]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - tools/elftosb/common/SHA1.cpp
Unified codebase for TX28, TX48, TX51, TX53
[karo-tx-uboot.git] / tools / elftosb / common / SHA1.cpp
1 /*
2         100% free public domain implementation of the SHA-1 algorithm
3         by Dominik Reichl <dominik.reichl@t-online.de>
4         Web: http://www.dominik-reichl.de/
5
6         Version 1.6 - 2005-02-07 (thanks to Howard Kapustein for patches)
7         - You can set the endianness in your files, no need to modify the
8           header file of the CSHA1 class any more
9         - Aligned data support
10         - Made support/compilation of the utility functions (ReportHash
11           and HashFile) optional (useful, if bytes count, for example in
12           embedded environments)
13
14         Version 1.5 - 2005-01-01
15         - 64-bit compiler compatibility added
16         - Made variable wiping optional (define SHA1_WIPE_VARIABLES)
17         - Removed unnecessary variable initializations
18         - ROL32 improvement for the Microsoft compiler (using _rotl)
19
20         ======== Test Vectors (from FIPS PUB 180-1) ========
21
22         SHA1("abc") =
23                 A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
24
25         SHA1("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq") =
26                 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
27
28         SHA1(A million repetitions of "a") =
29                 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
30 */
31
32 #include "SHA1.h"
33
34 #ifdef SHA1_UTILITY_FUNCTIONS
35 #define SHA1_MAX_FILE_BUFFER 8000
36 #endif
37
38 // Rotate x bits to the left
39 #ifndef ROL32
40 #ifdef _MSC_VER
41 #define ROL32(_val32, _nBits) _rotl(_val32, _nBits)
42 #else
43 #define ROL32(_val32, _nBits) (((_val32)<<(_nBits))|((_val32)>>(32-(_nBits))))
44 #endif
45 #endif
46
47 #ifdef SHA1_LITTLE_ENDIAN
48 #define SHABLK0(i) (m_block->l[i] = \
49         (ROL32(m_block->l[i],24) & 0xFF00FF00) | (ROL32(m_block->l[i],8) & 0x00FF00FF))
50 #else
51 #define SHABLK0(i) (m_block->l[i])
52 #endif
53
54 #define SHABLK(i) (m_block->l[i&15] = ROL32(m_block->l[(i+13)&15] ^ m_block->l[(i+8)&15] \
55         ^ m_block->l[(i+2)&15] ^ m_block->l[i&15],1))
56
57 // SHA-1 rounds
58 #define _R0(v,w,x,y,z,i) { z+=((w&(x^y))^y)+SHABLK0(i)+0x5A827999+ROL32(v,5); w=ROL32(w,30); }
59 #define _R1(v,w,x,y,z,i) { z+=((w&(x^y))^y)+SHABLK(i)+0x5A827999+ROL32(v,5); w=ROL32(w,30); }
60 #define _R2(v,w,x,y,z,i) { z+=(w^x^y)+SHABLK(i)+0x6ED9EBA1+ROL32(v,5); w=ROL32(w,30); }
61 #define _R3(v,w,x,y,z,i) { z+=(((w|x)&y)|(w&x))+SHABLK(i)+0x8F1BBCDC+ROL32(v,5); w=ROL32(w,30); }
62 #define _R4(v,w,x,y,z,i) { z+=(w^x^y)+SHABLK(i)+0xCA62C1D6+ROL32(v,5); w=ROL32(w,30); }
63
64 CSHA1::CSHA1()
65 {
66         m_block = (SHA1_WORKSPACE_BLOCK *)m_workspace;
67
68         Reset();
69 }
70
71 CSHA1::~CSHA1()
72 {
73         Reset();
74 }
75
76 void CSHA1::Reset()
77 {
78         // SHA1 initialization constants
79         m_state[0] = 0x67452301;
80         m_state[1] = 0xEFCDAB89;
81         m_state[2] = 0x98BADCFE;
82         m_state[3] = 0x10325476;
83         m_state[4] = 0xC3D2E1F0;
84
85         m_count[0] = 0;
86         m_count[1] = 0;
87 }
88
89 void CSHA1::Transform(uint32_t *state, const uint8_t *buffer)
90 {
91         // Copy state[] to working vars
92         uint32_t a = state[0], b = state[1], c = state[2], d = state[3], e = state[4];
93
94         memcpy(m_block, buffer, 64);
95
96         // 4 rounds of 20 operations each. Loop unrolled.
97         _R0(a,b,c,d,e, 0); _R0(e,a,b,c,d, 1); _R0(d,e,a,b,c, 2); _R0(c,d,e,a,b, 3);
98         _R0(b,c,d,e,a, 4); _R0(a,b,c,d,e, 5); _R0(e,a,b,c,d, 6); _R0(d,e,a,b,c, 7);
99         _R0(c,d,e,a,b, 8); _R0(b,c,d,e,a, 9); _R0(a,b,c,d,e,10); _R0(e,a,b,c,d,11);
100         _R0(d,e,a,b,c,12); _R0(c,d,e,a,b,13); _R0(b,c,d,e,a,14); _R0(a,b,c,d,e,15);
101         _R1(e,a,b,c,d,16); _R1(d,e,a,b,c,17); _R1(c,d,e,a,b,18); _R1(b,c,d,e,a,19);
102         _R2(a,b,c,d,e,20); _R2(e,a,b,c,d,21); _R2(d,e,a,b,c,22); _R2(c,d,e,a,b,23);
103         _R2(b,c,d,e,a,24); _R2(a,b,c,d,e,25); _R2(e,a,b,c,d,26); _R2(d,e,a,b,c,27);
104         _R2(c,d,e,a,b,28); _R2(b,c,d,e,a,29); _R2(a,b,c,d,e,30); _R2(e,a,b,c,d,31);
105         _R2(d,e,a,b,c,32); _R2(c,d,e,a,b,33); _R2(b,c,d,e,a,34); _R2(a,b,c,d,e,35);
106         _R2(e,a,b,c,d,36); _R2(d,e,a,b,c,37); _R2(c,d,e,a,b,38); _R2(b,c,d,e,a,39);
107         _R3(a,b,c,d,e,40); _R3(e,a,b,c,d,41); _R3(d,e,a,b,c,42); _R3(c,d,e,a,b,43);
108         _R3(b,c,d,e,a,44); _R3(a,b,c,d,e,45); _R3(e,a,b,c,d,46); _R3(d,e,a,b,c,47);
109         _R3(c,d,e,a,b,48); _R3(b,c,d,e,a,49); _R3(a,b,c,d,e,50); _R3(e,a,b,c,d,51);
110         _R3(d,e,a,b,c,52); _R3(c,d,e,a,b,53); _R3(b,c,d,e,a,54); _R3(a,b,c,d,e,55);
111         _R3(e,a,b,c,d,56); _R3(d,e,a,b,c,57); _R3(c,d,e,a,b,58); _R3(b,c,d,e,a,59);
112         _R4(a,b,c,d,e,60); _R4(e,a,b,c,d,61); _R4(d,e,a,b,c,62); _R4(c,d,e,a,b,63);
113         _R4(b,c,d,e,a,64); _R4(a,b,c,d,e,65); _R4(e,a,b,c,d,66); _R4(d,e,a,b,c,67);
114         _R4(c,d,e,a,b,68); _R4(b,c,d,e,a,69); _R4(a,b,c,d,e,70); _R4(e,a,b,c,d,71);
115         _R4(d,e,a,b,c,72); _R4(c,d,e,a,b,73); _R4(b,c,d,e,a,74); _R4(a,b,c,d,e,75);
116         _R4(e,a,b,c,d,76); _R4(d,e,a,b,c,77); _R4(c,d,e,a,b,78); _R4(b,c,d,e,a,79);
117
118         // Add the working vars back into state
119         state[0] += a;
120         state[1] += b;
121         state[2] += c;
122         state[3] += d;
123         state[4] += e;
124
125         // Wipe variables
126 #ifdef SHA1_WIPE_VARIABLES
127         a = b = c = d = e = 0;
128 #endif
129 }
130
131 // Use this function to hash in binary data and strings
132 void CSHA1::Update(const uint8_t *data, uint32_t len)
133 {
134         uint32_t i, j;
135
136         j = (m_count[0] >> 3) & 63;
137
138         if((m_count[0] += len << 3) < (len << 3)) m_count[1]++;
139
140         m_count[1] += (len >> 29);
141
142         if((j + len) > 63)
143         {
144                 i = 64 - j;
145                 memcpy(&m_buffer[j], data, i);
146                 Transform(m_state, m_buffer);
147
148                 for( ; i + 63 < len; i += 64) Transform(m_state, &data[i]);
149
150                 j = 0;
151         }
152         else i = 0;
153
154         memcpy(&m_buffer[j], &data[i], len - i);
155 }
156
157 #ifdef SHA1_UTILITY_FUNCTIONS
158 // Hash in file contents
159 bool CSHA1::HashFile(char *szFileName)
160 {
161         unsigned long ulFileSize, ulRest, ulBlocks;
162         unsigned long i;
163         uint8_t uData[SHA1_MAX_FILE_BUFFER];
164         FILE *fIn;
165
166         if(szFileName == NULL) return false;
167
168         fIn = fopen(szFileName, "rb");
169         if(fIn == NULL) return false;
170
171         fseek(fIn, 0, SEEK_END);
172         ulFileSize = (unsigned long)ftell(fIn);
173         fseek(fIn, 0, SEEK_SET);
174
175         if(ulFileSize != 0)
176         {
177                 ulBlocks = ulFileSize / SHA1_MAX_FILE_BUFFER;
178                 ulRest = ulFileSize % SHA1_MAX_FILE_BUFFER;
179         }
180         else
181         {
182                 ulBlocks = 0;
183                 ulRest = 0;
184         }
185
186         for(i = 0; i < ulBlocks; i++)
187         {
188                 fread(uData, 1, SHA1_MAX_FILE_BUFFER, fIn);
189                 Update((uint8_t *)uData, SHA1_MAX_FILE_BUFFER);
190         }
191
192         if(ulRest != 0)
193         {
194                 fread(uData, 1, ulRest, fIn);
195                 Update((uint8_t *)uData, ulRest);
196         }
197
198         fclose(fIn); fIn = NULL;
199         return true;
200 }
201 #endif
202
203 void CSHA1::Final()
204 {
205         uint32_t i;
206         uint8_t finalcount[8];
207
208         for(i = 0; i < 8; i++)
209                 finalcount[i] = (uint8_t)((m_count[((i >= 4) ? 0 : 1)]
210                         >> ((3 - (i & 3)) * 8) ) & 255); // Endian independent
211
212         Update((uint8_t *)"\200", 1);
213
214         while ((m_count[0] & 504) != 448)
215                 Update((uint8_t *)"\0", 1);
216
217         Update(finalcount, 8); // Cause a SHA1Transform()
218
219         for(i = 0; i < 20; i++)
220         {
221                 m_digest[i] = (uint8_t)((m_state[i >> 2] >> ((3 - (i & 3)) * 8) ) & 255);
222         }
223
224         // Wipe variables for security reasons
225 #ifdef SHA1_WIPE_VARIABLES
226         i = 0;
227         memset(m_buffer, 0, 64);
228         memset(m_state, 0, 20);
229         memset(m_count, 0, 8);
230         memset(finalcount, 0, 8);
231         Transform(m_state, m_buffer);
232 #endif
233 }
234
235 #ifdef SHA1_UTILITY_FUNCTIONS
236 // Get the final hash as a pre-formatted string
237 void CSHA1::ReportHash(char *szReport, unsigned char uReportType)
238 {
239         unsigned char i;
240         char szTemp[16];
241
242         if(szReport == NULL) return;
243
244         if(uReportType == REPORT_HEX)
245         {
246                 sprintf(szTemp, "%02X", m_digest[0]);
247                 strcat(szReport, szTemp);
248
249                 for(i = 1; i < 20; i++)
250                 {
251                         sprintf(szTemp, " %02X", m_digest[i]);
252                         strcat(szReport, szTemp);
253                 }
254         }
255         else if(uReportType == REPORT_DIGIT)
256         {
257                 sprintf(szTemp, "%u", m_digest[0]);
258                 strcat(szReport, szTemp);
259
260                 for(i = 1; i < 20; i++)
261                 {
262                         sprintf(szTemp, " %u", m_digest[i]);
263                         strcat(szReport, szTemp);
264                 }
265         }
266         else strcpy(szReport, "Error: Unknown report type!");
267 }
268 #endif
269
270 // Get the raw message digest
271 void CSHA1::GetHash(uint8_t *puDest)
272 {
273         memcpy(puDest, m_digest, 20);
274 }