]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
62e4f3bd57830b8b5b79b62c78ae8e600d3bcd83
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84         unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93         struct list_head list;
94         struct device *src_dev;
95         const char *src_supply;
96         struct device *alias_dev;
97         const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106                                   unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108                                      int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110                                           struct device *dev,
111                                           const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115         if (rdev->constraints && rdev->constraints->name)
116                 return rdev->constraints->name;
117         else if (rdev->desc->name)
118                 return rdev->desc->name;
119         else
120                 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125         return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129  * of_get_regulator - get a regulator device node based on supply name
130  * @dev: Device pointer for the consumer (of regulator) device
131  * @supply: regulator supply name
132  *
133  * Extract the regulator device node corresponding to the supply name.
134  * returns the device node corresponding to the regulator if found, else
135  * returns NULL.
136  */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139         struct device_node *regnode = NULL;
140         char prop_name[32]; /* 32 is max size of property name */
141
142         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144         snprintf(prop_name, 32, "%s-supply", supply);
145         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147         if (!regnode) {
148                 dev_dbg(dev, "Looking up %s property in node %s failed",
149                                 prop_name, dev->of_node->full_name);
150                 return NULL;
151         }
152         return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157         if (!rdev->constraints)
158                 return 0;
159
160         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161                 return 1;
162         else
163                 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168                                    int *min_uV, int *max_uV)
169 {
170         BUG_ON(*min_uV > *max_uV);
171
172         if (!rdev->constraints) {
173                 rdev_err(rdev, "no constraints\n");
174                 return -ENODEV;
175         }
176         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177                 rdev_err(rdev, "operation not allowed\n");
178                 return -EPERM;
179         }
180
181         if (*max_uV > rdev->constraints->max_uV)
182                 *max_uV = rdev->constraints->max_uV;
183         if (*min_uV < rdev->constraints->min_uV)
184                 *min_uV = rdev->constraints->min_uV;
185
186         if (*min_uV > *max_uV) {
187                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188                          *min_uV, *max_uV);
189                 return -EINVAL;
190         }
191
192         return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196  * regulator consumers
197  */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199                                      int *min_uV, int *max_uV)
200 {
201         struct regulator *regulator;
202
203         list_for_each_entry(regulator, &rdev->consumer_list, list) {
204                 /*
205                  * Assume consumers that didn't say anything are OK
206                  * with anything in the constraint range.
207                  */
208                 if (!regulator->min_uV && !regulator->max_uV)
209                         continue;
210
211                 if (*max_uV > regulator->max_uV)
212                         *max_uV = regulator->max_uV;
213                 if (*min_uV < regulator->min_uV)
214                         *min_uV = regulator->min_uV;
215         }
216
217         if (*min_uV > *max_uV) {
218                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219                         *min_uV, *max_uV);
220                 return -EINVAL;
221         }
222
223         return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228                                         int *min_uA, int *max_uA)
229 {
230         BUG_ON(*min_uA > *max_uA);
231
232         if (!rdev->constraints) {
233                 rdev_err(rdev, "no constraints\n");
234                 return -ENODEV;
235         }
236         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237                 rdev_err(rdev, "operation not allowed\n");
238                 return -EPERM;
239         }
240
241         if (*max_uA > rdev->constraints->max_uA)
242                 *max_uA = rdev->constraints->max_uA;
243         if (*min_uA < rdev->constraints->min_uA)
244                 *min_uA = rdev->constraints->min_uA;
245
246         if (*min_uA > *max_uA) {
247                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248                          *min_uA, *max_uA);
249                 return -EINVAL;
250         }
251
252         return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258         switch (*mode) {
259         case REGULATOR_MODE_FAST:
260         case REGULATOR_MODE_NORMAL:
261         case REGULATOR_MODE_IDLE:
262         case REGULATOR_MODE_STANDBY:
263                 break;
264         default:
265                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266                 return -EINVAL;
267         }
268
269         if (!rdev->constraints) {
270                 rdev_err(rdev, "no constraints\n");
271                 return -ENODEV;
272         }
273         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274                 rdev_err(rdev, "operation not allowed\n");
275                 return -EPERM;
276         }
277
278         /* The modes are bitmasks, the most power hungry modes having
279          * the lowest values. If the requested mode isn't supported
280          * try higher modes. */
281         while (*mode) {
282                 if (rdev->constraints->valid_modes_mask & *mode)
283                         return 0;
284                 *mode /= 2;
285         }
286
287         return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293         if (!rdev->constraints) {
294                 rdev_err(rdev, "no constraints\n");
295                 return -ENODEV;
296         }
297         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298                 rdev_err(rdev, "operation not allowed\n");
299                 return -EPERM;
300         }
301         return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305                                 struct device_attribute *attr, char *buf)
306 {
307         struct regulator_dev *rdev = dev_get_drvdata(dev);
308         ssize_t ret;
309
310         mutex_lock(&rdev->mutex);
311         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312         mutex_unlock(&rdev->mutex);
313
314         return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319                                 struct device_attribute *attr, char *buf)
320 {
321         struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328                          char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332         return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338         switch (mode) {
339         case REGULATOR_MODE_FAST:
340                 return sprintf(buf, "fast\n");
341         case REGULATOR_MODE_NORMAL:
342                 return sprintf(buf, "normal\n");
343         case REGULATOR_MODE_IDLE:
344                 return sprintf(buf, "idle\n");
345         case REGULATOR_MODE_STANDBY:
346                 return sprintf(buf, "standby\n");
347         }
348         return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352                                     struct device_attribute *attr, char *buf)
353 {
354         struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362         if (state > 0)
363                 return sprintf(buf, "enabled\n");
364         else if (state == 0)
365                 return sprintf(buf, "disabled\n");
366         else
367                 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371                                    struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374         ssize_t ret;
375
376         mutex_lock(&rdev->mutex);
377         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378         mutex_unlock(&rdev->mutex);
379
380         return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385                                    struct device_attribute *attr, char *buf)
386 {
387         struct regulator_dev *rdev = dev_get_drvdata(dev);
388         int status;
389         char *label;
390
391         status = rdev->desc->ops->get_status(rdev);
392         if (status < 0)
393                 return status;
394
395         switch (status) {
396         case REGULATOR_STATUS_OFF:
397                 label = "off";
398                 break;
399         case REGULATOR_STATUS_ON:
400                 label = "on";
401                 break;
402         case REGULATOR_STATUS_ERROR:
403                 label = "error";
404                 break;
405         case REGULATOR_STATUS_FAST:
406                 label = "fast";
407                 break;
408         case REGULATOR_STATUS_NORMAL:
409                 label = "normal";
410                 break;
411         case REGULATOR_STATUS_IDLE:
412                 label = "idle";
413                 break;
414         case REGULATOR_STATUS_STANDBY:
415                 label = "standby";
416                 break;
417         case REGULATOR_STATUS_BYPASS:
418                 label = "bypass";
419                 break;
420         case REGULATOR_STATUS_UNDEFINED:
421                 label = "undefined";
422                 break;
423         default:
424                 return -ERANGE;
425         }
426
427         return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432                                     struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436         if (!rdev->constraints)
437                 return sprintf(buf, "constraint not defined\n");
438
439         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444                                     struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         if (!rdev->constraints)
449                 return sprintf(buf, "constraint not defined\n");
450
451         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456                                     struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         if (!rdev->constraints)
461                 return sprintf(buf, "constraint not defined\n");
462
463         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468                                     struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         if (!rdev->constraints)
473                 return sprintf(buf, "constraint not defined\n");
474
475         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480                                       struct device_attribute *attr, char *buf)
481 {
482         struct regulator_dev *rdev = dev_get_drvdata(dev);
483         struct regulator *regulator;
484         int uA = 0;
485
486         mutex_lock(&rdev->mutex);
487         list_for_each_entry(regulator, &rdev->consumer_list, list)
488                 uA += regulator->uA_load;
489         mutex_unlock(&rdev->mutex);
490         return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495                               char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498         return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503                          char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         switch (rdev->desc->type) {
508         case REGULATOR_VOLTAGE:
509                 return sprintf(buf, "voltage\n");
510         case REGULATOR_CURRENT:
511                 return sprintf(buf, "current\n");
512         }
513         return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518                                 struct device_attribute *attr, char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525                 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528                                 struct device_attribute *attr, char *buf)
529 {
530         struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535                 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538                                 struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545                 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548                                 struct device_attribute *attr, char *buf)
549 {
550         struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552         return regulator_print_opmode(buf,
553                 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556                 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559                                 struct device_attribute *attr, char *buf)
560 {
561         struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563         return regulator_print_opmode(buf,
564                 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567                 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570                                 struct device_attribute *attr, char *buf)
571 {
572         struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574         return regulator_print_opmode(buf,
575                 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578                 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581                                    struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return regulator_print_state(buf,
586                         rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589                 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592                                    struct device_attribute *attr, char *buf)
593 {
594         struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596         return regulator_print_state(buf,
597                         rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600                 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603                                    struct device_attribute *attr, char *buf)
604 {
605         struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607         return regulator_print_state(buf,
608                         rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611                 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614                                      struct device_attribute *attr, char *buf)
615 {
616         struct regulator_dev *rdev = dev_get_drvdata(dev);
617         const char *report;
618         bool bypass;
619         int ret;
620
621         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623         if (ret != 0)
624                 report = "unknown";
625         else if (bypass)
626                 report = "enabled";
627         else
628                 report = "disabled";
629
630         return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633                    regulator_bypass_show, NULL);
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static int drms_uA_update(struct regulator_dev *rdev)
638 {
639         struct regulator *sibling;
640         int current_uA = 0, output_uV, input_uV, err;
641         unsigned int mode;
642
643         lockdep_assert_held_once(&rdev->mutex);
644
645         /*
646          * first check to see if we can set modes at all, otherwise just
647          * tell the consumer everything is OK.
648          */
649         err = regulator_check_drms(rdev);
650         if (err < 0)
651                 return 0;
652
653         if (!rdev->desc->ops->get_optimum_mode &&
654             !rdev->desc->ops->set_load)
655                 return 0;
656
657         if (!rdev->desc->ops->set_mode &&
658             !rdev->desc->ops->set_load)
659                 return -EINVAL;
660
661         /* get output voltage */
662         output_uV = _regulator_get_voltage(rdev);
663         if (output_uV <= 0) {
664                 rdev_err(rdev, "invalid output voltage found\n");
665                 return -EINVAL;
666         }
667
668         /* get input voltage */
669         input_uV = 0;
670         if (rdev->supply)
671                 input_uV = regulator_get_voltage(rdev->supply);
672         if (input_uV <= 0)
673                 input_uV = rdev->constraints->input_uV;
674         if (input_uV <= 0) {
675                 rdev_err(rdev, "invalid input voltage found\n");
676                 return -EINVAL;
677         }
678
679         /* calc total requested load */
680         list_for_each_entry(sibling, &rdev->consumer_list, list)
681                 current_uA += sibling->uA_load;
682
683         current_uA += rdev->constraints->system_load;
684
685         if (rdev->desc->ops->set_load) {
686                 /* set the optimum mode for our new total regulator load */
687                 err = rdev->desc->ops->set_load(rdev, current_uA);
688                 if (err < 0)
689                         rdev_err(rdev, "failed to set load %d\n", current_uA);
690         } else {
691                 /* now get the optimum mode for our new total regulator load */
692                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693                                                          output_uV, current_uA);
694
695                 /* check the new mode is allowed */
696                 err = regulator_mode_constrain(rdev, &mode);
697                 if (err < 0) {
698                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
699                                  current_uA, input_uV, output_uV);
700                         return err;
701                 }
702
703                 err = rdev->desc->ops->set_mode(rdev, mode);
704                 if (err < 0)
705                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
706         }
707
708         return err;
709 }
710
711 static int suspend_set_state(struct regulator_dev *rdev,
712         struct regulator_state *rstate)
713 {
714         int ret = 0;
715
716         /* If we have no suspend mode configration don't set anything;
717          * only warn if the driver implements set_suspend_voltage or
718          * set_suspend_mode callback.
719          */
720         if (!rstate->enabled && !rstate->disabled) {
721                 if (rdev->desc->ops->set_suspend_voltage ||
722                     rdev->desc->ops->set_suspend_mode)
723                         rdev_warn(rdev, "No configuration\n");
724                 return 0;
725         }
726
727         if (rstate->enabled && rstate->disabled) {
728                 rdev_err(rdev, "invalid configuration\n");
729                 return -EINVAL;
730         }
731
732         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
733                 ret = rdev->desc->ops->set_suspend_enable(rdev);
734         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
735                 ret = rdev->desc->ops->set_suspend_disable(rdev);
736         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
737                 ret = 0;
738
739         if (ret < 0) {
740                 rdev_err(rdev, "failed to enabled/disable\n");
741                 return ret;
742         }
743
744         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
745                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
746                 if (ret < 0) {
747                         rdev_err(rdev, "failed to set voltage\n");
748                         return ret;
749                 }
750         }
751
752         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
753                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
754                 if (ret < 0) {
755                         rdev_err(rdev, "failed to set mode\n");
756                         return ret;
757                 }
758         }
759         return ret;
760 }
761
762 /* locks held by caller */
763 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
764 {
765         lockdep_assert_held_once(&rdev->mutex);
766
767         if (!rdev->constraints)
768                 return -EINVAL;
769
770         switch (state) {
771         case PM_SUSPEND_STANDBY:
772                 return suspend_set_state(rdev,
773                         &rdev->constraints->state_standby);
774         case PM_SUSPEND_MEM:
775                 return suspend_set_state(rdev,
776                         &rdev->constraints->state_mem);
777         case PM_SUSPEND_MAX:
778                 return suspend_set_state(rdev,
779                         &rdev->constraints->state_disk);
780         default:
781                 return -EINVAL;
782         }
783 }
784
785 static void print_constraints(struct regulator_dev *rdev)
786 {
787         struct regulation_constraints *constraints = rdev->constraints;
788         char buf[160] = "";
789         size_t len = sizeof(buf) - 1;
790         int count = 0;
791         int ret;
792
793         if (constraints->min_uV && constraints->max_uV) {
794                 if (constraints->min_uV == constraints->max_uV)
795                         count += scnprintf(buf + count, len - count, "%d mV ",
796                                            constraints->min_uV / 1000);
797                 else
798                         count += scnprintf(buf + count, len - count,
799                                            "%d <--> %d mV ",
800                                            constraints->min_uV / 1000,
801                                            constraints->max_uV / 1000);
802         }
803
804         if (!constraints->min_uV ||
805             constraints->min_uV != constraints->max_uV) {
806                 ret = _regulator_get_voltage(rdev);
807                 if (ret > 0)
808                         count += scnprintf(buf + count, len - count,
809                                            "at %d mV ", ret / 1000);
810         }
811
812         if (constraints->uV_offset)
813                 count += scnprintf(buf + count, len - count, "%dmV offset ",
814                                    constraints->uV_offset / 1000);
815
816         if (constraints->min_uA && constraints->max_uA) {
817                 if (constraints->min_uA == constraints->max_uA)
818                         count += scnprintf(buf + count, len - count, "%d mA ",
819                                            constraints->min_uA / 1000);
820                 else
821                         count += scnprintf(buf + count, len - count,
822                                            "%d <--> %d mA ",
823                                            constraints->min_uA / 1000,
824                                            constraints->max_uA / 1000);
825         }
826
827         if (!constraints->min_uA ||
828             constraints->min_uA != constraints->max_uA) {
829                 ret = _regulator_get_current_limit(rdev);
830                 if (ret > 0)
831                         count += scnprintf(buf + count, len - count,
832                                            "at %d mA ", ret / 1000);
833         }
834
835         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
836                 count += scnprintf(buf + count, len - count, "fast ");
837         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
838                 count += scnprintf(buf + count, len - count, "normal ");
839         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
840                 count += scnprintf(buf + count, len - count, "idle ");
841         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
842                 count += scnprintf(buf + count, len - count, "standby");
843
844         if (!count)
845                 scnprintf(buf, len, "no parameters");
846
847         rdev_dbg(rdev, "%s\n", buf);
848
849         if ((constraints->min_uV != constraints->max_uV) &&
850             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
851                 rdev_warn(rdev,
852                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
853 }
854
855 static int machine_constraints_voltage(struct regulator_dev *rdev,
856         struct regulation_constraints *constraints)
857 {
858         const struct regulator_ops *ops = rdev->desc->ops;
859         int ret;
860
861         /* do we need to apply the constraint voltage */
862         if (rdev->constraints->apply_uV &&
863             rdev->constraints->min_uV == rdev->constraints->max_uV) {
864                 int current_uV = _regulator_get_voltage(rdev);
865                 if (current_uV < 0) {
866                         rdev_err(rdev,
867                                  "failed to get the current voltage(%d)\n",
868                                  current_uV);
869                         return current_uV;
870                 }
871                 if (current_uV < rdev->constraints->min_uV ||
872                     current_uV > rdev->constraints->max_uV) {
873                         ret = _regulator_do_set_voltage(
874                                 rdev, rdev->constraints->min_uV,
875                                 rdev->constraints->max_uV);
876                         if (ret < 0) {
877                                 rdev_err(rdev,
878                                         "failed to apply %duV constraint(%d)\n",
879                                         rdev->constraints->min_uV, ret);
880                                 return ret;
881                         }
882                 }
883         }
884
885         /* constrain machine-level voltage specs to fit
886          * the actual range supported by this regulator.
887          */
888         if (ops->list_voltage && rdev->desc->n_voltages) {
889                 int     count = rdev->desc->n_voltages;
890                 int     i;
891                 int     min_uV = INT_MAX;
892                 int     max_uV = INT_MIN;
893                 int     cmin = constraints->min_uV;
894                 int     cmax = constraints->max_uV;
895
896                 /* it's safe to autoconfigure fixed-voltage supplies
897                    and the constraints are used by list_voltage. */
898                 if (count == 1 && !cmin) {
899                         cmin = 1;
900                         cmax = INT_MAX;
901                         constraints->min_uV = cmin;
902                         constraints->max_uV = cmax;
903                 }
904
905                 /* voltage constraints are optional */
906                 if ((cmin == 0) && (cmax == 0))
907                         return 0;
908
909                 /* else require explicit machine-level constraints */
910                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
911                         rdev_err(rdev, "invalid voltage constraints\n");
912                         return -EINVAL;
913                 }
914
915                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
916                 for (i = 0; i < count; i++) {
917                         int     value;
918
919                         value = ops->list_voltage(rdev, i);
920                         if (value <= 0)
921                                 continue;
922
923                         /* maybe adjust [min_uV..max_uV] */
924                         if (value >= cmin && value < min_uV)
925                                 min_uV = value;
926                         if (value <= cmax && value > max_uV)
927                                 max_uV = value;
928                 }
929
930                 /* final: [min_uV..max_uV] valid iff constraints valid */
931                 if (max_uV < min_uV) {
932                         rdev_err(rdev,
933                                  "unsupportable voltage constraints %u-%uuV\n",
934                                  min_uV, max_uV);
935                         return -EINVAL;
936                 }
937
938                 /* use regulator's subset of machine constraints */
939                 if (constraints->min_uV < min_uV) {
940                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
941                                  constraints->min_uV, min_uV);
942                         constraints->min_uV = min_uV;
943                 }
944                 if (constraints->max_uV > max_uV) {
945                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
946                                  constraints->max_uV, max_uV);
947                         constraints->max_uV = max_uV;
948                 }
949         }
950
951         return 0;
952 }
953
954 static int machine_constraints_current(struct regulator_dev *rdev,
955         struct regulation_constraints *constraints)
956 {
957         const struct regulator_ops *ops = rdev->desc->ops;
958         int ret;
959
960         if (!constraints->min_uA && !constraints->max_uA)
961                 return 0;
962
963         if (constraints->min_uA > constraints->max_uA) {
964                 rdev_err(rdev, "Invalid current constraints\n");
965                 return -EINVAL;
966         }
967
968         if (!ops->set_current_limit || !ops->get_current_limit) {
969                 rdev_warn(rdev, "Operation of current configuration missing\n");
970                 return 0;
971         }
972
973         /* Set regulator current in constraints range */
974         ret = ops->set_current_limit(rdev, constraints->min_uA,
975                         constraints->max_uA);
976         if (ret < 0) {
977                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
978                 return ret;
979         }
980
981         return 0;
982 }
983
984 static int _regulator_do_enable(struct regulator_dev *rdev);
985
986 /**
987  * set_machine_constraints - sets regulator constraints
988  * @rdev: regulator source
989  * @constraints: constraints to apply
990  *
991  * Allows platform initialisation code to define and constrain
992  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
993  * Constraints *must* be set by platform code in order for some
994  * regulator operations to proceed i.e. set_voltage, set_current_limit,
995  * set_mode.
996  */
997 static int set_machine_constraints(struct regulator_dev *rdev,
998         const struct regulation_constraints *constraints)
999 {
1000         int ret = 0;
1001         const struct regulator_ops *ops = rdev->desc->ops;
1002
1003         if (constraints)
1004                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1005                                             GFP_KERNEL);
1006         else
1007                 rdev->constraints = kzalloc(sizeof(*constraints),
1008                                             GFP_KERNEL);
1009         if (!rdev->constraints)
1010                 return -ENOMEM;
1011
1012         ret = machine_constraints_voltage(rdev, rdev->constraints);
1013         if (ret != 0)
1014                 goto out;
1015
1016         ret = machine_constraints_current(rdev, rdev->constraints);
1017         if (ret != 0)
1018                 goto out;
1019
1020         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1021                 ret = ops->set_input_current_limit(rdev,
1022                                                    rdev->constraints->ilim_uA);
1023                 if (ret < 0) {
1024                         rdev_err(rdev, "failed to set input limit\n");
1025                         goto out;
1026                 }
1027         }
1028
1029         /* do we need to setup our suspend state */
1030         if (rdev->constraints->initial_state) {
1031                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1032                 if (ret < 0) {
1033                         rdev_err(rdev, "failed to set suspend state\n");
1034                         goto out;
1035                 }
1036         }
1037
1038         if (rdev->constraints->initial_mode) {
1039                 if (!ops->set_mode) {
1040                         rdev_err(rdev, "no set_mode operation\n");
1041                         ret = -EINVAL;
1042                         goto out;
1043                 }
1044
1045                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1046                 if (ret < 0) {
1047                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1048                         goto out;
1049                 }
1050         }
1051
1052         /* If the constraints say the regulator should be on at this point
1053          * and we have control then make sure it is enabled.
1054          */
1055         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1056                 ret = _regulator_do_enable(rdev);
1057                 if (ret < 0 && ret != -EINVAL) {
1058                         rdev_err(rdev, "failed to enable\n");
1059                         goto out;
1060                 }
1061         }
1062
1063         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1064                 && ops->set_ramp_delay) {
1065                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1066                 if (ret < 0) {
1067                         rdev_err(rdev, "failed to set ramp_delay\n");
1068                         goto out;
1069                 }
1070         }
1071
1072         if (rdev->constraints->pull_down && ops->set_pull_down) {
1073                 ret = ops->set_pull_down(rdev);
1074                 if (ret < 0) {
1075                         rdev_err(rdev, "failed to set pull down\n");
1076                         goto out;
1077                 }
1078         }
1079
1080         if (rdev->constraints->soft_start && ops->set_soft_start) {
1081                 ret = ops->set_soft_start(rdev);
1082                 if (ret < 0) {
1083                         rdev_err(rdev, "failed to set soft start\n");
1084                         goto out;
1085                 }
1086         }
1087
1088         print_constraints(rdev);
1089         return 0;
1090 out:
1091         kfree(rdev->constraints);
1092         rdev->constraints = NULL;
1093         return ret;
1094 }
1095
1096 /**
1097  * set_supply - set regulator supply regulator
1098  * @rdev: regulator name
1099  * @supply_rdev: supply regulator name
1100  *
1101  * Called by platform initialisation code to set the supply regulator for this
1102  * regulator. This ensures that a regulators supply will also be enabled by the
1103  * core if it's child is enabled.
1104  */
1105 static int set_supply(struct regulator_dev *rdev,
1106                       struct regulator_dev *supply_rdev)
1107 {
1108         int err;
1109
1110         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1111
1112         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1113         if (rdev->supply == NULL) {
1114                 err = -ENOMEM;
1115                 return err;
1116         }
1117         supply_rdev->open_count++;
1118
1119         return 0;
1120 }
1121
1122 /**
1123  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1124  * @rdev:         regulator source
1125  * @consumer_dev_name: dev_name() string for device supply applies to
1126  * @supply:       symbolic name for supply
1127  *
1128  * Allows platform initialisation code to map physical regulator
1129  * sources to symbolic names for supplies for use by devices.  Devices
1130  * should use these symbolic names to request regulators, avoiding the
1131  * need to provide board-specific regulator names as platform data.
1132  */
1133 static int set_consumer_device_supply(struct regulator_dev *rdev,
1134                                       const char *consumer_dev_name,
1135                                       const char *supply)
1136 {
1137         struct regulator_map *node;
1138         int has_dev;
1139
1140         if (supply == NULL)
1141                 return -EINVAL;
1142
1143         if (consumer_dev_name != NULL)
1144                 has_dev = 1;
1145         else
1146                 has_dev = 0;
1147
1148         list_for_each_entry(node, &regulator_map_list, list) {
1149                 if (node->dev_name && consumer_dev_name) {
1150                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1151                                 continue;
1152                 } else if (node->dev_name || consumer_dev_name) {
1153                         continue;
1154                 }
1155
1156                 if (strcmp(node->supply, supply) != 0)
1157                         continue;
1158
1159                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1160                          consumer_dev_name,
1161                          dev_name(&node->regulator->dev),
1162                          node->regulator->desc->name,
1163                          supply,
1164                          dev_name(&rdev->dev), rdev_get_name(rdev));
1165                 return -EBUSY;
1166         }
1167
1168         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1169         if (node == NULL)
1170                 return -ENOMEM;
1171
1172         node->regulator = rdev;
1173         node->supply = supply;
1174
1175         if (has_dev) {
1176                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1177                 if (node->dev_name == NULL) {
1178                         kfree(node);
1179                         return -ENOMEM;
1180                 }
1181         }
1182
1183         list_add(&node->list, &regulator_map_list);
1184         return 0;
1185 }
1186
1187 static void unset_regulator_supplies(struct regulator_dev *rdev)
1188 {
1189         struct regulator_map *node, *n;
1190
1191         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1192                 if (rdev == node->regulator) {
1193                         list_del(&node->list);
1194                         kfree(node->dev_name);
1195                         kfree(node);
1196                 }
1197         }
1198 }
1199
1200 #define REG_STR_SIZE    64
1201
1202 static struct regulator *create_regulator(struct regulator_dev *rdev,
1203                                           struct device *dev,
1204                                           const char *supply_name)
1205 {
1206         struct regulator *regulator;
1207         char buf[REG_STR_SIZE];
1208         int err, size;
1209
1210         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1211         if (regulator == NULL)
1212                 return NULL;
1213
1214         mutex_lock(&rdev->mutex);
1215         regulator->rdev = rdev;
1216         list_add(&regulator->list, &rdev->consumer_list);
1217
1218         if (dev) {
1219                 regulator->dev = dev;
1220
1221                 /* Add a link to the device sysfs entry */
1222                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1223                                  dev->kobj.name, supply_name);
1224                 if (size >= REG_STR_SIZE)
1225                         goto overflow_err;
1226
1227                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1228                 if (regulator->supply_name == NULL)
1229                         goto overflow_err;
1230
1231                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1232                                         buf);
1233                 if (err) {
1234                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1235                                   dev->kobj.name, err);
1236                         /* non-fatal */
1237                 }
1238         } else {
1239                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1240                 if (regulator->supply_name == NULL)
1241                         goto overflow_err;
1242         }
1243
1244         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1245                                                 rdev->debugfs);
1246         if (!regulator->debugfs) {
1247                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1248         } else {
1249                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1250                                    &regulator->uA_load);
1251                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1252                                    &regulator->min_uV);
1253                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1254                                    &regulator->max_uV);
1255         }
1256
1257         /*
1258          * Check now if the regulator is an always on regulator - if
1259          * it is then we don't need to do nearly so much work for
1260          * enable/disable calls.
1261          */
1262         if (!_regulator_can_change_status(rdev) &&
1263             _regulator_is_enabled(rdev))
1264                 regulator->always_on = true;
1265
1266         mutex_unlock(&rdev->mutex);
1267         return regulator;
1268 overflow_err:
1269         list_del(&regulator->list);
1270         kfree(regulator);
1271         mutex_unlock(&rdev->mutex);
1272         return NULL;
1273 }
1274
1275 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1276 {
1277         if (rdev->constraints && rdev->constraints->enable_time)
1278                 return rdev->constraints->enable_time;
1279         if (!rdev->desc->ops->enable_time)
1280                 return rdev->desc->enable_time;
1281         return rdev->desc->ops->enable_time(rdev);
1282 }
1283
1284 static struct regulator_supply_alias *regulator_find_supply_alias(
1285                 struct device *dev, const char *supply)
1286 {
1287         struct regulator_supply_alias *map;
1288
1289         list_for_each_entry(map, &regulator_supply_alias_list, list)
1290                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1291                         return map;
1292
1293         return NULL;
1294 }
1295
1296 static void regulator_supply_alias(struct device **dev, const char **supply)
1297 {
1298         struct regulator_supply_alias *map;
1299
1300         map = regulator_find_supply_alias(*dev, *supply);
1301         if (map) {
1302                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1303                                 *supply, map->alias_supply,
1304                                 dev_name(map->alias_dev));
1305                 *dev = map->alias_dev;
1306                 *supply = map->alias_supply;
1307         }
1308 }
1309
1310 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1311                                                   const char *supply,
1312                                                   int *ret)
1313 {
1314         struct regulator_dev *r;
1315         struct device_node *node;
1316         struct regulator_map *map;
1317         const char *devname = NULL;
1318
1319         regulator_supply_alias(&dev, &supply);
1320
1321         /* first do a dt based lookup */
1322         if (dev && dev->of_node) {
1323                 node = of_get_regulator(dev, supply);
1324                 if (node) {
1325                         list_for_each_entry(r, &regulator_list, list)
1326                                 if (r->dev.parent &&
1327                                         node == r->dev.of_node)
1328                                         return r;
1329                         *ret = -EPROBE_DEFER;
1330                         return NULL;
1331                 } else {
1332                         /*
1333                          * If we couldn't even get the node then it's
1334                          * not just that the device didn't register
1335                          * yet, there's no node and we'll never
1336                          * succeed.
1337                          */
1338                         *ret = -ENODEV;
1339                 }
1340         }
1341
1342         /* if not found, try doing it non-dt way */
1343         if (dev)
1344                 devname = dev_name(dev);
1345
1346         list_for_each_entry(r, &regulator_list, list)
1347                 if (strcmp(rdev_get_name(r), supply) == 0)
1348                         return r;
1349
1350         list_for_each_entry(map, &regulator_map_list, list) {
1351                 /* If the mapping has a device set up it must match */
1352                 if (map->dev_name &&
1353                     (!devname || strcmp(map->dev_name, devname)))
1354                         continue;
1355
1356                 if (strcmp(map->supply, supply) == 0)
1357                         return map->regulator;
1358         }
1359
1360
1361         return NULL;
1362 }
1363
1364 static int regulator_resolve_supply(struct regulator_dev *rdev)
1365 {
1366         struct regulator_dev *r;
1367         struct device *dev = rdev->dev.parent;
1368         int ret;
1369
1370         /* No supply to resovle? */
1371         if (!rdev->supply_name)
1372                 return 0;
1373
1374         /* Supply already resolved? */
1375         if (rdev->supply)
1376                 return 0;
1377
1378         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1379         if (ret == -ENODEV) {
1380                 /*
1381                  * No supply was specified for this regulator and
1382                  * there will never be one.
1383                  */
1384                 return 0;
1385         }
1386
1387         if (!r) {
1388                 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1389                         rdev->supply_name, rdev->desc->name);
1390                 return -EPROBE_DEFER;
1391         }
1392
1393         /* Recursively resolve the supply of the supply */
1394         ret = regulator_resolve_supply(r);
1395         if (ret < 0)
1396                 return ret;
1397
1398         ret = set_supply(rdev, r);
1399         if (ret < 0)
1400                 return ret;
1401
1402         /* Cascade always-on state to supply */
1403         if (_regulator_is_enabled(rdev)) {
1404                 ret = regulator_enable(rdev->supply);
1405                 if (ret < 0)
1406                         return ret;
1407         }
1408
1409         return 0;
1410 }
1411
1412 /* Internal regulator request function */
1413 static struct regulator *_regulator_get(struct device *dev, const char *id,
1414                                         bool exclusive, bool allow_dummy)
1415 {
1416         struct regulator_dev *rdev;
1417         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1418         const char *devname = NULL;
1419         int ret;
1420
1421         if (id == NULL) {
1422                 pr_err("get() with no identifier\n");
1423                 return ERR_PTR(-EINVAL);
1424         }
1425
1426         if (dev)
1427                 devname = dev_name(dev);
1428
1429         if (have_full_constraints())
1430                 ret = -ENODEV;
1431         else
1432                 ret = -EPROBE_DEFER;
1433
1434         mutex_lock(&regulator_list_mutex);
1435
1436         rdev = regulator_dev_lookup(dev, id, &ret);
1437         if (rdev)
1438                 goto found;
1439
1440         regulator = ERR_PTR(ret);
1441
1442         /*
1443          * If we have return value from dev_lookup fail, we do not expect to
1444          * succeed, so, quit with appropriate error value
1445          */
1446         if (ret && ret != -ENODEV)
1447                 goto out;
1448
1449         if (!devname)
1450                 devname = "deviceless";
1451
1452         /*
1453          * Assume that a regulator is physically present and enabled
1454          * even if it isn't hooked up and just provide a dummy.
1455          */
1456         if (have_full_constraints() && allow_dummy) {
1457                 pr_warn("%s supply %s not found, using dummy regulator\n",
1458                         devname, id);
1459
1460                 rdev = dummy_regulator_rdev;
1461                 goto found;
1462         /* Don't log an error when called from regulator_get_optional() */
1463         } else if (!have_full_constraints() || exclusive) {
1464                 dev_warn(dev, "dummy supplies not allowed\n");
1465         }
1466
1467         mutex_unlock(&regulator_list_mutex);
1468         return regulator;
1469
1470 found:
1471         if (rdev->exclusive) {
1472                 regulator = ERR_PTR(-EPERM);
1473                 goto out;
1474         }
1475
1476         if (exclusive && rdev->open_count) {
1477                 regulator = ERR_PTR(-EBUSY);
1478                 goto out;
1479         }
1480
1481         ret = regulator_resolve_supply(rdev);
1482         if (ret < 0) {
1483                 regulator = ERR_PTR(ret);
1484                 goto out;
1485         }
1486
1487         if (!try_module_get(rdev->owner))
1488                 goto out;
1489
1490         regulator = create_regulator(rdev, dev, id);
1491         if (regulator == NULL) {
1492                 regulator = ERR_PTR(-ENOMEM);
1493                 module_put(rdev->owner);
1494                 goto out;
1495         }
1496
1497         rdev->open_count++;
1498         if (exclusive) {
1499                 rdev->exclusive = 1;
1500
1501                 ret = _regulator_is_enabled(rdev);
1502                 if (ret > 0)
1503                         rdev->use_count = 1;
1504                 else
1505                         rdev->use_count = 0;
1506         }
1507
1508 out:
1509         mutex_unlock(&regulator_list_mutex);
1510
1511         return regulator;
1512 }
1513
1514 /**
1515  * regulator_get - lookup and obtain a reference to a regulator.
1516  * @dev: device for regulator "consumer"
1517  * @id: Supply name or regulator ID.
1518  *
1519  * Returns a struct regulator corresponding to the regulator producer,
1520  * or IS_ERR() condition containing errno.
1521  *
1522  * Use of supply names configured via regulator_set_device_supply() is
1523  * strongly encouraged.  It is recommended that the supply name used
1524  * should match the name used for the supply and/or the relevant
1525  * device pins in the datasheet.
1526  */
1527 struct regulator *regulator_get(struct device *dev, const char *id)
1528 {
1529         return _regulator_get(dev, id, false, true);
1530 }
1531 EXPORT_SYMBOL_GPL(regulator_get);
1532
1533 /**
1534  * regulator_get_exclusive - obtain exclusive access to a regulator.
1535  * @dev: device for regulator "consumer"
1536  * @id: Supply name or regulator ID.
1537  *
1538  * Returns a struct regulator corresponding to the regulator producer,
1539  * or IS_ERR() condition containing errno.  Other consumers will be
1540  * unable to obtain this regulator while this reference is held and the
1541  * use count for the regulator will be initialised to reflect the current
1542  * state of the regulator.
1543  *
1544  * This is intended for use by consumers which cannot tolerate shared
1545  * use of the regulator such as those which need to force the
1546  * regulator off for correct operation of the hardware they are
1547  * controlling.
1548  *
1549  * Use of supply names configured via regulator_set_device_supply() is
1550  * strongly encouraged.  It is recommended that the supply name used
1551  * should match the name used for the supply and/or the relevant
1552  * device pins in the datasheet.
1553  */
1554 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1555 {
1556         return _regulator_get(dev, id, true, false);
1557 }
1558 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1559
1560 /**
1561  * regulator_get_optional - obtain optional access to a regulator.
1562  * @dev: device for regulator "consumer"
1563  * @id: Supply name or regulator ID.
1564  *
1565  * Returns a struct regulator corresponding to the regulator producer,
1566  * or IS_ERR() condition containing errno.
1567  *
1568  * This is intended for use by consumers for devices which can have
1569  * some supplies unconnected in normal use, such as some MMC devices.
1570  * It can allow the regulator core to provide stub supplies for other
1571  * supplies requested using normal regulator_get() calls without
1572  * disrupting the operation of drivers that can handle absent
1573  * supplies.
1574  *
1575  * Use of supply names configured via regulator_set_device_supply() is
1576  * strongly encouraged.  It is recommended that the supply name used
1577  * should match the name used for the supply and/or the relevant
1578  * device pins in the datasheet.
1579  */
1580 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1581 {
1582         return _regulator_get(dev, id, false, false);
1583 }
1584 EXPORT_SYMBOL_GPL(regulator_get_optional);
1585
1586 /* regulator_list_mutex lock held by regulator_put() */
1587 static void _regulator_put(struct regulator *regulator)
1588 {
1589         struct regulator_dev *rdev;
1590
1591         if (regulator == NULL || IS_ERR(regulator))
1592                 return;
1593
1594         lockdep_assert_held_once(&regulator_list_mutex);
1595
1596         rdev = regulator->rdev;
1597
1598         debugfs_remove_recursive(regulator->debugfs);
1599
1600         /* remove any sysfs entries */
1601         if (regulator->dev)
1602                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1603         mutex_lock(&rdev->mutex);
1604         kfree(regulator->supply_name);
1605         list_del(&regulator->list);
1606         kfree(regulator);
1607
1608         rdev->open_count--;
1609         rdev->exclusive = 0;
1610         mutex_unlock(&rdev->mutex);
1611
1612         module_put(rdev->owner);
1613 }
1614
1615 /**
1616  * regulator_put - "free" the regulator source
1617  * @regulator: regulator source
1618  *
1619  * Note: drivers must ensure that all regulator_enable calls made on this
1620  * regulator source are balanced by regulator_disable calls prior to calling
1621  * this function.
1622  */
1623 void regulator_put(struct regulator *regulator)
1624 {
1625         mutex_lock(&regulator_list_mutex);
1626         _regulator_put(regulator);
1627         mutex_unlock(&regulator_list_mutex);
1628 }
1629 EXPORT_SYMBOL_GPL(regulator_put);
1630
1631 /**
1632  * regulator_register_supply_alias - Provide device alias for supply lookup
1633  *
1634  * @dev: device that will be given as the regulator "consumer"
1635  * @id: Supply name or regulator ID
1636  * @alias_dev: device that should be used to lookup the supply
1637  * @alias_id: Supply name or regulator ID that should be used to lookup the
1638  * supply
1639  *
1640  * All lookups for id on dev will instead be conducted for alias_id on
1641  * alias_dev.
1642  */
1643 int regulator_register_supply_alias(struct device *dev, const char *id,
1644                                     struct device *alias_dev,
1645                                     const char *alias_id)
1646 {
1647         struct regulator_supply_alias *map;
1648
1649         map = regulator_find_supply_alias(dev, id);
1650         if (map)
1651                 return -EEXIST;
1652
1653         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1654         if (!map)
1655                 return -ENOMEM;
1656
1657         map->src_dev = dev;
1658         map->src_supply = id;
1659         map->alias_dev = alias_dev;
1660         map->alias_supply = alias_id;
1661
1662         list_add(&map->list, &regulator_supply_alias_list);
1663
1664         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1665                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1666
1667         return 0;
1668 }
1669 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1670
1671 /**
1672  * regulator_unregister_supply_alias - Remove device alias
1673  *
1674  * @dev: device that will be given as the regulator "consumer"
1675  * @id: Supply name or regulator ID
1676  *
1677  * Remove a lookup alias if one exists for id on dev.
1678  */
1679 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1680 {
1681         struct regulator_supply_alias *map;
1682
1683         map = regulator_find_supply_alias(dev, id);
1684         if (map) {
1685                 list_del(&map->list);
1686                 kfree(map);
1687         }
1688 }
1689 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1690
1691 /**
1692  * regulator_bulk_register_supply_alias - register multiple aliases
1693  *
1694  * @dev: device that will be given as the regulator "consumer"
1695  * @id: List of supply names or regulator IDs
1696  * @alias_dev: device that should be used to lookup the supply
1697  * @alias_id: List of supply names or regulator IDs that should be used to
1698  * lookup the supply
1699  * @num_id: Number of aliases to register
1700  *
1701  * @return 0 on success, an errno on failure.
1702  *
1703  * This helper function allows drivers to register several supply
1704  * aliases in one operation.  If any of the aliases cannot be
1705  * registered any aliases that were registered will be removed
1706  * before returning to the caller.
1707  */
1708 int regulator_bulk_register_supply_alias(struct device *dev,
1709                                          const char *const *id,
1710                                          struct device *alias_dev,
1711                                          const char *const *alias_id,
1712                                          int num_id)
1713 {
1714         int i;
1715         int ret;
1716
1717         for (i = 0; i < num_id; ++i) {
1718                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1719                                                       alias_id[i]);
1720                 if (ret < 0)
1721                         goto err;
1722         }
1723
1724         return 0;
1725
1726 err:
1727         dev_err(dev,
1728                 "Failed to create supply alias %s,%s -> %s,%s\n",
1729                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1730
1731         while (--i >= 0)
1732                 regulator_unregister_supply_alias(dev, id[i]);
1733
1734         return ret;
1735 }
1736 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1737
1738 /**
1739  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1740  *
1741  * @dev: device that will be given as the regulator "consumer"
1742  * @id: List of supply names or regulator IDs
1743  * @num_id: Number of aliases to unregister
1744  *
1745  * This helper function allows drivers to unregister several supply
1746  * aliases in one operation.
1747  */
1748 void regulator_bulk_unregister_supply_alias(struct device *dev,
1749                                             const char *const *id,
1750                                             int num_id)
1751 {
1752         int i;
1753
1754         for (i = 0; i < num_id; ++i)
1755                 regulator_unregister_supply_alias(dev, id[i]);
1756 }
1757 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1758
1759
1760 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1761 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1762                                 const struct regulator_config *config)
1763 {
1764         struct regulator_enable_gpio *pin;
1765         struct gpio_desc *gpiod;
1766         int ret;
1767
1768         gpiod = gpio_to_desc(config->ena_gpio);
1769
1770         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1771                 if (pin->gpiod == gpiod) {
1772                         rdev_dbg(rdev, "GPIO %d is already used\n",
1773                                 config->ena_gpio);
1774                         goto update_ena_gpio_to_rdev;
1775                 }
1776         }
1777
1778         ret = gpio_request_one(config->ena_gpio,
1779                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1780                                 rdev_get_name(rdev));
1781         if (ret)
1782                 return ret;
1783
1784         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1785         if (pin == NULL) {
1786                 gpio_free(config->ena_gpio);
1787                 return -ENOMEM;
1788         }
1789
1790         pin->gpiod = gpiod;
1791         pin->ena_gpio_invert = config->ena_gpio_invert;
1792         list_add(&pin->list, &regulator_ena_gpio_list);
1793
1794 update_ena_gpio_to_rdev:
1795         pin->request_count++;
1796         rdev->ena_pin = pin;
1797         return 0;
1798 }
1799
1800 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1801 {
1802         struct regulator_enable_gpio *pin, *n;
1803
1804         if (!rdev->ena_pin)
1805                 return;
1806
1807         /* Free the GPIO only in case of no use */
1808         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1809                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1810                         if (pin->request_count <= 1) {
1811                                 pin->request_count = 0;
1812                                 gpiod_put(pin->gpiod);
1813                                 list_del(&pin->list);
1814                                 kfree(pin);
1815                                 rdev->ena_pin = NULL;
1816                                 return;
1817                         } else {
1818                                 pin->request_count--;
1819                         }
1820                 }
1821         }
1822 }
1823
1824 /**
1825  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1826  * @rdev: regulator_dev structure
1827  * @enable: enable GPIO at initial use?
1828  *
1829  * GPIO is enabled in case of initial use. (enable_count is 0)
1830  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1831  */
1832 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1833 {
1834         struct regulator_enable_gpio *pin = rdev->ena_pin;
1835
1836         if (!pin)
1837                 return -EINVAL;
1838
1839         if (enable) {
1840                 /* Enable GPIO at initial use */
1841                 if (pin->enable_count == 0)
1842                         gpiod_set_value_cansleep(pin->gpiod,
1843                                                  !pin->ena_gpio_invert);
1844
1845                 pin->enable_count++;
1846         } else {
1847                 if (pin->enable_count > 1) {
1848                         pin->enable_count--;
1849                         return 0;
1850                 }
1851
1852                 /* Disable GPIO if not used */
1853                 if (pin->enable_count <= 1) {
1854                         gpiod_set_value_cansleep(pin->gpiod,
1855                                                  pin->ena_gpio_invert);
1856                         pin->enable_count = 0;
1857                 }
1858         }
1859
1860         return 0;
1861 }
1862
1863 /**
1864  * _regulator_enable_delay - a delay helper function
1865  * @delay: time to delay in microseconds
1866  *
1867  * Delay for the requested amount of time as per the guidelines in:
1868  *
1869  *     Documentation/timers/timers-howto.txt
1870  *
1871  * The assumption here is that regulators will never be enabled in
1872  * atomic context and therefore sleeping functions can be used.
1873  */
1874 static void _regulator_enable_delay(unsigned int delay)
1875 {
1876         unsigned int ms = delay / 1000;
1877         unsigned int us = delay % 1000;
1878
1879         if (ms > 0) {
1880                 /*
1881                  * For small enough values, handle super-millisecond
1882                  * delays in the usleep_range() call below.
1883                  */
1884                 if (ms < 20)
1885                         us += ms * 1000;
1886                 else
1887                         msleep(ms);
1888         }
1889
1890         /*
1891          * Give the scheduler some room to coalesce with any other
1892          * wakeup sources. For delays shorter than 10 us, don't even
1893          * bother setting up high-resolution timers and just busy-
1894          * loop.
1895          */
1896         if (us >= 10)
1897                 usleep_range(us, us + 100);
1898         else
1899                 udelay(us);
1900 }
1901
1902 static int _regulator_do_enable(struct regulator_dev *rdev)
1903 {
1904         int ret, delay;
1905
1906         /* Query before enabling in case configuration dependent.  */
1907         ret = _regulator_get_enable_time(rdev);
1908         if (ret >= 0) {
1909                 delay = ret;
1910         } else {
1911                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1912                 delay = 0;
1913         }
1914
1915         trace_regulator_enable(rdev_get_name(rdev));
1916
1917         if (rdev->desc->off_on_delay) {
1918                 /* if needed, keep a distance of off_on_delay from last time
1919                  * this regulator was disabled.
1920                  */
1921                 unsigned long start_jiffy = jiffies;
1922                 unsigned long intended, max_delay, remaining;
1923
1924                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1925                 intended = rdev->last_off_jiffy + max_delay;
1926
1927                 if (time_before(start_jiffy, intended)) {
1928                         /* calc remaining jiffies to deal with one-time
1929                          * timer wrapping.
1930                          * in case of multiple timer wrapping, either it can be
1931                          * detected by out-of-range remaining, or it cannot be
1932                          * detected and we gets a panelty of
1933                          * _regulator_enable_delay().
1934                          */
1935                         remaining = intended - start_jiffy;
1936                         if (remaining <= max_delay)
1937                                 _regulator_enable_delay(
1938                                                 jiffies_to_usecs(remaining));
1939                 }
1940         }
1941
1942         if (rdev->ena_pin) {
1943                 if (!rdev->ena_gpio_state) {
1944                         ret = regulator_ena_gpio_ctrl(rdev, true);
1945                         if (ret < 0)
1946                                 return ret;
1947                         rdev->ena_gpio_state = 1;
1948                 }
1949         } else if (rdev->desc->ops->enable) {
1950                 ret = rdev->desc->ops->enable(rdev);
1951                 if (ret < 0)
1952                         return ret;
1953         } else {
1954                 return -EINVAL;
1955         }
1956
1957         /* Allow the regulator to ramp; it would be useful to extend
1958          * this for bulk operations so that the regulators can ramp
1959          * together.  */
1960         trace_regulator_enable_delay(rdev_get_name(rdev));
1961
1962         _regulator_enable_delay(delay);
1963
1964         trace_regulator_enable_complete(rdev_get_name(rdev));
1965
1966         return 0;
1967 }
1968
1969 /* locks held by regulator_enable() */
1970 static int _regulator_enable(struct regulator_dev *rdev)
1971 {
1972         int ret;
1973
1974         lockdep_assert_held_once(&rdev->mutex);
1975
1976         /* check voltage and requested load before enabling */
1977         if (rdev->constraints &&
1978             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1979                 drms_uA_update(rdev);
1980
1981         if (rdev->use_count == 0) {
1982                 /* The regulator may on if it's not switchable or left on */
1983                 ret = _regulator_is_enabled(rdev);
1984                 if (ret == -EINVAL || ret == 0) {
1985                         if (!_regulator_can_change_status(rdev))
1986                                 return -EPERM;
1987
1988                         ret = _regulator_do_enable(rdev);
1989                         if (ret < 0)
1990                                 return ret;
1991
1992                 } else if (ret < 0) {
1993                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1994                         return ret;
1995                 }
1996                 /* Fallthrough on positive return values - already enabled */
1997         }
1998
1999         rdev->use_count++;
2000
2001         return 0;
2002 }
2003
2004 /**
2005  * regulator_enable - enable regulator output
2006  * @regulator: regulator source
2007  *
2008  * Request that the regulator be enabled with the regulator output at
2009  * the predefined voltage or current value.  Calls to regulator_enable()
2010  * must be balanced with calls to regulator_disable().
2011  *
2012  * NOTE: the output value can be set by other drivers, boot loader or may be
2013  * hardwired in the regulator.
2014  */
2015 int regulator_enable(struct regulator *regulator)
2016 {
2017         struct regulator_dev *rdev = regulator->rdev;
2018         int ret = 0;
2019
2020         if (regulator->always_on)
2021                 return 0;
2022
2023         if (rdev->supply) {
2024                 ret = regulator_enable(rdev->supply);
2025                 if (ret != 0)
2026                         return ret;
2027         }
2028
2029         mutex_lock(&rdev->mutex);
2030         ret = _regulator_enable(rdev);
2031         mutex_unlock(&rdev->mutex);
2032
2033         if (ret != 0 && rdev->supply)
2034                 regulator_disable(rdev->supply);
2035
2036         return ret;
2037 }
2038 EXPORT_SYMBOL_GPL(regulator_enable);
2039
2040 static int _regulator_do_disable(struct regulator_dev *rdev)
2041 {
2042         int ret;
2043
2044         trace_regulator_disable(rdev_get_name(rdev));
2045
2046         if (rdev->ena_pin) {
2047                 if (rdev->ena_gpio_state) {
2048                         ret = regulator_ena_gpio_ctrl(rdev, false);
2049                         if (ret < 0)
2050                                 return ret;
2051                         rdev->ena_gpio_state = 0;
2052                 }
2053
2054         } else if (rdev->desc->ops->disable) {
2055                 ret = rdev->desc->ops->disable(rdev);
2056                 if (ret != 0)
2057                         return ret;
2058         }
2059
2060         /* cares about last_off_jiffy only if off_on_delay is required by
2061          * device.
2062          */
2063         if (rdev->desc->off_on_delay)
2064                 rdev->last_off_jiffy = jiffies;
2065
2066         trace_regulator_disable_complete(rdev_get_name(rdev));
2067
2068         return 0;
2069 }
2070
2071 /* locks held by regulator_disable() */
2072 static int _regulator_disable(struct regulator_dev *rdev)
2073 {
2074         int ret = 0;
2075
2076         lockdep_assert_held_once(&rdev->mutex);
2077
2078         if (WARN(rdev->use_count <= 0,
2079                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2080                 return -EIO;
2081
2082         /* are we the last user and permitted to disable ? */
2083         if (rdev->use_count == 1 &&
2084             (rdev->constraints && !rdev->constraints->always_on)) {
2085
2086                 /* we are last user */
2087                 if (_regulator_can_change_status(rdev)) {
2088                         ret = _notifier_call_chain(rdev,
2089                                                    REGULATOR_EVENT_PRE_DISABLE,
2090                                                    NULL);
2091                         if (ret & NOTIFY_STOP_MASK)
2092                                 return -EINVAL;
2093
2094                         ret = _regulator_do_disable(rdev);
2095                         if (ret < 0) {
2096                                 rdev_err(rdev, "failed to disable\n");
2097                                 _notifier_call_chain(rdev,
2098                                                 REGULATOR_EVENT_ABORT_DISABLE,
2099                                                 NULL);
2100                                 return ret;
2101                         }
2102                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2103                                         NULL);
2104                 }
2105
2106                 rdev->use_count = 0;
2107         } else if (rdev->use_count > 1) {
2108
2109                 if (rdev->constraints &&
2110                         (rdev->constraints->valid_ops_mask &
2111                         REGULATOR_CHANGE_DRMS))
2112                         drms_uA_update(rdev);
2113
2114                 rdev->use_count--;
2115         }
2116
2117         return ret;
2118 }
2119
2120 /**
2121  * regulator_disable - disable regulator output
2122  * @regulator: regulator source
2123  *
2124  * Disable the regulator output voltage or current.  Calls to
2125  * regulator_enable() must be balanced with calls to
2126  * regulator_disable().
2127  *
2128  * NOTE: this will only disable the regulator output if no other consumer
2129  * devices have it enabled, the regulator device supports disabling and
2130  * machine constraints permit this operation.
2131  */
2132 int regulator_disable(struct regulator *regulator)
2133 {
2134         struct regulator_dev *rdev = regulator->rdev;
2135         int ret = 0;
2136
2137         if (regulator->always_on)
2138                 return 0;
2139
2140         mutex_lock(&rdev->mutex);
2141         ret = _regulator_disable(rdev);
2142         mutex_unlock(&rdev->mutex);
2143
2144         if (ret == 0 && rdev->supply)
2145                 regulator_disable(rdev->supply);
2146
2147         return ret;
2148 }
2149 EXPORT_SYMBOL_GPL(regulator_disable);
2150
2151 /* locks held by regulator_force_disable() */
2152 static int _regulator_force_disable(struct regulator_dev *rdev)
2153 {
2154         int ret = 0;
2155
2156         lockdep_assert_held_once(&rdev->mutex);
2157
2158         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2159                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2160         if (ret & NOTIFY_STOP_MASK)
2161                 return -EINVAL;
2162
2163         ret = _regulator_do_disable(rdev);
2164         if (ret < 0) {
2165                 rdev_err(rdev, "failed to force disable\n");
2166                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2167                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2168                 return ret;
2169         }
2170
2171         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2172                         REGULATOR_EVENT_DISABLE, NULL);
2173
2174         return 0;
2175 }
2176
2177 /**
2178  * regulator_force_disable - force disable regulator output
2179  * @regulator: regulator source
2180  *
2181  * Forcibly disable the regulator output voltage or current.
2182  * NOTE: this *will* disable the regulator output even if other consumer
2183  * devices have it enabled. This should be used for situations when device
2184  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2185  */
2186 int regulator_force_disable(struct regulator *regulator)
2187 {
2188         struct regulator_dev *rdev = regulator->rdev;
2189         int ret;
2190
2191         mutex_lock(&rdev->mutex);
2192         regulator->uA_load = 0;
2193         ret = _regulator_force_disable(regulator->rdev);
2194         mutex_unlock(&rdev->mutex);
2195
2196         if (rdev->supply)
2197                 while (rdev->open_count--)
2198                         regulator_disable(rdev->supply);
2199
2200         return ret;
2201 }
2202 EXPORT_SYMBOL_GPL(regulator_force_disable);
2203
2204 static void regulator_disable_work(struct work_struct *work)
2205 {
2206         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2207                                                   disable_work.work);
2208         int count, i, ret;
2209
2210         mutex_lock(&rdev->mutex);
2211
2212         BUG_ON(!rdev->deferred_disables);
2213
2214         count = rdev->deferred_disables;
2215         rdev->deferred_disables = 0;
2216
2217         for (i = 0; i < count; i++) {
2218                 ret = _regulator_disable(rdev);
2219                 if (ret != 0)
2220                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2221         }
2222
2223         mutex_unlock(&rdev->mutex);
2224
2225         if (rdev->supply) {
2226                 for (i = 0; i < count; i++) {
2227                         ret = regulator_disable(rdev->supply);
2228                         if (ret != 0) {
2229                                 rdev_err(rdev,
2230                                          "Supply disable failed: %d\n", ret);
2231                         }
2232                 }
2233         }
2234 }
2235
2236 /**
2237  * regulator_disable_deferred - disable regulator output with delay
2238  * @regulator: regulator source
2239  * @ms: miliseconds until the regulator is disabled
2240  *
2241  * Execute regulator_disable() on the regulator after a delay.  This
2242  * is intended for use with devices that require some time to quiesce.
2243  *
2244  * NOTE: this will only disable the regulator output if no other consumer
2245  * devices have it enabled, the regulator device supports disabling and
2246  * machine constraints permit this operation.
2247  */
2248 int regulator_disable_deferred(struct regulator *regulator, int ms)
2249 {
2250         struct regulator_dev *rdev = regulator->rdev;
2251         int ret;
2252
2253         if (regulator->always_on)
2254                 return 0;
2255
2256         if (!ms)
2257                 return regulator_disable(regulator);
2258
2259         mutex_lock(&rdev->mutex);
2260         rdev->deferred_disables++;
2261         mutex_unlock(&rdev->mutex);
2262
2263         ret = queue_delayed_work(system_power_efficient_wq,
2264                                  &rdev->disable_work,
2265                                  msecs_to_jiffies(ms));
2266         if (ret < 0)
2267                 return ret;
2268         else
2269                 return 0;
2270 }
2271 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2272
2273 static int _regulator_is_enabled(struct regulator_dev *rdev)
2274 {
2275         /* A GPIO control always takes precedence */
2276         if (rdev->ena_pin)
2277                 return rdev->ena_gpio_state;
2278
2279         /* If we don't know then assume that the regulator is always on */
2280         if (!rdev->desc->ops->is_enabled)
2281                 return 1;
2282
2283         return rdev->desc->ops->is_enabled(rdev);
2284 }
2285
2286 /**
2287  * regulator_is_enabled - is the regulator output enabled
2288  * @regulator: regulator source
2289  *
2290  * Returns positive if the regulator driver backing the source/client
2291  * has requested that the device be enabled, zero if it hasn't, else a
2292  * negative errno code.
2293  *
2294  * Note that the device backing this regulator handle can have multiple
2295  * users, so it might be enabled even if regulator_enable() was never
2296  * called for this particular source.
2297  */
2298 int regulator_is_enabled(struct regulator *regulator)
2299 {
2300         int ret;
2301
2302         if (regulator->always_on)
2303                 return 1;
2304
2305         mutex_lock(&regulator->rdev->mutex);
2306         ret = _regulator_is_enabled(regulator->rdev);
2307         mutex_unlock(&regulator->rdev->mutex);
2308
2309         return ret;
2310 }
2311 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2312
2313 /**
2314  * regulator_can_change_voltage - check if regulator can change voltage
2315  * @regulator: regulator source
2316  *
2317  * Returns positive if the regulator driver backing the source/client
2318  * can change its voltage, false otherwise. Useful for detecting fixed
2319  * or dummy regulators and disabling voltage change logic in the client
2320  * driver.
2321  */
2322 int regulator_can_change_voltage(struct regulator *regulator)
2323 {
2324         struct regulator_dev    *rdev = regulator->rdev;
2325
2326         if (rdev->constraints &&
2327             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2328                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2329                         return 1;
2330
2331                 if (rdev->desc->continuous_voltage_range &&
2332                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2333                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2334                         return 1;
2335         }
2336
2337         return 0;
2338 }
2339 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2340
2341 /**
2342  * regulator_count_voltages - count regulator_list_voltage() selectors
2343  * @regulator: regulator source
2344  *
2345  * Returns number of selectors, or negative errno.  Selectors are
2346  * numbered starting at zero, and typically correspond to bitfields
2347  * in hardware registers.
2348  */
2349 int regulator_count_voltages(struct regulator *regulator)
2350 {
2351         struct regulator_dev    *rdev = regulator->rdev;
2352
2353         if (rdev->desc->n_voltages)
2354                 return rdev->desc->n_voltages;
2355
2356         if (!rdev->supply)
2357                 return -EINVAL;
2358
2359         return regulator_count_voltages(rdev->supply);
2360 }
2361 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2362
2363 /**
2364  * regulator_list_voltage - enumerate supported voltages
2365  * @regulator: regulator source
2366  * @selector: identify voltage to list
2367  * Context: can sleep
2368  *
2369  * Returns a voltage that can be passed to @regulator_set_voltage(),
2370  * zero if this selector code can't be used on this system, or a
2371  * negative errno.
2372  */
2373 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2374 {
2375         struct regulator_dev *rdev = regulator->rdev;
2376         const struct regulator_ops *ops = rdev->desc->ops;
2377         int ret;
2378
2379         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2380                 return rdev->desc->fixed_uV;
2381
2382         if (ops->list_voltage) {
2383                 if (selector >= rdev->desc->n_voltages)
2384                         return -EINVAL;
2385                 mutex_lock(&rdev->mutex);
2386                 ret = ops->list_voltage(rdev, selector);
2387                 mutex_unlock(&rdev->mutex);
2388         } else if (rdev->supply) {
2389                 ret = regulator_list_voltage(rdev->supply, selector);
2390         } else {
2391                 return -EINVAL;
2392         }
2393
2394         if (ret > 0) {
2395                 if (ret < rdev->constraints->min_uV)
2396                         ret = 0;
2397                 else if (ret > rdev->constraints->max_uV)
2398                         ret = 0;
2399         }
2400
2401         return ret;
2402 }
2403 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2404
2405 /**
2406  * regulator_get_regmap - get the regulator's register map
2407  * @regulator: regulator source
2408  *
2409  * Returns the register map for the given regulator, or an ERR_PTR value
2410  * if the regulator doesn't use regmap.
2411  */
2412 struct regmap *regulator_get_regmap(struct regulator *regulator)
2413 {
2414         struct regmap *map = regulator->rdev->regmap;
2415
2416         return map ? map : ERR_PTR(-EOPNOTSUPP);
2417 }
2418
2419 /**
2420  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2421  * @regulator: regulator source
2422  * @vsel_reg: voltage selector register, output parameter
2423  * @vsel_mask: mask for voltage selector bitfield, output parameter
2424  *
2425  * Returns the hardware register offset and bitmask used for setting the
2426  * regulator voltage. This might be useful when configuring voltage-scaling
2427  * hardware or firmware that can make I2C requests behind the kernel's back,
2428  * for example.
2429  *
2430  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2431  * and 0 is returned, otherwise a negative errno is returned.
2432  */
2433 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2434                                          unsigned *vsel_reg,
2435                                          unsigned *vsel_mask)
2436 {
2437         struct regulator_dev *rdev = regulator->rdev;
2438         const struct regulator_ops *ops = rdev->desc->ops;
2439
2440         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2441                 return -EOPNOTSUPP;
2442
2443          *vsel_reg = rdev->desc->vsel_reg;
2444          *vsel_mask = rdev->desc->vsel_mask;
2445
2446          return 0;
2447 }
2448 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2449
2450 /**
2451  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2452  * @regulator: regulator source
2453  * @selector: identify voltage to list
2454  *
2455  * Converts the selector to a hardware-specific voltage selector that can be
2456  * directly written to the regulator registers. The address of the voltage
2457  * register can be determined by calling @regulator_get_hardware_vsel_register.
2458  *
2459  * On error a negative errno is returned.
2460  */
2461 int regulator_list_hardware_vsel(struct regulator *regulator,
2462                                  unsigned selector)
2463 {
2464         struct regulator_dev *rdev = regulator->rdev;
2465         const struct regulator_ops *ops = rdev->desc->ops;
2466
2467         if (selector >= rdev->desc->n_voltages)
2468                 return -EINVAL;
2469         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2470                 return -EOPNOTSUPP;
2471
2472         return selector;
2473 }
2474 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2475
2476 /**
2477  * regulator_get_linear_step - return the voltage step size between VSEL values
2478  * @regulator: regulator source
2479  *
2480  * Returns the voltage step size between VSEL values for linear
2481  * regulators, or return 0 if the regulator isn't a linear regulator.
2482  */
2483 unsigned int regulator_get_linear_step(struct regulator *regulator)
2484 {
2485         struct regulator_dev *rdev = regulator->rdev;
2486
2487         return rdev->desc->uV_step;
2488 }
2489 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2490
2491 /**
2492  * regulator_is_supported_voltage - check if a voltage range can be supported
2493  *
2494  * @regulator: Regulator to check.
2495  * @min_uV: Minimum required voltage in uV.
2496  * @max_uV: Maximum required voltage in uV.
2497  *
2498  * Returns a boolean or a negative error code.
2499  */
2500 int regulator_is_supported_voltage(struct regulator *regulator,
2501                                    int min_uV, int max_uV)
2502 {
2503         struct regulator_dev *rdev = regulator->rdev;
2504         int i, voltages, ret;
2505
2506         /* If we can't change voltage check the current voltage */
2507         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2508                 ret = regulator_get_voltage(regulator);
2509                 if (ret >= 0)
2510                         return min_uV <= ret && ret <= max_uV;
2511                 else
2512                         return ret;
2513         }
2514
2515         /* Any voltage within constrains range is fine? */
2516         if (rdev->desc->continuous_voltage_range)
2517                 return min_uV >= rdev->constraints->min_uV &&
2518                                 max_uV <= rdev->constraints->max_uV;
2519
2520         ret = regulator_count_voltages(regulator);
2521         if (ret < 0)
2522                 return ret;
2523         voltages = ret;
2524
2525         for (i = 0; i < voltages; i++) {
2526                 ret = regulator_list_voltage(regulator, i);
2527
2528                 if (ret >= min_uV && ret <= max_uV)
2529                         return 1;
2530         }
2531
2532         return 0;
2533 }
2534 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2535
2536 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2537                                        int min_uV, int max_uV,
2538                                        unsigned *selector)
2539 {
2540         struct pre_voltage_change_data data;
2541         int ret;
2542
2543         data.old_uV = _regulator_get_voltage(rdev);
2544         data.min_uV = min_uV;
2545         data.max_uV = max_uV;
2546         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2547                                    &data);
2548         if (ret & NOTIFY_STOP_MASK)
2549                 return -EINVAL;
2550
2551         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2552         if (ret >= 0)
2553                 return ret;
2554
2555         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2556                              (void *)data.old_uV);
2557
2558         return ret;
2559 }
2560
2561 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2562                                            int uV, unsigned selector)
2563 {
2564         struct pre_voltage_change_data data;
2565         int ret;
2566
2567         data.old_uV = _regulator_get_voltage(rdev);
2568         data.min_uV = uV;
2569         data.max_uV = uV;
2570         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2571                                    &data);
2572         if (ret & NOTIFY_STOP_MASK)
2573                 return -EINVAL;
2574
2575         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2576         if (ret >= 0)
2577                 return ret;
2578
2579         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2580                              (void *)data.old_uV);
2581
2582         return ret;
2583 }
2584
2585 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2586                                      int min_uV, int max_uV)
2587 {
2588         int ret;
2589         int delay = 0;
2590         int best_val = 0;
2591         unsigned int selector;
2592         int old_selector = -1;
2593
2594         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2595
2596         min_uV += rdev->constraints->uV_offset;
2597         max_uV += rdev->constraints->uV_offset;
2598
2599         /*
2600          * If we can't obtain the old selector there is not enough
2601          * info to call set_voltage_time_sel().
2602          */
2603         if (_regulator_is_enabled(rdev) &&
2604             rdev->desc->ops->set_voltage_time_sel &&
2605             rdev->desc->ops->get_voltage_sel) {
2606                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2607                 if (old_selector < 0)
2608                         return old_selector;
2609         }
2610
2611         if (rdev->desc->ops->set_voltage) {
2612                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2613                                                   &selector);
2614
2615                 if (ret >= 0) {
2616                         if (rdev->desc->ops->list_voltage)
2617                                 best_val = rdev->desc->ops->list_voltage(rdev,
2618                                                                          selector);
2619                         else
2620                                 best_val = _regulator_get_voltage(rdev);
2621                 }
2622
2623         } else if (rdev->desc->ops->set_voltage_sel) {
2624                 if (rdev->desc->ops->map_voltage) {
2625                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2626                                                            max_uV);
2627                 } else {
2628                         if (rdev->desc->ops->list_voltage ==
2629                             regulator_list_voltage_linear)
2630                                 ret = regulator_map_voltage_linear(rdev,
2631                                                                 min_uV, max_uV);
2632                         else if (rdev->desc->ops->list_voltage ==
2633                                  regulator_list_voltage_linear_range)
2634                                 ret = regulator_map_voltage_linear_range(rdev,
2635                                                                 min_uV, max_uV);
2636                         else
2637                                 ret = regulator_map_voltage_iterate(rdev,
2638                                                                 min_uV, max_uV);
2639                 }
2640
2641                 if (ret >= 0) {
2642                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2643                         if (min_uV <= best_val && max_uV >= best_val) {
2644                                 selector = ret;
2645                                 if (old_selector == selector)
2646                                         ret = 0;
2647                                 else
2648                                         ret = _regulator_call_set_voltage_sel(
2649                                                 rdev, best_val, selector);
2650                         } else {
2651                                 ret = -EINVAL;
2652                         }
2653                 }
2654         } else {
2655                 ret = -EINVAL;
2656         }
2657
2658         /* Call set_voltage_time_sel if successfully obtained old_selector */
2659         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2660                 && old_selector != selector) {
2661
2662                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2663                                                 old_selector, selector);
2664                 if (delay < 0) {
2665                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2666                                   delay);
2667                         delay = 0;
2668                 }
2669
2670                 /* Insert any necessary delays */
2671                 if (delay >= 1000) {
2672                         mdelay(delay / 1000);
2673                         udelay(delay % 1000);
2674                 } else if (delay) {
2675                         udelay(delay);
2676                 }
2677         }
2678
2679         if (ret == 0 && best_val >= 0) {
2680                 unsigned long data = best_val;
2681
2682                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2683                                      (void *)data);
2684         }
2685
2686         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2687
2688         return ret;
2689 }
2690
2691 /**
2692  * regulator_set_voltage - set regulator output voltage
2693  * @regulator: regulator source
2694  * @min_uV: Minimum required voltage in uV
2695  * @max_uV: Maximum acceptable voltage in uV
2696  *
2697  * Sets a voltage regulator to the desired output voltage. This can be set
2698  * during any regulator state. IOW, regulator can be disabled or enabled.
2699  *
2700  * If the regulator is enabled then the voltage will change to the new value
2701  * immediately otherwise if the regulator is disabled the regulator will
2702  * output at the new voltage when enabled.
2703  *
2704  * NOTE: If the regulator is shared between several devices then the lowest
2705  * request voltage that meets the system constraints will be used.
2706  * Regulator system constraints must be set for this regulator before
2707  * calling this function otherwise this call will fail.
2708  */
2709 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2710 {
2711         struct regulator_dev *rdev = regulator->rdev;
2712         int ret = 0;
2713         int old_min_uV, old_max_uV;
2714         int current_uV;
2715
2716         mutex_lock(&rdev->mutex);
2717
2718         /* If we're setting the same range as last time the change
2719          * should be a noop (some cpufreq implementations use the same
2720          * voltage for multiple frequencies, for example).
2721          */
2722         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2723                 goto out;
2724
2725         /* If we're trying to set a range that overlaps the current voltage,
2726          * return succesfully even though the regulator does not support
2727          * changing the voltage.
2728          */
2729         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2730                 current_uV = _regulator_get_voltage(rdev);
2731                 if (min_uV <= current_uV && current_uV <= max_uV) {
2732                         regulator->min_uV = min_uV;
2733                         regulator->max_uV = max_uV;
2734                         goto out;
2735                 }
2736         }
2737
2738         /* sanity check */
2739         if (!rdev->desc->ops->set_voltage &&
2740             !rdev->desc->ops->set_voltage_sel) {
2741                 ret = -EINVAL;
2742                 goto out;
2743         }
2744
2745         /* constraints check */
2746         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2747         if (ret < 0)
2748                 goto out;
2749
2750         /* restore original values in case of error */
2751         old_min_uV = regulator->min_uV;
2752         old_max_uV = regulator->max_uV;
2753         regulator->min_uV = min_uV;
2754         regulator->max_uV = max_uV;
2755
2756         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2757         if (ret < 0)
2758                 goto out2;
2759
2760         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2761         if (ret < 0)
2762                 goto out2;
2763
2764 out:
2765         mutex_unlock(&rdev->mutex);
2766         return ret;
2767 out2:
2768         regulator->min_uV = old_min_uV;
2769         regulator->max_uV = old_max_uV;
2770         mutex_unlock(&rdev->mutex);
2771         return ret;
2772 }
2773 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2774
2775 /**
2776  * regulator_set_voltage_time - get raise/fall time
2777  * @regulator: regulator source
2778  * @old_uV: starting voltage in microvolts
2779  * @new_uV: target voltage in microvolts
2780  *
2781  * Provided with the starting and ending voltage, this function attempts to
2782  * calculate the time in microseconds required to rise or fall to this new
2783  * voltage.
2784  */
2785 int regulator_set_voltage_time(struct regulator *regulator,
2786                                int old_uV, int new_uV)
2787 {
2788         struct regulator_dev *rdev = regulator->rdev;
2789         const struct regulator_ops *ops = rdev->desc->ops;
2790         int old_sel = -1;
2791         int new_sel = -1;
2792         int voltage;
2793         int i;
2794
2795         /* Currently requires operations to do this */
2796         if (!ops->list_voltage || !ops->set_voltage_time_sel
2797             || !rdev->desc->n_voltages)
2798                 return -EINVAL;
2799
2800         for (i = 0; i < rdev->desc->n_voltages; i++) {
2801                 /* We only look for exact voltage matches here */
2802                 voltage = regulator_list_voltage(regulator, i);
2803                 if (voltage < 0)
2804                         return -EINVAL;
2805                 if (voltage == 0)
2806                         continue;
2807                 if (voltage == old_uV)
2808                         old_sel = i;
2809                 if (voltage == new_uV)
2810                         new_sel = i;
2811         }
2812
2813         if (old_sel < 0 || new_sel < 0)
2814                 return -EINVAL;
2815
2816         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2817 }
2818 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2819
2820 /**
2821  * regulator_set_voltage_time_sel - get raise/fall time
2822  * @rdev: regulator source device
2823  * @old_selector: selector for starting voltage
2824  * @new_selector: selector for target voltage
2825  *
2826  * Provided with the starting and target voltage selectors, this function
2827  * returns time in microseconds required to rise or fall to this new voltage
2828  *
2829  * Drivers providing ramp_delay in regulation_constraints can use this as their
2830  * set_voltage_time_sel() operation.
2831  */
2832 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2833                                    unsigned int old_selector,
2834                                    unsigned int new_selector)
2835 {
2836         unsigned int ramp_delay = 0;
2837         int old_volt, new_volt;
2838
2839         if (rdev->constraints->ramp_delay)
2840                 ramp_delay = rdev->constraints->ramp_delay;
2841         else if (rdev->desc->ramp_delay)
2842                 ramp_delay = rdev->desc->ramp_delay;
2843
2844         if (ramp_delay == 0) {
2845                 rdev_warn(rdev, "ramp_delay not set\n");
2846                 return 0;
2847         }
2848
2849         /* sanity check */
2850         if (!rdev->desc->ops->list_voltage)
2851                 return -EINVAL;
2852
2853         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2854         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2855
2856         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2857 }
2858 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2859
2860 /**
2861  * regulator_sync_voltage - re-apply last regulator output voltage
2862  * @regulator: regulator source
2863  *
2864  * Re-apply the last configured voltage.  This is intended to be used
2865  * where some external control source the consumer is cooperating with
2866  * has caused the configured voltage to change.
2867  */
2868 int regulator_sync_voltage(struct regulator *regulator)
2869 {
2870         struct regulator_dev *rdev = regulator->rdev;
2871         int ret, min_uV, max_uV;
2872
2873         mutex_lock(&rdev->mutex);
2874
2875         if (!rdev->desc->ops->set_voltage &&
2876             !rdev->desc->ops->set_voltage_sel) {
2877                 ret = -EINVAL;
2878                 goto out;
2879         }
2880
2881         /* This is only going to work if we've had a voltage configured. */
2882         if (!regulator->min_uV && !regulator->max_uV) {
2883                 ret = -EINVAL;
2884                 goto out;
2885         }
2886
2887         min_uV = regulator->min_uV;
2888         max_uV = regulator->max_uV;
2889
2890         /* This should be a paranoia check... */
2891         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2892         if (ret < 0)
2893                 goto out;
2894
2895         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2896         if (ret < 0)
2897                 goto out;
2898
2899         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2900
2901 out:
2902         mutex_unlock(&rdev->mutex);
2903         return ret;
2904 }
2905 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2906
2907 static int _regulator_get_voltage(struct regulator_dev *rdev)
2908 {
2909         int sel, ret;
2910
2911         if (rdev->desc->ops->get_voltage_sel) {
2912                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2913                 if (sel < 0)
2914                         return sel;
2915                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2916         } else if (rdev->desc->ops->get_voltage) {
2917                 ret = rdev->desc->ops->get_voltage(rdev);
2918         } else if (rdev->desc->ops->list_voltage) {
2919                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2920         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2921                 ret = rdev->desc->fixed_uV;
2922         } else if (rdev->supply) {
2923                 ret = regulator_get_voltage(rdev->supply);
2924         } else {
2925                 return -EINVAL;
2926         }
2927
2928         if (ret < 0)
2929                 return ret;
2930         return ret - rdev->constraints->uV_offset;
2931 }
2932
2933 /**
2934  * regulator_get_voltage - get regulator output voltage
2935  * @regulator: regulator source
2936  *
2937  * This returns the current regulator voltage in uV.
2938  *
2939  * NOTE: If the regulator is disabled it will return the voltage value. This
2940  * function should not be used to determine regulator state.
2941  */
2942 int regulator_get_voltage(struct regulator *regulator)
2943 {
2944         int ret;
2945
2946         mutex_lock(&regulator->rdev->mutex);
2947
2948         ret = _regulator_get_voltage(regulator->rdev);
2949
2950         mutex_unlock(&regulator->rdev->mutex);
2951
2952         return ret;
2953 }
2954 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2955
2956 /**
2957  * regulator_set_current_limit - set regulator output current limit
2958  * @regulator: regulator source
2959  * @min_uA: Minimum supported current in uA
2960  * @max_uA: Maximum supported current in uA
2961  *
2962  * Sets current sink to the desired output current. This can be set during
2963  * any regulator state. IOW, regulator can be disabled or enabled.
2964  *
2965  * If the regulator is enabled then the current will change to the new value
2966  * immediately otherwise if the regulator is disabled the regulator will
2967  * output at the new current when enabled.
2968  *
2969  * NOTE: Regulator system constraints must be set for this regulator before
2970  * calling this function otherwise this call will fail.
2971  */
2972 int regulator_set_current_limit(struct regulator *regulator,
2973                                int min_uA, int max_uA)
2974 {
2975         struct regulator_dev *rdev = regulator->rdev;
2976         int ret;
2977
2978         mutex_lock(&rdev->mutex);
2979
2980         /* sanity check */
2981         if (!rdev->desc->ops->set_current_limit) {
2982                 ret = -EINVAL;
2983                 goto out;
2984         }
2985
2986         /* constraints check */
2987         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2988         if (ret < 0)
2989                 goto out;
2990
2991         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2992 out:
2993         mutex_unlock(&rdev->mutex);
2994         return ret;
2995 }
2996 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2997
2998 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2999 {
3000         int ret;
3001
3002         mutex_lock(&rdev->mutex);
3003
3004         /* sanity check */
3005         if (!rdev->desc->ops->get_current_limit) {
3006                 ret = -EINVAL;
3007                 goto out;
3008         }
3009
3010         ret = rdev->desc->ops->get_current_limit(rdev);
3011 out:
3012         mutex_unlock(&rdev->mutex);
3013         return ret;
3014 }
3015
3016 /**
3017  * regulator_get_current_limit - get regulator output current
3018  * @regulator: regulator source
3019  *
3020  * This returns the current supplied by the specified current sink in uA.
3021  *
3022  * NOTE: If the regulator is disabled it will return the current value. This
3023  * function should not be used to determine regulator state.
3024  */
3025 int regulator_get_current_limit(struct regulator *regulator)
3026 {
3027         return _regulator_get_current_limit(regulator->rdev);
3028 }
3029 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3030
3031 /**
3032  * regulator_set_mode - set regulator operating mode
3033  * @regulator: regulator source
3034  * @mode: operating mode - one of the REGULATOR_MODE constants
3035  *
3036  * Set regulator operating mode to increase regulator efficiency or improve
3037  * regulation performance.
3038  *
3039  * NOTE: Regulator system constraints must be set for this regulator before
3040  * calling this function otherwise this call will fail.
3041  */
3042 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3043 {
3044         struct regulator_dev *rdev = regulator->rdev;
3045         int ret;
3046         int regulator_curr_mode;
3047
3048         mutex_lock(&rdev->mutex);
3049
3050         /* sanity check */
3051         if (!rdev->desc->ops->set_mode) {
3052                 ret = -EINVAL;
3053                 goto out;
3054         }
3055
3056         /* return if the same mode is requested */
3057         if (rdev->desc->ops->get_mode) {
3058                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3059                 if (regulator_curr_mode == mode) {
3060                         ret = 0;
3061                         goto out;
3062                 }
3063         }
3064
3065         /* constraints check */
3066         ret = regulator_mode_constrain(rdev, &mode);
3067         if (ret < 0)
3068                 goto out;
3069
3070         ret = rdev->desc->ops->set_mode(rdev, mode);
3071 out:
3072         mutex_unlock(&rdev->mutex);
3073         return ret;
3074 }
3075 EXPORT_SYMBOL_GPL(regulator_set_mode);
3076
3077 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3078 {
3079         int ret;
3080
3081         mutex_lock(&rdev->mutex);
3082
3083         /* sanity check */
3084         if (!rdev->desc->ops->get_mode) {
3085                 ret = -EINVAL;
3086                 goto out;
3087         }
3088
3089         ret = rdev->desc->ops->get_mode(rdev);
3090 out:
3091         mutex_unlock(&rdev->mutex);
3092         return ret;
3093 }
3094
3095 /**
3096  * regulator_get_mode - get regulator operating mode
3097  * @regulator: regulator source
3098  *
3099  * Get the current regulator operating mode.
3100  */
3101 unsigned int regulator_get_mode(struct regulator *regulator)
3102 {
3103         return _regulator_get_mode(regulator->rdev);
3104 }
3105 EXPORT_SYMBOL_GPL(regulator_get_mode);
3106
3107 /**
3108  * regulator_set_load - set regulator load
3109  * @regulator: regulator source
3110  * @uA_load: load current
3111  *
3112  * Notifies the regulator core of a new device load. This is then used by
3113  * DRMS (if enabled by constraints) to set the most efficient regulator
3114  * operating mode for the new regulator loading.
3115  *
3116  * Consumer devices notify their supply regulator of the maximum power
3117  * they will require (can be taken from device datasheet in the power
3118  * consumption tables) when they change operational status and hence power
3119  * state. Examples of operational state changes that can affect power
3120  * consumption are :-
3121  *
3122  *    o Device is opened / closed.
3123  *    o Device I/O is about to begin or has just finished.
3124  *    o Device is idling in between work.
3125  *
3126  * This information is also exported via sysfs to userspace.
3127  *
3128  * DRMS will sum the total requested load on the regulator and change
3129  * to the most efficient operating mode if platform constraints allow.
3130  *
3131  * On error a negative errno is returned.
3132  */
3133 int regulator_set_load(struct regulator *regulator, int uA_load)
3134 {
3135         struct regulator_dev *rdev = regulator->rdev;
3136         int ret;
3137
3138         mutex_lock(&rdev->mutex);
3139         regulator->uA_load = uA_load;
3140         ret = drms_uA_update(rdev);
3141         mutex_unlock(&rdev->mutex);
3142
3143         return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(regulator_set_load);
3146
3147 /**
3148  * regulator_allow_bypass - allow the regulator to go into bypass mode
3149  *
3150  * @regulator: Regulator to configure
3151  * @enable: enable or disable bypass mode
3152  *
3153  * Allow the regulator to go into bypass mode if all other consumers
3154  * for the regulator also enable bypass mode and the machine
3155  * constraints allow this.  Bypass mode means that the regulator is
3156  * simply passing the input directly to the output with no regulation.
3157  */
3158 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3159 {
3160         struct regulator_dev *rdev = regulator->rdev;
3161         int ret = 0;
3162
3163         if (!rdev->desc->ops->set_bypass)
3164                 return 0;
3165
3166         if (rdev->constraints &&
3167             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3168                 return 0;
3169
3170         mutex_lock(&rdev->mutex);
3171
3172         if (enable && !regulator->bypass) {
3173                 rdev->bypass_count++;
3174
3175                 if (rdev->bypass_count == rdev->open_count) {
3176                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3177                         if (ret != 0)
3178                                 rdev->bypass_count--;
3179                 }
3180
3181         } else if (!enable && regulator->bypass) {
3182                 rdev->bypass_count--;
3183
3184                 if (rdev->bypass_count != rdev->open_count) {
3185                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3186                         if (ret != 0)
3187                                 rdev->bypass_count++;
3188                 }
3189         }
3190
3191         if (ret == 0)
3192                 regulator->bypass = enable;
3193
3194         mutex_unlock(&rdev->mutex);
3195
3196         return ret;
3197 }
3198 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3199
3200 /**
3201  * regulator_register_notifier - register regulator event notifier
3202  * @regulator: regulator source
3203  * @nb: notifier block
3204  *
3205  * Register notifier block to receive regulator events.
3206  */
3207 int regulator_register_notifier(struct regulator *regulator,
3208                               struct notifier_block *nb)
3209 {
3210         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3211                                                 nb);
3212 }
3213 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3214
3215 /**
3216  * regulator_unregister_notifier - unregister regulator event notifier
3217  * @regulator: regulator source
3218  * @nb: notifier block
3219  *
3220  * Unregister regulator event notifier block.
3221  */
3222 int regulator_unregister_notifier(struct regulator *regulator,
3223                                 struct notifier_block *nb)
3224 {
3225         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3226                                                   nb);
3227 }
3228 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3229
3230 /* notify regulator consumers and downstream regulator consumers.
3231  * Note mutex must be held by caller.
3232  */
3233 static int _notifier_call_chain(struct regulator_dev *rdev,
3234                                   unsigned long event, void *data)
3235 {
3236         /* call rdev chain first */
3237         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3238 }
3239
3240 /**
3241  * regulator_bulk_get - get multiple regulator consumers
3242  *
3243  * @dev:           Device to supply
3244  * @num_consumers: Number of consumers to register
3245  * @consumers:     Configuration of consumers; clients are stored here.
3246  *
3247  * @return 0 on success, an errno on failure.
3248  *
3249  * This helper function allows drivers to get several regulator
3250  * consumers in one operation.  If any of the regulators cannot be
3251  * acquired then any regulators that were allocated will be freed
3252  * before returning to the caller.
3253  */
3254 int regulator_bulk_get(struct device *dev, int num_consumers,
3255                        struct regulator_bulk_data *consumers)
3256 {
3257         int i;
3258         int ret;
3259
3260         for (i = 0; i < num_consumers; i++)
3261                 consumers[i].consumer = NULL;
3262
3263         for (i = 0; i < num_consumers; i++) {
3264                 consumers[i].consumer = regulator_get(dev,
3265                                                       consumers[i].supply);
3266                 if (IS_ERR(consumers[i].consumer)) {
3267                         ret = PTR_ERR(consumers[i].consumer);
3268                         dev_err(dev, "Failed to get supply '%s': %d\n",
3269                                 consumers[i].supply, ret);
3270                         consumers[i].consumer = NULL;
3271                         goto err;
3272                 }
3273         }
3274
3275         return 0;
3276
3277 err:
3278         while (--i >= 0)
3279                 regulator_put(consumers[i].consumer);
3280
3281         return ret;
3282 }
3283 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3284
3285 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3286 {
3287         struct regulator_bulk_data *bulk = data;
3288
3289         bulk->ret = regulator_enable(bulk->consumer);
3290 }
3291
3292 /**
3293  * regulator_bulk_enable - enable multiple regulator consumers
3294  *
3295  * @num_consumers: Number of consumers
3296  * @consumers:     Consumer data; clients are stored here.
3297  * @return         0 on success, an errno on failure
3298  *
3299  * This convenience API allows consumers to enable multiple regulator
3300  * clients in a single API call.  If any consumers cannot be enabled
3301  * then any others that were enabled will be disabled again prior to
3302  * return.
3303  */
3304 int regulator_bulk_enable(int num_consumers,
3305                           struct regulator_bulk_data *consumers)
3306 {
3307         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3308         int i;
3309         int ret = 0;
3310
3311         for (i = 0; i < num_consumers; i++) {
3312                 if (consumers[i].consumer->always_on)
3313                         consumers[i].ret = 0;
3314                 else
3315                         async_schedule_domain(regulator_bulk_enable_async,
3316                                               &consumers[i], &async_domain);
3317         }
3318
3319         async_synchronize_full_domain(&async_domain);
3320
3321         /* If any consumer failed we need to unwind any that succeeded */
3322         for (i = 0; i < num_consumers; i++) {
3323                 if (consumers[i].ret != 0) {
3324                         ret = consumers[i].ret;
3325                         goto err;
3326                 }
3327         }
3328
3329         return 0;
3330
3331 err:
3332         for (i = 0; i < num_consumers; i++) {
3333                 if (consumers[i].ret < 0)
3334                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3335                                consumers[i].ret);
3336                 else
3337                         regulator_disable(consumers[i].consumer);
3338         }
3339
3340         return ret;
3341 }
3342 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3343
3344 /**
3345  * regulator_bulk_disable - disable multiple regulator consumers
3346  *
3347  * @num_consumers: Number of consumers
3348  * @consumers:     Consumer data; clients are stored here.
3349  * @return         0 on success, an errno on failure
3350  *
3351  * This convenience API allows consumers to disable multiple regulator
3352  * clients in a single API call.  If any consumers cannot be disabled
3353  * then any others that were disabled will be enabled again prior to
3354  * return.
3355  */
3356 int regulator_bulk_disable(int num_consumers,
3357                            struct regulator_bulk_data *consumers)
3358 {
3359         int i;
3360         int ret, r;
3361
3362         for (i = num_consumers - 1; i >= 0; --i) {
3363                 ret = regulator_disable(consumers[i].consumer);
3364                 if (ret != 0)
3365                         goto err;
3366         }
3367
3368         return 0;
3369
3370 err:
3371         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3372         for (++i; i < num_consumers; ++i) {
3373                 r = regulator_enable(consumers[i].consumer);
3374                 if (r != 0)
3375                         pr_err("Failed to reename %s: %d\n",
3376                                consumers[i].supply, r);
3377         }
3378
3379         return ret;
3380 }
3381 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3382
3383 /**
3384  * regulator_bulk_force_disable - force disable multiple regulator consumers
3385  *
3386  * @num_consumers: Number of consumers
3387  * @consumers:     Consumer data; clients are stored here.
3388  * @return         0 on success, an errno on failure
3389  *
3390  * This convenience API allows consumers to forcibly disable multiple regulator
3391  * clients in a single API call.
3392  * NOTE: This should be used for situations when device damage will
3393  * likely occur if the regulators are not disabled (e.g. over temp).
3394  * Although regulator_force_disable function call for some consumers can
3395  * return error numbers, the function is called for all consumers.
3396  */
3397 int regulator_bulk_force_disable(int num_consumers,
3398                            struct regulator_bulk_data *consumers)
3399 {
3400         int i;
3401         int ret;
3402
3403         for (i = 0; i < num_consumers; i++)
3404                 consumers[i].ret =
3405                             regulator_force_disable(consumers[i].consumer);
3406
3407         for (i = 0; i < num_consumers; i++) {
3408                 if (consumers[i].ret != 0) {
3409                         ret = consumers[i].ret;
3410                         goto out;
3411                 }
3412         }
3413
3414         return 0;
3415 out:
3416         return ret;
3417 }
3418 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3419
3420 /**
3421  * regulator_bulk_free - free multiple regulator consumers
3422  *
3423  * @num_consumers: Number of consumers
3424  * @consumers:     Consumer data; clients are stored here.
3425  *
3426  * This convenience API allows consumers to free multiple regulator
3427  * clients in a single API call.
3428  */
3429 void regulator_bulk_free(int num_consumers,
3430                          struct regulator_bulk_data *consumers)
3431 {
3432         int i;
3433
3434         for (i = 0; i < num_consumers; i++) {
3435                 regulator_put(consumers[i].consumer);
3436                 consumers[i].consumer = NULL;
3437         }
3438 }
3439 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3440
3441 /**
3442  * regulator_notifier_call_chain - call regulator event notifier
3443  * @rdev: regulator source
3444  * @event: notifier block
3445  * @data: callback-specific data.
3446  *
3447  * Called by regulator drivers to notify clients a regulator event has
3448  * occurred. We also notify regulator clients downstream.
3449  * Note lock must be held by caller.
3450  */
3451 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3452                                   unsigned long event, void *data)
3453 {
3454         lockdep_assert_held_once(&rdev->mutex);
3455
3456         _notifier_call_chain(rdev, event, data);
3457         return NOTIFY_DONE;
3458
3459 }
3460 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3461
3462 /**
3463  * regulator_mode_to_status - convert a regulator mode into a status
3464  *
3465  * @mode: Mode to convert
3466  *
3467  * Convert a regulator mode into a status.
3468  */
3469 int regulator_mode_to_status(unsigned int mode)
3470 {
3471         switch (mode) {
3472         case REGULATOR_MODE_FAST:
3473                 return REGULATOR_STATUS_FAST;
3474         case REGULATOR_MODE_NORMAL:
3475                 return REGULATOR_STATUS_NORMAL;
3476         case REGULATOR_MODE_IDLE:
3477                 return REGULATOR_STATUS_IDLE;
3478         case REGULATOR_MODE_STANDBY:
3479                 return REGULATOR_STATUS_STANDBY;
3480         default:
3481                 return REGULATOR_STATUS_UNDEFINED;
3482         }
3483 }
3484 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3485
3486 static struct attribute *regulator_dev_attrs[] = {
3487         &dev_attr_name.attr,
3488         &dev_attr_num_users.attr,
3489         &dev_attr_type.attr,
3490         &dev_attr_microvolts.attr,
3491         &dev_attr_microamps.attr,
3492         &dev_attr_opmode.attr,
3493         &dev_attr_state.attr,
3494         &dev_attr_status.attr,
3495         &dev_attr_bypass.attr,
3496         &dev_attr_requested_microamps.attr,
3497         &dev_attr_min_microvolts.attr,
3498         &dev_attr_max_microvolts.attr,
3499         &dev_attr_min_microamps.attr,
3500         &dev_attr_max_microamps.attr,
3501         &dev_attr_suspend_standby_state.attr,
3502         &dev_attr_suspend_mem_state.attr,
3503         &dev_attr_suspend_disk_state.attr,
3504         &dev_attr_suspend_standby_microvolts.attr,
3505         &dev_attr_suspend_mem_microvolts.attr,
3506         &dev_attr_suspend_disk_microvolts.attr,
3507         &dev_attr_suspend_standby_mode.attr,
3508         &dev_attr_suspend_mem_mode.attr,
3509         &dev_attr_suspend_disk_mode.attr,
3510         NULL
3511 };
3512
3513 /*
3514  * To avoid cluttering sysfs (and memory) with useless state, only
3515  * create attributes that can be meaningfully displayed.
3516  */
3517 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3518                                          struct attribute *attr, int idx)
3519 {
3520         struct device *dev = kobj_to_dev(kobj);
3521         struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3522         const struct regulator_ops *ops = rdev->desc->ops;
3523         umode_t mode = attr->mode;
3524
3525         /* these three are always present */
3526         if (attr == &dev_attr_name.attr ||
3527             attr == &dev_attr_num_users.attr ||
3528             attr == &dev_attr_type.attr)
3529                 return mode;
3530
3531         /* some attributes need specific methods to be displayed */
3532         if (attr == &dev_attr_microvolts.attr) {
3533                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3534                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3535                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3536                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3537                         return mode;
3538                 return 0;
3539         }
3540
3541         if (attr == &dev_attr_microamps.attr)
3542                 return ops->get_current_limit ? mode : 0;
3543
3544         if (attr == &dev_attr_opmode.attr)
3545                 return ops->get_mode ? mode : 0;
3546
3547         if (attr == &dev_attr_state.attr)
3548                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3549
3550         if (attr == &dev_attr_status.attr)
3551                 return ops->get_status ? mode : 0;
3552
3553         if (attr == &dev_attr_bypass.attr)
3554                 return ops->get_bypass ? mode : 0;
3555
3556         /* some attributes are type-specific */
3557         if (attr == &dev_attr_requested_microamps.attr)
3558                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3559
3560         /* constraints need specific supporting methods */
3561         if (attr == &dev_attr_min_microvolts.attr ||
3562             attr == &dev_attr_max_microvolts.attr)
3563                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3564
3565         if (attr == &dev_attr_min_microamps.attr ||
3566             attr == &dev_attr_max_microamps.attr)
3567                 return ops->set_current_limit ? mode : 0;
3568
3569         if (attr == &dev_attr_suspend_standby_state.attr ||
3570             attr == &dev_attr_suspend_mem_state.attr ||
3571             attr == &dev_attr_suspend_disk_state.attr)
3572                 return mode;
3573
3574         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3575             attr == &dev_attr_suspend_mem_microvolts.attr ||
3576             attr == &dev_attr_suspend_disk_microvolts.attr)
3577                 return ops->set_suspend_voltage ? mode : 0;
3578
3579         if (attr == &dev_attr_suspend_standby_mode.attr ||
3580             attr == &dev_attr_suspend_mem_mode.attr ||
3581             attr == &dev_attr_suspend_disk_mode.attr)
3582                 return ops->set_suspend_mode ? mode : 0;
3583
3584         return mode;
3585 }
3586
3587 static const struct attribute_group regulator_dev_group = {
3588         .attrs = regulator_dev_attrs,
3589         .is_visible = regulator_attr_is_visible,
3590 };
3591
3592 static const struct attribute_group *regulator_dev_groups[] = {
3593         &regulator_dev_group,
3594         NULL
3595 };
3596
3597 static void regulator_dev_release(struct device *dev)
3598 {
3599         struct regulator_dev *rdev = dev_get_drvdata(dev);
3600         kfree(rdev);
3601 }
3602
3603 static struct class regulator_class = {
3604         .name = "regulator",
3605         .dev_release = regulator_dev_release,
3606         .dev_groups = regulator_dev_groups,
3607 };
3608
3609 static void rdev_init_debugfs(struct regulator_dev *rdev)
3610 {
3611         struct device *parent = rdev->dev.parent;
3612         const char *rname = rdev_get_name(rdev);
3613         char name[NAME_MAX];
3614
3615         /* Avoid duplicate debugfs directory names */
3616         if (parent && rname == rdev->desc->name) {
3617                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3618                          rname);
3619                 rname = name;
3620         }
3621
3622         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3623         if (!rdev->debugfs) {
3624                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3625                 return;
3626         }
3627
3628         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3629                            &rdev->use_count);
3630         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3631                            &rdev->open_count);
3632         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3633                            &rdev->bypass_count);
3634 }
3635
3636 /**
3637  * regulator_register - register regulator
3638  * @regulator_desc: regulator to register
3639  * @cfg: runtime configuration for regulator
3640  *
3641  * Called by regulator drivers to register a regulator.
3642  * Returns a valid pointer to struct regulator_dev on success
3643  * or an ERR_PTR() on error.
3644  */
3645 struct regulator_dev *
3646 regulator_register(const struct regulator_desc *regulator_desc,
3647                    const struct regulator_config *cfg)
3648 {
3649         const struct regulation_constraints *constraints = NULL;
3650         const struct regulator_init_data *init_data;
3651         struct regulator_config *config = NULL;
3652         static atomic_t regulator_no = ATOMIC_INIT(-1);
3653         struct regulator_dev *rdev;
3654         struct device *dev;
3655         int ret, i;
3656
3657         if (regulator_desc == NULL || cfg == NULL)
3658                 return ERR_PTR(-EINVAL);
3659
3660         dev = cfg->dev;
3661         WARN_ON(!dev);
3662
3663         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3664                 return ERR_PTR(-EINVAL);
3665
3666         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3667             regulator_desc->type != REGULATOR_CURRENT)
3668                 return ERR_PTR(-EINVAL);
3669
3670         /* Only one of each should be implemented */
3671         WARN_ON(regulator_desc->ops->get_voltage &&
3672                 regulator_desc->ops->get_voltage_sel);
3673         WARN_ON(regulator_desc->ops->set_voltage &&
3674                 regulator_desc->ops->set_voltage_sel);
3675
3676         /* If we're using selectors we must implement list_voltage. */
3677         if (regulator_desc->ops->get_voltage_sel &&
3678             !regulator_desc->ops->list_voltage) {
3679                 return ERR_PTR(-EINVAL);
3680         }
3681         if (regulator_desc->ops->set_voltage_sel &&
3682             !regulator_desc->ops->list_voltage) {
3683                 return ERR_PTR(-EINVAL);
3684         }
3685
3686         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3687         if (rdev == NULL)
3688                 return ERR_PTR(-ENOMEM);
3689
3690         /*
3691          * Duplicate the config so the driver could override it after
3692          * parsing init data.
3693          */
3694         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3695         if (config == NULL) {
3696                 kfree(rdev);
3697                 return ERR_PTR(-ENOMEM);
3698         }
3699
3700         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3701                                                &rdev->dev.of_node);
3702         if (!init_data) {
3703                 init_data = config->init_data;
3704                 rdev->dev.of_node = of_node_get(config->of_node);
3705         }
3706
3707         mutex_lock(&regulator_list_mutex);
3708
3709         mutex_init(&rdev->mutex);
3710         rdev->reg_data = config->driver_data;
3711         rdev->owner = regulator_desc->owner;
3712         rdev->desc = regulator_desc;
3713         if (config->regmap)
3714                 rdev->regmap = config->regmap;
3715         else if (dev_get_regmap(dev, NULL))
3716                 rdev->regmap = dev_get_regmap(dev, NULL);
3717         else if (dev->parent)
3718                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3719         INIT_LIST_HEAD(&rdev->consumer_list);
3720         INIT_LIST_HEAD(&rdev->list);
3721         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3722         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3723
3724         /* preform any regulator specific init */
3725         if (init_data && init_data->regulator_init) {
3726                 ret = init_data->regulator_init(rdev->reg_data);
3727                 if (ret < 0)
3728                         goto clean;
3729         }
3730
3731         /* register with sysfs */
3732         rdev->dev.class = &regulator_class;
3733         rdev->dev.parent = dev;
3734         dev_set_name(&rdev->dev, "regulator.%lu",
3735                     (unsigned long) atomic_inc_return(&regulator_no));
3736         ret = device_register(&rdev->dev);
3737         if (ret != 0) {
3738                 put_device(&rdev->dev);
3739                 goto clean;
3740         }
3741
3742         dev_set_drvdata(&rdev->dev, rdev);
3743
3744         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3745             gpio_is_valid(config->ena_gpio)) {
3746                 ret = regulator_ena_gpio_request(rdev, config);
3747                 if (ret != 0) {
3748                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3749                                  config->ena_gpio, ret);
3750                         goto wash;
3751                 }
3752         }
3753
3754         /* set regulator constraints */
3755         if (init_data)
3756                 constraints = &init_data->constraints;
3757
3758         ret = set_machine_constraints(rdev, constraints);
3759         if (ret < 0)
3760                 goto scrub;
3761
3762         if (init_data && init_data->supply_regulator)
3763                 rdev->supply_name = init_data->supply_regulator;
3764         else if (regulator_desc->supply_name)
3765                 rdev->supply_name = regulator_desc->supply_name;
3766
3767         /* add consumers devices */
3768         if (init_data) {
3769                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3770                         ret = set_consumer_device_supply(rdev,
3771                                 init_data->consumer_supplies[i].dev_name,
3772                                 init_data->consumer_supplies[i].supply);
3773                         if (ret < 0) {
3774                                 dev_err(dev, "Failed to set supply %s\n",
3775                                         init_data->consumer_supplies[i].supply);
3776                                 goto unset_supplies;
3777                         }
3778                 }
3779         }
3780
3781         list_add(&rdev->list, &regulator_list);
3782
3783         rdev_init_debugfs(rdev);
3784 out:
3785         mutex_unlock(&regulator_list_mutex);
3786         kfree(config);
3787         return rdev;
3788
3789 unset_supplies:
3790         unset_regulator_supplies(rdev);
3791
3792 scrub:
3793         regulator_ena_gpio_free(rdev);
3794         kfree(rdev->constraints);
3795 wash:
3796         device_unregister(&rdev->dev);
3797         /* device core frees rdev */
3798         rdev = ERR_PTR(ret);
3799         goto out;
3800
3801 clean:
3802         kfree(rdev);
3803         rdev = ERR_PTR(ret);
3804         goto out;
3805 }
3806 EXPORT_SYMBOL_GPL(regulator_register);
3807
3808 /**
3809  * regulator_unregister - unregister regulator
3810  * @rdev: regulator to unregister
3811  *
3812  * Called by regulator drivers to unregister a regulator.
3813  */
3814 void regulator_unregister(struct regulator_dev *rdev)
3815 {
3816         if (rdev == NULL)
3817                 return;
3818
3819         if (rdev->supply) {
3820                 while (rdev->use_count--)
3821                         regulator_disable(rdev->supply);
3822                 regulator_put(rdev->supply);
3823         }
3824         mutex_lock(&regulator_list_mutex);
3825         debugfs_remove_recursive(rdev->debugfs);
3826         flush_work(&rdev->disable_work.work);
3827         WARN_ON(rdev->open_count);
3828         unset_regulator_supplies(rdev);
3829         list_del(&rdev->list);
3830         mutex_unlock(&regulator_list_mutex);
3831         kfree(rdev->constraints);
3832         regulator_ena_gpio_free(rdev);
3833         of_node_put(rdev->dev.of_node);
3834         device_unregister(&rdev->dev);
3835 }
3836 EXPORT_SYMBOL_GPL(regulator_unregister);
3837
3838 /**
3839  * regulator_suspend_prepare - prepare regulators for system wide suspend
3840  * @state: system suspend state
3841  *
3842  * Configure each regulator with it's suspend operating parameters for state.
3843  * This will usually be called by machine suspend code prior to supending.
3844  */
3845 int regulator_suspend_prepare(suspend_state_t state)
3846 {
3847         struct regulator_dev *rdev;
3848         int ret = 0;
3849
3850         /* ON is handled by regulator active state */
3851         if (state == PM_SUSPEND_ON)
3852                 return -EINVAL;
3853
3854         mutex_lock(&regulator_list_mutex);
3855         list_for_each_entry(rdev, &regulator_list, list) {
3856
3857                 mutex_lock(&rdev->mutex);
3858                 ret = suspend_prepare(rdev, state);
3859                 mutex_unlock(&rdev->mutex);
3860
3861                 if (ret < 0) {
3862                         rdev_err(rdev, "failed to prepare\n");
3863                         goto out;
3864                 }
3865         }
3866 out:
3867         mutex_unlock(&regulator_list_mutex);
3868         return ret;
3869 }
3870 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3871
3872 /**
3873  * regulator_suspend_finish - resume regulators from system wide suspend
3874  *
3875  * Turn on regulators that might be turned off by regulator_suspend_prepare
3876  * and that should be turned on according to the regulators properties.
3877  */
3878 int regulator_suspend_finish(void)
3879 {
3880         struct regulator_dev *rdev;
3881         int ret = 0, error;
3882
3883         mutex_lock(&regulator_list_mutex);
3884         list_for_each_entry(rdev, &regulator_list, list) {
3885                 mutex_lock(&rdev->mutex);
3886                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3887                         if (!_regulator_is_enabled(rdev)) {
3888                                 error = _regulator_do_enable(rdev);
3889                                 if (error)
3890                                         ret = error;
3891                         }
3892                 } else {
3893                         if (!have_full_constraints())
3894                                 goto unlock;
3895                         if (!_regulator_is_enabled(rdev))
3896                                 goto unlock;
3897
3898                         error = _regulator_do_disable(rdev);
3899                         if (error)
3900                                 ret = error;
3901                 }
3902 unlock:
3903                 mutex_unlock(&rdev->mutex);
3904         }
3905         mutex_unlock(&regulator_list_mutex);
3906         return ret;
3907 }
3908 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3909
3910 /**
3911  * regulator_has_full_constraints - the system has fully specified constraints
3912  *
3913  * Calling this function will cause the regulator API to disable all
3914  * regulators which have a zero use count and don't have an always_on
3915  * constraint in a late_initcall.
3916  *
3917  * The intention is that this will become the default behaviour in a
3918  * future kernel release so users are encouraged to use this facility
3919  * now.
3920  */
3921 void regulator_has_full_constraints(void)
3922 {
3923         has_full_constraints = 1;
3924 }
3925 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3926
3927 /**
3928  * rdev_get_drvdata - get rdev regulator driver data
3929  * @rdev: regulator
3930  *
3931  * Get rdev regulator driver private data. This call can be used in the
3932  * regulator driver context.
3933  */
3934 void *rdev_get_drvdata(struct regulator_dev *rdev)
3935 {
3936         return rdev->reg_data;
3937 }
3938 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3939
3940 /**
3941  * regulator_get_drvdata - get regulator driver data
3942  * @regulator: regulator
3943  *
3944  * Get regulator driver private data. This call can be used in the consumer
3945  * driver context when non API regulator specific functions need to be called.
3946  */
3947 void *regulator_get_drvdata(struct regulator *regulator)
3948 {
3949         return regulator->rdev->reg_data;
3950 }
3951 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3952
3953 /**
3954  * regulator_set_drvdata - set regulator driver data
3955  * @regulator: regulator
3956  * @data: data
3957  */
3958 void regulator_set_drvdata(struct regulator *regulator, void *data)
3959 {
3960         regulator->rdev->reg_data = data;
3961 }
3962 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3963
3964 /**
3965  * regulator_get_id - get regulator ID
3966  * @rdev: regulator
3967  */
3968 int rdev_get_id(struct regulator_dev *rdev)
3969 {
3970         return rdev->desc->id;
3971 }
3972 EXPORT_SYMBOL_GPL(rdev_get_id);
3973
3974 struct device *rdev_get_dev(struct regulator_dev *rdev)
3975 {
3976         return &rdev->dev;
3977 }
3978 EXPORT_SYMBOL_GPL(rdev_get_dev);
3979
3980 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3981 {
3982         return reg_init_data->driver_data;
3983 }
3984 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3985
3986 #ifdef CONFIG_DEBUG_FS
3987 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3988                                     size_t count, loff_t *ppos)
3989 {
3990         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3991         ssize_t len, ret = 0;
3992         struct regulator_map *map;
3993
3994         if (!buf)
3995                 return -ENOMEM;
3996
3997         list_for_each_entry(map, &regulator_map_list, list) {
3998                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3999                                "%s -> %s.%s\n",
4000                                rdev_get_name(map->regulator), map->dev_name,
4001                                map->supply);
4002                 if (len >= 0)
4003                         ret += len;
4004                 if (ret > PAGE_SIZE) {
4005                         ret = PAGE_SIZE;
4006                         break;
4007                 }
4008         }
4009
4010         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4011
4012         kfree(buf);
4013
4014         return ret;
4015 }
4016 #endif
4017
4018 static const struct file_operations supply_map_fops = {
4019 #ifdef CONFIG_DEBUG_FS
4020         .read = supply_map_read_file,
4021         .llseek = default_llseek,
4022 #endif
4023 };
4024
4025 #ifdef CONFIG_DEBUG_FS
4026 static void regulator_summary_show_subtree(struct seq_file *s,
4027                                            struct regulator_dev *rdev,
4028                                            int level)
4029 {
4030         struct list_head *list = s->private;
4031         struct regulator_dev *child;
4032         struct regulation_constraints *c;
4033         struct regulator *consumer;
4034
4035         if (!rdev)
4036                 return;
4037
4038         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4039                    level * 3 + 1, "",
4040                    30 - level * 3, rdev_get_name(rdev),
4041                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4042
4043         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4044         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4045
4046         c = rdev->constraints;
4047         if (c) {
4048                 switch (rdev->desc->type) {
4049                 case REGULATOR_VOLTAGE:
4050                         seq_printf(s, "%5dmV %5dmV ",
4051                                    c->min_uV / 1000, c->max_uV / 1000);
4052                         break;
4053                 case REGULATOR_CURRENT:
4054                         seq_printf(s, "%5dmA %5dmA ",
4055                                    c->min_uA / 1000, c->max_uA / 1000);
4056                         break;
4057                 }
4058         }
4059
4060         seq_puts(s, "\n");
4061
4062         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4063                 if (consumer->dev->class == &regulator_class)
4064                         continue;
4065
4066                 seq_printf(s, "%*s%-*s ",
4067                            (level + 1) * 3 + 1, "",
4068                            30 - (level + 1) * 3, dev_name(consumer->dev));
4069
4070                 switch (rdev->desc->type) {
4071                 case REGULATOR_VOLTAGE:
4072                         seq_printf(s, "%37dmV %5dmV",
4073                                    consumer->min_uV / 1000,
4074                                    consumer->max_uV / 1000);
4075                         break;
4076                 case REGULATOR_CURRENT:
4077                         break;
4078                 }
4079
4080                 seq_puts(s, "\n");
4081         }
4082
4083         list_for_each_entry(child, list, list) {
4084                 /* handle only non-root regulators supplied by current rdev */
4085                 if (!child->supply || child->supply->rdev != rdev)
4086                         continue;
4087
4088                 regulator_summary_show_subtree(s, child, level + 1);
4089         }
4090 }
4091
4092 static int regulator_summary_show(struct seq_file *s, void *data)
4093 {
4094         struct list_head *list = s->private;
4095         struct regulator_dev *rdev;
4096
4097         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4098         seq_puts(s, "-------------------------------------------------------------------------------\n");
4099
4100         mutex_lock(&regulator_list_mutex);
4101
4102         list_for_each_entry(rdev, list, list) {
4103                 if (rdev->supply)
4104                         continue;
4105
4106                 regulator_summary_show_subtree(s, rdev, 0);
4107         }
4108
4109         mutex_unlock(&regulator_list_mutex);
4110
4111         return 0;
4112 }
4113
4114 static int regulator_summary_open(struct inode *inode, struct file *file)
4115 {
4116         return single_open(file, regulator_summary_show, inode->i_private);
4117 }
4118 #endif
4119
4120 static const struct file_operations regulator_summary_fops = {
4121 #ifdef CONFIG_DEBUG_FS
4122         .open           = regulator_summary_open,
4123         .read           = seq_read,
4124         .llseek         = seq_lseek,
4125         .release        = single_release,
4126 #endif
4127 };
4128
4129 static int __init regulator_init(void)
4130 {
4131         int ret;
4132
4133         ret = class_register(&regulator_class);
4134
4135         debugfs_root = debugfs_create_dir("regulator", NULL);
4136         if (!debugfs_root)
4137                 pr_warn("regulator: Failed to create debugfs directory\n");
4138
4139         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4140                             &supply_map_fops);
4141
4142         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4143                             &regulator_list, &regulator_summary_fops);
4144
4145         regulator_dummy_init();
4146
4147         return ret;
4148 }
4149
4150 /* init early to allow our consumers to complete system booting */
4151 core_initcall(regulator_init);
4152
4153 static int __init regulator_init_complete(void)
4154 {
4155         struct regulator_dev *rdev;
4156         const struct regulator_ops *ops;
4157         struct regulation_constraints *c;
4158         int enabled, ret;
4159
4160         /*
4161          * Since DT doesn't provide an idiomatic mechanism for
4162          * enabling full constraints and since it's much more natural
4163          * with DT to provide them just assume that a DT enabled
4164          * system has full constraints.
4165          */
4166         if (of_have_populated_dt())
4167                 has_full_constraints = true;
4168
4169         mutex_lock(&regulator_list_mutex);
4170
4171         /* If we have a full configuration then disable any regulators
4172          * we have permission to change the status for and which are
4173          * not in use or always_on.  This is effectively the default
4174          * for DT and ACPI as they have full constraints.
4175          */
4176         list_for_each_entry(rdev, &regulator_list, list) {
4177                 ops = rdev->desc->ops;
4178                 c = rdev->constraints;
4179
4180                 if (c && c->always_on)
4181                         continue;
4182
4183                 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4184                         continue;
4185
4186                 mutex_lock(&rdev->mutex);
4187
4188                 if (rdev->use_count)
4189                         goto unlock;
4190
4191                 /* If we can't read the status assume it's on. */
4192                 if (ops->is_enabled)
4193                         enabled = ops->is_enabled(rdev);
4194                 else
4195                         enabled = 1;
4196
4197                 if (!enabled)
4198                         goto unlock;
4199
4200                 if (have_full_constraints()) {
4201                         /* We log since this may kill the system if it
4202                          * goes wrong. */
4203                         rdev_info(rdev, "disabling\n");
4204                         ret = _regulator_do_disable(rdev);
4205                         if (ret != 0)
4206                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4207                 } else {
4208                         /* The intention is that in future we will
4209                          * assume that full constraints are provided
4210                          * so warn even if we aren't going to do
4211                          * anything here.
4212                          */
4213                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4214                 }
4215
4216 unlock:
4217                 mutex_unlock(&rdev->mutex);
4218         }
4219
4220         mutex_unlock(&regulator_list_mutex);
4221
4222         return 0;
4223 }
4224 late_initcall_sync(regulator_init_complete);