]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - Documentation/ptp/testptp.c
next-20150925/battery
[karo-tx-linux.git] / Documentation / ptp / testptp.c
1 /*
2  * PTP 1588 clock support - User space test program
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #define _GNU_SOURCE
21 #define __SANE_USERSPACE_TYPES__        /* For PPC64, to get LL64 types */
22 #include <errno.h>
23 #include <fcntl.h>
24 #include <inttypes.h>
25 #include <math.h>
26 #include <signal.h>
27 #include <stdio.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/ioctl.h>
31 #include <sys/mman.h>
32 #include <sys/stat.h>
33 #include <sys/time.h>
34 #include <sys/timex.h>
35 #include <sys/types.h>
36 #include <time.h>
37 #include <unistd.h>
38
39 #include <linux/ptp_clock.h>
40
41 #define DEVICE "/dev/ptp0"
42
43 #ifndef ADJ_SETOFFSET
44 #define ADJ_SETOFFSET 0x0100
45 #endif
46
47 #ifndef CLOCK_INVALID
48 #define CLOCK_INVALID -1
49 #endif
50
51 /* clock_adjtime is not available in GLIBC < 2.14 */
52 #if !__GLIBC_PREREQ(2, 14)
53 #include <sys/syscall.h>
54 static int clock_adjtime(clockid_t id, struct timex *tx)
55 {
56         return syscall(__NR_clock_adjtime, id, tx);
57 }
58 #endif
59
60 static clockid_t get_clockid(int fd)
61 {
62 #define CLOCKFD 3
63 #define FD_TO_CLOCKID(fd)       ((~(clockid_t) (fd) << 3) | CLOCKFD)
64
65         return FD_TO_CLOCKID(fd);
66 }
67
68 static void handle_alarm(int s)
69 {
70         printf("received signal %d\n", s);
71 }
72
73 static int install_handler(int signum, void (*handler)(int))
74 {
75         struct sigaction action;
76         sigset_t mask;
77
78         /* Unblock the signal. */
79         sigemptyset(&mask);
80         sigaddset(&mask, signum);
81         sigprocmask(SIG_UNBLOCK, &mask, NULL);
82
83         /* Install the signal handler. */
84         action.sa_handler = handler;
85         action.sa_flags = 0;
86         sigemptyset(&action.sa_mask);
87         sigaction(signum, &action, NULL);
88
89         return 0;
90 }
91
92 static long ppb_to_scaled_ppm(int ppb)
93 {
94         /*
95          * The 'freq' field in the 'struct timex' is in parts per
96          * million, but with a 16 bit binary fractional field.
97          * Instead of calculating either one of
98          *
99          *    scaled_ppm = (ppb / 1000) << 16  [1]
100          *    scaled_ppm = (ppb << 16) / 1000  [2]
101          *
102          * we simply use double precision math, in order to avoid the
103          * truncation in [1] and the possible overflow in [2].
104          */
105         return (long) (ppb * 65.536);
106 }
107
108 static int64_t pctns(struct ptp_clock_time *t)
109 {
110         return t->sec * 1000000000LL + t->nsec;
111 }
112
113 static void usage(char *progname)
114 {
115         fprintf(stderr,
116                 "usage: %s [options]\n"
117                 " -a val     request a one-shot alarm after 'val' seconds\n"
118                 " -A val     request a periodic alarm every 'val' seconds\n"
119                 " -c         query the ptp clock's capabilities\n"
120                 " -d name    device to open\n"
121                 " -e val     read 'val' external time stamp events\n"
122                 " -f val     adjust the ptp clock frequency by 'val' ppb\n"
123                 " -g         get the ptp clock time\n"
124                 " -h         prints this message\n"
125                 " -i val     index for event/trigger\n"
126                 " -k val     measure the time offset between system and phc clock\n"
127                 "            for 'val' times (Maximum 25)\n"
128                 " -l         list the current pin configuration\n"
129                 " -L pin,val configure pin index 'pin' with function 'val'\n"
130                 "            the channel index is taken from the '-i' option\n"
131                 "            'val' specifies the auxiliary function:\n"
132                 "            0 - none\n"
133                 "            1 - external time stamp\n"
134                 "            2 - periodic output\n"
135                 " -p val     enable output with a period of 'val' nanoseconds\n"
136                 " -P val     enable or disable (val=1|0) the system clock PPS\n"
137                 " -s         set the ptp clock time from the system time\n"
138                 " -S         set the system time from the ptp clock time\n"
139                 " -t val     shift the ptp clock time by 'val' seconds\n"
140                 " -T val     set the ptp clock time to 'val' seconds\n",
141                 progname);
142 }
143
144 int main(int argc, char *argv[])
145 {
146         struct ptp_clock_caps caps;
147         struct ptp_extts_event event;
148         struct ptp_extts_request extts_request;
149         struct ptp_perout_request perout_request;
150         struct ptp_pin_desc desc;
151         struct timespec ts;
152         struct timex tx;
153
154         static timer_t timerid;
155         struct itimerspec timeout;
156         struct sigevent sigevent;
157
158         struct ptp_clock_time *pct;
159         struct ptp_sys_offset *sysoff;
160
161
162         char *progname;
163         int i, c, cnt, fd;
164
165         char *device = DEVICE;
166         clockid_t clkid;
167         int adjfreq = 0x7fffffff;
168         int adjtime = 0;
169         int capabilities = 0;
170         int extts = 0;
171         int gettime = 0;
172         int index = 0;
173         int list_pins = 0;
174         int oneshot = 0;
175         int pct_offset = 0;
176         int n_samples = 0;
177         int periodic = 0;
178         int perout = -1;
179         int pin_index = -1, pin_func;
180         int pps = -1;
181         int seconds = 0;
182         int settime = 0;
183
184         int64_t t1, t2, tp;
185         int64_t interval, offset;
186
187         progname = strrchr(argv[0], '/');
188         progname = progname ? 1+progname : argv[0];
189         while (EOF != (c = getopt(argc, argv, "a:A:cd:e:f:ghi:k:lL:p:P:sSt:T:v"))) {
190                 switch (c) {
191                 case 'a':
192                         oneshot = atoi(optarg);
193                         break;
194                 case 'A':
195                         periodic = atoi(optarg);
196                         break;
197                 case 'c':
198                         capabilities = 1;
199                         break;
200                 case 'd':
201                         device = optarg;
202                         break;
203                 case 'e':
204                         extts = atoi(optarg);
205                         break;
206                 case 'f':
207                         adjfreq = atoi(optarg);
208                         break;
209                 case 'g':
210                         gettime = 1;
211                         break;
212                 case 'i':
213                         index = atoi(optarg);
214                         break;
215                 case 'k':
216                         pct_offset = 1;
217                         n_samples = atoi(optarg);
218                         break;
219                 case 'l':
220                         list_pins = 1;
221                         break;
222                 case 'L':
223                         cnt = sscanf(optarg, "%d,%d", &pin_index, &pin_func);
224                         if (cnt != 2) {
225                                 usage(progname);
226                                 return -1;
227                         }
228                         break;
229                 case 'p':
230                         perout = atoi(optarg);
231                         break;
232                 case 'P':
233                         pps = atoi(optarg);
234                         break;
235                 case 's':
236                         settime = 1;
237                         break;
238                 case 'S':
239                         settime = 2;
240                         break;
241                 case 't':
242                         adjtime = atoi(optarg);
243                         break;
244                 case 'T':
245                         settime = 3;
246                         seconds = atoi(optarg);
247                         break;
248                 case 'h':
249                         usage(progname);
250                         return 0;
251                 case '?':
252                 default:
253                         usage(progname);
254                         return -1;
255                 }
256         }
257
258         fd = open(device, O_RDWR);
259         if (fd < 0) {
260                 fprintf(stderr, "opening %s: %s\n", device, strerror(errno));
261                 return -1;
262         }
263
264         clkid = get_clockid(fd);
265         if (CLOCK_INVALID == clkid) {
266                 fprintf(stderr, "failed to read clock id\n");
267                 return -1;
268         }
269
270         if (capabilities) {
271                 if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) {
272                         perror("PTP_CLOCK_GETCAPS");
273                 } else {
274                         printf("capabilities:\n"
275                                "  %d maximum frequency adjustment (ppb)\n"
276                                "  %d programmable alarms\n"
277                                "  %d external time stamp channels\n"
278                                "  %d programmable periodic signals\n"
279                                "  %d pulse per second\n"
280                                "  %d programmable pins\n",
281                                caps.max_adj,
282                                caps.n_alarm,
283                                caps.n_ext_ts,
284                                caps.n_per_out,
285                                caps.pps,
286                                caps.n_pins);
287                 }
288         }
289
290         if (0x7fffffff != adjfreq) {
291                 memset(&tx, 0, sizeof(tx));
292                 tx.modes = ADJ_FREQUENCY;
293                 tx.freq = ppb_to_scaled_ppm(adjfreq);
294                 if (clock_adjtime(clkid, &tx)) {
295                         perror("clock_adjtime");
296                 } else {
297                         puts("frequency adjustment okay");
298                 }
299         }
300
301         if (adjtime) {
302                 memset(&tx, 0, sizeof(tx));
303                 tx.modes = ADJ_SETOFFSET;
304                 tx.time.tv_sec = adjtime;
305                 tx.time.tv_usec = 0;
306                 if (clock_adjtime(clkid, &tx) < 0) {
307                         perror("clock_adjtime");
308                 } else {
309                         puts("time shift okay");
310                 }
311         }
312
313         if (gettime) {
314                 if (clock_gettime(clkid, &ts)) {
315                         perror("clock_gettime");
316                 } else {
317                         printf("clock time: %ld.%09ld or %s",
318                                ts.tv_sec, ts.tv_nsec, ctime(&ts.tv_sec));
319                 }
320         }
321
322         if (settime == 1) {
323                 clock_gettime(CLOCK_REALTIME, &ts);
324                 if (clock_settime(clkid, &ts)) {
325                         perror("clock_settime");
326                 } else {
327                         puts("set time okay");
328                 }
329         }
330
331         if (settime == 2) {
332                 clock_gettime(clkid, &ts);
333                 if (clock_settime(CLOCK_REALTIME, &ts)) {
334                         perror("clock_settime");
335                 } else {
336                         puts("set time okay");
337                 }
338         }
339
340         if (settime == 3) {
341                 ts.tv_sec = seconds;
342                 ts.tv_nsec = 0;
343                 if (clock_settime(clkid, &ts)) {
344                         perror("clock_settime");
345                 } else {
346                         puts("set time okay");
347                 }
348         }
349
350         if (extts) {
351                 memset(&extts_request, 0, sizeof(extts_request));
352                 extts_request.index = index;
353                 extts_request.flags = PTP_ENABLE_FEATURE;
354                 if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
355                         perror("PTP_EXTTS_REQUEST");
356                         extts = 0;
357                 } else {
358                         puts("external time stamp request okay");
359                 }
360                 for (; extts; extts--) {
361                         cnt = read(fd, &event, sizeof(event));
362                         if (cnt != sizeof(event)) {
363                                 perror("read");
364                                 break;
365                         }
366                         printf("event index %u at %lld.%09u\n", event.index,
367                                event.t.sec, event.t.nsec);
368                         fflush(stdout);
369                 }
370                 /* Disable the feature again. */
371                 extts_request.flags = 0;
372                 if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
373                         perror("PTP_EXTTS_REQUEST");
374                 }
375         }
376
377         if (list_pins) {
378                 int n_pins = 0;
379                 if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) {
380                         perror("PTP_CLOCK_GETCAPS");
381                 } else {
382                         n_pins = caps.n_pins;
383                 }
384                 for (i = 0; i < n_pins; i++) {
385                         desc.index = i;
386                         if (ioctl(fd, PTP_PIN_GETFUNC, &desc)) {
387                                 perror("PTP_PIN_GETFUNC");
388                                 break;
389                         }
390                         printf("name %s index %u func %u chan %u\n",
391                                desc.name, desc.index, desc.func, desc.chan);
392                 }
393         }
394
395         if (oneshot) {
396                 install_handler(SIGALRM, handle_alarm);
397                 /* Create a timer. */
398                 sigevent.sigev_notify = SIGEV_SIGNAL;
399                 sigevent.sigev_signo = SIGALRM;
400                 if (timer_create(clkid, &sigevent, &timerid)) {
401                         perror("timer_create");
402                         return -1;
403                 }
404                 /* Start the timer. */
405                 memset(&timeout, 0, sizeof(timeout));
406                 timeout.it_value.tv_sec = oneshot;
407                 if (timer_settime(timerid, 0, &timeout, NULL)) {
408                         perror("timer_settime");
409                         return -1;
410                 }
411                 pause();
412                 timer_delete(timerid);
413         }
414
415         if (periodic) {
416                 install_handler(SIGALRM, handle_alarm);
417                 /* Create a timer. */
418                 sigevent.sigev_notify = SIGEV_SIGNAL;
419                 sigevent.sigev_signo = SIGALRM;
420                 if (timer_create(clkid, &sigevent, &timerid)) {
421                         perror("timer_create");
422                         return -1;
423                 }
424                 /* Start the timer. */
425                 memset(&timeout, 0, sizeof(timeout));
426                 timeout.it_interval.tv_sec = periodic;
427                 timeout.it_value.tv_sec = periodic;
428                 if (timer_settime(timerid, 0, &timeout, NULL)) {
429                         perror("timer_settime");
430                         return -1;
431                 }
432                 while (1) {
433                         pause();
434                 }
435                 timer_delete(timerid);
436         }
437
438         if (perout >= 0) {
439                 if (clock_gettime(clkid, &ts)) {
440                         perror("clock_gettime");
441                         return -1;
442                 }
443                 memset(&perout_request, 0, sizeof(perout_request));
444                 perout_request.index = index;
445                 perout_request.start.sec = ts.tv_sec + 2;
446                 perout_request.start.nsec = 0;
447                 perout_request.period.sec = 0;
448                 perout_request.period.nsec = perout;
449                 if (ioctl(fd, PTP_PEROUT_REQUEST, &perout_request)) {
450                         perror("PTP_PEROUT_REQUEST");
451                 } else {
452                         puts("periodic output request okay");
453                 }
454         }
455
456         if (pin_index >= 0) {
457                 memset(&desc, 0, sizeof(desc));
458                 desc.index = pin_index;
459                 desc.func = pin_func;
460                 desc.chan = index;
461                 if (ioctl(fd, PTP_PIN_SETFUNC, &desc)) {
462                         perror("PTP_PIN_SETFUNC");
463                 } else {
464                         puts("set pin function okay");
465                 }
466         }
467
468         if (pps != -1) {
469                 int enable = pps ? 1 : 0;
470                 if (ioctl(fd, PTP_ENABLE_PPS, enable)) {
471                         perror("PTP_ENABLE_PPS");
472                 } else {
473                         puts("pps for system time request okay");
474                 }
475         }
476
477         if (pct_offset) {
478                 if (n_samples <= 0 || n_samples > 25) {
479                         puts("n_samples should be between 1 and 25");
480                         usage(progname);
481                         return -1;
482                 }
483
484                 sysoff = calloc(1, sizeof(*sysoff));
485                 if (!sysoff) {
486                         perror("calloc");
487                         return -1;
488                 }
489                 sysoff->n_samples = n_samples;
490
491                 if (ioctl(fd, PTP_SYS_OFFSET, sysoff))
492                         perror("PTP_SYS_OFFSET");
493                 else
494                         puts("system and phc clock time offset request okay");
495
496                 pct = &sysoff->ts[0];
497                 for (i = 0; i < sysoff->n_samples; i++) {
498                         t1 = pctns(pct+2*i);
499                         tp = pctns(pct+2*i+1);
500                         t2 = pctns(pct+2*i+2);
501                         interval = t2 - t1;
502                         offset = (t2 + t1) / 2 - tp;
503
504                         printf("system time: %lld.%u\n",
505                                 (pct+2*i)->sec, (pct+2*i)->nsec);
506                         printf("phc    time: %lld.%u\n",
507                                 (pct+2*i+1)->sec, (pct+2*i+1)->nsec);
508                         printf("system time: %lld.%u\n",
509                                 (pct+2*i+2)->sec, (pct+2*i+2)->nsec);
510                         printf("system/phc clock time offset is %" PRId64 " ns\n"
511                                "system     clock time delay  is %" PRId64 " ns\n",
512                                 offset, interval);
513                 }
514
515                 free(sysoff);
516         }
517
518         close(fd);
519         return 0;
520 }