]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - nand_spl/nand_boot.c
NAND boot: MPC8313ERDB support
[karo-tx-uboot.git] / nand_spl / nand_boot.c
1 /*
2  * (C) Copyright 2006-2008
3  * Stefan Roese, DENX Software Engineering, sr@denx.de.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation; either version 2 of
8  * the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18  * MA 02111-1307 USA
19  */
20
21 #include <common.h>
22 #include <nand.h>
23 #include <asm/io.h>
24
25 #define CFG_NAND_READ_DELAY \
26         { volatile int dummy; int i; for (i=0; i<10000; i++) dummy = i; }
27
28 static int nand_ecc_pos[] = CFG_NAND_ECCPOS;
29
30 extern void board_nand_init(struct nand_chip *nand);
31
32 #if (CFG_NAND_PAGE_SIZE <= 512)
33 /*
34  * NAND command for small page NAND devices (512)
35  */
36 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
37 {
38         struct nand_chip *this = mtd->priv;
39         int page_addr = page + block * CFG_NAND_PAGE_COUNT;
40         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
41
42         if (this->dev_ready)
43                 while (!this->dev_ready(mtd))
44                         ;
45         else
46                 CFG_NAND_READ_DELAY;
47
48         /* Begin command latch cycle */
49         this->cmd_ctrl(mtd, cmd, ctrl);
50         /* Set ALE and clear CLE to start address cycle */
51         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
52         /* Column address */
53         this->cmd_ctrl(mtd, offs, ctrl);
54         ctrl &= ~NAND_CTRL_CHANGE;
55         this->cmd_ctrl(mtd, (u8)(page_addr & 0xff), ctrl);      /* A[16:9] */
56         ctrl &= ~NAND_CTRL_CHANGE;
57         this->cmd_ctrl(mtd, (u8)((page_addr >> 8) & 0xff), ctrl); /* A[24:17] */
58 #ifdef CFG_NAND_4_ADDR_CYCLE
59         /* One more address cycle for devices > 32MiB */
60         this->cmd_ctrl(mtd, (u8)((page_addr >> 16) & 0x0f), ctrl); /* A[xx:25] */
61 #endif
62         /* Latch in address */
63         this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
64
65         /*
66          * Wait a while for the data to be ready
67          */
68         if (this->dev_ready)
69                 while (!this->dev_ready(mtd))
70                         ;
71         else
72                 CFG_NAND_READ_DELAY;
73
74         return 0;
75 }
76 #else
77 /*
78  * NAND command for large page NAND devices (2k)
79  */
80 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
81 {
82         struct nand_chip *this = mtd->priv;
83         int page_offs = offs;
84         int page_addr = page + block * CFG_NAND_PAGE_COUNT;
85
86         if (this->dev_ready)
87                 this->dev_ready(mtd);
88         else
89                 CFG_NAND_READ_DELAY;
90
91         /* Emulate NAND_CMD_READOOB */
92         if (cmd == NAND_CMD_READOOB) {
93                 page_offs += CFG_NAND_PAGE_SIZE;
94                 cmd = NAND_CMD_READ0;
95         }
96
97         /* Begin command latch cycle */
98         this->hwcontrol(mtd, NAND_CTL_SETCLE);
99         this->write_byte(mtd, cmd);
100         /* Set ALE and clear CLE to start address cycle */
101         this->hwcontrol(mtd, NAND_CTL_CLRCLE);
102         this->hwcontrol(mtd, NAND_CTL_SETALE);
103         /* Column address */
104         this->write_byte(mtd, page_offs & 0xff);                        /* A[7:0] */
105         this->write_byte(mtd, (uchar)((page_offs >> 8) & 0xff));        /* A[11:9] */
106         /* Row address */
107         this->write_byte(mtd, (uchar)(page_addr & 0xff));               /* A[19:12] */
108         this->write_byte(mtd, (uchar)((page_addr >> 8) & 0xff));        /* A[27:20] */
109 #ifdef CFG_NAND_5_ADDR_CYCLE
110         /* One more address cycle for devices > 128MiB */
111         this->write_byte(mtd, (uchar)((page_addr >> 16) & 0x0f));       /* A[xx:28] */
112 #endif
113         /* Latch in address */
114         this->hwcontrol(mtd, NAND_CTL_CLRALE);
115
116         /* Begin command latch cycle */
117         this->hwcontrol(mtd, NAND_CTL_SETCLE);
118         /* Write out the start read command */
119         this->write_byte(mtd, NAND_CMD_READSTART);
120         /* End command latch cycle */
121         this->hwcontrol(mtd, NAND_CTL_CLRCLE);
122
123         /*
124          * Wait a while for the data to be ready
125          */
126         if (this->dev_ready)
127                 this->dev_ready(mtd);
128         else
129                 CFG_NAND_READ_DELAY;
130
131         return 0;
132 }
133 #endif
134
135 static int nand_is_bad_block(struct mtd_info *mtd, int block)
136 {
137         struct nand_chip *this = mtd->priv;
138
139         nand_command(mtd, block, 0, CFG_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
140
141         /*
142          * Read one byte
143          */
144         if (in_8(this->IO_ADDR_R) != 0xff)
145                 return 1;
146
147         return 0;
148 }
149
150 static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
151 {
152         struct nand_chip *this = mtd->priv;
153         u_char *ecc_calc;
154         u_char *ecc_code;
155         u_char *oob_data;
156         int i;
157         int eccsize = CFG_NAND_ECCSIZE;
158         int eccbytes = CFG_NAND_ECCBYTES;
159         int eccsteps = CFG_NAND_ECCSTEPS;
160         uint8_t *p = dst;
161         int stat;
162
163         nand_command(mtd, block, page, 0, NAND_CMD_READ0);
164
165         /* No malloc available for now, just use some temporary locations
166          * in SDRAM
167          */
168         ecc_calc = (u_char *)(CFG_SDRAM_BASE + 0x10000);
169         ecc_code = ecc_calc + 0x100;
170         oob_data = ecc_calc + 0x200;
171
172         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
173                 this->ecc.hwctl(mtd, NAND_ECC_READ);
174                 this->read_buf(mtd, p, eccsize);
175                 this->ecc.calculate(mtd, p, &ecc_calc[i]);
176         }
177         this->read_buf(mtd, oob_data, CFG_NAND_OOBSIZE);
178
179         /* Pick the ECC bytes out of the oob data */
180         for (i = 0; i < CFG_NAND_ECCTOTAL; i++)
181                 ecc_code[i] = oob_data[nand_ecc_pos[i]];
182
183         eccsteps = CFG_NAND_ECCSTEPS;
184         p = dst;
185
186         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
187                 /* No chance to do something with the possible error message
188                  * from correct_data(). We just hope that all possible errors
189                  * are corrected by this routine.
190                  */
191                 stat = this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
192         }
193
194         return 0;
195 }
196
197 static int nand_load(struct mtd_info *mtd, int offs, int uboot_size, uchar *dst)
198 {
199         int block;
200         int blockcopy_count;
201         int page;
202
203         /*
204          * offs has to be aligned to a block address!
205          */
206         block = offs / CFG_NAND_BLOCK_SIZE;
207         blockcopy_count = 0;
208
209         while (blockcopy_count < (uboot_size / CFG_NAND_BLOCK_SIZE)) {
210                 if (!nand_is_bad_block(mtd, block)) {
211                         /*
212                          * Skip bad blocks
213                          */
214                         for (page = 0; page < CFG_NAND_PAGE_COUNT; page++) {
215                                 nand_read_page(mtd, block, page, dst);
216                                 dst += CFG_NAND_PAGE_SIZE;
217                         }
218
219                         blockcopy_count++;
220                 }
221
222                 block++;
223         }
224
225         return 0;
226 }
227
228 /*
229  * The main entry for NAND booting. It's necessary that SDRAM is already
230  * configured and available since this code loads the main U-Boot image
231  * from NAND into SDRAM and starts it from there.
232  */
233 void nand_boot(void)
234 {
235         struct nand_chip nand_chip;
236         nand_info_t nand_info;
237         int ret;
238         __attribute__((noreturn)) void (*uboot)(void);
239
240         /*
241          * Init board specific nand support
242          */
243         nand_info.priv = &nand_chip;
244         nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void  __iomem *)CFG_NAND_BASE;
245         nand_chip.dev_ready = NULL;     /* preset to NULL */
246         board_nand_init(&nand_chip);
247
248         /*
249          * Load U-Boot image from NAND into RAM
250          */
251         ret = nand_load(&nand_info, CFG_NAND_U_BOOT_OFFS, CFG_NAND_U_BOOT_SIZE,
252                         (uchar *)CFG_NAND_U_BOOT_DST);
253
254         /*
255          * Jump to U-Boot image
256          */
257         uboot = (void *)CFG_NAND_U_BOOT_START;
258         (*uboot)();
259 }