usb_ep_enable - configure endpoint, making it usable
155  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
156  *      drivers discover endpoints through the ep_list of a usb_gadget.
157  * @desc:descriptor for desired behavior.  caller guarantees this pointer
158  *      remains valid until the endpoint is disabled; the data byte order
159  *      is little-endian (usb-standard).
160  *
161  * when configurations are set, or when interface settings change, the driver
162  * will enable or disable the relevant endpoints.  while it is enabled, an
163  * endpoint may be used for i/o until the driver receives a disconnect() from
164  * the host or until the endpoint is disabled.
165  *
166  * the ep0 implementation (which calls this routine) must ensure that the
167  * hardware capabilities of each endpoint match the descriptor provided
168  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
169  * for interrupt transfers as well as bulk, but it likely couldn't be used
170  * for iso transfers or for endpoint 14.  some endpoints are fully
171  * configurable, with more generic names like "ep-a".  (remember that for
172  * USB, "in" means "towards the USB master".)
173  *
174  * returns zero, or a negative error code.
175  */
176 static inline int usb_ep_enable(struct usb_ep *ep,
177                                 const struct usb_endpoint_descriptor *desc)
178 {
179         return ep->ops->enable(ep, desc);
180 }
181
182 /**
183  * usb_ep_disable - endpoint is no longer usable
184  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
185  *
186  * no other task may be using this endpoint when this is called.
187  * any pending and uncompleted requests will complete with status
188  * indicating disconnect (-ESHUTDOWN) before this call returns.
189  * gadget drivers must call usb_ep_enable() again before queueing
190  * requests to the endpoint.
191  *
192  * returns zero, or a negative error code.
193  */
194 static inline int usb_ep_disable(struct usb_ep *ep)
195 {
196         return ep->ops->disable(ep);
197 }
198
199 /**
200  * usb_ep_alloc_request - allocate a request object to use with this endpoint
201  * @ep:the endpoint to be used with with the request
202  * @gfp_flags:GFP_* flags to use
203  *
204  * Request objects must be allocated with this call, since they normally
205  * need controller-specific setup and may even need endpoint-specific
206  * resources such as allocation of DMA descriptors.
207  * Requests may be submitted with usb_ep_queue(), and receive a single
208  * completion callback.  Free requests with usb_ep_free_request(), when
209  * they are no longer needed.
210  *
211  * Returns the request, or null if one could not be allocated.
212  */
213 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
214                                                        gfp_t gfp_flags)
215 {
216         return ep->ops->alloc_request(ep, gfp_flags);
217 }
218
219 /**
220  * usb_ep_free_request - frees a request object
221  * @ep:the endpoint associated with the request
222  * @req:the request being freed
223  *
224  * Reverses the effect of usb_ep_alloc_request().
225  * Caller guarantees the request is not queued, and that it will
226  * no longer be requeued (or otherwise used).
227  */
228 static inline void usb_ep_free_request(struct usb_ep *ep,
229                                        struct usb_request *req)
230 {
231         ep->ops->free_request(ep, req);
232 }
233
234 /**
235  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
236  * @ep:the endpoint associated with the request
237  * @req:the request being submitted
238  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
239  *      pre-allocate all necessary memory with the request.
240  *
241  * This tells the device controller to perform the specified request through
242  * that endpoint (reading or writing a buffer).  When the request completes,
243  * including being canceled by usb_ep_dequeue(), the request's completion
244  * routine is called to return the request to the driver.  Any endpoint
245  * (except control endpoints like ep0) may have more than one transfer
246  * request queued; they complete in FIFO order.  Once a gadget driver
247  * submits a request, that request may not be examined or modified until it
248  * is given back to that driver through the completion callback.
249  *
250  * Each request is turned into one or more packets.  The controller driver
251  * never merges adjacent requests into the same packet.  OUT transfers
252  * will sometimes use data that's already buffered in the hardware.
253  * Drivers can rely on the fact that the first byte of the request's buffer
254  * always corresponds to the first byte of some USB packet, for both
255  * IN and OUT transfers.
256  *
257  * Bulk endpoints can queue any amount of data; the transfer is packetized
258  * automatically.  The last packet will be short if the request doesn't fill it
259  * out completely.  Zero length packets (ZLPs) should be avoided in portable
260  * protocols since not all usb hardware can successfully handle zero length
261  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
262  * the request 'zero' flag is set.)  Bulk endpoints may also be used
263  * for interrupt transfers; but the reverse is not true, and some endpoints
264  * won't support every interrupt transfer.  (Such as 768 byte packets.)
265  *
266  * Interrupt-only endpoints are less functional than bulk endpoints, for
267  * example by not supporting queueing or not handling buffers that are
268  * larger than the endpoint's maxpacket size.  They may also treat data
269  * toggle differently.
270  *
271  * Control endpoints ... after getting a setup() callback, the driver queues
272  * one response (even if it would be zero length).  That enables the
273  * status ack, after transfering data as specified in the response.  Setup
274  * functions may return negative error codes to generate protocol stalls.
275  * (Note that some USB device controllers disallow protocol stall responses
276  * in some cases.)  When control responses are deferred (the response is
277  * written after the setup callback returns), then usb_ep_set_halt() may be
278  * used on ep0 to trigger protocol stalls.
279  *
280  * For periodic endpoints, like interrupt or isochronous ones, the usb host
281  * arranges to poll once per interval, and the gadget driver usually will
282  * have queued some data to transfer at that time.
283  *
284  * Returns zero, or a negative error code.  Endpoints that are not enabled
285  * report errors; errors will also be
286  * reported when the usb peripheral is disconnected.
287  */
288 static inline int usb_ep_queue(struct usb_ep *ep,
289                                struct usb_request *req, gfp_t gfp_flags)
290 {
291         return ep->ops->queue(ep, req, gfp_flags);
292 }
293
294 /**
295  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
296  * @ep:the endpoint associated with the request
297  * @req:the request being canceled
298  *
299  * if the request is still active on the endpoint, it is dequeued and its
300  * completion routine is called (with status -ECONNRESET); else a negative
301  * error code is returned.
302  *
303  * note that some hardware can't clear out write fifos (to unlink the request
304  * at the head of the queue) except as part of disconnecting from usb.  such
305  * restrictions prevent drivers from supporting configuration changes,
306  * even to configuration zero (a "chapter 9" requirement).
307  */
308 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
309 {
310         return ep->ops->dequeue(ep, req);
311 }
312
313 /**
314  * usb_ep_set_halt - sets the endpoint halt feature.
315  * @ep: the non-isochronous endpoint being stalled
316  *
317  * Use this to stall an endpoint, perhaps as an error report.
318  * Except for control endpoints,
319  * the endpoint stays halted (will not stream any data) until the host
320  * clears this feature; drivers may need to empty the endpoint's request
321  * queue first, to make sure no inappropriate transfers happen.
322  *
323  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
324  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
325  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
326  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
327  *
328  * Returns zero, or a negative error code.  On success, this call sets
329  * underlying hardware state that blocks data transfers.
330  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
331  * transfer requests are still queued, or if the controller hardware
332  * (usually a FIFO) still holds bytes that the host hasn't collected.
333  */
334 static inline int usb_ep_set_halt(struct usb_ep *ep)
335 {
336         return ep->ops->set_halt(ep, 1);
337 }
338
339 /**
340  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
341  * @ep:the bulk or interrupt endpoint being reset
342  *
343  * Use this when responding to the standard usb "set interface" request,
344  * for endpoints that aren't reconfigured, after clearing any other state
345  * in the endpoint's i/o queue.
346  *
347  * Returns zero, or a negative error code.  On success, this call clears
348  * the underlying hardware state reflecting endpoint halt and data toggle.
349  * Note that some hardware can't support this request (like pxa2xx_udc),
350  * and accordingly can't correctly implement interface altsettings.
351  */
352 static inline int usb_ep_clear_halt(struct usb_ep *ep)
353 {
354         return ep->ops->set_halt(ep, 0);
355 }
356
357 /**
358  * usb_ep_fifo_status - returns number of bytes in fifo, or error
359  * @ep: the endpoint whose fifo status is being checked.
360  *
361  * FIFO endpoints may have "unclaimed data" in them in certain cases,
362  * such as after aborted transfers.  Hosts may not have collected all
363  * the IN data written by the gadget driver (and reported by a request
364  * completion).  The gadget driver may not have collected all the data
365  * written OUT to it by the host.  Drivers that need precise handling for
366  * fault reporting or recovery may need to use this call.
367  *
368  * This returns the number of such bytes in the fifo, or a negative
369  * errno if the endpoint doesn't use a FIFO or doesn't support such
370  * precise handling.
371  */
372 static inline int usb_ep_fifo_status(struct usb_ep *ep)
373 {
374         if (ep->ops->fifo_status)
375                 return ep->ops->fifo_status(ep);
376         else
377                 return -EOPNOTSUPP;
378 }
379
380 /**
381  * usb_ep_fifo_flush - flushes contents of a fifo
382  * @ep: the endpoint whose fifo is being flushed.
383  *
384  * This call may be used to flush the "unclaimed data" that may exist in
385  * an endpoint fifo after abnormal transaction terminations.  The call
386  * must never be used except when endpoint is not being used for any
387  * protocol translation.
388  */
389 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
390 {
391         if (ep->ops->fifo_flush)
392                 ep->ops->fifo_flush(ep);
393 }
394
395
396 /*-------------------------------------------------------------------------*/
397
398 struct usb_gadget;
399
400 /* the rest of the api to the controller hardware: device operations,
401  * which don't involve endpoints (or i/o).
402  */
403 struct usb_gadget_ops {
404         int     (*get_frame)(struct usb_gadget *);
405         int     (*wakeup)(struct usb_gadget *);
406         int     (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
407         int     (*vbus_session) (struct usb_gadget *, int is_active);
408         int     (*vbus_draw) (struct usb_gadget *, unsigned mA);
409         int     (*pullup) (struct usb_gadget *, int is_on);
410         int     (*ioctl)(struct usb_gadget *,
411                                 unsigned code, unsigned long param);
412 };
413
414 /**
415  * struct usb_gadget - represents a usb slave device
416  * @ops: Function pointers used to access hardware-specific operations.
417  * @ep0: Endpoint zero, used when reading or writing responses to
418  *      driver setup() requests
419  * @ep_list: List of other endpoints supported by the device.
420  * @speed: Speed of current connection to USB host.
421  * @is_dualspeed: true if the controller supports both high and full speed
422  *      operation.  If it does, the gadget driver must also support both.
423  * @is_otg: true if the USB device port uses a Mini-AB jack, so that the
424  *      gadget driver must provide a USB OTG descriptor.
425  * @is_a_peripheral: false unless is_otg, the "A" end of a USB cable
426  *      is in the Mini-AB jack, and HNP has been used to switch roles
427  *      so that the "A" device currently acts as A-Peripheral, not A-Host.
428  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
429  *      supports HNP at this port.
430  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
431  *      only supports HNP on a different root port.
432  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
433  *      enabled HNP support.
434  * @name: Identifies the controller hardware type.  Used in diagnostics
435  *      and sometimes configuration.
436  * @dev: Driver model state for this abstract device.
437  *
438  * Gadgets have a mostly-portable "gadget driver" implementing device
439  * functions, handling all usb configurations and interfaces.  Gadget
440  * drivers talk to hardware-specific code indirectly, through ops vectors.
441  * That insulates the gadget driver from hardware details, and packages
442  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
443  * and "usb_ep" interfaces provide that insulation from the hardware.
444  *
445  * Except for the driver data, all fields in this structure are
446  * read-only to the gadget driver.  That driver data is part of the
447  * "driver model" infrastructure in 2.6 (and later) kernels, and for
448  * earlier systems is grouped in a similar structure that's not known
449  * to the rest of the kernel.
450  *
451  * Values of the three OTG device feature flags are updated before the
452  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
453  * driver suspend() calls.  They are valid only when is_otg, and when the
454  * device is acting as a B-Peripheral (so is_a_peripheral is false).
455  */
456 struct usb_gadget {
457         /* readonly to gadget driver */
458         const struct usb_gadget_ops     *ops;
459         struct usb_ep                   *ep0;
460         struct list_head                ep_list;        /* of usb_ep */
461         enum usb_device_speed           speed;
462         unsigned                        is_dualspeed:1;
463         unsigned                        is_otg:1;
464         unsigned                        is_a_peripheral:1;
465         unsigned                        b_hnp_enable:1;
466         unsigned                        a_hnp_support:1;
467         unsigned                        a_alt_hnp_support:1;
468         const char                      *name;
469         struct device                   dev;
470 };
471
472 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
473 {
474         gadget->dev.driver_data = data;
475 }
476
477 static inline void *get_gadget_data(struct usb_gadget *gadget)
478 {
479         return gadget->dev.driver_data;
480 }
481
482 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
483 {
484         return container_of(dev, struct usb_gadget, dev);
485 }
486
487 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
488 #define gadget_for_each_ep(tmp, gadget) \
489         list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
490
491
492 /**
493  * gadget_is_dualspeed - return true iff the hardware handles high speed
494  * @g: controller that might support both high and full speeds
495  */
496 static inline int gadget_is_dualspeed(struct usb_gadget *g)
497 {
498 #ifdef CONFIG_USB_GADGET_DUALSPEED
499         /* runtime test would check "g->is_dualspeed" ... that might be
500          * useful to work around hardware bugs, but is mostly pointless
501          */
502         return 1;
503 #else
504         return 0;
505 #endif
506 }
507
508 /**
509  * gadget_is_otg - return true iff the hardware is OTG-ready
510  * @g: controller that might have a Mini-AB connector
511  *
512  * This is a runtime test, since kernels with a USB-OTG stack sometimes
513  * run on boards which only have a Mini-B (or Mini-A) connector.
514  */
515 static inline int gadget_is_otg(struct usb_gadget *g)
516 {
517 #ifdef CONFIG_USB_OTG
518         return g->is_otg;
519 #else
520         return 0;
521 #endif
522 }
523
524 /**
525  * usb_gadget_frame_number - returns the current frame number
526  * @gadget: controller that reports the frame number
527  *
528  * Returns the usb frame number, normally eleven bits from a SOF packet,
529  * or negative errno if this device doesn't support this capability.
530  */
531 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
532 {
533         return gadget->ops->get_frame(gadget);
534 }
535
536 /**
537  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
538  * @gadget: controller used to wake up the host
539  *
540  * Returns zero on success, else negative error code if the hardware
541  * doesn't support such attempts, or its support has not been enabled
542  * by the usb host.  Drivers must return device descriptors that report
543  * their ability to support this, or hosts won't enable it.
544  *
545  * This may also try to use SRP to wake the host and start enumeration,
546  * even if OTG isn't otherwise in use.  OTG devices may also start
547  * remote wakeup even when hosts don't explicitly enable it.
548  */
549 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
550 {
551         if (!gadget->ops->wakeup)
552                 return -EOPNOTSUPP;
553         return gadget->ops->wakeup(gadget);
554 }
555
556 /**
557  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
558  * @gadget:the device being declared as self-powered
559  *
560  * this affects the device status reported by the hardware driver
561  * to reflect that it now has a local power supply.
562  *
563  * returns zero on success, else negative errno.
564  */
565 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
566 {
567         if (!gadget->ops->set_selfpowered)
568                 return -EOPNOTSUPP;
569         return gadget->ops->set_selfpowered(gadget, 1);
570 }
571
572 /**
573  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
574  * @gadget:the device being declared as bus-powered
575  *
576  * this affects the device status reported by the hardware driver.
577  * some hardware may not support bus-powered operation, in which
578  * case this feature's value can never change.
579  *
580  * returns zero on success, else negative errno.
581  */
582 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
583 {
584         if (!gadget->ops->set_selfpowered)
585                 return -EOPNOTSUPP;
586         return gadget->ops->set_selfpowered(gadget, 0);
587 }
588
589 /**
590  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
591  * @gadget:The device which now has VBUS power.
592  *
593  * This call is used by a driver for an external transceiver (or GPIO)
594  * that detects a VBUS power session starting.  Common responses include
595  * resuming the controller, activating the D+ (or D-) pullup to let the
596  * host detect that a USB device is attached, and starting to draw power
597  * (8mA or possibly more, especially after SET_CONFIGURATION).
598  *
599  * Returns zero on success, else negative errno.
600  */
601 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
602 {
603         if (!gadget->ops->vbus_session)
604                 return -EOPNOTSUPP;
605         return gadget->ops->vbus_session(gadget, 1);
606 }
607
608 /**
609  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
610  * @gadget:The device whose VBUS usage is being described
611  * @mA:How much current to draw, in milliAmperes.  This should be twice
612  *      the value listed in the configuration descriptor bMaxPower field.
613  *
614  * This call is used by gadget drivers during SET_CONFIGURATION calls,
615  * reporting how much power the device may consume.  For example, this
616  * could affect how quickly batteries are recharged.
617  *
618  * Returns zero on success, else negative errno.
619  */
620 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
621 {
622         if (!gadget->ops->vbus_draw)
623                 return -EOPNOTSUPP;
624         return gadget->ops->vbus_draw(gadget, mA);
625 }
626
627 /**
628  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
629  * @gadget:the device whose VBUS supply is being described
630  *
631  * This call is used by a driver for an external transceiver (or GPIO)
632  * that detects a VBUS power session ending.  Common responses include
633  * reversing everything done in usb_gadget_vbus_connect().
634  *
635  * Returns zero on success, else negative errno.
636  */
637 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
638 {
639         if (!gadget->ops->vbus_session)
640                 return -EOPNOTSUPP;
641         return gadget->ops->vbus_session(gadget, 0);
642 }
643
644 /**
645  * usb_gadget_connect - software-controlled connect to USB host
646  * @gadget:the peripheral being connected
647  *
648  * Enables the D+ (or potentially D-) pullup.  The host will start
649  * enumerating this gadget when the pullup is active and a VBUS session
650  * is active (the link is powered).  This pullup is always enabled unless
651  * usb_gadget_disconnect() has been used to disable it.
652  *
653  * Returns zero on success, else negative errno.
654  */
655 static inline int usb_gadget_connect(struct usb_gadget *gadget)
656 {
657         if (!gadget->ops->pullup)
658                 return -EOPNOTSUPP;
659         return gadget->ops->pullup(gadget, 1);
660 }
661
662 /**
663  * usb_gadget_disconnect - software-controlled disconnect from USB host
664  * @gadget:the peripheral being disconnected
665  *
666  * Disables the D+ (or potentially D-) pullup, which the host may see
667  * as a disconnect (when a VBUS session is active).  Not all systems
668  * support software pullup controls.
669  *
670  * This routine may be used during the gadget driver bind() call to prevent
671  * the peripheral from ever being visible to the USB host, unless later
672  * usb_gadget_connect() is called.  For example, user mode components may
673  * need to be activated before the system can talk to hosts.
674  *
675  * Returns zero on success, else negative errno.
676  */
677 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
678 {
679         if (!gadget->ops->pullup)
680                 return -EOPNOTSUPP;
681         return gadget->ops->pullup(gadget, 0);
682 }
683
684
685 /*-------------------------------------------------------------------------*/
686
687 /**
688  * struct usb_gadget_driver - driver for usb 'slave' devices
689  * @speed: Highest speed the driver handles.
690  * @bind: Invoked when the driver is bound to a gadget, usually
691  *      after registering the driver.
692  *      At that point, ep0 is fully initialized, and ep_list holds
693  *      the currently-available endpoints.
694  *      Called in a context that permits sleeping.
695  * @setup: Invoked for ep0 control requests that aren't handled by
696  *      the hardware level driver. Most calls must be handled by
697  *      the gadget driver, including descriptor and configuration
698  *      management.  The 16 bit members of the setup data are in
699  *      USB byte order. Called in_interrupt; this may not sleep.  Driver
700  *      queues a response to ep0, or returns negative to stall.
701  * @disconnect: Invoked after all transfers have been stopped,
702  *      when the host is disconnected.  May be called in_interrupt; this
703  *      may not sleep.  Some devices can't detect disconnect, so this might
704  *      not be called except as part of controller shutdown.
705  * @unbind: Invoked when the driver is unbound from a gadget,
706  *      usually from rmmod (after a disconnect is reported).
707  *      Called in a context that permits sleeping.
708  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
709  * @resume: Invoked on USB resume.  May be called in_interrupt.
710  *
711  * Devices are disabled till a gadget driver successfully bind()s, which
712  * means the driver will handle setup() requests needed to enumerate (and
713  * meet "chapter 9" requirements) then do some useful work.
714  *
715  * If gadget->is_otg is true, the gadget driver must provide an OTG
716  * descriptor during enumeration, or else fail the bind() call.  In such
717  * cases, no USB traffic may flow until both bind() returns without
718  * having called usb_gadget_disconnect(), and the USB host stack has
719  * initialized.
720  *
721  * Drivers use hardware-specific knowledge to configure the usb hardware.
722  * endpoint addressing is only one of several hardware characteristics that
723  * are in descriptors the ep0 implementation returns from setup() calls.
724  *
725  * Except for ep0 implementation, most driver code shouldn't need change to
726  * run on top of different usb controllers.  It'll use endpoints set up by
727  * that ep0 implementation.
728  *
729  * The usb controller driver handles a few standard usb requests.  Those
730  * include set_address, and feature flags for devices, interfaces, and
731  * endpoints (the get_status, set_feature, and clear_feature requests).
732  *
733  * Accordingly, the driver's setup() callback must always implement all
734  * get_descriptor requests, returning at least a device descriptor and
735  * a configuration descriptor.  Drivers must make sure the endpoint
736  * descriptors match any hardware constraints. Some hardware also constrains
737  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
738  *
739  * The driver's setup() callback must also implement set_configuration,
740  * and should also implement set_interface, get_configuration, and
741  * get_interface.  Setting a configuration (or interface) is where
742  * endpoints should be activated or (config 0) shut down.
743  *
744  * (Note that only the default control endpoint is supported.  Neither
745  * hosts nor devices generally support control traffic except to ep0.)
746  *
747  * Most devices will ignore USB suspend/resume operations, and so will
748  * not provide those callbacks.  However, some may need to change modes
749  * when the host is not longer directing those activities.  For example,
750  * local controls (buttons, dials, etc) may need to be re-enabled since
751  * the (remote) host can't do that any longer; or an error state might
752  * be cleared, to make the device behave identically whether or not
753  * power is maintained.
754  */
755 struct usb_gadget_driver {
756         enum usb_device_speed   speed;
757         int                     (*bind)(struct usb_gadget *);
758         void                    (*unbind)(struct usb_gadget *);
759         int                     (*setup)(struct usb_gadget *,
760                                         const struct usb_ctrlrequest *);
761         void                    (*disconnect)(struct usb_gadget *);
762         void                    (*suspend)(struct usb_gadget *);
763         void                    (*resume)(struct usb_gadget *);
764 };
765
766
767 /*-------------------------------------------------------------------------*/
768
769 /* driver modules register and unregister, as usual.
770  * these calls must be made in a context that can sleep.
771  *
772  * these will usually be implemented directly by the hardware-dependent
773  * usb bus interface driver, which will only support a single driver.
774  */
775
776 /**
777  * usb_gadget_register_driver - register a gadget driver
778  * @driver:the driver being registered
779  *
780  * Call this in your gadget driver's module initialization function,
781  * to tell the underlying usb controller driver about your driver.
782  * The driver's bind() function will be called to bind it to a
783  * gadget before this registration call returns.  It's expected that
784  * the bind() functions will be in init sections.
785  * This function must be called in a context that can sleep.
786  */
787 int usb_gadget_register_driver(struct usb_gadget_driver *driver);
788
789 /**
790  * usb_gadget_unregister_driver - unregister a gadget driver
791  * @driver:the driver being unregistered
792  *
793  * Call this in your gadget driver's module cleanup function,
794  * to tell the underlying usb controller that your driver is
795  * going away.  If the controller is connected to a USB host,
796  * it will first disconnect().  The driver is also requested
797  * to unbind() and clean up any device state, before this procedure
798  * finally returns.  It's expected that the unbind() functions
799  * will in in exit sections, so may not be linked in some kernels.
800  * This function must be called in a context that can sleep.
801  */
802 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
803
804 /*-------------------------------------------------------------------------*/
805
806 /* utility to simplify dealing with string descriptors */
807
808 /**
809  * struct usb_string - wraps a C string and its USB id
810  * @id:the (nonzero) ID for this string
811  * @s:the string, in UTF-8 encoding
812  *
813  * If you're using usb_gadget_get_string(), use this to wrap a string
814  * together with its ID.
815  */
816 struct usb_string {
817         u8                      id;
818         const char              *s;
819 };
820
821 /**
822  * struct usb_gadget_strings - a set of USB strings in a given language
823  * @language:identifies the strings' language (0x0409 for en-us)
824  * @strings:array of strings with their ids
825  *
826  * If you're using usb_gadget_get_string(), use this to wrap all the
827  * strings for a given language.
828  */
829 struct usb_gadget_strings {
830         u16                     language;       /* 0x0409 for en-us */
831         struct usb_string       *strings;
832 };
833
834 /* put descriptor for string with that id into buf (buflen >= 256) */
835 int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
836
837 /*-------------------------------------------------------------------------*/
838
839 /* utility to simplify managing config descriptors */
840
841 /* write vector of descriptors into buffer */
842 int usb_descriptor_fillbuf(void *, unsigned,
843                 const struct usb_descriptor_header **);
844
845 /* build config descriptor from single descriptor vector */
846 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
847         void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
848
849 /*-------------------------------------------------------------------------*/
850
851 /* utility wrapping a simple endpoint selection policy */
852
853 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
854                         struct usb_endpoint_descriptor *);
855
856 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
857
858 extern int usb_gadget_handle_interrupts(void);
859
860 #endif  /* __LINUX_USB_GADGET_H */