]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - nand_spl/nand_boot.c
nand_spl: nand_boot.c: Remove CONFIG_SYS_NAND_READ_DELAY
[karo-tx-uboot.git] / nand_spl / nand_boot.c
1 /*
2  * (C) Copyright 2006-2008
3  * Stefan Roese, DENX Software Engineering, sr@denx.de.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation; either version 2 of
8  * the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18  * MA 02111-1307 USA
19  */
20
21 #include <common.h>
22 #include <nand.h>
23 #include <asm/io.h>
24
25 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
26
27 #if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
28 /*
29  * NAND command for small page NAND devices (512)
30  */
31 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
32 {
33         struct nand_chip *this = mtd->priv;
34         int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
35
36         if (this->dev_ready)
37                 while (!this->dev_ready(mtd))
38                         ;
39         else
40                 CONFIG_SYS_NAND_READ_DELAY;
41
42         /* Begin command latch cycle */
43         this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
44         /* Set ALE and clear CLE to start address cycle */
45         /* Column address */
46         this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
47         this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
48         this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
49                        NAND_CTRL_ALE); /* A[24:17] */
50 #ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
51         /* One more address cycle for devices > 32MiB */
52         this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
53                        NAND_CTRL_ALE); /* A[28:25] */
54 #endif
55         /* Latch in address */
56         this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
57
58         /*
59          * Wait a while for the data to be ready
60          */
61         while (!this->dev_ready(mtd))
62                 ;
63
64         return 0;
65 }
66 #else
67 /*
68  * NAND command for large page NAND devices (2k)
69  */
70 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
71 {
72         struct nand_chip *this = mtd->priv;
73         int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
74         void (*hwctrl)(struct mtd_info *mtd, int cmd,
75                         unsigned int ctrl) = this->cmd_ctrl;
76
77         while (!this->dev_ready(mtd))
78                 ;
79
80         /* Emulate NAND_CMD_READOOB */
81         if (cmd == NAND_CMD_READOOB) {
82                 offs += CONFIG_SYS_NAND_PAGE_SIZE;
83                 cmd = NAND_CMD_READ0;
84         }
85
86         /* Shift the offset from byte addressing to word addressing. */
87         if (this->options & NAND_BUSWIDTH_16)
88                 offs >>= 1;
89
90         /* Begin command latch cycle */
91         hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
92         /* Set ALE and clear CLE to start address cycle */
93         /* Column address */
94         hwctrl(mtd, offs & 0xff,
95                        NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
96         hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
97         /* Row address */
98         hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
99         hwctrl(mtd, ((page_addr >> 8) & 0xff),
100                        NAND_CTRL_ALE); /* A[27:20] */
101 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
102         /* One more address cycle for devices > 128MiB */
103         hwctrl(mtd, (page_addr >> 16) & 0x0f,
104                        NAND_CTRL_ALE); /* A[31:28] */
105 #endif
106         /* Latch in address */
107         hwctrl(mtd, NAND_CMD_READSTART,
108                        NAND_CTRL_CLE | NAND_CTRL_CHANGE);
109         hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
110
111         /*
112          * Wait a while for the data to be ready
113          */
114         while (!this->dev_ready(mtd))
115                 ;
116
117         return 0;
118 }
119 #endif
120
121 static int nand_is_bad_block(struct mtd_info *mtd, int block)
122 {
123         struct nand_chip *this = mtd->priv;
124
125         nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
126
127         /*
128          * Read one byte
129          */
130         if (readb(this->IO_ADDR_R) != 0xff)
131                 return 1;
132
133         return 0;
134 }
135
136 static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
137 {
138         struct nand_chip *this = mtd->priv;
139         u_char *ecc_calc;
140         u_char *ecc_code;
141         u_char *oob_data;
142         int i;
143         int eccsize = CONFIG_SYS_NAND_ECCSIZE;
144         int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
145         int eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
146         uint8_t *p = dst;
147         int stat;
148
149         nand_command(mtd, block, page, 0, NAND_CMD_READ0);
150
151         /* No malloc available for now, just use some temporary locations
152          * in SDRAM
153          */
154         ecc_calc = (u_char *)(CONFIG_SYS_SDRAM_BASE + 0x10000);
155         ecc_code = ecc_calc + 0x100;
156         oob_data = ecc_calc + 0x200;
157
158         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
159                 this->ecc.hwctl(mtd, NAND_ECC_READ);
160                 this->read_buf(mtd, p, eccsize);
161                 this->ecc.calculate(mtd, p, &ecc_calc[i]);
162         }
163         this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
164
165         /* Pick the ECC bytes out of the oob data */
166         for (i = 0; i < CONFIG_SYS_NAND_ECCTOTAL; i++)
167                 ecc_code[i] = oob_data[nand_ecc_pos[i]];
168
169         eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
170         p = dst;
171
172         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
173                 /* No chance to do something with the possible error message
174                  * from correct_data(). We just hope that all possible errors
175                  * are corrected by this routine.
176                  */
177                 stat = this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
178         }
179
180         return 0;
181 }
182
183 static int nand_load(struct mtd_info *mtd, unsigned int offs,
184                      unsigned int uboot_size, uchar *dst)
185 {
186         unsigned int block, lastblock;
187         unsigned int page;
188
189         /*
190          * offs has to be aligned to a page address!
191          */
192         block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
193         lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
194         page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
195
196         while (block <= lastblock) {
197                 if (!nand_is_bad_block(mtd, block)) {
198                         /*
199                          * Skip bad blocks
200                          */
201                         while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
202                                 nand_read_page(mtd, block, page, dst);
203                                 dst += CONFIG_SYS_NAND_PAGE_SIZE;
204                                 page++;
205                         }
206
207                         page = 0;
208                 } else {
209                         lastblock++;
210                 }
211
212                 block++;
213         }
214
215         return 0;
216 }
217
218 /*
219  * The main entry for NAND booting. It's necessary that SDRAM is already
220  * configured and available since this code loads the main U-Boot image
221  * from NAND into SDRAM and starts it from there.
222  */
223 void nand_boot(void)
224 {
225         struct nand_chip nand_chip;
226         nand_info_t nand_info;
227         int ret;
228         __attribute__((noreturn)) void (*uboot)(void);
229
230         /*
231          * Init board specific nand support
232          */
233         nand_chip.select_chip = NULL;
234         nand_info.priv = &nand_chip;
235         nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void  __iomem *)CONFIG_SYS_NAND_BASE;
236         nand_chip.dev_ready = NULL;     /* preset to NULL */
237         nand_chip.options = 0;
238         board_nand_init(&nand_chip);
239
240         if (nand_chip.select_chip)
241                 nand_chip.select_chip(&nand_info, 0);
242
243         /*
244          * Load U-Boot image from NAND into RAM
245          */
246         ret = nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
247                         (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
248
249 #ifdef CONFIG_NAND_ENV_DST
250         nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
251                   (uchar *)CONFIG_NAND_ENV_DST);
252
253 #ifdef CONFIG_ENV_OFFSET_REDUND
254         nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
255                   (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
256 #endif
257 #endif
258
259         if (nand_chip.select_chip)
260                 nand_chip.select_chip(&nand_info, -1);
261
262         /*
263          * Jump to U-Boot image
264          */
265         uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
266         (*uboot)();
267 }