]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - include/malloc.h
* Switch LWMON board default config from FRAM to EEPROM;
[karo-tx-uboot.git] / include / malloc.h
1 /*
2   A version of malloc/free/realloc written by Doug Lea and released to the
3   public domain.  Send questions/comments/complaints/performance data
4   to dl@cs.oswego.edu
5
6 * VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
7
8    Note: There may be an updated version of this malloc obtainable at
9            ftp://g.oswego.edu/pub/misc/malloc.c
10          Check before installing!
11
12 * Why use this malloc?
13
14   This is not the fastest, most space-conserving, most portable, or
15   most tunable malloc ever written. However it is among the fastest
16   while also being among the most space-conserving, portable and tunable.
17   Consistent balance across these factors results in a good general-purpose
18   allocator. For a high-level description, see
19      http://g.oswego.edu/dl/html/malloc.html
20
21 * Synopsis of public routines
22
23   (Much fuller descriptions are contained in the program documentation below.)
24
25   malloc(size_t n);
26      Return a pointer to a newly allocated chunk of at least n bytes, or null
27      if no space is available.
28   free(Void_t* p);
29      Release the chunk of memory pointed to by p, or no effect if p is null.
30   realloc(Void_t* p, size_t n);
31      Return a pointer to a chunk of size n that contains the same data
32      as does chunk p up to the minimum of (n, p's size) bytes, or null
33      if no space is available. The returned pointer may or may not be
34      the same as p. If p is null, equivalent to malloc.  Unless the
35      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
36      size argument of zero (re)allocates a minimum-sized chunk.
37   memalign(size_t alignment, size_t n);
38      Return a pointer to a newly allocated chunk of n bytes, aligned
39      in accord with the alignment argument, which must be a power of
40      two.
41   valloc(size_t n);
42      Equivalent to memalign(pagesize, n), where pagesize is the page
43      size of the system (or as near to this as can be figured out from
44      all the includes/defines below.)
45   pvalloc(size_t n);
46      Equivalent to valloc(minimum-page-that-holds(n)), that is,
47      round up n to nearest pagesize.
48   calloc(size_t unit, size_t quantity);
49      Returns a pointer to quantity * unit bytes, with all locations
50      set to zero.
51   cfree(Void_t* p);
52      Equivalent to free(p).
53   malloc_trim(size_t pad);
54      Release all but pad bytes of freed top-most memory back
55      to the system. Return 1 if successful, else 0.
56   malloc_usable_size(Void_t* p);
57      Report the number usable allocated bytes associated with allocated
58      chunk p. This may or may not report more bytes than were requested,
59      due to alignment and minimum size constraints.
60   malloc_stats();
61      Prints brief summary statistics on stderr.
62   mallinfo()
63      Returns (by copy) a struct containing various summary statistics.
64   mallopt(int parameter_number, int parameter_value)
65      Changes one of the tunable parameters described below. Returns
66      1 if successful in changing the parameter, else 0.
67
68 * Vital statistics:
69
70   Alignment:                            8-byte
71        8 byte alignment is currently hardwired into the design.  This
72        seems to suffice for all current machines and C compilers.
73
74   Assumed pointer representation:       4 or 8 bytes
75        Code for 8-byte pointers is untested by me but has worked
76        reliably by Wolfram Gloger, who contributed most of the
77        changes supporting this.
78
79   Assumed size_t  representation:       4 or 8 bytes
80        Note that size_t is allowed to be 4 bytes even if pointers are 8.
81
82   Minimum overhead per allocated chunk: 4 or 8 bytes
83        Each malloced chunk has a hidden overhead of 4 bytes holding size
84        and status information.
85
86   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
87                           8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
88
89        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
90        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
91        needed; 4 (8) for a trailing size field
92        and 8 (16) bytes for free list pointers. Thus, the minimum
93        allocatable size is 16/24/32 bytes.
94
95        Even a request for zero bytes (i.e., malloc(0)) returns a
96        pointer to something of the minimum allocatable size.
97
98   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
99                           8-byte size_t: 2^63 - 16 bytes
100
101        It is assumed that (possibly signed) size_t bit values suffice to
102        represent chunk sizes. `Possibly signed' is due to the fact
103        that `size_t' may be defined on a system as either a signed or
104        an unsigned type. To be conservative, values that would appear
105        as negative numbers are avoided.
106        Requests for sizes with a negative sign bit when the request
107        size is treaded as a long will return null.
108
109   Maximum overhead wastage per allocated chunk: normally 15 bytes
110
111        Alignnment demands, plus the minimum allocatable size restriction
112        make the normal worst-case wastage 15 bytes (i.e., up to 15
113        more bytes will be allocated than were requested in malloc), with
114        two exceptions:
115          1. Because requests for zero bytes allocate non-zero space,
116             the worst case wastage for a request of zero bytes is 24 bytes.
117          2. For requests >= mmap_threshold that are serviced via
118             mmap(), the worst case wastage is 8 bytes plus the remainder
119             from a system page (the minimal mmap unit); typically 4096 bytes.
120
121 * Limitations
122
123     Here are some features that are NOT currently supported
124
125     * No user-definable hooks for callbacks and the like.
126     * No automated mechanism for fully checking that all accesses
127       to malloced memory stay within their bounds.
128     * No support for compaction.
129
130 * Synopsis of compile-time options:
131
132     People have reported using previous versions of this malloc on all
133     versions of Unix, sometimes by tweaking some of the defines
134     below. It has been tested most extensively on Solaris and
135     Linux. It is also reported to work on WIN32 platforms.
136     People have also reported adapting this malloc for use in
137     stand-alone embedded systems.
138
139     The implementation is in straight, hand-tuned ANSI C.  Among other
140     consequences, it uses a lot of macros.  Because of this, to be at
141     all usable, this code should be compiled using an optimizing compiler
142     (for example gcc -O2) that can simplify expressions and control
143     paths.
144
145   __STD_C                  (default: derived from C compiler defines)
146      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
147      a C compiler sufficiently close to ANSI to get away with it.
148   DEBUG                    (default: NOT defined)
149      Define to enable debugging. Adds fairly extensive assertion-based
150      checking to help track down memory errors, but noticeably slows down
151      execution.
152   REALLOC_ZERO_BYTES_FREES (default: NOT defined)
153      Define this if you think that realloc(p, 0) should be equivalent
154      to free(p). Otherwise, since malloc returns a unique pointer for
155      malloc(0), so does realloc(p, 0).
156   HAVE_MEMCPY               (default: defined)
157      Define if you are not otherwise using ANSI STD C, but still
158      have memcpy and memset in your C library and want to use them.
159      Otherwise, simple internal versions are supplied.
160   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
161      Define as 1 if you want the C library versions of memset and
162      memcpy called in realloc and calloc (otherwise macro versions are used).
163      At least on some platforms, the simple macro versions usually
164      outperform libc versions.
165   HAVE_MMAP                 (default: defined as 1)
166      Define to non-zero to optionally make malloc() use mmap() to
167      allocate very large blocks.
168   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
169      Define to non-zero to optionally make realloc() use mremap() to
170      reallocate very large blocks.
171   malloc_getpagesize        (default: derived from system #includes)
172      Either a constant or routine call returning the system page size.
173   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
174      Optionally define if you are on a system with a /usr/include/malloc.h
175      that declares struct mallinfo. It is not at all necessary to
176      define this even if you do, but will ensure consistency.
177   INTERNAL_SIZE_T           (default: size_t)
178      Define to a 32-bit type (probably `unsigned int') if you are on a
179      64-bit machine, yet do not want or need to allow malloc requests of
180      greater than 2^31 to be handled. This saves space, especially for
181      very small chunks.
182   INTERNAL_LINUX_C_LIB      (default: NOT defined)
183      Defined only when compiled as part of Linux libc.
184      Also note that there is some odd internal name-mangling via defines
185      (for example, internally, `malloc' is named `mALLOc') needed
186      when compiling in this case. These look funny but don't otherwise
187      affect anything.
188   WIN32                     (default: undefined)
189      Define this on MS win (95, nt) platforms to compile in sbrk emulation.
190   LACKS_UNISTD_H            (default: undefined if not WIN32)
191      Define this if your system does not have a <unistd.h>.
192   LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
193      Define this if your system does not have a <sys/param.h>.
194   MORECORE                  (default: sbrk)
195      The name of the routine to call to obtain more memory from the system.
196   MORECORE_FAILURE          (default: -1)
197      The value returned upon failure of MORECORE.
198   MORECORE_CLEARS           (default 1)
199      True (1) if the routine mapped to MORECORE zeroes out memory (which
200      holds for sbrk).
201   DEFAULT_TRIM_THRESHOLD
202   DEFAULT_TOP_PAD
203   DEFAULT_MMAP_THRESHOLD
204   DEFAULT_MMAP_MAX
205      Default values of tunable parameters (described in detail below)
206      controlling interaction with host system routines (sbrk, mmap, etc).
207      These values may also be changed dynamically via mallopt(). The
208      preset defaults are those that give best performance for typical
209      programs/systems.
210   USE_DL_PREFIX             (default: undefined)
211      Prefix all public routines with the string 'dl'.  Useful to
212      quickly avoid procedure declaration conflicts and linker symbol
213      conflicts with existing memory allocation routines.
214
215
216 */
217
218 \f
219
220
221 /* Preliminaries */
222
223 #ifndef __STD_C
224 #ifdef __STDC__
225 #define __STD_C     1
226 #else
227 #if __cplusplus
228 #define __STD_C     1
229 #else
230 #define __STD_C     0
231 #endif /*__cplusplus*/
232 #endif /*__STDC__*/
233 #endif /*__STD_C*/
234
235 #ifndef Void_t
236 #if (__STD_C || defined(WIN32))
237 #define Void_t      void
238 #else
239 #define Void_t      char
240 #endif
241 #endif /*Void_t*/
242
243 #if __STD_C
244 #include <linux/stddef.h>       /* for size_t */
245 #else
246 #include <sys/types.h>
247 #endif  /* __STD_C */
248
249 #ifdef __cplusplus
250 extern "C" {
251 #endif
252
253 #if 0   /* not for U-Boot */
254 #include <stdio.h>      /* needed for malloc_stats */
255 #endif
256
257
258 /*
259   Compile-time options
260 */
261
262
263 /*
264     Debugging:
265
266     Because freed chunks may be overwritten with link fields, this
267     malloc will often die when freed memory is overwritten by user
268     programs.  This can be very effective (albeit in an annoying way)
269     in helping track down dangling pointers.
270
271     If you compile with -DDEBUG, a number of assertion checks are
272     enabled that will catch more memory errors. You probably won't be
273     able to make much sense of the actual assertion errors, but they
274     should help you locate incorrectly overwritten memory.  The
275     checking is fairly extensive, and will slow down execution
276     noticeably. Calling malloc_stats or mallinfo with DEBUG set will
277     attempt to check every non-mmapped allocated and free chunk in the
278     course of computing the summmaries. (By nature, mmapped regions
279     cannot be checked very much automatically.)
280
281     Setting DEBUG may also be helpful if you are trying to modify
282     this code. The assertions in the check routines spell out in more
283     detail the assumptions and invariants underlying the algorithms.
284
285 */
286
287 #ifdef DEBUG
288 /* #include <assert.h> */
289 #define assert(x) ((void)0)
290 #else
291 #define assert(x) ((void)0)
292 #endif
293
294
295 /*
296   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
297   of chunk sizes. On a 64-bit machine, you can reduce malloc
298   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
299   at the expense of not being able to handle requests greater than
300   2^31. This limitation is hardly ever a concern; you are encouraged
301   to set this. However, the default version is the same as size_t.
302 */
303
304 #ifndef INTERNAL_SIZE_T
305 #define INTERNAL_SIZE_T size_t
306 #endif
307
308 /*
309   REALLOC_ZERO_BYTES_FREES should be set if a call to
310   realloc with zero bytes should be the same as a call to free.
311   Some people think it should. Otherwise, since this malloc
312   returns a unique pointer for malloc(0), so does realloc(p, 0).
313 */
314
315
316 /*   #define REALLOC_ZERO_BYTES_FREES */
317
318
319 /*
320   WIN32 causes an emulation of sbrk to be compiled in
321   mmap-based options are not currently supported in WIN32.
322 */
323
324 /* #define WIN32 */
325 #ifdef WIN32
326 #define MORECORE wsbrk
327 #define HAVE_MMAP 0
328
329 #define LACKS_UNISTD_H
330 #define LACKS_SYS_PARAM_H
331
332 /*
333   Include 'windows.h' to get the necessary declarations for the
334   Microsoft Visual C++ data structures and routines used in the 'sbrk'
335   emulation.
336
337   Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
338   Visual C++ header files are included.
339 */
340 #define WIN32_LEAN_AND_MEAN
341 #include <windows.h>
342 #endif
343
344
345 /*
346   HAVE_MEMCPY should be defined if you are not otherwise using
347   ANSI STD C, but still have memcpy and memset in your C library
348   and want to use them in calloc and realloc. Otherwise simple
349   macro versions are defined here.
350
351   USE_MEMCPY should be defined as 1 if you actually want to
352   have memset and memcpy called. People report that the macro
353   versions are often enough faster than libc versions on many
354   systems that it is better to use them.
355
356 */
357
358 #define HAVE_MEMCPY
359
360 #ifndef USE_MEMCPY
361 #ifdef HAVE_MEMCPY
362 #define USE_MEMCPY 1
363 #else
364 #define USE_MEMCPY 0
365 #endif
366 #endif
367
368 #if (__STD_C || defined(HAVE_MEMCPY))
369
370 #if __STD_C
371 void* memset(void*, int, size_t);
372 void* memcpy(void*, const void*, size_t);
373 #else
374 #ifdef WIN32
375 // On Win32 platforms, 'memset()' and 'memcpy()' are already declared in
376 // 'windows.h'
377 #else
378 Void_t* memset();
379 Void_t* memcpy();
380 #endif
381 #endif
382 #endif
383
384 #if USE_MEMCPY
385
386 /* The following macros are only invoked with (2n+1)-multiples of
387    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
388    for fast inline execution when n is small. */
389
390 #define MALLOC_ZERO(charp, nbytes)                                            \
391 do {                                                                          \
392   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
393   if(mzsz <= 9*sizeof(mzsz)) {                                                \
394     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
395     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
396                                      *mz++ = 0;                               \
397       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
398                                      *mz++ = 0;                               \
399         if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
400                                      *mz++ = 0; }}}                           \
401                                      *mz++ = 0;                               \
402                                      *mz++ = 0;                               \
403                                      *mz   = 0;                               \
404   } else memset((charp), 0, mzsz);                                            \
405 } while(0)
406
407 #define MALLOC_COPY(dest,src,nbytes)                                          \
408 do {                                                                          \
409   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
410   if(mcsz <= 9*sizeof(mcsz)) {                                                \
411     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
412     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
413     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
414                                      *mcdst++ = *mcsrc++;                     \
415       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
416                                      *mcdst++ = *mcsrc++;                     \
417         if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
418                                      *mcdst++ = *mcsrc++; }}}                 \
419                                      *mcdst++ = *mcsrc++;                     \
420                                      *mcdst++ = *mcsrc++;                     \
421                                      *mcdst   = *mcsrc  ;                     \
422   } else memcpy(dest, src, mcsz);                                             \
423 } while(0)
424
425 #else /* !USE_MEMCPY */
426
427 /* Use Duff's device for good zeroing/copying performance. */
428
429 #define MALLOC_ZERO(charp, nbytes)                                            \
430 do {                                                                          \
431   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
432   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
433   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
434   switch (mctmp) {                                                            \
435     case 0: for(;;) { *mzp++ = 0;                                             \
436     case 7:           *mzp++ = 0;                                             \
437     case 6:           *mzp++ = 0;                                             \
438     case 5:           *mzp++ = 0;                                             \
439     case 4:           *mzp++ = 0;                                             \
440     case 3:           *mzp++ = 0;                                             \
441     case 2:           *mzp++ = 0;                                             \
442     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
443   }                                                                           \
444 } while(0)
445
446 #define MALLOC_COPY(dest,src,nbytes)                                          \
447 do {                                                                          \
448   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
449   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
450   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
451   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
452   switch (mctmp) {                                                            \
453     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
454     case 7:           *mcdst++ = *mcsrc++;                                    \
455     case 6:           *mcdst++ = *mcsrc++;                                    \
456     case 5:           *mcdst++ = *mcsrc++;                                    \
457     case 4:           *mcdst++ = *mcsrc++;                                    \
458     case 3:           *mcdst++ = *mcsrc++;                                    \
459     case 2:           *mcdst++ = *mcsrc++;                                    \
460     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
461   }                                                                           \
462 } while(0)
463
464 #endif
465
466
467 /*
468   Define HAVE_MMAP to optionally make malloc() use mmap() to
469   allocate very large blocks.  These will be returned to the
470   operating system immediately after a free().
471 */
472
473 /***
474 #ifndef HAVE_MMAP
475 #define HAVE_MMAP 1
476 #endif
477 ***/
478 #undef  HAVE_MMAP       /* Not available for U-Boot */
479
480 /*
481   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
482   large blocks.  This is currently only possible on Linux with
483   kernel versions newer than 1.3.77.
484 */
485
486 /***
487 #ifndef HAVE_MREMAP
488 #ifdef INTERNAL_LINUX_C_LIB
489 #define HAVE_MREMAP 1
490 #else
491 #define HAVE_MREMAP 0
492 #endif
493 #endif
494 ***/
495 #undef  HAVE_MREMAP     /* Not available for U-Boot */
496
497 #if HAVE_MMAP
498
499 #include <unistd.h>
500 #include <fcntl.h>
501 #include <sys/mman.h>
502
503 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
504 #define MAP_ANONYMOUS MAP_ANON
505 #endif
506
507 #endif /* HAVE_MMAP */
508
509 /*
510   Access to system page size. To the extent possible, this malloc
511   manages memory from the system in page-size units.
512
513   The following mechanics for getpagesize were adapted from
514   bsd/gnu getpagesize.h
515 */
516
517 #define LACKS_UNISTD_H  /* Shortcut for U-Boot */
518 #define malloc_getpagesize      4096
519
520 #ifndef LACKS_UNISTD_H
521 #  include <unistd.h>
522 #endif
523
524 #ifndef malloc_getpagesize
525 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
526 #    ifndef _SC_PAGE_SIZE
527 #      define _SC_PAGE_SIZE _SC_PAGESIZE
528 #    endif
529 #  endif
530 #  ifdef _SC_PAGE_SIZE
531 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
532 #  else
533 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
534        extern size_t getpagesize();
535 #      define malloc_getpagesize getpagesize()
536 #    else
537 #      ifdef WIN32
538 #        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
539 #      else
540 #        ifndef LACKS_SYS_PARAM_H
541 #          include <sys/param.h>
542 #        endif
543 #        ifdef EXEC_PAGESIZE
544 #          define malloc_getpagesize EXEC_PAGESIZE
545 #        else
546 #          ifdef NBPG
547 #            ifndef CLSIZE
548 #              define malloc_getpagesize NBPG
549 #            else
550 #              define malloc_getpagesize (NBPG * CLSIZE)
551 #            endif
552 #          else
553 #            ifdef NBPC
554 #              define malloc_getpagesize NBPC
555 #            else
556 #              ifdef PAGESIZE
557 #                define malloc_getpagesize PAGESIZE
558 #              else
559 #                define malloc_getpagesize (4096) /* just guess */
560 #              endif
561 #            endif
562 #          endif
563 #        endif
564 #      endif
565 #    endif
566 #  endif
567 #endif
568
569
570
571 /*
572
573   This version of malloc supports the standard SVID/XPG mallinfo
574   routine that returns a struct containing the same kind of
575   information you can get from malloc_stats. It should work on
576   any SVID/XPG compliant system that has a /usr/include/malloc.h
577   defining struct mallinfo. (If you'd like to install such a thing
578   yourself, cut out the preliminary declarations as described above
579   and below and save them in a malloc.h file. But there's no
580   compelling reason to bother to do this.)
581
582   The main declaration needed is the mallinfo struct that is returned
583   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
584   bunch of fields, most of which are not even meaningful in this
585   version of malloc. Some of these fields are are instead filled by
586   mallinfo() with other numbers that might possibly be of interest.
587
588   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
589   /usr/include/malloc.h file that includes a declaration of struct
590   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
591   version is declared below.  These must be precisely the same for
592   mallinfo() to work.
593
594 */
595
596 /* #define HAVE_USR_INCLUDE_MALLOC_H */
597
598 #if HAVE_USR_INCLUDE_MALLOC_H
599 #include "/usr/include/malloc.h"
600 #else
601
602 /* SVID2/XPG mallinfo structure */
603
604 struct mallinfo {
605   int arena;    /* total space allocated from system */
606   int ordblks;  /* number of non-inuse chunks */
607   int smblks;   /* unused -- always zero */
608   int hblks;    /* number of mmapped regions */
609   int hblkhd;   /* total space in mmapped regions */
610   int usmblks;  /* unused -- always zero */
611   int fsmblks;  /* unused -- always zero */
612   int uordblks; /* total allocated space */
613   int fordblks; /* total non-inuse space */
614   int keepcost; /* top-most, releasable (via malloc_trim) space */
615 };
616
617 /* SVID2/XPG mallopt options */
618
619 #define M_MXFAST  1    /* UNUSED in this malloc */
620 #define M_NLBLKS  2    /* UNUSED in this malloc */
621 #define M_GRAIN   3    /* UNUSED in this malloc */
622 #define M_KEEP    4    /* UNUSED in this malloc */
623
624 #endif
625
626 /* mallopt options that actually do something */
627
628 #define M_TRIM_THRESHOLD    -1
629 #define M_TOP_PAD           -2
630 #define M_MMAP_THRESHOLD    -3
631 #define M_MMAP_MAX          -4
632
633
634
635 #ifndef DEFAULT_TRIM_THRESHOLD
636 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
637 #endif
638
639 /*
640     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
641       to keep before releasing via malloc_trim in free().
642
643       Automatic trimming is mainly useful in long-lived programs.
644       Because trimming via sbrk can be slow on some systems, and can
645       sometimes be wasteful (in cases where programs immediately
646       afterward allocate more large chunks) the value should be high
647       enough so that your overall system performance would improve by
648       releasing.
649
650       The trim threshold and the mmap control parameters (see below)
651       can be traded off with one another. Trimming and mmapping are
652       two different ways of releasing unused memory back to the
653       system. Between these two, it is often possible to keep
654       system-level demands of a long-lived program down to a bare
655       minimum. For example, in one test suite of sessions measuring
656       the XF86 X server on Linux, using a trim threshold of 128K and a
657       mmap threshold of 192K led to near-minimal long term resource
658       consumption.
659
660       If you are using this malloc in a long-lived program, it should
661       pay to experiment with these values.  As a rough guide, you
662       might set to a value close to the average size of a process
663       (program) running on your system.  Releasing this much memory
664       would allow such a process to run in memory.  Generally, it's
665       worth it to tune for trimming rather tham memory mapping when a
666       program undergoes phases where several large chunks are
667       allocated and released in ways that can reuse each other's
668       storage, perhaps mixed with phases where there are no such
669       chunks at all.  And in well-behaved long-lived programs,
670       controlling release of large blocks via trimming versus mapping
671       is usually faster.
672
673       However, in most programs, these parameters serve mainly as
674       protection against the system-level effects of carrying around
675       massive amounts of unneeded memory. Since frequent calls to
676       sbrk, mmap, and munmap otherwise degrade performance, the default
677       parameters are set to relatively high values that serve only as
678       safeguards.
679
680       The default trim value is high enough to cause trimming only in
681       fairly extreme (by current memory consumption standards) cases.
682       It must be greater than page size to have any useful effect.  To
683       disable trimming completely, you can set to (unsigned long)(-1);
684
685
686 */
687
688
689 #ifndef DEFAULT_TOP_PAD
690 #define DEFAULT_TOP_PAD        (0)
691 #endif
692
693 /*
694     M_TOP_PAD is the amount of extra `padding' space to allocate or
695       retain whenever sbrk is called. It is used in two ways internally:
696
697       * When sbrk is called to extend the top of the arena to satisfy
698         a new malloc request, this much padding is added to the sbrk
699         request.
700
701       * When malloc_trim is called automatically from free(),
702         it is used as the `pad' argument.
703
704       In both cases, the actual amount of padding is rounded
705       so that the end of the arena is always a system page boundary.
706
707       The main reason for using padding is to avoid calling sbrk so
708       often. Having even a small pad greatly reduces the likelihood
709       that nearly every malloc request during program start-up (or
710       after trimming) will invoke sbrk, which needlessly wastes
711       time.
712
713       Automatic rounding-up to page-size units is normally sufficient
714       to avoid measurable overhead, so the default is 0.  However, in
715       systems where sbrk is relatively slow, it can pay to increase
716       this value, at the expense of carrying around more memory than
717       the program needs.
718
719 */
720
721
722 #ifndef DEFAULT_MMAP_THRESHOLD
723 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
724 #endif
725
726 /*
727
728     M_MMAP_THRESHOLD is the request size threshold for using mmap()
729       to service a request. Requests of at least this size that cannot
730       be allocated using already-existing space will be serviced via mmap.
731       (If enough normal freed space already exists it is used instead.)
732
733       Using mmap segregates relatively large chunks of memory so that
734       they can be individually obtained and released from the host
735       system. A request serviced through mmap is never reused by any
736       other request (at least not directly; the system may just so
737       happen to remap successive requests to the same locations).
738
739       Segregating space in this way has the benefit that mmapped space
740       can ALWAYS be individually released back to the system, which
741       helps keep the system level memory demands of a long-lived
742       program low. Mapped memory can never become `locked' between
743       other chunks, as can happen with normally allocated chunks, which
744       menas that even trimming via malloc_trim would not release them.
745
746       However, it has the disadvantages that:
747
748          1. The space cannot be reclaimed, consolidated, and then
749             used to service later requests, as happens with normal chunks.
750          2. It can lead to more wastage because of mmap page alignment
751             requirements
752          3. It causes malloc performance to be more dependent on host
753             system memory management support routines which may vary in
754             implementation quality and may impose arbitrary
755             limitations. Generally, servicing a request via normal
756             malloc steps is faster than going through a system's mmap.
757
758       All together, these considerations should lead you to use mmap
759       only for relatively large requests.
760
761
762 */
763
764
765
766 #ifndef DEFAULT_MMAP_MAX
767 #if HAVE_MMAP
768 #define DEFAULT_MMAP_MAX       (64)
769 #else
770 #define DEFAULT_MMAP_MAX       (0)
771 #endif
772 #endif
773
774 /*
775     M_MMAP_MAX is the maximum number of requests to simultaneously
776       service using mmap. This parameter exists because:
777
778          1. Some systems have a limited number of internal tables for
779             use by mmap.
780          2. In most systems, overreliance on mmap can degrade overall
781             performance.
782          3. If a program allocates many large regions, it is probably
783             better off using normal sbrk-based allocation routines that
784             can reclaim and reallocate normal heap memory. Using a
785             small value allows transition into this mode after the
786             first few allocations.
787
788       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
789       the default value is 0, and attempts to set it to non-zero values
790       in mallopt will fail.
791 */
792
793
794
795
796 /*
797     USE_DL_PREFIX will prefix all public routines with the string 'dl'.
798       Useful to quickly avoid procedure declaration conflicts and linker
799       symbol conflicts with existing memory allocation routines.
800
801 */
802
803 /* #define USE_DL_PREFIX */
804
805
806
807
808 /*
809
810   Special defines for linux libc
811
812   Except when compiled using these special defines for Linux libc
813   using weak aliases, this malloc is NOT designed to work in
814   multithreaded applications.  No semaphores or other concurrency
815   control are provided to ensure that multiple malloc or free calls
816   don't run at the same time, which could be disasterous. A single
817   semaphore could be used across malloc, realloc, and free (which is
818   essentially the effect of the linux weak alias approach). It would
819   be hard to obtain finer granularity.
820
821 */
822
823
824 #ifdef INTERNAL_LINUX_C_LIB
825
826 #if __STD_C
827
828 Void_t * __default_morecore_init (ptrdiff_t);
829 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
830
831 #else
832
833 Void_t * __default_morecore_init ();
834 Void_t *(*__morecore)() = __default_morecore_init;
835
836 #endif
837
838 #define MORECORE (*__morecore)
839 #define MORECORE_FAILURE 0
840 #define MORECORE_CLEARS 1
841
842 #else /* INTERNAL_LINUX_C_LIB */
843
844 #if __STD_C
845 extern Void_t*     sbrk(ptrdiff_t);
846 #else
847 extern Void_t*     sbrk();
848 #endif
849
850 #ifndef MORECORE
851 #define MORECORE sbrk
852 #endif
853
854 #ifndef MORECORE_FAILURE
855 #define MORECORE_FAILURE -1
856 #endif
857
858 #ifndef MORECORE_CLEARS
859 #define MORECORE_CLEARS 1
860 #endif
861
862 #endif /* INTERNAL_LINUX_C_LIB */
863
864 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
865
866 #define cALLOc          __libc_calloc
867 #define fREe            __libc_free
868 #define mALLOc          __libc_malloc
869 #define mEMALIGn        __libc_memalign
870 #define rEALLOc         __libc_realloc
871 #define vALLOc          __libc_valloc
872 #define pvALLOc         __libc_pvalloc
873 #define mALLINFo        __libc_mallinfo
874 #define mALLOPt         __libc_mallopt
875
876 #pragma weak calloc = __libc_calloc
877 #pragma weak free = __libc_free
878 #pragma weak cfree = __libc_free
879 #pragma weak malloc = __libc_malloc
880 #pragma weak memalign = __libc_memalign
881 #pragma weak realloc = __libc_realloc
882 #pragma weak valloc = __libc_valloc
883 #pragma weak pvalloc = __libc_pvalloc
884 #pragma weak mallinfo = __libc_mallinfo
885 #pragma weak mallopt = __libc_mallopt
886
887 #else
888
889 #ifdef USE_DL_PREFIX
890 #define cALLOc          dlcalloc
891 #define fREe            dlfree
892 #define mALLOc          dlmalloc
893 #define mEMALIGn        dlmemalign
894 #define rEALLOc         dlrealloc
895 #define vALLOc          dlvalloc
896 #define pvALLOc         dlpvalloc
897 #define mALLINFo        dlmallinfo
898 #define mALLOPt         dlmallopt
899 #else /* USE_DL_PREFIX */
900 #define cALLOc          calloc
901 #define fREe            free
902 #define mALLOc          malloc
903 #define mEMALIGn        memalign
904 #define rEALLOc         realloc
905 #define vALLOc          valloc
906 #define pvALLOc         pvalloc
907 #define mALLINFo        mallinfo
908 #define mALLOPt         mallopt
909 #endif /* USE_DL_PREFIX */
910
911 #endif
912
913 /* Public routines */
914
915 #if __STD_C
916
917 Void_t* mALLOc(size_t);
918 void    fREe(Void_t*);
919 Void_t* rEALLOc(Void_t*, size_t);
920 Void_t* mEMALIGn(size_t, size_t);
921 Void_t* vALLOc(size_t);
922 Void_t* pvALLOc(size_t);
923 Void_t* cALLOc(size_t, size_t);
924 void    cfree(Void_t*);
925 int     malloc_trim(size_t);
926 size_t  malloc_usable_size(Void_t*);
927 void    malloc_stats(void);
928 int     mALLOPt(int, int);
929 struct mallinfo mALLINFo(void);
930 #else
931 Void_t* mALLOc();
932 void    fREe();
933 Void_t* rEALLOc();
934 Void_t* mEMALIGn();
935 Void_t* vALLOc();
936 Void_t* pvALLOc();
937 Void_t* cALLOc();
938 void    cfree();
939 int     malloc_trim();
940 size_t  malloc_usable_size();
941 void    malloc_stats();
942 int     mALLOPt();
943 struct mallinfo mALLINFo();
944 #endif
945
946
947 #ifdef __cplusplus
948 };  /* end of extern "C" */
949 #endif